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One important goal of the pharmaceutical industry is to evaluate new therapies in a 

time-sensitive and cost-effective manner without undermining the integrity and validity of 

clinical trials. Adaptive seamless phase II/III designs (ASD) have gained popularity for 

accelerating the drug development process and reducing cost. Covariate adaptive 

randomization (CAR) is the most popular design in randomized controlled trials to ensure 

valid treatment comparisons by balancing the prognostic characteristics of patients among 

treatment groups. Although adaptive seamless clinical trials with CAR have been 

implemented in practice1, the theoretical understanding of such designs is limited. In addition, 

current approaches to control the Type 1 error rate in seamless trials are based on theories for 

complete randomization, which may be invalid under CAR and lead to a Type 1 error rate 

that deviates from the nominal level. Recently, Ma and Zhu (2019, unpublished) established 

the theoretical foundation for the adaptive seamless phase II/III trial with CAR and proposed 

a hypothesis testing approach to control the Type 1 error rate in such trials. In the current 



 

 

 

research, numerical studies were conducted to investigate the feasibility and advantages of 

the proposed approach in the seamless design with stratified permutated block (SPB) 

randomization.  The simulation results revealed that the newly developed method well 

controlled the Type 1 error rate around the nominal level, improved the statistical power 

compared to the standard two sample t-test and increased the number of replications that the 

best treatment is selected for Stage II of the seamless trial under the SPB design compared to 

the complete randomization, which could promote its application in practice.          
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BACKGROUND  

Literature Review  

1. Randomized Controlled Trials 

Randomized controlled trial (RCT) is a study that divides subjects into distinct groups 

by random process to compare the effect of treatments or other interventions. It is the gold 

standard in clinical research due to its potential to minimize various biases and inherent 

strength to unveil casuality2. Randomization, in conjugation with the controlled and blinding 

provides a powerful tool to achieve accurate and valid estimates of the treatment effects for 

various medical interventions.    

1.1 Randomization methods 

1.1.1 Simple randomization 

One key feature of RCT is randomization, which helps to ensure that the treatment 

and control groups are well balanced in both measured and unmeasured factors. Many 

procedures have been implemented in randomization of RCTs. Simple randomization, which 

is equivalent to repeated fair coin-tossing, is the most basic method for random 

assignments3,4. It prevents any conscious or unconscious selection bias by assigning subjects 

to treatment groups completely at random. In a large clinical trial (n > 200), simple 

randomization allows adequate balance in both sample size and prognostic factors (ie. 

covariates) among treatment groups5. However, accidental bias may occur due to chance 

imbalances in group sizes and pre-specified covariates when the trial size is small (n < 100)5,6. 

These imbalances can impair the precision and validity of comparisons among treatments and 

are often blamed for failures in clinical trials7. Therefore, randomization techniques that help 
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ensure balanced group sizes and baseline characteristics have been largely adopted in 

practice in contrast to simple randomization6.   

1.1.2 Permuted block randomization 

Permuted block randomization (PBR) is the most commonly used method to balance 

the number of subjects allocated to each treatment group8. Blocks are small and balanced 

with predetermined treatment assignments, ensuring equal number of subjects in each 

treatment group through the whole trial process. Block size is often a multiple of the group 

number. All permutations for the block size (ie. all possible combinations of treatment 

assignments within the block) are listed once the block size is determined, from which the 

treatment allocation for a subject is decided by random selection of the permutations. 

Although PBR can help ensure balanced number of subjects in each treatment group to 

maximize statistical power, the baseline covariates among groups may not be comparable, 

resulting in confounding bias and impaired power of the study4,5.                

1.1.3 Stratified permuted block randomization 

To achieve covariate balance in clinical trials6,8, multiple coactive-adaptive 

randomization (CAR) approaches have been proposed, among which stratified permuted 

block randomization is the most common one in both academia and industry sponsored 

clinical trials6,9,10. In a trial using stratified PBR, subjects are divided into different strata 

based on measurable prognostic factors that are considered strongly associated with the 

primary outcome, such as trial centers and disease stages. The total number of strata is the 

product of the number of levels across the covariates. Permuted block randomization is then 

performed within each stratum to assign a subject to one of the treatment groups11. Stratified 
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PBR helps achieve proper balance in both group sizes and pre-specified covariates, leading to 

maximal statistical power and minimal confounding bias. However, only a small number of 

prognostic factors can be balanced using this procedure. When there are too many influential 

covariates or covariates with many levels in the trial, a large number of strata will be 

generated. Some strata may have few or even no subjects if the trial is small, resulting in 

imbalances in overall treatment allocations and jeopardizing the validity of the study.  

Therneau et al. showed that the balance in covariates begins to fail if the total number of 

strata is greater than approximately half of the sample size12. One early study indicated that 

the number of strata should be less than N/B to maintain the benefits of stratified PBR, where 

N is the total sample size and B is the block size13. Kerman suggested a more stringent 

number by multiplying B with a safe factor 4 in the denominator (ie. N/4B)14.  In practice, a 

mean of 2.52 (SD = 0.90) stratification variables were used in clinical trials with stratified 

PBR6. 

1.2 Traditional clinical trial design 

Conventional drug and medical intervention development consists of a sequence of 

independent RCTs organized in different phases. To develop a novel drug for certain disease 

in a classical way, pre-clinical investigations are firstly carried out to study drug’s safety, 

pharmacodynamics and pharmacokinetic on animals and to evaluate drug production and 

purity. If the study results are promising, the drug is further investigated in human subjects in 

four sequential phases after approval by US Food and Drug Administration (FDA) for each 

phase. In phase I trials, drug’s safety, maximum tolerated dose and human 

pharmacodynamics and pharmacokinetic are tested in 20 to 100 healthy volunteers or people 
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with the disease/condition. Phase II trials, also referred to as exploratory or learning phase 

trials, provide preliminary evidence of drug efficacy besides further investigating the safety 

and pharmacological issues in a larger diseased population (up to several hundred). In these 

trials, multiple doses of a new drug may be compared to a control (ie. conventional treatment 

or placebo) to decide whether to stop or continue with the development. Data collected in this 

phase can also help to refine research questions, develop research methods and design 

research protocols for phase III trials. Known as pivotal studies, phase III trials demonstrate 

or confirm treatment efficacy and identify incidence of side effects in a population ranging 

from 300 to 3000 subjects. The trials can last up to 4 years and sometimes more than one 

phase III trials are required to establish drug efficacy and safety by FDA. Because of the 

large scope and long duration of the trials, long-term and rare side effects are more likely to 

be detected in the studies. Statistical analyses for phase III trials are typically conducted by 

ignoring data collected in previous phases, and the outcome measures are usually different 

from phase II trials. Phase IV trials are conducted once the drug is approved by FDA during 

the post-market safety monitoring. More rare adverse reactions can be identified and health 

economic evaluations could be implemented in this phase15,16.  

