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The nucleus reuniens of the thalamus (RE) is a key component of an extensive network of hippocampal and cortical struc-

tures and is a fundamental substrate for cognition. A common misconception is that RE is a simple relay structure. Instead, a

better conceptualization is that RE is a critical component of a canonical higher-order cortico-thalamo-cortical circuit that

supports communication between the medial prefrontal cortex (mPFC) and the hippocampus (HC). RE dysfunction is im-

plicated in several clinical disorders including, but not limited to Alzheimer’s disease, schizophrenia, and epilepsy. Here, we

review key anatomical and physiological features of the RE based primarily on studies in rodents. We present a conceptual

model of RE circuitry within the mPFC–RE–HC system and speculate on the computations RE enables. We review the

rapidly growing literature demonstrating that RE is critical to, and its neurons represent, aspects of behavioral tasks that

place demands on memory focusing on its role in navigation, spatial working memory, the temporal organization of

memory, and executive functions.

The importance of mPFC–HC interactions

Adaptivebehavior andmentalhealth require the integrationofmo-
tivation, attention,memory, and the outcomeof past actions as rel-
evant circumstances change. Particularly in similar situations, goals
are best achieved by adjusting actions according to expected out-
comes that change with the current time and one’s location (e.g.,
wanting coffee and remembering which shop is open and nearby).
This cognitive flexibility necessitates incorporating the outcomes
of many episodes, and requires interactions between the medial
prefrontal cortex (mPFC) and hippocampus (HC). Bidirectional in-
teractions between the two structures result in an intention-
recollection cycle (Fuster 1995) that may reasonably describe how
their complementary and distinct functions contribute to adaptive
behavior. Beyond “what, where, andwhen,” the external facts that
define episodes (Morris 2001), hippocampal representations in-
clude “why and how.” These internal features include outcome ex-
pectancies and abstract rules computed by the mPFC. Thus, mPFC
signals relayed to HC can help guide both memory acquisition
and retrieval. The HC signals relayed to mPFC allow remembered
events to select associated goals, rules, and procedural representa-
tions. Importantly, mPFC–HC interactions depend heavily on the
nucleus reuniens (RE), a thalamic region positioned at the center
of a higher-order cortico-thalamo-cortical circuit bridgingmemory

and executive function. Not surprisingly, RE is emerging as a focus
for research on the neurobiological substrates of learning and
memory.

Anatomy and physiology of RE

The anatomy and physiology of RE is essential for understanding
its mechanistic contributions to the mPFC–HC system, and helps
describe how RE is central to a wide array of cognitive and behav-
ioral functions. REhas been the focus of anatomical and physiolog-
ical studies in rodents for many years, and a homologous structure
in humans has been described and associated with the intertha-
lamic adhesion (e.g., Baydin et al. 2016) although it has received
less attention, especially in functional studies (but see Reagh et
al. 2017).

Connections of RE with the limbic forebrain

RE lies ventrally on the midline, directly above the third ventricle,
and extends longitudinally virtually throughout the thalamus.
The largest of themidline thalamic nuclei, RE is notable for linking
limbic subcortical to cortical structures (for review, see Vertes et al.
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2015). RE is generally subdivided into a central (or medial) portion
and lateral segments that have been designated the lateral wings of
RE, or the peri-reuniens nucleus (periRE). RE receives a diverse and
widely distributed set of projections from limbic-related sites of the
brainstem, hypothalamus, amygdala, basal forebrain, and limbic
cortex (Vertes 2002, 2004; McKenna and Vertes 2004). However,
unlike thewidespread inputs to RE, the projections fromRE are vir-
tually restricted to “limbic” cortical sites; that is, to the orbital and
medial PFC, the retrosplenial cortex, the parahippocampal region
(perirhinal and entorhinal cortices) and the HC—including all
parts of subicular cortices (Vertes 2006; Vertes et al. 2006).

RE projects substantially to the infralimbic (IL), prelimbic
(PL), and anterior cingulate (AC) cortices of the mPFC with fibers
terminating densely in layer 1 and layers 5/6 of these regions. RE
projections to the mPFC predominantly (but not exclusively) orig-
inate from the periRE nucleus (Hoover and Vertes 2012; Varela
et al. 2014). ThemPFC is a pronounced source of return projections
to RE, distributing throughout RE, indicating strong reciprocal
connections between RE/periRE and the mPFC. The mPFC also in-
nervates the thalamic reticular nucleus (TRN) which, in turn, ex-
erts feedforward inhibitory actions on RE (Fig. 1; McKenna and
Vertes 2004).

Within the HC, RE innervates selectively CA1 and the subicu-
lum of the dorsal, intermediate and ventral HC. No RE axons pro-
ject to the dentate gyrus or to CA2/CA3. RE fibers terminate in
the stratum lacunosum-moleculare (slm) of CA1 and in the outer
molecular layer of the subiculum (Wouterlood et al. 1990; Vertes
et al. 2006). AlthoughREdistributes to the dorsalHC (CA1), RE pro-
jectionsareapproximately10-fold stronger toventral than todorsal
CA1 (Hoover and Vertes 2012; Varela et al. 2014). Recent examina-
tions of the output of RE to its twomain cortical targets, the mPFC
and HC has shown that ∼5%–10% of RE neurons distribute, via
axon collaterals, to both structures (Hoover and Vertes 2012;
Varela et al. 2014). The RE cells projecting to the HC or mPFC are
somewhat segregated; that is, those distributing to HC tended to
cluster at the rostral pole of RE, whereas those projecting to mPFC
are predominantly located in periRE and in caudal RE (Hoover
andVertes 2012;Varela et al. 2014). This segregationsuggests anan-
atomical, and perhaps functional, differentiationwithin REwhere-
in separate subpopulations of RE neurons may exert their primary

influence commonly on the HC (i.e., CA1 and subiculum) and
mPFC, or perhaps selectively on either the HC (Dolleman-van der
Weel and Witter 1996) or mPFC. As the mPFC strongly targets RE
(Vertes 2002, 2004), there are equally dense projections from HC,
or ventral subiculum, to RE (McKenna and Vertes 2004). In effect,
RE is strongly reciprocally linked to HC and to mPFC.

