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Graft versus host disease (GvHD) caused by alloreactive donor 

lymphocytes is a fatal complication of hematopoietic stem cell transplant 

(HSCT). Myeloablative conditioning regimen, consisting of chemotherapy and/or 

radiation, given prior to HSCT can cause tissue damage. This non-specific tissue 

damage triggers cross-presentation of alloantigens to the donor immune cells, 

causing recruitment of leukocytes and production of inflammatory cytokines. 

Targeting this inflammation without affecting the anti -leukemia effects of HSCT, 

continues to be one of the biggest challenge in finding a therapy for GvHD. 

Bilirubin is a tetrapyrrole pigment, found in the blood, with natural anti -oxidative 

and anti-inflammatory properties. Using mouse models of various inflammatory 

diseases, studies by our collaborating investigators have shown that, water-

soluble PEGylated bilirubin nanoparticles (BRNP) selectively accumulate at the 

site of inflammation and prevent further tissue damage through scavenging 

reactive oxygen species. Therefore, we hypothesized that BRNP treatment  after 

myeloablative conditioning regimen can reduce clinical symptoms of GvHD by 

abating the initial tissue damage in HSCT. We investigated the therapeutic 

efficacy of BRNP using murine GvHD model. Sublethally irradiated recipient 
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mice (Balb/cJ) were infused with 5x106 bone marrow cells and 5x106 splenic 

cells from MHC-mismatched donor mice (C57/B6J) on day 1, with or without 

BRNP (10 mg/kg) on days 0-4. Clinical GvHD symptoms were monitored for 60 

days, and mice were scored for fur, skin, posture, activity, and weight change. 

Untreated recipient mice (n=10) developed significantly worse GvHD (median 

GvHD score=3.4) compared to BRNP treated recipient mice (n=10, median 

GvHD score=0.3) (p=0.0003, Mann Whitney U Test). This translated into 

significantly better survival of BRNP treated mice with day 60 survival of 100% 

as compared to the untreated recipient with day 60 survival of 20% (p=0.0001, 

Log-rank (Mantel-Cox) Test). Histological analyses on day 8 post-

transplantation, showed significantly lowered GvHD associated damage in liver, 

lung, skin, and gut, in BRNP treated mice as compared with untreated mice. In 

summary, we show that prophylactic treatment with BRNP can reduce clinical 

and pathological GvHD symptoms and thereby improve survival in mice. In 

future, we plan to investigate a treatment model of BRNP in relieving the clinical 

and pathological symptoms of GvHD. We also plan to explore the potential of 

BRNP as a drug conjugate for GvHD treatment.   
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Chapter 1- Introduction 

1.1 Hematopoietic Stem Cell Transplantation 

1.1.1 Hematological Malignancies 

Hematological malignancies, also commonly known as blood cancers, 

encompass all of cancer subtypes that affect the development and function of 

various blood cells. Blood cancers can be divided into three broad categories: 

Leukemia- originates in cells found in the blood and the bone marrow; 

Lymphoma- originates in the cells found in the lymph nodes; Myeloma- affects 

the production and functioning of antibody producing plasma cells. Together, the 

three categories of blood cancer, are responsible for approximately 10% of 

cancer related deaths in the United States every year  (1).  

Depending on patient’s age, health, and stage and type of blood cancer, 

physician recommends specific treatment options or their combination. The first 

line of therapy recommendation for leukemia patients is usually chemotherapy, 

which targets the rapidly dividing cancer cells. Acute myeloid leukemia (AML) is 

the most common subtype, occurring in almost one-third of the adult patients of 

leukemia (1). According to recent statistics by the American Cancer Society, 

approximately 90% of patients with an AML subtype- acute promyelocytic 

leukemia (APL) and 67% of patients with other subtypes of AML, go into 

remission after chemotherapy induction. Despite the high remission rates, recent 

reports by the National Cancer Institute show that the overall 5 -year survival 
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rates of all AML patients are the lowest among other leukemia subtypes at 

28.3%.  

Hematopoietic stem cells (HSCs) are unique, self -renewing stem cells that 

are also capable of differentiating into all lineages of cells that comprise the 

blood- in a process called hematopoiesis. Hematopoiesis starts during 

embryonic development and continues into adulthood. Over the last fifty years, 

there has been an exponential increase in our knowledge on the biology of HSCs 

(2). This breakthrough has led to development of hematopoietic stem cell 

transplantation (HSCT) as potentially curative therapy for various hematological 

disorders, especially blood cancers. In fact, five-year survival rates for leukemia 

in United States, have risen from 14% in the 1960 to 65% in 2014. Among the 

total number of allogeneic HSCTs performed around the world, about one-third 

are indicated for AML patients (3). According to 2006-2016 statistics by Center 

for International Blood and Marrow Transplant Research (CIBMTR), among 

approximately 13,000 AML patients, those who received stem cell transplant 

from their sibling as donor, had survival rates between 20-55% depending on 

the stage of diagnosis (early, intermediate, or late). These statis tics show that 

HSCT offers long-term survival, especially for patients with AML. However, 

despite a large number of patients responding to therapy, a majority of the 

leukemia patients who do achieve complete remission, go on to relapse (4) or 

develop complications such as organ failure, infections, and graft versus host 

disease (5). 
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1.1.2 Hematopoietic Stem Cell Transplantation 

Human hematopoietic system comprises of all the cell types that 

constitute the blood, bone marrow, and the lymphatic system. Hematopoietic 

stem cell transplantation is one of the most important  and potentially curative 

therapy for leukemia and other hematological malignancies. Depending on the 

disease condition, recommended HSCT can be either autologous, syngeneic, or 

allogeneic.  

In autologous HSCT, the donor is the patient themselves and it is indicated 

for various hematological disorders, as well as cancers. Autologous HSCT is 

used to reconstitute hematopoietic system for cancer patients who are given 

high-dose chemotherapy and/or radiation. It is recommended as treatment 

modality for multiple myeloma, Non-Hodgkin’s lymphoma, Hodgkin’s disease, 

acute myeloid leukemia, neuroblastoma, and ovarian cancer (6). It is also 

recommended for diseases that do not require the anti-tumor (also known as 

graft versus leukemia (GvL) effect) benefits of transplant such as aplastic 

anemia and bone marrow diseases, or where tumor response to chemotherapy 

is high, such as germ cell tumors (ovarian cancer and testicular cancer) (7).  