1.3 Adaptive seamless phase II/III design 

To accelerate the process of drug development and reduce its cost, adaptive seamless 

phase II/III designs (ASD) have been developed, whereby the two phases are combined into 

a single, uninterrupted trial with two or more stages. Typically, the stages are separated by 

one or more interim analyses, at which several experimental treatments or drug doses are 

evaluated. At these interim looks, experimental treatments are either dropped for futility or 
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continued to be investigated in the later stage(s) due to high treatment efficacy. Adaptions 

such as sample size reassessment are allowed after the interim analyses17,18.   

1.3.1 Principle of ASD     

A simple scenario of ASD is comparing multiple experimental treatments with one 

control in a two-stage design with one interim analysis. Based on the data from the learning 

stage I (analogous to the traditional phase II), the study is either stopped due to futility or 

continued to the confirmatory stage II (analogous to the traditional phase III) along with the 

empirically best experimental treatment and the control. The final analysis of the selected 

treatment includes information from both stages and the overall type one error of the 

statistical analysis is controlled at a pre-specified level independent of the selection rule at 

the interim. Bauer and Kӧhne proposed a test procedure for this scenario in 199419. Generally, 

a one-sided null hypothesis corresponding to comparing different effects between two 

treatments is tested. The test procedure for Stage I, the stopping rule for the interim analysis 

and the combination test for the final analysis are pre-determined. Hypothesis testing for 

Stage I results in a p-value 1p , to which the interim decision is made accordingly. If the study 

is continued, the second stage can be re-designed, e.g, sample size is re-assessed, and a p-

value 2p  is obtained from hypothesis testing for Stage II. The two p-values are combined in 

the end using the pre-specified combination test to decide whether the null hypothesis is 

rejected or not17.  
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1.3.2 Combination tests     

In the above adaptive test procedure proposed by Bauer and Kӧhne, fisher’s 

combination test, i.e. the inverse 2 method was recommended19. Fisher’s criterion results in 

rejection of the null hypothesis at the end of the two-stage trial if  

2/)log( 2
1,421  −− pp , 

where 
2

1,4  −  is th)1( −  quantile of a 2 distribution with 4 degrees of freedom.  

Another common approach for combination test is the weighted inverse normal 

method20. For an adaptive seamless phase II/III trial with two stages, given two one-sided p-

values, 1p  and 2p   from each stage, the method rejects the null hypothesis in the final 

analysis if 

)1()1()1( 1

2

1

21

1

1 −−+− −−− pwpw , 

where 1w  and 2w are pre-specified weights satisfying 2,1,10 = iwi  and 12

2

2

1 =+ ww .   

denotes the standard normal CDF. A widely adopted option is 2,1, == innw ii , where in  

are the pre-planned sample sizes for the two stages and 21 nnn += 18.  

2. Multiplicity in Clinical Trials 

Multiplicity is defined as simultaneous assessments of multiple aspects of the efficacy 

profile in a clinical trial21. It may inflate type I error rate and lead to increased risk of false 

positive conclusions in trials which evaluate multiple end points, compare across several 

treatment arms, analyze multiple sub-populations and measure the same outcome repeatedly 

in time22,23. For example, in an exploratory dose-comparison study with two dose candidates, 
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or in a confirmatory trial with two primary end points, two true null hypotheses (i.e. no 

treatment effect) are tested simultaneously at significance level , which refers to the 

probability of a type I error. The probability of rejecting at least one true null hypothesis, 

known as overall type I error rate or familywise error rate (FWER), can be calculated as

2)1(1 −− . When 05.0= , FWER is 0.0975, indicating that there is 9.75% of chance to 

declare at least one significant treatment effect when indeed none is significant by the trial 

sponsors, whereas others believe that the type I error rate is maintained at the level of 5%. 

Besides inflating type I error rate, multiplicity also has important implications for sample size 

determination24. Therefore, multiplicity adjustment is mandated by regulatory agencies to 

ensure accurate efficacy or safety claims25,26.   

2.1 Multiplicity adjustments in clinical trials  

Numerous multiplicity adjustment methods, i.e. multiple testing procedures (MTPs) 

have been developed to solve multiplicity problems in clinical research. Identifying the most 

appropriate MTP for a particular clinical trial is essential to maximize the statistical power. 

In practice, clinical trialists customize solutions for addressing multiplicity by utilizing all 

available clinical and statistical information. When definitive clinical information is available, 

hypotheses for each individual objective, e.g. each end point in a phase III trial, can be 

ordered in a clinical meaningful way prior to data analysis. Data-driven hypothesis ordering 

will be used if a meaningful priori ordering cannot be pre-specified. Based on distributional 

information, MTPs can be classified into nonparametric tests, semiparametric tests and 

parametric tests, in which parametric tests are the most efficient but rely on specific 
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statistical assumptions. Methodology and applications of commonly used MTPs in clinical 

trials are thoroughly reviewed by Bretz et al27. and Dmitrienko et al21,22. Two methods, 

Simes test and Dunnett test are introduced here because they will be used in the proposed 

numerical study.  

2.1.1 Simes test 

Simes test is a single-step MTP that assumes non-negative correlations between p-

values of individual hypotheses and is more powerful than a global test based on Bonferroni 

test. Assume a multiplicity problem arising in a trial which compares k experimental 

treatments with a control. K null hypotheses denoted by kHH ,...,1 correspond to evaluations 

of treatment effects parameterized as k ,...,1 , i.e., kiH ii ,...,1,0: == . The Simes method 

tests the global null hypothesis  

kiHH ki ,...,1,0...: 1 =====  . 

Let kip i ,...,1,)( =  be ordered p-values for individual hypotheses. With )()1( ... kpp  , the 

test rejects H  if kip i )(  for at least one i. Simes’ adjusted p-value is ikp ii )(min .  