Although the (intermediate/ventral) HC projects directly to
mPFC (Jay and Witter 1991; Hoover and Vertes 2007), interesting-
ly, there are no (direct) return projections from mPFC to HC
(Laroche et al. 2000). Rather, RE appears to be themain link return-
ing projections from the mPFC to the HC, thus completing a loop
between these structures: HC→mPFC→RE→HC. Although the
perirhinal (PRC) and entorhinal cortices (EC) comprise additional
relays from the mPFC to the HC, it should be noted that RE also
projects to both the PRC (via periRE) and EC, and therefore may
also modulate information transferred from the mPFC to the HC,
via PRC, and EC. Finally, although recent behavioral studies have
focused on RE as a link between the mPFC and the HC, it is also
the case (but often overlooked) that RE is an important (indirect)
route from the HC to the mPFC—thus connecting these structures
in the opposite direction: HC→RE→mPFC. This pathwaymay ex-
ert return hippocampal modulatory effects on the mPFC and/or
may serve as a critical route for the actions of the dorsal HC (dorsal
subiculum) on the mPFC, especially in light of very minor direct
projections from the dorsal HC to the mPFC (Hoover and Vertes
2007; DeNardo et al. 2015; Ye et al. 2017).

Neurochemistry and physiology of RE

RE is thought toplaya key role in cognitive andexecutive processes,
likely byorchestrating the communicationbetweenmPFCandHC.
Insight in the underlying mechanisms requires a detailed anatom-
ical and electrophysiological knowledge of their interconnectivity.
Data on the synaptic organization and physiology of RE remain
sparse. For instance, RE target cells have been studied anatomically
and/or electrophysiologically in HC and EC (Wouterlood et al.
1990; Wouterlood 1991; Dolleman-van der Weel et al. 1997,
2017; Dolleman-van der Weel andWitter 2000), but similar inves-
tigations are lacking for the RE→mPFC pathway (e.g., Cruikshank
et al. 2012). To advance insight in the functioning of RE, we sum-
marize theneurochemistry of REneurons, reviewelectrophysiolog-
ical data regarding theprojectionsbetweenRE,CA1,EC, andmPFC,
and finally discuss data on coupling of (rhythmic) neuronal activi-
ties in HC and mPFC through RE-mediated synchronization.

Neurochemical characteristics of RE

The primary neurotransmitter for RE is an excitatory amino acid,
presumably aspartate and/or glutamate (e.g., Herkenham 1978;
Bokor et al. 2002; Cruikshank et al. 2012). Accordingly, RE neurons
form asymmetrical (i.e., excitatory) synapses on both pyramidal
cells and interneurons in CA1, subiculum, and EC (Wouterlood
et al. 1990; Wouterlood 1991; Dolleman-van der Weel and
Witter 2000). Recently, dopamine-positive neurons were found
in RE (Ogundele et al. 2017), which are suggested to be part of a hy-
pothalamic neuroendocrine system. RE neurons are devoid of the
inhibitory neurotransmitter γ-aminobutyric acid (GABA), indicat-
ing the absence of inhibitory interneurons in RE (Ottersen and
Storm-Mathisen 1984).

In addition, RE is devoid of the calcium-binding protein par-
valbumin (PV) which is expressed in (subclasses of) GABAergic in-
terneurons as well as in thalamic relay cells. Instead RE neurons
contain the calcium-binding proteins calretinin (CR), calbindin
(CB), and coexpress CR/CB (Frassoni et al. 1991; Arai et al. 1994;
Montpied et al. 1995; Bokor et al. 2002; Drexel et al. 2011). The

Figure 1. Schematic representation of the connectivity in themPFC–RE–
HC system. The HC projects directly to the mPFC, but there are no direct
return projections. RE (including periRE) thus serves as the main link
completing an HC–mPFC loop as follows: HC→mPFC→ RE→HC.
Abbreviations: (HC) hippocampus, (mPFC) medial prefrontal cortex,
(periRE) peri-reuniens nucleus, (RE) the nucleus reuniens of the thalamus.
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absence of PV cells is important because CB- and PV-positivity (+)
in thalamic neurons distinguish two classes of relay cells, namely
CB+ “matrix” cells with dense terminations in cortical layer 1,
and PV+ “core” cells projecting to the middle cortical layers 3/4
(Jones 1998). RE neurons are thus considered to be matrix cells,
projecting predominantly to cortical layer 1, but also innervating
layers 5/6 (Vertes et al. 2006), overlapping with hippocampal ax-
ons in mPFC (Jay and Witter 1991; Gabbott et al. 2002).

Physiology of RE connections

The neurochemical diversity of RE neurons is likely associatedwith
their function (Walsh et al. 2017). For example, thalamic midline
CR-negative (CR−) andCR-positive (i.e., CR+ andCR+/CB+) neurons
are differentially active during characteristic memory-related hip-
pocampal network dynamics (Lara-Vásquez et al. 2016). These in-
vestigators showed that at theta frequencies (4–10 Hz) that are
prominent during exploration and rapid eye movement (REM)
sleep, CR− neurons display firing increases, whereas CR+ neurons
donot. In contrast, during sharpwave-ripples (SWR) that are prom-
inent during quiet state≤1 Hz slow oscillations and slow-wave
sleep, the firing rate of the CR− neurons remains unaffected.
However, CR+ neurons are inhibited during a SWR event, but in-
crease their firing just before and after (Lara-Vásquez et al. 2016).
Thus CR+ (including CR+/CB+) and single CB+ RE projections to
CA1, subiculum, and EC, may play different roles in, for instance,
working memory (theta frequency-dependent) and memory con-
solidation (slow≤1 Hz oscillations-dependent).