Syngeneic HSCT is similar to autologous HSCT except that the donor is patient’s 

twin/triplet. While there is no development of graft versus host disease  in 

syngeneic HSCT, the anti-cancer benefits are limited to high-dose chemotherapy 

(8).  

In allogeneic HSCT, the donor is not the patient, but a matched or 

mismatched donor. Allogeneic HSCT is indicated for acute myeloid leukemia, 
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acute lymphoblastic leukemia, chronic myeloid leukemia, relapsed and 

refractory Non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, relapsed 

and refractory multiple myeloma, and some hematological disorders such as 

sickle-cell anemia and Wiskott–Aldrich syndrome. While allogeneic transplant 

has high GvL activity, it is often accompanied by inflammation in host tissue due 

to donor T-cell alloreactivity in a complication known as graft versus host 

disease (GvHD)   

Allogeneic HSCT was first attempted in the 1960s, a few years after 

human leukocyte antigen (HLA) typing was first discovered (9).The first step in 

allogeneic HSCT is to find a human leukocyte antigen-matched donor. HLA is a 

gene system that encodes for major histocompatibility complex (MHC) proteins. 

The main function of the MHC protein is to present antigen in the form of peptides 

to the surveilling immune cells. The cytotoxic T-cells recognize MHC together 

with the antigen peptide, in a process known as MHC-restriction. MHC proteins 

are highly polymorphic, however one individual can have, at most,  12 different 

MHC alleles (10). High-resolution HLA-typing is employed to identify a matched 

donor. HLA-A, -B, and –C genes under Class I HLA encode for MHC Class I 

protein that is expressed on almost all the nucleated cells in the body. Whereas, 

HLA-DP, -DQ, and –DR encode for MHC Class II protein that are expressed only 

on professional antigen presenting cells such as the dendritic cells, B -cells, and 

monocytes (11). HLA-typing is done for HLA-A, -B, -C and -DRB1 (encodes HLA-

DR β-chain) to find an 8/8 match (a complete match) or a 7/8 match (12). The 

allelic diversity in HLA genes across population, makes it difficult to find a 

complete match, especially for the minority ethnicities in USA such as the 
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African-Americans (19% likelihood for 8/8 match), Africans (16% likelihood for 

8/8 match), as compared to White Europeans (75% likelihood for 8/8 match) 

according to the 2014 statistics (13).  

After identifying a matched donor, the patient goes through myeloablative 

conditioning regimen, which consists of chemotherapy and/or radiation therapy. 

Conditioning regimen is given to induce immunosuppression by eliminating all 

the patient immune cells including any leukemia cells. Meanwhile, donor 

peripheral blood or bone marrow is collected and processed to obtain HSCs, 

which are then transplanted to the recipient. Once transplanted, donor HSCs 

have two major functions- firstly, to kill any remnant leukemia cells in the 

patient’s body or the GvL effect, and secondly, to reconstitute the hematopoietic 

system of the patient who has undergone conditioning regimen.  

 1.2 Graft Versus Host Disease  

Allogenic HSCT however, comes with a debilitating side-effect of acute or 

chronic graft versus host disease. GvHD is a state of immunological disarray 

caused by the donor immune system which results in inflammation and tissue 

damage to the host. Since 2005, NIH recommended classification into acute or 

chronic GvHD is based on the time of onset of GvHD and the symptoms (14). 

Typically, acute GvHD manifests as skin rash, increased blood bilirubin levels, 

gastrointestinal tract damage leading to nausea, vomiting, diarrhea, and 

anorexia (15). It is one of the leading cause of mortality, and some of the 

symptoms manifest among most patients that receive allogeneic HSCT (16). It 

affects approximately 30-50% and severe acute GvHD occurs in approximately 
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14%, of the patients that receive allogeneic transplant f rom an HLA-matched 

donor (11, 15). The current globally immunosuppressive therapies are effective 

in treating the symptoms, but may interfere with the GvL effect of allogeneic 

HSCT, thereby not reducing post-transplantation mortality (17). Therefore, there 

is a growing need to control the potentially lethal effects of GvHD without 

affecting GvL activity. 

1.2.1 GvHD Signaling Cascade  

The process of GvHD development starts with the administration of 

conditioning regimen. Conditioning regimen consists of chemotherapy and/or 

radiation, which are known to trigger non-specific tissue damage, especially in 

the gastrointestinal (GI) tract. This damage leads to release of danger signals, 

such as, pro-inflammatory cytokines (TNF, IL-1, and IL-6 (18)), chemokines and 

chemokine receptors (19), by the host tissues, and increased expression of co-

stimulatory molecules on host APCs (11). Specifically, GI injury due to 

conditioning regimen causes systemic release of commensal gut bacteria and  

subsequent increase in lipopolysaccharide (LPS) and pathogen associated 

molecular proteins (PAMPs). This increase in danger signals, augments antigen 

presentation by host APC resulting in strong activation, proliferation, and 

differentiation of donor T-cells that play one of the most important role in GvHD-

related morbidity in leukemia patients (20). The release of danger signals also 

causes innate immune cell activation which ultimately results in increased 

production of pro-inflammatory cytokines and tissue inflammation (17). GvHD 

manifests as skin rash and progresses towards other body organs, mainly, lung, 
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liver, gut, and skin. Therefore, targeted treatment, as opposed to global 

immunosuppression, against this host inflammation and non-specific tissue 

damage caused by conditioning regimen could potentially reduce GvHD while 

maintaining the GvL activity. 