2.1.2 Dunnett test 

Dunnett test is a single-step parametric test assuming that the correlations between the 

test statistics are known. It provides less conservative multiplicity adjustment and is more 

powerful than the nonparametric test such as Bonferroni test. For the above multi-arm trial 

example, we want to test the k null hypotheses   

kiH ii ,...,1,0: == . 

The test statistics are defined as  
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where iy  and 0y  are sample mean, and in  and 0n  are sample size for treatment k and 

control, respectively. s is the pooled sample standard deviation and  =
−=

k

i ii Sns
0

22 )1(  , 

where 2

iS  is the sample variance for treatment k and  =
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0
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00
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For the k null hypotheses, dunnett test rejects iH  if − 1,ki ct , where −1,kc  is determined by 

 −== −−− 1)Pr(max)],...,(),...,Pr[( 1,1,1,1 kiikkk ctcctt .  

2.2. Closure principle 

Closure principle proposed by Marcus et al.28 is a general construction method which 

allows one to draw conclusions for individual null hypothesis in multiple testing following a 

closed test procedure (CTP). It strongly controls FWER and serves as the foundation for all 

commonly used MTPs in clinical trials21. For a multi-arm trial where k experimental 

treatments are compared with a control, k null hypotheses kiH ii ,...,1,0: ==  are to be 

tested, where i  is the treatment effect. These initial hypotheses are called elementary 

hypotheses in the CTP. All possible intersection hypotheses, i.e., },...,1{, kIHH
Ii

iI =


  

are constructed, and a local level-α test is performed for each of the intersection hypotheses. 
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An elementary hypothesis iH  is rejected at FWER α if all IH  with Ii  are rejected, each 

at local level α, i.e., the maximum p-value from this set needs to be less than or equal to α. 

The adjusted p-value for iH  is kipq I
IiI

i ,...,1,max
:

==


, where Ip  denotes the p-value for a 

given intersection hypothesis },...,1{, kIH I  . Multiple MTPs can be used for different 

intersection hypotheses17.   

2.3 Multiple testing in ASD 

The general idea for multiple testing in adaptive design is to construct all intersection 

hypotheses for each stage and to test each of the hypotheses with a suitable combination 

test17,29. Consider a simple two-stage seamless phase II/III design whereby two experimental 

treatments 1 and 2 are compared with a control in Stage I. Assume treatment 1 is selected in 

the interim analysis to go forward to Stage II, and we are interested in testing the null 

hypothesis 0: 11 =H  in the final analysis, where 1  is the treatment effect for treatment 1. 

Following the CTP, intersection hypothesis 12H is constructed and hypotheses 21 , HH  and 

12H  are to be tested for both stages. Let jip ,  denote the one-sided p-value for hypothesis 

}12,2,1{, jH j at stage i = 1, 2. Denote combination function C derived from the inverse 2

method or the weighted inverse normal method. Since treatment 2 is dropped at the interim 

and no data is available for it in Stage II, 12H for the second stage is equal to 1H  and the test 

is performed on data for treatment 1 in this stage. According to closure principle, 1H  is 

rejected at FWER α in the final analysis if 1H  and 12H  for both stages are simultaneously 

rejected at the significance level α, i.e., if cppC ),( 1,212,1 and cppC ),( 1,21,1 .  



 

11 

 

Public Health Significance 

Randomized controlled trials have been the gold standard for discovering efficient 

treatments and understanding counter-balancing risks. Many breakthroughs in disease 

prevention and treatment in the past century are attributable to RCTs, such as the landmark 

Salk Polio Vaccine Trial30 and trials for tuberculosis control31,32. Ford et al. reported that 

approximately half of the decrease in the age-adjusted death rate for coronary heart disease 

from 1980 to 2000 can be attributed to medical therapies validated in clinical trials33. More 

than 200,000 clinical trials worldwide have been registered in the US National Institute of 

Health (NIH) today34, leading medical innovations to improve health and well-being of 

human race.   

One main barrier to conducting clinical trials in the US is high financial costs35. The 

estimated cost to develop and win marketing approval for a new drug had increased from 

US$802 million in 2003 to US$2.6 billion in a decade36. Lengthy timelines contribute 

directly to the costs of clinical trials. The average length of time from the start of clinical 

testing to marketing is 7.5 years37, and typically 10 to 15 years are spent from discovery to 

registration with FDA for a drug therapy38. Long development process also reduces the time 

a drug has under patent protection, allowing early entry of generic competitors and reducing 

revenue for the patent holder. These obstacles may discourage pharmaceutical companies 

from investing in drug development and consequently limit patients’ access to novel 

treatments.  

The motivation behind adaptive seamless phase II/III designs is to save time for drug 

development. By combining the conventional phase II and III trials into one study, ASD 
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reduce the lead time between the two phases. It also increases data collection and 

interpretation efficiency while maintaining the same sample size by combing information in 

the final analysis. Alternatively, smaller sample sizes are required in the ASD to draw 

conclusions with the same strength as in the traditional designs. Furthermore, long-term 

safety data can be obtained earlier because patients in the learning stage I are continued to be 

monitored in the confirmatory stage II in the ASD.  

In contrast to high financial costs, the clinical trial success rate is low. A recent study 

revealed that only 14% of drugs in clinical trials win FDA approval eventually, and the 

success rates range from 3.4% for cancer treatments to 33% in vaccines for infectious 

diseases39. Strict control of type I error rate at a two-sided 5% level is mandated for FDA 

approval25. For clinical trials with CAR, conventional tests are usually used without 

consideration of the randomization scheme40. Failing to incorporate all stratification 

covariates used for randomization into inference procedures results in conservative tests in 

terms of small type I error rate and reduced statistical power41, therefore beneficial treatments 

may be denied to patients.  

In this proposal, simulation studies are proposed to examine a new hypothesis testing 

procedure which is able to well calibrate the type I error rate at the significance level under 

CAR in adaptive seamless phase II/III clinical trials. The success of the research will 

facilitate the implementation of the procedure in the adaptive seamless trials with CAR to 

increase the trial success rate, leading to more efficient and cost effective clinical trials that 

benefit the general population related to the corresponding medical innovations.  
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Hypothesis, Research Question, Specific Aims or Objectives 

1. Research questions and hypotheses  

For seamless trials, type I error rate tends to inflate due to multiplicity and selection42. 