Surprisingly few electrophysiologi-
cal studies have examined RE-elicited
responses in HC and mPFC (Dolleman-
van der Weel et al. 1997, 2017; Bertram
and Zhang 1999; Zhang and Bertram
2002; Viana Di Prisco and Vertes 2006;
Morales et al. 2007; Eleore et al. 2011;
Cruikshank et al. 2012). In HC, Dolle-
man-van der Weel et al. (1997) used
anesthetized rats to demonstrate that RE
modulates the excitability of CA1 neu-
rons through direct excitatory and indi-
rect inhibitory mechanisms. RE axons in
slm form asymmetrical (i.e., excitatory)
synaptic contacts on the dendrites and
spines of CA1 pyramidal cells (Wouter-
lood et al. 1990) and on GABA-positive
interneurons (Dolleman-van der Weel
and Witter 2000). Dolleman-van der
Weel et al. (1997) showed that electrical
stimulation of the RE resulted in a local
field potential (LFP) response indicative
of an excitatory synaptic effect in slm.
Paired pulse (0.1–10 Hz) stimulation elic-
ited larger amplitude field excitatory post-
synaptic potentials (fEPSPs) at 0.1–2 Hz
stimulation than at theta frequencies
(4–10 Hz). However, despite the strong
RE-induced paired pulse facilitation
(PPF), firing in principal cells was not ob-
served. In contrast, low frequency (0.1–2
Hz) stimulation of RE resulted in driv-
ing radiatum interneurons, presumably
Schaffer collateral-associated cells, and
vertical oriens/alveus interneurons, both
mediating feedforward inhibitionof pyra-
midal cells. The inability of RE to generate

spiking in CA1 pyramidal cells in anesthetized rats was confirmed
in later studies (Morales et al. 2007; Eleore et al. 2011; Dolleman-
van der Weel et al. 2017). However, one study has reported that
electrical stimulation of the thalamic midline region, including
RE, evoked CA1 population spikes, similar to those evoked by con-
tralateral CA3 stimulation (Bertram and Zhang 1999). This discrep-
ancy with other reports may be due to the much larger thalamic
region that was stimulated by the latter investigators. In addition
to a clear monosynaptic RE input to CA1, there are indications
for complex and presumably polysynaptic elicited field potentials
in CA1 through a projection from caudal RE to rostral RE
(Dolleman-van der Weel et al. 1997). This suggests a closed
RE-HC loop between rRE→CA1→ Sub→ cRE→ rRE (Fig. 2A), that
may enable RE to modulate the activity level of CA1 cells depend-
ing on hippocampal output.

RE input to the EC has the potential to influence the mPFC–
EC–HC flow of (spatial and nonspatial/sensory) information, pre-
sumably by modulating the excitability level of EC neurons (Fig.
2A). One study in anesthetized rats has reported excitatory re-
sponses in the EC following electrical stimulation of the thalamic
midline region (Zhang and Bertram 2002).

A strong RE-mediated feedforward inhibition has been pro-
posed to condition CA1 pyramidal neurons to discharge only un-
der certain circumstances, namely, in the window when
inhibition is diminished, and/or when the excitability level of
the apical dendrites is further enhanced by other inputs, such as
from EC (Dolleman-van der Weel et al. 1997, 2017). In a recent
study, Dolleman-van der Weel et al. (2017), showed that low