1.2.2 Alloreactivity in Graft versus Host Disease 

GvHD is largely mediated by alloreactive donor T-cells. During T-cell 

development in thymus, immature T-cells undergo positive and negative 

selection. Positive selection refers to when T-cells that adequately recognize 

self-peptide self-MHC complex are chosen for further differentiation, while 

negative selection is when self-recognizing autoimmune T-cells are signaled to 

die. Alloreactivity refers to when the T-cells can recognize peptide and 

allogeneic MHC complexes that were not encountered during thymic selection 

(10). Alloreactive T-cells have been widely studied in the context of GvHD and 

whether their elimination could reduce incidence of GvHD (21). However, 

alloreactivity is important for development of both, GvHD and GvL effect , in 

allogeneic HSCT (22). In a HLA-matched HSCT, alloantigens that mediate GvHD 

and GvL are called minor histocompatibility antigens (miHA). MiHAs are cell -

surface proteins that are associated with MHCs. Single nucleotide 

polymorphisms (SNPs) can translate into differences in miHAs between HLA-

matched donor-host pair, especially matched unrelated donors, and are 

increasingly being recognized for their therapeutic potential in leukemia (23, 24). 

However, whether miHA differences translate into graft versus host disease is 

debatable (25).  
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1.2.3 Existing Therapies for Graft Versus Host Disease 

One of the crucial aspects of therapeutic development for GvHD is 

preserving the GvL effect of the allogeneic HSCT. One of the widely-employed 

preventive therapies is reducing the intensity of myeloablative conditioning 

regimen given to the patient. While reduced intensity conditioning regimen 

considerably reduces GvHD symptoms, it also increases the burden on the donor 

HSCs for eliminating leukemia. Multiple studies have shown that reduced 

intensity conditioning fails to improve long-term survival due to high rate of 

leukemia relapse (17, 26). Another important step in development of GvHD is 

homing of T-cells to the site of tissue damage via chemokine signaling. Targeting 

alloreactive T-cell homing via chemokine-ligand antagonists such as CCR5 

antagonists, have shown to lessen the damage to the target organs (27). 

However, these therapies may also interfere with recruitment of 

immunosuppressive T-cell subsets (17, 28). Th-1, Th-2, and Th-17 type 

cytokines play variable and important roles in GvHD development. Cytokine 

modulators such as Alpha-1 antitrypsin and cytokine IL-22 are currently under 

clinical trials as therapy for their protective role in GvHD (29). Many other 

cytokines, such as IFNγ, TNF, IL-6, and IL-23 or their modulators are being 

studied using murine models of GvHD (17, 18). Additionally, JAK/STAT inhibitors 

have also shown promise as treatment therapy for GvHD (30). JAK-STAT 

signaling pathway is downstream of cytokine-receptor binding, and causes 

activation of antigen presenting cells (APCs), which in turn results in higher APC 

and T-cell interaction. Therefore, preventing donor APC activation by JAK/STAT 

inhibition could prevent GvHD without reducing the GvL activity. Lastly, there 
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has been increasing interest in immunomodulatory cell therapies for GvHD. 

Invariant Natural Killer T-cells (iNKT cells) (31), myeloid-derived suppressor 

cells (MDSCs) ((32, 33), and their various subsets, are being investigated in 

mouse models of GvHD for their immunosuppressive role through cytotoxic T-

cell interaction or production of immunosuppressive cytokines.  

These are few among a large number of therapies that are currently being 

studied for preventing GvHD development at various points in the signaling 

cascade. However, we wanted to determine the effect of blocking initial 

inflammation by using anti-inflammatory and anti-oxidative agent, and if it could 

stop the signaling cascade from progressing to GvHD related end organ damage 

and/or death.  

 1.3 Bilirubin Nanoparticle 

Bilirubin is a linear tetrapyrrole molecule, naturally found in human blood. 

It is an orange-yellow pigment, found in the liver and is produced as an end 

product of heme catabolism. At the end of a red blood cells’ (RBC) life time, they 

undergo lysis. In this process, hemoglobin gets degraded and the heme part gets  

oxidized by an enzyme called heme oxygenase, forming biliverdin. Biliverdin is 

a greenish molecule that gets reduced by an enzyme called biliverdin reductase  

(BVRA), to form bilirubin. This process occurs in the reticuloendothelial cells of 

the liver, spleen and bone marrow. This bilirubin is ultimately carried to the liver 

via blood, where it performs various biological functions. Bilirubin is  known for 

its anti-inflammatory and antioxidant properties and has been inversely 

correlated with cardiovascular risk (34). Bilirubin quenches reactive oxygen 
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species (ROS) and gets converted into biliverdin, which is converted back to 

bilirubin through BVRA enzyme ((35) Figure 1). This recycling property, makes 

bilirubin a very powerful protectant against cellular oxidative damage. Higher 

bilirubin levels in adults are correlated with a number of health benefits such as 

lower prevalence of, non-alcoholic fatty liver disease, cardiovascular disease 

development, colorectal cancer, and ischemia–reperfusion injury after liver 

transplantation among many others (36). 

 

 

 

 

 

 

 

Figure 1- Mechanism of production and anti-oxidative activity of Bilirubin 

(inspired from Bara an no et al. (35)). Heme part of the hemoglobin get oxidized 

to produce biliverdin, by an enzyme called heme oxygenase (HO) anchored on 

the endoplasmic reticulum (ER). With the help of an enzyme called biliverdin 

reductase (BVRA), biliverdin gets reduced to form bilirubin. BVRA regenerates 

bilirubin that gets oxidized to form biliverdin upon quenching of membrane bound 
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reactive oxygen species (ROS). This cycle enables low concentration bilirub in 

to quench up to 10,000 fold higher concentrations of oxidants.  

Despite its well-known anti-inflammatory and anti-oxidative properties 

Bilirubin is rendered difficult for clinical use because of its water  insolubility. In 

an attempt to harness the therapeutic properties of bilirubin, investigators at 

Korea Institute of Advanced Science and Technology (KIAST) South Korea, 

recently developed a water-soluble conjugate of bilirubin and polyethylene glycol  

(PEG), known as the bilirubin nanoparticle (BRNP). PEG forms a stable amide 

bond with bilirubin to form PEGylated bilirubin (PEG-BR). Since bilirubin is a 

lipophile and PEG is a hydrophile, the end product PEG-BR is an amphiphile, 

which self-assembles to form a micelle-like structure or bilirubin nanoparticle. 

This nanoparticle is about a 100 nm in size in freeze-dried state and retains the 

properties of bilirubin while being water-soluble. Upon stimulation with light, 

BRNP turns into photoisomer of bilirubin. Also and more importantly, upon 

oxidative stress such as with ROS, BRNP turns into biliverdin or oxidized 

fragments of bilirubin.  