Classic MTPs such as Dunnett test can well control the type I error rate in the ASD with 

simple randomization, assuming independence of each patient43. Under CAR, however, the 

assumption is no longer true due to the complicated randomization mechanism aiming to 

balance covariates over different arms. For example, balancing covariates via stratification 

leads to correlation between the treatment groups44. For a scenario where one experimental 

treatment is compared to one control, it is reported that the classic tests are too conservative 

in terms of small type I errors when stratified PBR is used to allocate patients44. It is unclear 

if MTPs such as Simes test and Dunnett test are valid under CAR with multiple treatments in 

the setting of seamless designs, and if not, how to perform adjustment to achieve valid tests.   

Zhu and Ma have studied the properties of intersection tests under CAR with multiple 

treatments, and have provided theoretical results for a hypothesis testing approach where 

Simes and Dunnett tests are still valid under CAR in the seamless design (unpublished). 

Suppose there are )1( +K  arms in Stage I of a seamless clinical trial with CAR, in which K  

experimental treatments are compared to a control, and the total sample size is N . Let 

Kkk ,...,1,0, = be the parameter measuring the main effects of treatment k . Testing the K  

null hypotheses KkH kk ,...,1,: 0,0 ==   and their interactions are of interest. Let 

NiTTT T
iKii ,...,1,),...,,( 10 ==iT  be the treatment assignment of the ith  subject, where 

treatment 0 represents the control arm. KkTik ,...,1,0,1 == , if the ith  subject is assigned to 
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treatment k , and 0=ikT  otherwise. The number of subjects in treatment k  is

KkTN
N

i ikk ,...,1,0,
1

== =
. Let NiYYY T

iKii ,...,1,),...,,( 10 ==iY  be a random vector of 

response variables, where KkYik ,...,1,0, =  is the response of the ith  subject assigned to 

treatment k . k

N

i ikikk NYTY  =
=

1
is an estimator of k . Let iZ  be the covariate information 

for the ith  subject, which is independent and identically distributed. For simplicity, sZ i  are 

assumed to be either discrete or continuous covariates. To incorporate continuous covariates 

in randomization, iZ  is discretized with )( iZD , a discrete function of iZ  taking values in Ɒ. 

ii ZZD =)(  is set for discrete covariates. The response of the ith  subject under treatment k  

follows the linear model  

KkZY ikikik ,...,1,0, =++=  , 

where   represents the covariate effect, and sik are independent and identically distributed 

random errors from the normal distribution ),0( 2

N , and are independent of covariates.  

Two conditions are introduced for the balancing properties under CAR with multiple 

treatments: (A) KkONN pk ,...,1),1(0 ==− ; (B) 

 =
===−

N

i piiik KkOdZDITT
1 0 ,...,1),1(})({)(  for any d  Ɒ.  

The following theorems show how to construct test statistics for KkH kk ,...,1,: 0,0 == 

that can be used for the Simes test and the Dunnett test.  

Theorem 1: Let  
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Kk
NN

YY
X

kd

k
k ,...,1,

11 0

0 =
+

−
=


, 

where )}].(|{[222
iid ZDZVarE  +=                                                                             (1) 

Under conditions (A) and (B), when all KkH kk ,...,1,: 0,0 ==  are true, we have  

),0(),...,( 1 RNXX dT

K ⎯→⎯ , 

where .
2

1
}

2

1
{ T

KKKdiag III +=R  

Based on the theorem, the test statistic follows a standard normal distribution for 

every single test for KkH kk ,...,1,: 0,0 ==  , and the critical value can be selected 

accordingly to one-sided or two-sided tests. In practice, the value of d  can be estimated by 

model-based or bootstrap methods.   

Theorem 2 (The Simes test): Under conditions (A) and (B), the Type I error rate is 

controlled for the Simes test with the test statistic KkX k ,...,1, =  under CAR.  

Original Dunnett test is based on the multivariate t distribution. In Theorem 1, it is 

proved that the vector of test statistics 
T

kXX ),...,( 1 asymptotically follows K  dimensional 

normal distribution with unit variances and constant correlations equal to 1/2. Without loss of 

generality, the alternative hypotheses are assumed to be KkH kk ,...,1,: 0,1 =  . The null 

hypotheses are rejected if 'max cX kk  , where 'c  is determined by 

−== 1)'Pr(max)]',...,'(),...,Pr[( 1 cXccXX kkk . The above test procedure is referred 

to as modified Dunnett test.  
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Theorem 3 (The Dunnett test): Under conditions (A) and (B), the type I error rate is 

asymptotically   for the modified Dunnett test using test statistic KkX k ,...,1, =  under 

CAR.  

Numerical studies, also known as simulation studies are computer experiments which 

create data by pseudo-random sampling from known probability distributions. They are 

excellent tools for evaluating novel statistical methods and comparing competing approaches. 

To assess the appropriateness and accuracy of the hypothesis testing procedure mentioned 

above in a seamless design with CAR, numerical studies are proposed to use in the current 

study with following aims.    

2. Specific Aims 

I. Detect potential problems in type I error control for commonly used hypothesis 

testing procedures in seamless phase II/III clinical designs with covariate adaptive 

randomization. 

II. Implement the newly developed hypothesis testing procedure in seamless designs 

with covariate adaptive randomization to better control the type I error rates. 

III. Demonstrate the statistical advantage of the new hypothesis testing procedure under 

the alternative hypothesis in seamless designs with covariate adaptive randomization. 
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METHODS 

Study design 

A seamless phase II/III trial design with two stages under stratified permuted block 

randomization (SPB) was considered and numerical studies were conducted based on the 

following settings. There were )1( +K  arms under study in Stage I, in which K  

experimental treatments were compared to a control. Patients were sequentially assigned to 

all the arms with SPB based on M  covariates. One experimental treatment *k  with the 

largest estimated treatment effect was selected at the end of the stage. In stage II, the planned 

number of patients was sequentially assigned to the control and the treatment *k  with SPB 

based on M  covariates. The hypothesis 0**,0
:  =

kk
H  vs. 0*  

k
 was tested based on 

the combined data from both stages. Scenarios with different number of treatments and 

stratification covariates, i.e., (1) 2,2 == MK ; (2) 3,3 == MK ; (3) 2,4 == MK  were 

evaluated. For Scenario 1, both discrete and continuous stratification covariates were studied. 