BA

Figure 2. Schematic representation of RE inputs onto excitatory and inhibitory neurons in CA1 and
mPFC. (A) Excitatory RE (purple lines) and EC (green lines) inputs in CA1, and a closed CA1→ subicu-
lum→ RE→CA1 circuit, including the thalamic reticular nucleus (TRN). The direct RE→CA1 input in
slm originates from the rostral part of RE; only a minor contribution arises from the caudal part. The
output of CA1 (red lines) via the subiculum can be relayed back to caudal RE. In turn, caudal RE projects
to rostral RE, which results in a di-synaptic (cRE→ rRE→CA1) input in slm, thereby closing a loop. The
direct EC→CA1 pathway, arising from EC layer III cells, overlaps with the RE input in slm. RE→ EC input
may have the ability to modulate the activity level of EC layer III cells. Electrophysiological data support
the view that RE and EC inputs converge (at least partly) onto the same dendritic branch of a pyramidal
cell in proximal slm. RE has been shown to drive presumed Schaffer collaterals-associated cells (1) which
are thought to inhibit pyramidal cells and other (unidentified) interneurons, and vertical oriens/alveus
cells (2), mediating feedforward perisomatic inhibition of CA1 cells. EC is assumed to drive parvalbumin-
positive basket cells (5) and chandelier or axo-axonic cells (6) providing feedforward somatic and axonal
inhibition, respectively, of pyramidal cells; EC also drives neurogliaform cells in slm (3). RE and EC inputs
are proposed to converge on slm-neurogliaform cells (3) providing feedforward inhibition of pyramidal
cells and other interneurons in slm, and on a subclass of (presumed CCK/VIP) basket cells (4) located at
the slm/radiatum border, providing (peri)somatic inhibition of CA1 cells. (B) mPFC layers 1 and 5/6
contain a high density of RE fibers onto mostly unidentified pyramidal cells and interneurons. They
overlap with fibers from CA1/subiculum (red lines); it is not known whether RE and CA1/subiculum
inputs convergence onto single neurons in mPFC. RE input drives presumed neurogliaform cells in
layer 1, providing feedforward inhibition of pyramidal cells in layers 2/3 and other unidentified layer
1 interneurons. mPFC (light blue lines) provides direct excitatory input to RE as well as an indirect, pre-
sumed inhibitory input via the TRN (black arrow); RE reciprocates the TRN input (purple arrow).
Abbreviations: (al) alveus, (c) caudal, (EC3) entorhinal cortex layer III, (or) stratum oriens, (pyr) pyrami-
dal cell layer, (r) rostral, (rad) stratum radiatum, (slm) stratum lacunosum moleculare, (TRN) thalamic
reticular nucleus.
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frequency (0.1 Hz) paired pulse stimulation of either RE or lateral
EC evoked CA1 fEPSPs (subthreshold) with strong homosynaptic
PPF, whereas combined stimulation of RE and EC did not support
heterosynaptic PPF. Coincident inputs induced a nonlinear en-
hancement of the elicited field potentials in slm but did not drive
pyramidal cells. These data suggest that RE and EC synapses
converge on the same dendritic branch of the pyramidal cells.
The authors reasoned that the inability to induce CA1 cell firing
could be due to persistent inhibitory influences, engaged by either
route individually or by their coincidence. RE and EC inputs con-
verge on neurogliaform cells in slm (Fig. 2A, cell 3), as well as on
a subclass of cholecystokinin/vasoactive intestinal polypeptide-
positive (CCK+/VIP+) basket cells located at the radiatum/slm bor-
der (Fig. 2A, cell 4) mediating additional perisomatic inhibition
(Dolleman-van der Weel et al. 1997, 2017; Chittajallu et al.
2017). The coincident RE-EC induced perisomatic inhibition
may modulate input-timing-dependent-plasticity (Dudman et al.
2007), among other inhibitory dynamics in CA1, gating computa-
tional activity.

Electrophysiological studies of RE input in themPFC are limit-
ed. Extracellular recordings, reflecting RE-mediated glutamate re-
lease onto mPFC neurons (Pirot et al. 1994; Hur and Zaborsky
2005), indicate direct excitatory and indirect inhibitory compo-
nents (Viana Di Prisco and Vertes 2006; Eleore et al. 2011;
Cruikshank et al. 2012). It is assumed that, similar to the RE→
CA1 pathway, both pyramidal cells and interneurons in mPFC re-
ceive RE input. Low frequency (0.1 Hz) paired-pulse stimulation
of RE resulted in strong PPF in mPFC (PL/IL), similar to CA1
(Dolleman-van der Weel et al. 1997, 2017; Viana Di Prisco and
Vertes 2006; Eleore et al. 2011). RE also appears unable to evoke ac-
tion potentials in mPFC principal cells, with the strong caveat that
these recordings have been performed in anesthetized animals.
Using an optogenetic strategy, Cruikshank et al. (2012) found
that activatingmatrix thalamo-cortical projectionneurons, includ-
ing RE cells, excitedmPFC (PL) layer 1 inhibitory neurons, presum-
ably neurogliaform cells (e.g., Overstreet-Wadiche and McBain
2015). In turn, this conveyed feedforward inhibition to pyramidal
cells in layers 2/3 as well as other layer 1 interneurons (Fig. 2B).
The thalamic-induced inhibition of the latter interneurons likely
has a disinhibitory effect on postsynaptic targets. Speculatively,
RE-induced feedforward inhibitionmay impose a narrow temporal
window for exciting mPFC pyramidal cells via direct RE→mPFC,
and RE→CA1, and/or CA1→mPFC pathways, thereby facilitating
the (timing of) communication between HC and mPFC.

Though the effects ofmPFC inputs on REneurons are not well
known, a recent study investigated the influence ofmPFC input on
spontaneously active RE neurons in anesthetized rats (Zimmerman
and Grace 2018) using extracellular single-unit recordings in RE
and manipulated activity in the infralimbic prefrontal area (IL).
The results showed that (1) following tetrodotoxin (TTX) inactiva-
tion of IL neurons RE burst firing was reduced, (2) following inhi-
bition of the mPFC(IL)→RE pathway utilizing the projection-
specific approach with DREADDs (designer receptors exclusively
activated by designer drugs), a subset (40%) of the spontaneously
active RE neurons showed an enhancement of burst firing without
an increase in number of spikes, and (3) acute electrical (0.5 Hz)
stimulation of mPFC (IL) resulted in complex responses in 75%
of RE neurons. That is, while only eight RE neurons from three dif-
ferent rats were recorded, six of these cells initially stopped (tonic)
firing, followed by rebound spiking (mostly bursting), and after
15–25 stimuli they stopped firing altogether. Thus, mPFC input
to RE appeared to have shifted the firing mode from tonic to burst
firing, followed by silence. Zimmerman and Grace (2018) hypoth-
esized that the mPFC→RE input may entrain bursting in RE neu-
rons, with silencing effects achieved via the mPFC→TRN→RE
pathway (Fig. 2B). While direct mPFC–RE input is glutamatergic,

feedforward inhibition of RE occurs via GABAergic input from
the TRN (Halassa and Acsády 2016). Muscimol inhibition of
TRN, had no effects on the spontaneous firing rate, bursting or
spike counts in RE cells, but it did reduce the number of spontane-
ously active cells (Zimmerman and Grace 2018). These results, al-
though puzzling, indicate distinct roles of the TRN→RE, and
mPFC (IL)→TRN→RE pathways.