Recent studies by investigators at KAIST, have shown that due to it’s free-

radical scavenging properties, BRNP selectively accumulates at the site of 

inflammation and tissue damage in dextran sodium sulfate induced colitis in 

murine model (37). In mice, pre-treated with BRNP, pathological changes 

associated with ischemic reperfusion were found to be significantly less as 

compared to mice that were treated with vehicle (38). Similarly, BRNP treatment 

showed significant benefits in mouse models of other inflammatory conditions, 
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such as asthma (39), pancreatic islet xenotransplantation (40), and even as a 

conjugate for anti-cancer therapy (41, 42). 

1.4 Hypothesis 

Therefore, we hypothesize that, BRNP treatment can reduce graft versus 

host disease due to its beneficial anti-inflammatory properties which act against 

tissue damage and inflammation in murine GvHD model.  
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Chapter 2- Materials and Methods 

2.1 Mice 

All animal experiments were conducted per The University of Texas MD 

Anderson Cancer Center’s Institutional Animal Care and Use Committee 

guidelines. Six- to eight- week old female, C57/B6J and Balb/c, mice were 

purchased from Jackson Laboratories (Bar Harbor, ME).  

2.2 Hematopoietic Stem Cell Transplantation 

On day 0, 10- to 15- week old female Balb/cJ mice were given 800 cGy of 

Total Body Irradiation (TBI). On Day 1, age-matched donor female C57/B6J mice 

were dissected to obtain spleen and hind limb bones (femurs and tibiae). 

Spleens were pooled together in sterile 1X PBS and gently mashed. The 

suspension was strained through a 70 μm cell strainer to obtain single cell 

suspension. Bone marrow cells were obtained by flushing the bones, with 1X 

PBS through a 27G needle, until they appeared white. Bone marrow cells were 

also similarly strained through 70 μm cell strainer to obtain a single cell 

suspension. Both, spleen and bone marrow lymphocytes (without red b lood 

cells) were counted on hemocytometer.  

For our first model, we transplanted 1 x 107 RBC lysed splenocytes in 

mice, while the negative control group received 5 x 10 6 BM cells only. These 

mice transplanted with splenocytes, either received a single dose of 10 mg/kg 

BRNP or equivalent volume of vehicle (1X PBS) on day 0.  
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For our second model, we transplanted 1 x 106 conventional T-cells (CD4+ 

and CD8+ T-cells or Tcons) along with 4 x 106 BM cells. Starting from day 0, 

these mice received 3 doses of 10 mg/kg BRNP or equivalent volume of vehicle 

(1X PBS), every two days.  The negative control mice received 4 x 106 BM cells 

only. Tcons were purified using MACS® Cell Separation technique (Miltenyi 

Biotec). For isolating CD4+ and CD8+ T-cells, 5 x 108 splenocytes from donor 

mice were incubated with anti-mouse CD4 MicroBeads (clone: L3T4, cat no. 130-

117-043) and anti-mouse CD8 MicroBeads (clone: Ly2, cat no. 130-117-044) in 

magnetic associated cell sorting (MACS) buffer (PBS, pH 7.2, 0.5% human 

serum albumin-HSA (Sigma Life Science, cat. no. SRP6182)), and 2 mM EDTA 

(USB- Thermo Fisher, cat. no. 15694) for 20 minutes in dark at room 

temperature. Subsequently, CD4+ and CD8+ T-cells were isolated using LS 

column (Miltenyi Biotec, cat. no. 130-052-401) according to the manufacturer’s 

specified protocol. The isolated Tcons were washed and resuspended in 1X PBS 

for counting and subsequent transplantation in mice.  

For our third model, 5 x 106 splenocytes and 5 x 106 bone marrow cells 

were transplanted intravenously. The negative control group received 5 x 106 

bone marrow cells only. From day 0 to day 4, mice received 5 daily doses of 10 

mg/kg BRNP or equivalent volume of vehicle (1X PBS) intravenously.  

2.3 Bilirubin Nanoparticle 

Lyophilized BRNP was generously provided by Dr. Sangyong Jon and his 

laboratory at the Korea Advanced Institute of Science and Technology (KAIST), 

South Korea. Five milligrams of lyophilized BRNP was dissolved in 1 ml of 1X 
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PBS. This solution was stored at 4oC, protected from light, and used within 7 

days.  

2.4 Flow Cytometry Analysis 

Splenocytes and bone marrow cells that were used for transplant, were 

stained with anti-mouse, CD3ε (BioLegend, cat no. 100306), B220 (BD 

Pharmingen™, cat no. 553093), CD4 (BD Pharmingen™, cat no. 558107), and 

CD8 (BD Horizon™, cat no. 563068) antibodies for 30 minutes in dark. The cells 

were then washed with 1X PBS, fixed in 2% paraformaldehyde, and stored at 

4oC until flow acquisition. The samples were acquired using Canto II Cell 

Analyzer (Beckton, Dickinson and Company, Franklin Lakes, NJ), and FlowJo 

version 10.3 (Tree Star, Ashland, OR) was used for analysis. 

2.5 Clinical Graft Versus Host Disease Assessment 

Mice were scored for clinical GvHD, by using a previously established 

scoring system by Cooke et al.(43). Mice were scored from 0-2 for, Weight (0: 

<10% loss, 1: ≥10% <25%, 2: ≥25%), Fur (0: normal, 1: mild to moderate, 2: 

severe ruffling), Posture (0: normal, 1: kyphosis at rest, 2: kyphosis impairing 

movement), Activity (0: normal, 1: stationary 50% of the t ime, 2: stationary 

unless stimulated), Skin (0: normal, 1: scaling paws or tails, 2: lesions). In 

addition, all the treatment groups were also monitored for survival, and sacrificed 

if they seemed inactive or non-responsive to stimuli. 
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2.6 Pathological Graft Versus Host Disease 

On day 0, 10-15 week old female Balb/c mice received 800 cGy TBI. On 

day 1, the donor C57/B6 mice were sacrificed to obtain their splenocytes and 

BM cells. 5 x 106 whole splenocytes and 5 x 106 bone marrow cells were 

transplanted intravenously to the BRNP treated and the vehicle groups. The 

negative control group received 5 x 106 bone marrow cells only. From day 0 (4 

hours after transplantation) to day 4, the mice received 5 daily doses of 10 mg/kg 

BRNP or equivalent volume of vehicle (1X PBS) intravenously. These mice were 

sacrificed on day 8 after transplantation, and their blood, spleen, liver, lung, and 

skin were harvested for other downstream exper iments- serum cytokine analysis 

and histopathology.  