Simulation procedures 

In Scenario 1, two experimental treatments (i.e., treatment 1 and treatment 2) were 

compared with one control (i.e., treatment 0) in Stage I, and both discrete and continuous 

stratification covariates were considered. The following linear model with two covariates 1Z  

and 2Z  was used to simulate response iY ,  

iiiiii ZZTTY  +++++= 221122110 ; 
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where  1iT  and 
2iT  were indicator variables indicating the treatment assignment of the ith  

subject. 2,1,1 == kTik
 if the ith  subject was assigned to treatment k , and 0=ikT  otherwise. 

1  and 2  were the addictive effects of treatments on outcome, and 1  and 2  were 

coefficients corresponding to the stratification covariates. For the discrete case, 1Z  and 2Z  

followed Bernoulli distributions with success rates 1p  and 2p , respectively. For the 

continuous case, 2Z  was generated from standard normal distribution and discretized into 

bernoulli variable )( 2ZD  with probability 2p  to be used in SPB randomization. More 

specifically, 1)( 2 =ZD  if )(2 2pZZ  , where )( 2pZ  was the 2p  quantile of the standard 

normal distribution, and 0)( 2 =ZD  otherwise. Continuous covariate was used in statistical 

inference procedures. 0 , 1  and 2  were assigned value of 1, and ),0(~ 2 Ni . 120 

patients were assumed to sequentially enter the trial in Stage I, and the block size of 6 was 

used for SPB randomization with respect to covariates 1Z  and 2Z . Complete randomization 

(CR) was also implemented. To select the experimental treatment to go forward to Stage II, 

Let 

                                            2,1,
// 0

2
0

2

0 =
+

−
= k

NSNS

YY
W

kk

k
k ,                                           (2)                  

where kY  was the mean response for the treatment 2,1, =kk , 0Y  was the mean response for 

the control, 
2
kS  and 

2
0S  were the unbiased estimators of the variance for the treatment k  and 

the control, respectively. The experimental treatment with larger W , denoted as treatment *k  

was considered more effective and selected to continue.  
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In Stage II, 500 patients were simulated and allocated into the control and the 

treatment *k  using SPB randomization with respect to the two covariates or complete 

randomization. The hypothesis tests for comparing treatment effects in both stages included 

the two-sample t-test without adjustment, full linear model with both covariates 1Z  and 2Z , 

the bootstrap t-test proposed by Shao et al.45, and the newly developed procedure denoted as 

t-test with adjustment. For the bootstrap t-test, B bootstrap samples (
bbb ZZY *

2,1

*

1,1

*

1 ,, ),…,(

b

N

b

N

b

N ZZY *

2,

*

1,

* ,, ), b = 1, 2,…, B were generated independently by random sampling with 

replacement from ( 2,11,11 ,, ZZY ) ,…, ( 2,1, ,, NNN ZZY ). SPB randomization with categories 

defined by the covariate values of each bootstrap sample (
bb ZZ *

2,1

*

1,1 , ) ,…, (
b

N

b

N ZZ *

2,

*

1, , ) was 

applied and the bootstrap analogues of treatment allocations b

Nk

b

k TT **

1 ,...,  could be obtained, 

where 2,1,0,1* == kT b

ik  if the ith  subject was assigned to treatment k , and 0* =b

ikT  

otherwise. Define the treatment effects between the experimental treatments and the control 

as   

2,1,,,
11

1

**

1

*
0

*
0

1

**
0*

01

**

*

*
0

* ===−=− 
====

jTnTnYT
n

YT
n

YY
N

i

b
ij

b
j

N

i

b
i

b
N

i

b
i

b
ib

N

i

b
i

b
ijb

j

bb
j . 

The bootstrap estimator of the variance of  0YY j −  was the sample variance of 
bb

j YY *
0

* − , b = 

1, 2,…,B, denoted by Bjv̂ . The bootstrap t-test had the test statistic 
2/1

0
ˆ)( BjjB vYYT −= . B = 

200 was used in the current simulations. For the t-test with adjustment based on Theorem 1, 

the value of d  was computed by formula (1), where values of   and   were estimated by 

fitting a full linear regression model with both covariates. The closed test procedures using 
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Dunnett test and Simes test were applied for hypothesis testing to control the familywise 

error rate (FWER). Hypothesis 0**k0, :H  =k  vs. 0**k1, :H  k  for the seamless design 

was tested using Fisher’s combination test at the end of the stage. According to the closure 

principle, *k0,H  was rejected at FWER   if 
12 0，H  and *k0,H  were both rejected at  , i.e., 

cppC k ),( *,212,1 and cppC kk ),( *,2*,1 . The significance level   was 0.05 for all the 

tests. All the results were based on 10, 000 replications.  

In Scenario 2, three experimental treatments (i.e., treatment 1, 2 and 3) were 

compared with one control (i.e., treatment 0) in Stage I, and three discrete stratification 

covariates ( 1Z , 2Z  and 3Z ) were considered. The following linear model was used to 

simulate response iY ,  

iiiiiiii ZZZTTTY  +++++++= 3322113322110 ; 

where 1iT , 2iT  and 3iT  were indicator variables indicating the treatment assignment of the ith  

subject. 3,2,1,1 == kTik  if the ith  subject was assigned to treatment k , and 0=ikT  

otherwise. 1 , 2  and 3  were the addictive effects of treatments on outcome, and 1 , 2  

and 3  were coefficients corresponding to the stratification covariates. 1Z , 2Z  and 3Z  

followed Bernoulli distributions with success rates 1p , 2p  and 3p , respectively. 

),0(~ 2 Ni . CR and SPB randomization with respect to all the three covariates were 

implemented. In Scenario 3, four experimental treatments (i.e., treatment 1, 2, 3 and 4) were 

compared with one control (i.e., treatment 0) in Stage I, and two discrete stratification 
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covariates ( 1Z  and 2Z ) were considered. The following linear model was used to simulate 

response iY ,  

iiiiiiii ZZTTTTY  +++++++= 2211443322110 ; 

where 1iT , 2iT , 3iT  and 4iT  were indicator variables indicating the treatment assignment of 

the ith  subject. 4,3,2,1,1 == kTik  if the ith  subject was assigned to treatment k , and 0=ikT  

otherwise. 1 , 2 , 3  and 4  were the addictive effects of treatments on outcome, and 1  

and 2  were coefficients corresponding to the stratification covariates. 1Z  and 2Z  followed 

Bernoulli distributions with success rates 1p  and 2p , respectively. ),0(~ 2 Ni . CR and 

SPB randomization with respect to the two covariates were implemented.  