Role of RE in oscillations and synchronization

Several studies, not reviewedhere, show that the interactions of the
mPFC and HC are critical to cognition. It is commonly speculated
that RE promotes these interactions, possibly through synchroni-
zation of slow, gamma, and/or theta frequency oscillations that fa-
cilitates communication.

The physiological properties of RE neurons (Jankowski
et al. 2014, 2015; Lara-Vásquez et al. 2016; Walsh et al. 2017;
Zimmerman andGrace 2018) appear supportive of a significant in-
volvement of RE-CA1/subiculum and RE-EC projecting neurons in
very slow oscillations (0.1–1 Hz). This is in line with electrophysi-
ological results (Dolleman-van der Weel et al. 1997, 2017), show-
ing that low (≤2 Hz) frequency stimulation of RE yielded much
larger amplitude CA1 fEPSPs than following stimulation at theta
frequencies (4–10 Hz). Moreover, RE is thought to impose a slow
oscillation on CA1 pyramidal cells through synapses on inhibitory
neurons (Dolleman-van der Weel et al. 1997; Zhang et al. 2012;
Duan et al. 2015). Xu and Südhof (2013) proposed that by facilitat-
ing the EC input during hippocampal slow oscillations, RE may
contribute to the neocortical-hippocampal dialogue and subse-
quent memory consolidation, an idea that is supported by recent
electrophysiological findings (Dolleman-van der Weel et al.
2017). Furthermore, behavioral studies have shown that RE is in-
volved in (hippocampal-dependent) memory consolidation (e.g.,
Loureiro et al. 2012), a process dependent on slow (<1 Hz) synchro-
nized oscillations in mPFC and HC (Huber et al. 2004; Mölle and
Born 2011).

The long-range synchronization of gamma may enable com-
munication between distant brain regions (e.g., Fries 2015).
Ferraris et al. (2018) recently provided evidence that RE serves to
synchronize bursts of gamma activity in CA1 and mPFC (PL).
During slow oscillations synchronized gamma bursts (30–90 Hz)
occur in the mPFC and HC in adult rats under anesthesia and nat-
ural sleep (Ferraris et al. 2018). Both CA1 and mPFC cells were en-
trained by the gamma oscillations, but they did not participate in
the actual synchronization of CA1 and mPFC gamma bursts.
Instead, RE neurons appeared related and increased their firing pri-
or to the synchronized gamma burst onsets, while muscimol inac-
tivation of RE disrupted synchronization of the CA1 and mPFC
gamma bursts. The authors suggested that RE may actively pro-
mote/drive the mPFC–HC gamma burst coupling during slow os-
cillations, thereby providing a temporal window for information
exchange/memory consolidation during slow wave sleep (Ferraris
et al. 2018).

Synchronized prefrontal-hippocampal activity in the theta
range (4–10 Hz) occurs predominantly during exploration and
REM sleep and is related to several learning and memory processes
(Boyce et al. 2016; Guise and Shapiro 2017). Whether RE plays an
important role in driving hippocampal theta waves, and/or in the-
ta coupling between mPFC and HC is unclear from the available
data. For example, during rat neonatal development the mPFC–
RE connectivity is involved in theta band coupling of mPFC and
HC, providing an early transthalamic feedback mechanism for
mPFC control over CA1 activity (Hartung et al. 2016).

Additionally, RE contains a small percentage of neurons with
various spatial properties, i.e., head direction cells, “place cells”
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with low levels of spatial information, and perimeter/border or
boundary cells (Jankowski et al. 2014, 2015). In freely moving
rats these cells display firing properties in the theta range, however
coherence with hippocampal theta oscillations is low. RE cells
display trajectory-dependent activity in a continuous alternation
task, phase-locked to theta rhythm in CA1 (Ito et al. 2015).
Recently, Ito et al. (2018) reported that firing of mPFC and RE neu-
rons show enhanced coordination with the CA1 theta rhythm
when rats approached the choice point in a T-maze. However,
the temporal coordination in mPFC-RE-CA1 seemed dependent
on the supramammillary nucleus (SUM) determined by optoge-
netic silencing.

In anesthetized rats, however, various reports have indicated
that RE has little effect on hippocampal theta. For instance, RE is
likely not involved in atropine-resistant theta (Vanderwolf et al.
1985), and RE spiking activity during spontaneous or tail-pinch in-
duced hippocampal theta oscillations displayed only a very low co-
herence with hippocampal theta (Morales et al. 2007). In addition,
low frequency (0.1–2 Hz) electrical stimulation of RE may disrupt
spontaneously occurring hippocampal theta oscillations, even up
to a point of near complete suppression (Dolleman-van der Weel,
unpublished observations).

There are some contrasting results on theta coupling between
mPFC and HC. On the one hand, lidocaine inactivation of RE re-
sulted in a decreased coherence between 2–5 Hz delta oscillations
inmPFC (PL) and HC, but hadminimal effect on coupling at theta
frequencies (Roy et al. 2017). On the other hand, an N-methyl-
D-aspartate (NMDA) lesion of RE impaired the coherence of
mPFC–HC (PL-CA1) theta (and beta) frequency oscillations
(Kafetzopoulos et al. 2018). Interregional synchronization in the
dorsal CA1-RE-mPFC direction was also observed. Using a spatial
working memory (SWM)-dependent delayed alternation (DA)
task Hallock et al. (2016) showed that RE inactivation robustly de-
creased the proportion ofmPFC neurons that were phase-locked to
hippocampal theta during delay periods of the SWM task.