2.7 Serum Cytokine Quantification 

Blood for each individual mouse was collected by retro-orbital vein 

puncture. Tubes with blood were centrifuged at 600g for 5 minutes. Serum 

supernatant was collected and stored at -80oC until used for analysis. BD™ 

Cytometric Bead Array (CBA) (cat no. 560485) was used to determine the serum 

cytokine concentrations of Th1, Th2, and Th17 type cytokines, namely- IL2, IL-

4, IL-6, IFN-γ, TNF, IL-17A, and IL-10 proteins. Sera for all the treatment group 

mice was diluted 1:4 in assay diluent, incubated with mixed capture beads and 

subsequently washed according to the manufacturer’s instructions. The samples 

were acquired using LSR Fortessa Cell Analyzer (Beckton, Dickinson and 

Company, Franklin Lakes, NJ), and FlowJo version 10.3 (Tree Star, Ashland, 

OR) was used for analysis. 
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2.8 Histopathology  

Mouse organs, namely- skin (from dorsal region), liver (one lobe), lung 

(one lobe), small intestine (duodenum), and spleen, were fixed in 10% buffered 

formalin, and submitted to Research Histology Core Laboratory at The University 

of Texas MD Anderson Cancer Center, for haematoxylin and eosin staining. The 

sample slides were then evaluated by a pathologist who scored the tissues for 

inflammation and GvHD associated damage for each organ.  

2.9 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism Software 

version 7.00 (La Jolla, California) for Windows. Data sets were analyzed using 

Mann-Whitney U Test with confidence level: 95%, and p values for comparisons 

between groups were determined. For survival analysis, Log-rank (Mantel-Cox) 

survival test was used. A p value less than 0.05 was considered to be statistically 

significant. 
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Chapter 3- Results and Analysis 

3.1 Mouse Model of Graft Versus Host Disease 

The first step to determine the anti-inflammatory and anti-oxidative effects 

of BRNP, was to establish a simple and reproducible murine model for acute 

GvHD. We chose HLA mismatch model of H-2b C57BL/6 mice as donors and H-

2d Balb/c mice as recipients. To determine optimal transplant dose, we 

shortlisted different published models with their respective outcomes, as 

outlined in Table 1 below.  

Table 1- Shortlist of published murine GvHD models- detailed for their 

transplant dose, radiation dose, and outcome 

 

HLA Mismatch model- C57BL6 (H2
b

) → Balb/c (H2
d

) 

Cell type and 

dose 

Conditioning 

Regimen 

Outcome Reference  

2 x 10
7

 Whole 

Splenocytes 

700 cGy Survival between 

day 10-50 

Margalit et al.(44) 

5 x 10
6

 TCD-BM 

and 1 x 10
6

 Tcons 

2 doses of 

400 cGy 

Systemic 

disease by Day 

7-30 

Schneidawind et al. 

(31) and Griesenauer 

et al. (45) 

5 x 10
6

 BM and 5 

x 10
6

 Splenocytes 

800 cGy Survival between 

day 10-40 

Im et al. (46) and 

Wang et al.(47)  

25 x 10
6

 GM-CSF 

mobilized 

splenocytes  

900 cGy Systemic 

disease by day 

5-14 

Kuns et al. (48) 
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We attempted three models with or without BRNP treatment. The first 

murine model (Margalit et al. (44); Table 1) received 800 cGy radiation on day 

0, and a single dose of 10 mg/kg BRNP (optimized by our collaborating 

investigators (38)) 4 hours after radiation (Figure 2a). On day 1, the vehicle 

control (n=10) and the BRNP test group (n=10) of mice were transplanted with 

1 x 107 RBC lysed splenocytes and 5 x 106 BM cells, whereas the negative 

control group (n=5) received 5 x 106 BM cells only. Mice were monitored for their 

weight and GvHD score every two days or until their death/ recommended 

euthanasia. Euthanasia was recommended at very low or no activity and/or 

extreme (>30%) weight loss.  

The mice in this experimental group were highly inactive and lost more 

than 25% of their initial weight within 8 days from transplantation (Figure 2b). 

We observed that mice were severely kyphotic and lethargic, owing to the high 

dose of RBC lysed splenocytes (Figure 2c). Within 13 days, 100% of both the 

vehicle control and the BRNP test groups had died (Figure 2d). For our next 

experiment, we concluded that, donor cell dose should be lowered and BRNP 

dose should be increased. 
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Figure 2- Clinical GvHD outcome of the first strategy of murine GvHD 

model. (A)- Vehicle control group (n=10), BRNP test group (n=10) and negative 

control group (n=5) received 800 cGy TBI on day 0. On day 1, vehicle control 
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group and BRNP treated group were transplanted with 1 x 107 RBC lysed 

splenocytes, while the negative control group was transplanted with 5 x 106 BM 

cells only. BRNP test group received a single dose of 10 mg/kg, 4 hours after 

TBI on day 0, while the vehicle control group received vehicle (1X PBS) I.V. 