In both scenarios, sample sizes for Stage I and II were 200 and 400, respectively. The block 

sizes for the SPB design are 8 and 10, respectively. Other settings were the same as in 

Scenario 1.  

Type I error rates were calculated as the rate of rejection of 0**k0, :H  =k  in the 

two-stage seamless design among all 10,000 simulation replications assuming 0 =k  in 

Stage I and 0*  =k  in Stage II. Powers were computed as the rate of rejection of 

0**k0, :H  =k  in the two-stage design among all 10,000 simulation replications assuming 

0 k  in Stage I and 0*  k  in Stage II. Number of replications that the best treatment is 

selected for Stage II was the counts that treatment 1 was selected at the end of Stage I among 

all 10, 000 simulation replications assuming treatment 1 had the largest treatment effect.  
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RESULTS 

To study Type 1 error rates, no difference in treatment effects was assumed by 

assigning 021 == . Results from Scenario 1 were reported in Table 1 (discrete case) and 

Table 2 (continuous case). Under CR in both cases, Type 1 error rates were close to the 

nominal level 5% for both the two sample t-test (t-test) and the full linear model (lm(Z1, Z2)). 

Under the SPB randomization with either Dunnett test or Simes test for multiplicity 

adjustment, the two-sample t-tests were conservative with Type I error rates far below 5%, 

while the t-tests with adjustment (Adjusted-t) successfully controlled Type 1 error rates 

around 5%. Type 1 error rates were also well controlled when the full linear model and 

bootstrap t-test (BS-t) were used in both discrete and continuous cases. Different values of 

( 1p , 2p , ) were investigated and similar results were obtained as shown in the tables.  

Table 1: Simulated Type I error under stratified permuted block design (SPB) and 

complete randomization (CR) in % in the seamless trial with three treatments and two 

discrete covariates.  

MTP (p1, p2, σ) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t 

Simes (0.5, 0.5, 1.0) SPB 1.73 5.26 5.14 5.20 

  CR 5.00 4.73 - - 

 (0.4, 0.6, 1.0) SPB 1.78 4.84 5.35 5.41 

  CR 4.73 4.80 - - 

 (0.4, 0.6, 1.5) SPB 3.00 4.78 5.46 5.31 

  CR 4.61 4.65 - - 

Dunnett (0.5, 0.5, 1.0) SPB 1.98 5.75 5.09 5.46 

  CR 5.20 5.30 - - 

 (0.4, 0.6, 1.0) SPB 1.91 5.38 5.23 5.36 

  CR 5.05 5.23 - - 

 (0.4, 0.6, 1.5) SPB 3.38 5.27 5.17 5.40 

  CR 5.09 5.08 - - 



 

23 

 

 

Table 2: Simulated Type I error under stratified permuted block design (SPB) and 

complete randomization (CR) in % in the seamless trial with three treatments, one discrete 

covariate and one continuous covariate.  

MTP (p1, p2, σ) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t 

Simes (0.5, 0.5, 1.0) SPB 1.10 4.53 5.45 5.16 

  CR 4.47 4.56 - - 

 (0.4, 0.6, 1.0) SPB 1.08 4.63 5.14 5.20 

  CR 4.57 4.60 - - 

 (0.4, 0.6, 1.5) SPB 2.16 4.89 5.31 4.96 

  CR 4.55 4.58 - - 

Dunnett (0.5, 0.5, 1.0) SPB 1.23 4.89 5.78 5.41 

  CR 5.02 4.97 - - 

 (0.4, 0.6, 1.0) SPB 1.27 4.94 5.46 5.19 

  CR 5.13 4.87 - - 

 (0.4, 0.6, 1.5) SPB 2.31 5.09 5.66 5.31 

  CR 4.89 5.10 - - 

 

Powers for different designs and analytical approaches were compared by assuming 

differences in treatment effects in Table 3 (discrete case) and Table 4 (continuous case). 

Multiple values of ( 21 , ) with fixed )1,5.0,5.0(),,( 21 =pp  were investigated in the 

numerical studies. For both cases, the two sample t-test had smaller power under the SPB 

design than under CR when || 21  −  was small, but larger power was observed when 

|| 21  −  increased. Under the SPB randomization, the t-test with adjustment was more 

powerful than the two sample t-test, regardless of the methods for multiplicity adjustment. 

Similar power performance was identified among the t-test with adjustment, the bootstrap t-

test and the full linear model under the SPB design in the discrete case, while the t-test with 
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adjustment and the bootstrap t-test were slightly less powerful than the full linear model 

when one of the covariates was continuous. In addition, the SPB design performed better 

than CR regarding the number of replications that the better treatment was selected in both 

discrete and continuous cases, especially when || 21  −  was relatively large.  

Table 3: Power comparison (in %) and number (M) of replications the better 

treatment is selected for the confirmation stage under stratified permuted block design (SPB) 

and complete randomization (CR) in the seamless trial with three treatments and two discrete 

covariates.  

MTP (α1, α2) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t M 

Simes (0.26, 0.16) SPB 77.28 89.44 88.84 89.73 6667 

  CR 75.00 88.93 - - 6420 

 (0.24, 0.16) SPB 69.76 84.50 84.35 85.21 6374 

  CR 69.04 83.99 - - 6139 

 (0.22, 0.16) SPB 61.76 78.61 79.02 79.03 6042 

  CR 62.46 77.84 - - 5837 

 (0.20, 0.16) SPB 52.99 71.56 72.42 72.41 5697 

  CR 55.31 70.85 - - 5517 

 (0.18, 0.16) SPB  44.41 63.68 64.58 64.63 5370 

  CR 48.46 63.50 - - 5255 

Dunnett (0.26, 0.16) SPB 78.00 90.08 89.52 90.13 6667 

  CR 75.81 89.57 - - 6420 

 (0.24, 0.16) SPB 70.87 85.35 84.91 85.72 6374 

  CR 70.20 84.85 - - 6139 

 (0.22, 0.16) SPB 62.71 79.28 79.56 79.73 6042 

  CR 63.59 78.90 - - 5837 

 (0.20, 0.16) SPB 54.08 72.42 73.30 73.11 5697 

  CR 56.56 71.88 - - 5517 

 (0.18, 0.16) SPB  45.75 64.60 65.32 65.13 5370 

  CR 49.87 64.71 - - 5255 
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Table 4: Power comparison (in %) and number (M) of replications the better 

treatment is selected for the confirmation stage under stratified permuted block design (SPB) 

and complete randomization (CR) in the seamless trial with three treatments, one discrete 

covariate and one continuous covariate.  