In summary, electrophysiological data indicate that RE can
modulate neuronal activities in mPFC and HC through a complex
interplay of direct excitatory effects on principal cells and subclass-
es of local inhibitory interneurons. Thus, RE may exert a (state-
dependent) influence on the excitation/inhibition balance and
level of plasticity. In addition, through activation of interneurons
REmay impose an oscillatory rhythm on pyramidal cell ensembles
that facilitates the local and interregional flow of information.
Whether the latter involves the collateralized RE projections to
CA1 and mPFC is as yet an unresolved issue. Return projections
to RE, i.e., the direct mPFC–RE and indirect mPFC–TRN–RE path-
ways, are tentatively proposed to have distinct effects on firing
mode of RE neurons.

Potential RE circuit dynamics

The anatomy and physiology of RE presents an emerging picture of
an extensive network that includes the HC, EC, PRC, mPFC, and
TRN involving a complex interplay of state-dependent excitato-
ry/inhibitory effects on neuronal activity that occurs both locally
and at the circuit/network level. Here we attempt to coalesce and
simplify RE functions in a model based on the conceptualization
of RE as a canonical, higher-order, cortico-thalamo-cortical circuit
(Theyel et al. 2010; Sherman, 2017) situated at the nexus of the
mPFC and HC. By modulating specific, temporally coherent pat-
terns of neuronal activity, RE organizes interactions between an
anatomically extended set of diencephalic,mPFC, andmedial tem-
poral lobe circuits—distributed coalitions that are required for the
highest orders of cognition involving the integration of memory,
motivation, and actions directed by expected outcomes. Though

the model incorporates several key anatomical and physiological
features of RE circuitry, many details remain unknown, and our de-
scription is intended as a framework for further investigating RE
circuit function. The model emphasizes integration and coordina-
tion functions of RE with respect to three levels of organization:
anatomical connectivity, neuronalmodulation, and computation-
al process (depicted in Fig. 3). At a fundamental level RE neurons
must act as integrators based on their massive inputs and limited
outputs (see above anatomy). This input–output ratio likely imple-
ments a form of dimensionality reduction resolving appropriate
features of informationwithin the context of frontotemporal inter-
actions, and influenced by the many inputs from regions associat-
ed with diverse behavioral and autonomic states. Likewise, the
central location of RE positions it to coordinate activity through-
out the mPFC–RE–HC system leading to the idea that RE serves a
critical a role in synchronization, gating, and inhibitory control.

In the conceptual model, we enumerate seven possible RE
mechanisms: (1) RE could coordinate coherent interactions across
mPFC–RE–HC through the 5%––10% of RE-CA1 projecting cells
with collateralized axons to both mPFC and the HC (e.g., Hoover
and Vertes 2012; Varela et al. 2014). As reviewed above, there are
some indications for this role (e.g., Hallock et al. 2016; Roy et al.
2017), but direct evidence is lacking. Coordination could include
delta and theta frequency bands, slow oscillations and/or coupling
of these with higher frequency bands such as gamma. (2) RE cells
could coordinate and integrate its vastly distributed afferents
with specific inputs originating frommPFC, extract central features
such as goal trajectory (Ito et al. 2015), and project this informa-
tion onto theHC. This, in turn,might drive neuronal activation se-
quences related to situation appropriate memory acquisition or
retrieval states in HC. (3) RE cells could coordinate and integrate
its vast afferents with specific input originating in the HC, extract
common features such as situation appropriate contextual repre-
sentations (as opposed to detailed representations), and project
this information onto mPFC. These inputs to mPFC might drive
memory-based cognitive and behavioral control mechanisms.
The latter two functionswould be similar to other cortico-thalamo-
cortical pathways where the thalamus has been shown to transfer
information (e.g., Theyel et al. 2010). (4) RE cells could provide the
mechanism for cortico-thalamic gating and/or, (5) subiculo-
thalamic gating, via feedforward inhibitory inputs from the TRN
neurons (Çavdar et al. 2008). Such TRN-based gating could enable
RE cells to modulate the directional route of flow frommPFC→RE
→HC or HC→RE→mPFC on fundamental neural integration and
processing time scales (tens of milliseconds). Such a mechanism
could allow for rapid informational loops updating increasingly
advanced representations relevant to ongoing memory-guided
behavior. Generally, this type of feedforward gating mechanism
provides for rapid transitions between large cognitive networks
via the thalamus. (6) RE→mPFC projections might drive both in-
hibitory and principal neurons providing computational control
over cognitive states within the mPFC. (7) RE→HC projections
could drive both inhibitory and principal neurons with its massive
inputs to slm, but this excitatory inputmaynot drive action poten-
tials in pyramidal cells directly (Dolleman-van derWeel et al. 1997;
Chittajallu et al. 2017). Instead, RE inputs might serve to alter the
computational state of CA1, affecting encoding, consolidation and
memory retrieval (e.g., Xu and Südhof 2013). For example, RE in-
puts may tune the magnitude and timing of network excitability
reflected in local field potential oscillations. Such modulation
would strongly affect synaptic integration, action potential gener-
ation, and plasticity mechanisms.

While this conceptual model is neither exhaustive nor vali-
dated, it provides a simple framework for hypothesis-driven work
on the role of the RE in cognitive neurobiology by considering cir-
cuit dynamics. The basic idea is that the mPFC and HC is an
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instantiation of a canonical cortico-thalamo-cortical circuit in the
brain capable of bridging the memory and executive systems.