injection. There were no significant differences between the BRNP + BM Cells + 

Splenocytes (test) group versus the BM Cells + Splenocytes (vehicle) group in 

terms of (B)- weight change, (C)- GvHD score, and (D)- Survival. “ns” stands for 

non-significant. p value was determined using Mann Whitney U Test for weight 

and GvHD score, and Mantel Cox Survival Test for survival  

For our second strategy (Schneidawind et al. and Griesenauer et al. (31, 

45); Table 1), we performed TBI of 800 cGy on day 0, and 4 hours later the mice 

were given their first dose of 10 mg/kg BRNP or equivalent volume of vehicle 

(1XPBS). On day 1, the recipient mice were transplanted with 1 x 10 6 

conventional T-cells (Tcons) instead of whole splenocytes, along with 4 x 106 

BM cells. On day 2 and day 4, the mice received additional dose of 10 mg/kg 

BRNP or equivalent volume of vehicle (1XPBS) (Figure 3a). All the treatment 

groups were monitored for their weight, GvHD score, and survival, f or 2 months 

or until, their death/recommended euthanasia. Despite no significant  change in 

weight loss (Figure 3b), this experiment was successful as we observed 

significantly lower clinical GvHD scores in the BRNP treated group (Figure 3c) 

which translated into significantly better survival outcome (F igure 3d). 
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Figure 3- Clinical GvHD outcome of the second strategy of murine GvHD 

model. (A)- Vehicle group (n=9) and the BRNP treated group (n=9) mice were 

given 800 cGy TBI on day 0, and transplanted with 1 x 10 6 Tcons and 4 x 106 

BM cells from C57/B6 mice on day 1. On day 0, 2, and 4, the BRNP treated 

group mice were i.v. treated with 10 mg/kg dose of BRNP, while the vehicle 

control group received equivalent volume of 1X PBS. The negative control group 

(n=5) mice received 4 x 106 BM cells only. No significant changes between the 

BRNP + BM Cells + Splenocytes and BM Cells + Splenocytes groups were seen 

in (B)- Weight, however, BRNP + BM Cells + Splenocytes group of mice has 

significantly lower (C) GvHD score (p<0.0001, Mann Whitney U Test), which 

translated into better (D) survival (p=0.0322; Mantel-Cox Survival Test). The 

median survival for BRNP test group at day 60 was 65% as compared with 

vehicle control in which only 11% of the mice survived. Error bars represent 

standard error of mean.  

In other studies by our collaborating investigators they have reported that 

doses as high as 150 mg/kg BRNP (15-fold higher than our current dose) are 

non-toxic to mice (10 mg/kg). Therefore for our next strategy, we decided to 

increase the number of BRNP injections in order to maximize the anti-

inflammatory and anti-oxidative activity against GvHD. While several factors 

such as radiation dose, donor recipient strains, and pathogens associated with 

colony influence the GvHD outcome, the most important factor is the T-cell 

dosage (49). To test the efficacy of BRNP as an anti-inflammatory molecule, we 

wanted to establish a rather simplified murine model with reliable GvHD 

outcome.   
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3.2 BRNP Treatment Can Increase Survival in Murine Acute Graft Versus Host 

Disease Model 

We tested the anti-inflammatory and anti-oxidative benefits of BRNP 

treatment in murine acute GvHD by using our third model  (Im et al. and Wang et 

al. (46, 47); Table 1), which was consistently reproducible. For our third strategy, 

we gave 800 cGy TBI to the recipient mice on day 0, followed by intravenous 

administered of 10 mg/kg BRNP, 4 hours later . On day 1, we transplanted 5 x 

106 whole splenocytes and 5 x 106 BM cells in the vehicle control and the BRNP 

test groups, whereas the negative control group was transplanted with 5 x 106 

BM cells only. BRNP test group mice were given 5 daily doses of 10 mg/kg 

intravenous BRNP from day 0-4 while the vehicle control group similarly received 

vehicle (1X PBS) injections (Figure 4a). 

Similar to our second strategy for HSCT, we observed that after an initial 

weight loss within the first week (Figure 4b) for all the three treatment groups, 

only the BRNP treated group and the negative control mice swiftly recovered. 

The vehicle control group continued to show faster weight loss till around day 

13 and a delayed recovery as compared with BRNP treated or the negative 

control groups. We observed that while the BRNP treated mice continued to 

maintain their weight between 90-100% of their initial weight, the vehicle control 

mice kept getting significantly worse (p=0.0001;  Mann Whitney U Test) after their 

initial recovery. Similar to the weight loss trend, we observed significantly lower 

GvHD score in BRNP treated mice as compared to the vehicle control group 

(p=0.0003, Mann Whitney U Test; Figure 4c). Despite being a subjective method 
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of scoring, GvHD score provides a crucial measurement of clinical GvHD 

development in mouse model. The initial peak in GvHD score at around day 15 

for vehicle control mice, can be partly attributed to weight loss due to gut toxicity 

caused by radiation treatment. The BRNP treated group, however, did not seem 

to develop a similar extent of radiation toxicity, as their GvHD score did not 

increase. Although the vehicle control mice did recover from the initial weight 

loss, they quickly started to show clinical symptoms again at around day 20. At 

the same time, the BRNP treated group also showed a slight increment in their 

GvHD score, but it was still less than their vehicle control counterparts. While 

the untreated mice, continued to show symptoms through their lifetime, the 

BRNP treated group, recovered around day 30, and did not show GvHD 

symptoms anymore. Lower GvHD score and weight loss, translated into 

significantly higher survival (p=0.0001; Log-rank (Mantel-Cox) survival test) in 

BRNP treated mice, as compared with the vehicle control mice (Figure 4d). At 

day 60, 100% of the BRNP treated mice had survived, while for the vehicle 

control group, only 20% of the mice survived.  

We observed that the survival of BRNP treated mice in our thi rd model of 

acute GvHD (Figure 4d; 100% mice survived until day 60), is better than their 

survival in second strategy (Figure 3d; 65% mice survived until day 60). This 

could be attributed to either change in the transplantation strategy, or to the 

increase in number of BRNP injections. However, in both the strategies, 11% 

and 20% of the vehicle control mice survived by day 60, indicating that both 

strategies were capable of forming similar extent of GvHD. Therefore, increasing 
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the dose of BRNP, may have led to the higher survival in BRNP test group, 

indicating the potential beneficial effects of BRNP against GvHD development.  
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Figure 4- Clinical GvHD outcome of the third strategy of murine GvHD 

model. Shown here is cumulative data from N=2 independent experiments. (A)- 

Vehicle control group (n=10) and the BRNP test group (n=10) mice were given 

800 cGy TBI on day 0, and transplanted with 5 x 106 BM cells and 5 x 106 

splenocytes from C57/B6 mice on day 1. On day 0 to 4, the BRNP test group 

mice were given 10 mg/kg intravenous dose of BRNP, while the vehicle control 

group received similar vehicle (1X PBS) injections. The negative control group 

(n=5) mice received 5 x 106 BM cells only. As compared with BM Cells + 

Splenocytes group, the BRNP + BM Cells + Splenocytes group showed 

significantly lower (B)- Weight loss (*p<0.0001, Mann Whitney U Test) (C) GvHD 

score (*p<0.0001, Mann Whitney U Test), which translated into better (D) 

survival (p=0.0003; Mantel-Cox Survival Test). Error bars represent standard 

error of mean. *p<0.0001 (Mann Whitney U Test) between BRNP + BM Cells + 

Splenocytes and BM Cells + Splenocytes groups. #p=0.0208 (Mann Whitney U 

Test) between BRNP + BM Cells + Splenocytes and BM Cells only groups. 