MTP (α1, α2) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t M 

Simes (0.26, 0.16) SPB 57.32 88.96 79.31 79.31 6547 

  CR 58.74 88.92 - - 6154 

 (0.24, 0.16) SPB 49.72 84.42 73.39 73.71 6243 

  CR 52.97 83.95 - - 5970 

 (0.22, 0.16) SPB 42.33 78.44 67.08 67.36 5944 

  CR 47.53 78.06 - - 5709 

 (0.20, 0.16) SPB 35.27 71.84 59.71 60.41 5632 

  CR 41.96 71.25 - - 5495 

 (0.18, 0.16) SPB  28.76 64.26 52.83 53.12 5316 

  CR 36.72 63.77 - - 5278 

Dunnett (0.26, 0.16) SPB 58.49 89.48 80.17 80.14 6547 

  CR 60.41 89.37 - - 6154 

 (0.24, 0.16) SPB 50.85 84.90 74.39 74.54 6243 

  CR 54.21 84.85 - - 5970 

 (0.22, 0.16) SPB 43.66 79.41 68.07 68.04 5944 

  CR 49.07 78.85 - - 5709 

 (0.20, 0.16) SPB 36.42 72.44 60.92 61.28 5632 

  CR 43.20 72.30 - - 5495 

 (0.18, 0.16) SPB  29.70 65.61 53.77 53.89 5316 

  CR 38.15 64.75 - - 5278 

 

Similar results on Type 1 error rates, power and the number of replications the best 

treatment is selected for Stage II were obtained in numerical studies for Scenario 2 (Table 5-

6) and Scenario 3 (Table 7-8). 
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DISCUSSION  

In practice, unadjusted analysis is widely used in clinical trials with CAR for 

simplicity and to avoid model misspecification40,44,46. However, ignoring the stratification 

covariates in the analysis may lead to a reduction in the Type 1 error rate and a decrease in 

power40,44,46. In the current numerical study, the two sample t-test resulted in conservative 

Type 1 error rates and decreased power under the SPB randomization as shown in previous 

findings. The newly proposed t-test with adjustment well controlled the Type 1 error rate 

under the SPB randomization with either Simes test or Dunnett test, consistent with the 

theoretical results in Theorem 2 and Theorem 3. The bootstrap t-test has been shown to 

control the Type 1 error rate at the nominal level under CAR in a single phase design with  

Table 5: Simulated Type I error under stratified permuted block design (SPB) and 

complete randomization (CR) in % in the seamless trial with four treatments and three 

discrete covariates. 

MTP (p1, p2, p3, σ) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t 

Simes (0.5, 0.5, 0.5, 1.0) SPB 0.81 4.44 5.00 5.19 

  CR 4.56 4.70 - - 

 (0.4, 0.5, 0.6, 1.0) SPB 0.76 4.50 5.16 4.93 

  CR 4.57 4.67 - - 

 (0.4, 0.5, 0.6, 1.5) SPB 2.05 4.49 5.22 4.76 

  CR 4.57 4.30 - - 

Dunnett (0.5, 0.5, 0.5, 1.0) SPB 1.03 5.16 5.58 5.75 

  CR 5.18 4.97 - - 

 (0.4, 0.5, 0.6, 1.0) SPB 0.90 5.00 5.66 5.42 

  CR 5.37 5.03 - - 

 (0.4, 0.5, 0.6, 1.5) SPB 2.37 5.15 5.78 5.24 

  CR 5.32 5.05 - - 
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two treatments45,46. Here the Type 1 error rate was also well controlled by the bootstrap t-test 

under the SPB randomization in a seamless trial design.    

Table 6: Power comparison (in %) and number (M) of replications the best treatment 

is selected for the confirmation stage under stratified permuted block design (SPB) and 

complete randomization (CR) in the seamless trial with four treatments and three discrete 

covariates.  

MTP (α1, α2, α3) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t M 

Simes (0.28, 0.16, 0.14) SPB 67.11 88.17 88.19 88.45 6006 

  CR 66.73 87.44 - - 5407 

 (0.26, 0.16, 0.14) SPB 59.75 83.52 83.87 84.36 5565 

  CR 60.88 82.76 - - 5091 

 (0.24, 0.16, 0.14) SPB 52.01 78.28 78.41 79.47 5138 

  CR 55.43 77.50 - - 4758 

 (0.22, 0.16, 0.14) SPB 44.35 72.23 72.61 73.42 4741 

  CR 49.64 71.35 - - 4446 

 (0.20, 0.16, 0.14) SPB  36.70 65.57 65.96 66.77 4276 

  CR 44.21 64.43 - - 4129 

Dunnett (0.28, 0.16, 0.14) SPB 69.50 89.21 89.20 89.48 6006 

  CR 68.67 88.46 - - 5407 

 (0.26, 0.16, 0.14) SPB 61.92 84.99 85.14 85.45 5565 

  CR 63.30 83.97 - - 5091 

 (0.24, 0.16, 0.14) SPB 54.25 79.73 79.91 80.55 5138 

  CR 57.50 78.99 - - 4758 

 (0.22, 0.16, 0.14) SPB 46.38 74.05 74.14 75.14 4741 

  CR 52.08 73.17 - - 4446 

 (0.20, 0.16, 0.14) SPB  39.11 67.45 67.71 68.78 4276 

  CR 46.54 65.93 - - 4129 

 

Higher power of the t-test with adjustment compared to the two sample t-test under 

SPB randomization demonstrates the statistical advantage of the newly developed hypothesis 

testing procedure, which had similar power performance as the bootstrap t-test and the 

adjusted analysis using full linear model for the discrete case. When one stratification 
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covariate was continuous, however, the t-test with adjustment and the bootstrap t-test were 

less powerful than the full linear model, probably due to loss of information in discretizing 

the continuous covariate for treatment allocation while failing to fully adjust for it in the 

hypothesis testing process using the former two methods. In addition, the two sample t-test 

had lower power under the SPB design compared to CR due to conservativeness of the test 

when || 21  −  was small. As || 21  −  became larger, the power increased more rapidly 

under SPB design than under CR, resulting in higher power under SPB randomization when 

|| 21  −  was large. Similar results were observed from previous simulation studies under 

CAR in the single phase design with two treatments45-47. Further theoretical research is 

required to explain the pattern of power differences in the seamless trial setting.    