Behavioral functions of RE

In this section, we review the role of RE in navigation, spatial work-
ing memory, the temporal organization of memory, and executive
functions. RE contributions to these tasks have been studied using
lesions (e.g., electrolytic or NMDA), pharmacological inactivation
(e.g., muscimol), circuit-specific approaches (e.g., optogenetics
and DREADDs), and in vivo electrophysiolgical approaches (e.g.,
fine-wire tetrodes). Each approach has caveats for use in studying
RE, the most obvious of which is that RE is difficult to target
because it is deep and on themidline. Additionally, NMDA lesions
may cause epileptic activity in CA1 (Hirayasu and Wada 1992),
muscimol may spread to nearby thalamic regions and affect motor
behaviors (e.g., Starr and Summerhayes 1983; Klockgether et al.
1985), and recordings in RE are difficult to localize in vivo due to
a lack of an established electrophysiological signature. Regardless,
careful application of these approaches has led to the overarching

conclusion that RE is critical to learning
and memory, and involved in executive
functioning.

RE in spatial navigation

Spatial navigation is an essential ability
for animals living in space. Although in-
dividual animal species appear to develop
different navigation strategies, a key
feature of rats (and humans) is their strat-
egy based on internal maps in the
brain (Tolman, 1948; O’Keefe and Nadel
1978). This map-based navigation elimi-
nates the necessity to memorize sequenc-
es of individual movements toward goals.
Instead, the extraction of geometric rela-
tionships between spatial landmarks al-
lows animals to plan routes to various
destinations flexibly. In support of this
idea, studies have identified neurons
that fire depending on the animal’s posi-
tion in space, such as place cells or grid
cells (O’Keefe and Dostrovsky 1971;
Hafting et al. 2005). However, it is
still largely unknown how other cortical
structures use such geometric relation-
ships to plan a route, or action sequences,
toward destinations.

The mPFC has been considered a
key structure for navigation. For exam-
ple, lesioning mPFC impaired flexible
planning of route from different start po-
sitions to the goal (Granon and Poucet
1995). Furthermore, goal-directed navi-
gation was impaired in a human patient
with damage in the ventral mPFC
(Ciaramelli 2008; Spiers 2008). Notably,
the patient was able to navigate success-
fully if the goal location was repeated pe-
riodically, suggesting mPFC may play a
role in goal representation and route
planning during navigation. Consistent
with this idea, studies have reported
the temporal coordination of activity be-

tween mPFC and HC during navigation. When the animal makes
a decision about the next route at a T-junction of a maze, the
spectral coherence between mPFC and HC is modulated in the
theta-frequency band (Benchenane et al. 2010). At the cellular
level, mPFC spiking becomes phase-locked to theta oscillations
in HC (Jones and Wilson 2005; Siapas et al. 2005; Ito et al.
2018). This behavior dependent spike-time coordination implies
dynamic functional coupling between mPFC and HC during
routing.

While previous studies indicate a key role formPFC–HC inter-
actions in navigation, the origin of the axonal projection in mPFC
from HC is largely limited to its ventral and intermediate portion
(Jay andWitter 1991; Hoover and Vertes 2007), in spite of a pivotal
role of dorsal HC in fine-scale spatial representations and spatial
learning (Nadel 1968; Moser et al. 1993; Sargolini et al. 2006).
The absence of a direct projection frommPFC toHC leads to a ques-
tion of how the mPFC–HC communicates in support of naviga-
tion. As reviewed above, RE may serve as the primary hub
between mPFC and HC (Vertes et al. 2007), and thus navigational
behavior may involve the mPFC–RE–HC system.

Figure 3. Conceptualmodel of circuit dynamics in themPFC–RE–HC system.Note that both the dorsal
and ventral HC are depicted to emphasize these divisions. The model is focused on RE neurons (purple)
with projections (dense, solid purple line; light, stippled purple line) to HC, mPFC, other RE neurons,
and TRN. In turn, RE neurons receive input from HC (red), mPFC (blue), and TRN (dark gray).
Throughout the model, inhibitory cells have a white soma and white triangle synapses; excitatory cells
have black somas and colored triangle synapses. Themodel proposes seven potential circuitmechanisms:
(1)mPFC–RE–HCsynchronizationmight be achieved through the small subpopulation of RE neuronswith
collateralized axons to bothmPFC andHC. (2)mPFC→RE→HC integration and propagation through RE
neurons and (predominantly rostral) RE→HC projections. There is the potential for additional integra-
tion/modulation of rostral RE neurons via inputs from ventral subiculum and caudal RE neurons. (3) HC
→RE→mPFC integration and propagation through a subpopulation of caudal RE neurons that receive
(dorsal and ventral) subicular afferents, and project to mPFC. (4) Cortico-thalamic gating through
mPFC→TRN projections, and (5) Subiculo-thalamic gating through d/v Subiculum→ TRN projections,
both providing feedforward inhibition on RE, or other thalamic nuclei. (6) RE→mPFC projections could
modulate/drive the computational state of mPFC through excitatory inputs onto pyramidal cells, and
on inhibitory interneurons in layer 1. (7) RE→HC projections could modulate/drive the computational
state of CA1 through excitatory inputs onto pyramidal cells, and inhibitory interneurons, colocalized
with EC layer III inputs in slm. Each of these circuit mechanisms could serve several functions in
memory and behavior, but each needs to be tested in empirical studies using techniques able to isolate
circuit-level mechanisms, such as optogenetics and DREADD based experiments in freely behaving
animals. Abbreviations: (dHC) dorsal hippocampus, (CA1) cornu ammonis field 1, (DG) dentate gyrus,
(HC) hippocampus, (mf) mossy fibers, (mPFC) medial prefrontal cortex, (pp) performant path, (rh)
rhinal sulcus, (RE) nucleus reuniens of the thalamus, (sc) Schaffer collateral, (slm) stratum lacunosum
moleculare, (Sub) subiculum, (ta) temporoammic pathway, (TRN) thalamic reticular nucleus, (vHC)
ventral hippocampus.
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One line of evidence for a role of RE
inmPFC–HC interactions inmemory was
provided by Xu and Südhof (2013). They
demonstrated that the mPFC-RE-CA1 cir-
cuit plays a key role in balancing the spe-
cificity and generalization of contextual
representations in a fear conditioning
task. The results of this study suggest
that a RE-mediated circuit may directly
influence place cell firing in HC because
similarities and differences between envi-
ronments are thought to be represented
by field locations and firing rates across
a place cell population (Anderson and
Jeffery 2003; Leutgeb et al. 2005; Colgin
et al. 2008). Consistent with this notion,
Cholvin et al. (2018) recently reported
that RE lesions impaired the stability
and firing-rate modulation of place cells,
which may ultimately influence spatial
cognition.