&p=0.0003 (Mantel-Cox Survival Test) between BRNP + BM Cells + Splenocytes 

and BM Cells + Splenocytes groups.  
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3.3 BRNP Treatment Can Reduce Pathological Symptoms of Acute Graft Versus 

Host Disease  

To determine the protective role of BRNP treatment on pathological 

symptoms of acute GvHD, we performed histopathological analyses on GvHD 

target organs such as the liver, lung, gastrointestinal tract (GI), and skin. We 

performed SCT on three treatment groups, with our previously optimized third 

strategy, and on day 8 we sacrificed the mice to collect their GvHD target organs 

along with blood and spleen.  

We performed cytokine bead array on blood sera collected from all the 

treatment group mice. Serum levels for pro-inflammatory cytokine IFNγ (Figure 

5a) and TNF (Figure 5b) were trending lower in the BRNP test mice (n=5) as 

compared to vehicle control mice (n=4), however they were not found to be 

significantly different. Higher serum levels of these pro-inflammatory cytokines 

are associated with higher organ damage which result in more severe onset of 

acute GvHD (18). We also analyzed other Th1, Th2, Th17 cytokines such as IL2, 

IL-4, IL-6, IL-17A, and IL-10. However, due to limitations in the cytokine bead 

array, values lower than 20 pg/ml are not accurately detectable. And therefore, 

we were unable to measure the serum cytokine levels of these proteins in our 

treatment groups.  

A previous GvHD study showed that, transplant engraftment in mice, with 

4 x 106 MHC-mismatch splenocytes after 800 cGy radiation, happens within 6 

days after transplant (50). Another study with different acute GvHD mouse model 

shows that histopathological changes are most apparent at around 7 days after 
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transplantation (compared between day 5, day 7, and day 21) (51). Indeed, 

within 24 hours after HSCT in mice, the donor T-cells migrate to secondary 

lymphoid organs for alloantigen priming before migrating to the GvHD target 

organs (49). Based on these studies, we justified sacrificing the three treatment 

groups, along with naïve control, on 8 th day after transplantation.  

Manifestation of skin inflammation and rash is one of the first symptoms 

of GvHD development after allogeneic transplantation. In agreement with our 

hypothesis, we observed significantly lower inflammatory cell infiltration in skin 

of the BRNP treated mice as compared with vehicle control (Figure 6, Figure 

7a). Lung and liver damage is one of the hallmarks of GvHD development. We 

observed significantly less inflammation in lung (Figure 6, Figure 7b) and liver 

(Figure 6, Figure 7c) in BRNP treated mice when compared with vehicle control 

mice. Lastly, the duodenum part of the gastrointestinal tract shows significantly 

lesser necrosis in BRNP treated mice as compared to the vehicle control (Figure 

6, Figure 7d), thus proving our hypothesis that BRNP treatment can reduce 

pathological symptoms of GvHD. 

Quantitative evaluation of GvHD associated organ damage shows 

significantly lower lymphocyte infiltration in hair follicles (Figure 7a; p=0.0079; 

Mann-Whitney Test) indicating lower skin damage in mice treated with BRNP. 

We also observed significantly lower perivascular inflammation in lung (Figure 

7b), and central vein inflammation in liver (Figure 7c). GI tract damage is one of 

the hallmarks of GvHD, and we found significantly lower single-cell necrosis in 
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the BRNP treated group as compared with vehicle control. BRNP treated mice 

showed close similarities with the negative control group in all histology scores.  

 

A          B 

 

 

 

 

 

Figure 5- Serum levels of pro-inflammatory cytokines IFNγ and TNFα. 

Cytokine analysis shows a trending decrease in pro-inflammatory cytokines (A)- 

IFNγ and (B)- TNF in the blood serum collected on day 8 post transplantation. 

Each dot represents individual mouse for all treatment groups.  The error bars 

represent standard deviation. ns= Non-significant (Mann- Whitney U Test).  
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Figure 6- BRNP treatment can reduce GvHD associated tissue damage, 

such as lymphocyte infiltration, inflammation, and necrosis.  Shown here are 

representative images of hematoxylin and eosin (H&E) staining for different 

GvHD target organs, namely, liver, lung, skin, and GI. Skin- In BM Cells + 

Splenocytes panel, green arrow shows an example of inflammatory cell 

infiltration, and the green arrow head shows an example of single-cell necrosis, 

which is significantly less in the BRNP treated mice. Lung- Donor (naïve control) 

and the BRNP treated mice show the least inflammation, as compared to the BM 

Cells + Splenocytes and BM Cells only group. Liver- Symbol P in the liver panel 

for all the treatment groups represents portal tract.  Compared with BM Cells + 

Splenocytes group, the BRNP treated mice show fewer inflammatory cells, while 

donor mouse shows normal portal vein with no inflammation. GI- Red arrows 

show single-cell necrosis in the glandular epithelium and the yellow asterisk (*) 

show necrotic cells in crypt lumen. BRNP treated mice showed lesser GI single-

cell necrosis as compared to BM Cells + Splenocytes group.  
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Figure 7- BRNP treatment can reduce pathological symptoms of acute 

GvHD in mice. Shown here is a quantitative evaluation of histopathology of 

acute GvHD performed by a board-certified pathologist. Pathological symptoms 

in different GvHD target organs such as (A) infiltration of hair follicles in skin, 