Table 7: Simulated Type I error under stratified permuted block design (SPB) and 

complete randomization (CR) in % in the seamless trial with five treatments and two discrete 

covariates. 

MTP (p1, p2, σ) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t 

Simes (0.5, 0.5, 1.0) SPB 1.24 5.01 4.72 4.88 

  CR 4.82 4.34 - - 

 (0.4, 0.6, 1.0) SPB 1.19 4.31 4.65 4.68 

  CR 4.59 4.32 - - 

 (0.4, 0.6, 1.5) SPB 2.37 4.48 4.71 4.57 

  CR 4.61 4.62 - - 

Dunnett (0.5, 0.5, 1.0) SPB 1.63 5.10 5.34 5.32 

  CR 5.06 5.14 - - 

 (0.4, 0.6, 1.0) SPB 1.53 5.22 5.42 5.38 

  CR 5.15 5.09 - - 

 (0.4, 0.6, 1.5) SPB 2.98 5.05 5.45 5.08 

  CR 5.26 5.12 - - 
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The probability that the best treatment is selected at the interim look to proceed is of 

interest for clinical trial practitioners. Here the number of replications that the best treatment 

is selected for Stage II was higher under the SPB design than under CR, indicating that the 

best treatment was more likely to be selected under CAR according to the selection rule as 

defined in formula (2). One intuitive explanation is that the covariates are more balanced  

Table 8: Power comparison (in %) and number (M) of replications the best treatment 

is selected for the confirmation stage under stratified permuted block design (SPB) and 

complete randomization (CR) in the seamless trial with five treatments and two discrete 

covariates.  

MTP (α1, α2, α3, α4) Allocation t-test lm(Z1, Z2) BS-t Adjusted-t M 

Simes (0.28, 0.16, 0.14, 0.12) SPB 70.74 85.67 86.16 86.29 5142 

  CR 70.09 85.27 - - 4666 

 (0.26, 0.16, 0.14, 0.12) SPB 63.31 81.11 81.45 81.77 4692 

  CR 64.51 80.38 - - 4326 

 (0.24, 0.16, 0.14, 0.12) SPB 55.79 75.56 75.97 76.66 4304 

  CR 58.43 74.93 - - 4033 

 (0.22, 0.16, 0.14, 0.12) SPB 48.50 69.24 69.82 70.36 3896 

  CR 52.21 68.08 - - 3679 

 (0.20, 0.16, 0.14, 0.12) SPB  40.83 62.19 62.98 63.12 3547 

  CR 46.15 61.34 - - 3350 

Dunnett (0.28, 0.16, 0.14, 0.12) SPB 73.52 87.28 87.62 87.58 5142 

  CR 72.52 87.04 - - 4666 

 (0.26, 0.16, 0.14, 0.12) SPB 66.30 82.78 83.19 83.34 4692 

  CR 67.20 82.38 - - 4326 

 (0.24, 0.16, 0.14, 0.12) SPB 58.68 77.79 78.13 78.51 4304 

  CR 61.54 76.83 - - 4033 

 (0.22, 0.16, 0.14, 0.12) SPB 51.42 71.72 71.94 72.54 3896 

  CR 55.30 70.82 - - 3679 

 (0.20, 0.16, 0.14, 0.12) SPB  44.34 64.53 65.24 65.73 3547 

  CR 49.30 63.68 - - 3350 
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between treatment arms under the SPB randomization, which decreases the standard error of 

the treatment effect estimate and thereby increases precision in the estimation. The improved 

precision of the estimated treatment difference can also explain the greater statistical power 

of the trial under CAR than under CR in the seamless design. 

 

CONCLUSION 

In this study, numerical simulations were conducted to investigate the feasibility and 

advantages of a newly developed hypothesis testing approach in the seamless phase II/III 

design with CAR. The proposed method has been shown to well control the Type 1 error rate 

around the nominal level and increase the statistical power compared to the two sample t-test, 

which is not valid under CAR but still commonly used in clinical trials with such a design.      

One reason that practitioners perform unadjusted analysis, such as the two sample t-

test instead of the adjusted analysis in clinical trials with CAR is that model misspecification 

may occur when using linear regression models for covariate adjustment44,46. In practice, the 

underlying response model is usually unknown and the covariate effects may be not linearly 

additive on responses. For example, a stratification covariate may have a non-linear form or 

correlate with other stratification covariates. Under these scenarios, fitting a full model 

incorporating all stratification covariates in a linearly additive pattern in adjusted analysis 

will lead to biased standard errors44. Therefore, future numerical studies to investigate the 

performance of the newly developed hypothesis testing approach in different situations of 

model misspecification are of great interest. Another interesting future direction is to 
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examine the hypothesis testing procedure in a seamless design with CAR by simulations 

using parameters from real trial data, which could further promote its application in practice. 

For simplicity, the current numerical study assumed that multiple experimental 

treatments were compared with one control, i.e., a placebo, and primary endpoint was 

evaluated at the interim look. The selection rule used at the end of Stage I was derived from a 

previous study, which selected treatments to continue based on standardized treatment 

effects48. In practice, multiple experimental treatments are often compared with active 

controls that are known, effective treatments besides placebo. Treatment selection is based on 

a threshold value, which is the maximum of Minimal Clinically Important Difference 

(MCID)49 and treatment effects of the active controls against placebo. Experimental 

treatments with effects larger than the threshold value or the closest to that value if no 

treatment effect exceeds are selected to continue to Stage II50. In addition, early endpoint is 

evaluated at the interim analysis for treatment selection when the primary endpoint of interest 

is only available after long-term follow-up in practice51. Selection methods for incorporating 

early endpoint data in the seamless trials have been proposed by Stallard52 and Friede et al53. 

It will be interesting to investigate the proposed hypothesis testing procedure by numerical 

studies that implement the above selection designs.  
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