(B) perivascular inflammation, peribronchiolar inflammation, and interstitial 

pneumonia in lungs, (C) portal vein inflammation, central vein inflammation, and 

necrotic foci in liver, and (D) single cell necrosis and necrotic cells in crypt lumen 

of the GI. Histology ratio on y-axis for inflammatory conditions was measured by 

dividing the number of affected areas with total number of the areas observed 

under a 40X objective. Interstitial pneumonia scoring for lungs was done by 

evaluating the percentage of affected area under 10X objective and assigning a 

score from 1-4 with 4 being the most affected (Scoring: 1=<25%, 2=>25% to 

<50%, 3=>50% to <75%, 4=>75%). Similarly for liver, the number of necrotic foci 

counted were normalized with the number of evaluated areas observed under 

10X objective. Lastly, single cell necrosis or necrotic cells in crypt lumen for GI, 

were quantified by normalizing the counted number of necrotic cells with the 

number of areas evaluated. Dot-plots for all the treatment groups were plotted 

along with a single donor used as naïve histopathological control and statistics 

were performed using Mann-Whitney U Test.  
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Chapter 4- Discussion and Future Direction 

Most therapies such as steroids that are currently in clinic as first line 

treatment for GvHD are globally immunosuppressive, which leads to compromise 

in the GvL effect of the allogeneic HSCT. Other prophylactic therapies such as 

reduced conditioning regimen are good for reducing GvHD symptoms, however 

because of being non-myeloablative, it comes with a higher risk of infections 

and/or leukemia relapse (26). Several studies continue to explore and 

understand the immune cell interactions that happen after the allogeneic HSCT 

to identify potential therapeutic targets for GvHD. There have been a few studies 

that look at the role of anti-oxidative agents, such as hydrogen therapy (52), 

green tea extracts (53), and ROS scavenging compounds such as 

cyclopentylamino carboxymethylthiazolylindole (NecroX-7) (46) as treatment for 

GvHD related organ damage using murine models of GvHD. However, there is a 

critical unmet need for clinically relevant, scalable, and non-toxic therapies for 

GvHD that do not affect the GvL outcome. 

Bilirubin is a very effective and powerful antioxidant pigment found 

naturally in mammalian blood serum. Several human and mouse studies show 

that higher bilirubin level in blood serum is associated with protection against, 

cardiovascular diseases, non-alcoholic fatty liver disease, colorectal cancer, and 

ischemia–reperfusion injury after liver transplantation (36).  Bilirubin has shown 

to be an effective antioxidant immunomodulator as treatment for experimental 

autoimmune encephalomyelit is (54, 55). However, elevated blood serum levels 

of bilirubin can be toxic due to its water insolubility. Hyperbilirubinemia may 
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indicate liver damage and can be neurotoxic in new born infants. More 

importantly, elevated bilirubin levels are found in patients that develop acut e 

GvHD after allogeneic HSCT.  

To maximize the therapeutic potential and reduce the toxicity of bilirubin, 

investigators at KAIST conjugated polyethylene glycol with bilirubin, which 

resulted into an amphiphilic molecule that self-assembles to form stable, non-

toxic (at concentration as high as 150 mg/kg), and water soluble bilirubin 

nanoparticles. Polyethylene glycol is an FDA approved active ingredient . 

Conjugation with polyethylene glycol or PEGylation is used to improve the 

pharmacokinetic activity of various FDA approved drugs such as peginterferon 

alfa-2a for hepatitis C treatment (56). However, conjugation with PEG, especially 

near active site of the drug, may cause decrease in the drug activity in some 

cases (57). PEGylation of bilirubin has been shown to not affect the 

characteristic antioxidative and light sensitive properties of bilirubin, in both in 

vitro and in vivo experiments. Moreover, BRNP treatment has shown benefits in 

various mouse models of inflammatory diseases (37-41).  

In this study, we looked at clinical and pathological benefits of BRNP as 

a prophylactic therapy for GvHD. Through our pre-clinical mouse model of GvHD 

we show that five daily intravenous doses of 10 mg/kg BRNP treatment 

significantly reduces, GvHD symptoms, associated weight-loss, and improves 

overall survival. Pathological damage associated with the onset of GvHD was 

also found to be significantly less in skin, liver, lung, and GI. We found 

significantly lesser lymphocyte infiltration and inflammation in these organs , 
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which may have contributed to the higher overall survival. We believe that BRNP 

treatment was able to reduce the initial non-specific tissue damage associated 

with conditioning regimen and continued to reduce tissue damage after HSCT. 

Lower tissue damage could translate into reduced antigen presentation to donor 

cytotoxic T-cells, which ultimately lessens the cytokine production and end-

organ damage. We performed serum cytokine analysis, and saw a trend towards 

lower inflammatory cytokine production in the BRNP treated GvHD mice. Overall, 

our results show that prophylactic BRNP treatment in mouse GvHD model, is 

beneficial in reducing the symptoms and improving overall survival . 

In future studies, we want to assess a treatment model of BRNP in 

reducing GvHD symptoms and improving overall survival.  Through our mouse 

GvHD model, we plan to evaluate the role of post-transplantation BRNP 

treatment in alleviating GvHD symptoms without affecting the GVL activity of 

HSCT. In the treatment model, it  would also be interesting to analyze 

immunomodulatory effects of BRNP by performing flow cytometry analysis for 

various immune cells and subsets, on the GvHD target organs.  

Bilirubin nanoparticles dissociate into water-soluble photoisomers of 

bilirubin upon light (λ= 450 nm or 650 nm) stimulation (41). BRNP has also been 

shown to accumulate specifically at the site of tissue damage in a mouse colitis 

model, (37). Utilizing these properties of the nanoparticles, our collaborating 

investigators at KAIST, have successfully tested BRNP as a nano drug -carrier 

for anti-cancer therapy (42). Therefore, after establishing BRNP in a treatment 

model for GvHD, a future extension of this study would be to evaluate BRNP as 
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a drug conjugate for existing therapies for GvHD. Our first step would be to check 

for the accumulation site of the BRNP-drug conjugate in the mouse model, and 

test whether BRNP can successfully transport the drug to the site of organ 

damage. Eventually, we would compare clinical and pathological symptoms of 

GvHD along with overall survival using our mouse GvHD model treated with 

BRNP-drug conjugate and BRNP alone. Our hypothesis is that BRNP-drug 

conjugate can selectively reduce tissue damage, thereby reducing  the global 

toxicity of the drug and improving the GvHD outcome. 
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