What kind of information is repre-
sented in RE neurons? Jankowski and
colleagues showed that a subpopula-
tion of RE neurons exhibited a tuning to
the animal’s head direction or position
(Jankowski et al. 2014, 2015), likely re-
flecting anatomical inputs from the sub-
iculum and parahippocampal region to
RE (McKenna and Vertes 2004). A key
role of RE in navigation was investigated
by Ito and colleagues (Fig. 4; Ito et al.
2015). They recorded the activity of neu-
rons in mPFC, RE, and CA1 as rats per-
formed a continuous alternation task in
a T-maze. The study found that many
neurons in RE or mPFC lack any notable
tuning to the animal’s position in space
during navigation, which contrasts with
neurons in HC. However, neurons in RE
and mPFC change firing rates depending
on the animal’s next movement (either
a right or left turn at the T-junction).
This trajectory-dependent activity in RE
neurons influenced the peak firing rates
of place cells in the hippocampal CA1,
which otherwise retained their spatially
selective firing. While it has long been
known that place cells change their activ-
ity depending on the animal’s trajectory (Markus et al. 1995;
Frank et al. 2000; Wood et al. 2000), such modulation is likely me-
diated by the mPFC→RE circuit. Consistent with this notion,
the trajectory-dependent rate change of place cells was largely
diminished by lesions or by optogenetic-silencing of RE (Ito
et al. 2015).

The functional investigation of RE further elucidated a role
for theta-rhythm spike-time coordination in mPFC–HC interac-
tions. When the animal decides the next route at the T-junction,
neurons in mPFC and RE enhance their spike-time coordination
with the HC theta rhythm, resulting in efficient transfer of trajec-
tory information from mPFC to HC (Ito et al. 2018). Interestingly,
this spike-time coordination in the mPFC-RE-CA1 circuit was me-
diated by SUM in the hypothalamus that projects to mPFC, RE,
and HC (Vertes 1992; Pan and McNaughton 2004), pointing also
to subcortical structures as key nodes for controlling mPFC–HC
interactions.

While these studies indicate the role of RE in transferring in-
formation about the animal’s next movement from mPFC to the
HC, why is such information necessary in HC? The exact contri-
bution of the RE-mediated information is unclear because lesions
or inactivation of RE impairs the animal’s performance in some
navigation tasks (Cholvin et al. 2013; Mei et al. 2018), but not
in others such as a simple alternation task or water-maze task
(Dolleman-van der Weel et al. 2009; Ito et al. 2015). However,
several hints are available. One study demonstrated that neurons
in mPFC and RE represent the movement directions in a self-
centered, or egocentric, perspective (Ito et al. 2015). However,
during navigation, each intended movement must be evaluated
based on the animal’s position and head direction in the environ-
ment, information primarily represented in HC and parahippo-
campal structures (Moser et al. 2008, 2014). The mPFC-RE-CA1
circuit may therefore mediate the integration of egocentric action
plans with a spatial map in the HC, providing a necessary

BA

C

Figure 4. Trajectory-dependent coding in CA1 depends on RE activity. (A) Rats were implanted with
an optical fiber targeting RE with RE cells expressing the enhanced halorhodopsin eNpHR3.1.
Recordings were made from tetrodes implanted in dorsal CA1 while rats performed a continuous alter-
nation task on a modified T-maze. (B) During “laser on” conditions RE neurons are temporarily silenced.
(C) A sample CA1 neuron shown before, during, and after RE silencing. Under control (before and after)
conditions, the CA1 neuron shows trajectory-dependent coding with more firing on the stem of the
maze for right-bound runs. During RE inactivation trajectory-dependent coding is diminished.
Abbreviations: (CA1) cornu ammonis field 1, (RE) nucleus reuniens of the thalamus. Reprinted from
Ito et al. (2015) with permission.

RE circuits and behavior

www.learnmem.org 197 Learning & Memory

 Cold Spring Harbor Laboratory Press on November 12, 2019 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


computational step to assess the next move based on its geomet-
ric relationships to the destination.

RE in spatial working memory

Working memory is the maintenance of trial-specific information
over a brief temporal delay. One example would be remembering
the location of your parked car while walking into a store, or hold-
ing a phone number in mind before entering it into the contacts
on your phone. Recent research into the neurobiological basis of
SWM has focused on the mPFC–RE–HC system.

Most experimental SWM tasks involve alternations in a
T-maze. As discussed above, the simplest variant is the continuous
alternation (CA) task, inwhich the rodent runs from the left reward
zone to the right reward zone in a figure-eight pattern without
stopping (Wood et al. 2000; Lee et al. 2006; Ainge et al. 2007),
with performance dependent on memory for the previous run in
order to successfully alternate. In DA task versions, working mem-
ory demand is increased by having animals stop during a given
time delay (seconds or minutes) before the next alternation can
be made. Control tasks include all the same demands, but do not
require the stimuli to be held in mind for successful performance.
For example, the tactile-visual conditional discrimination (CD)
task (Griffin et al. 2012) used different tactile floor inserts associat-
ed to different reward zones (i.e., the right or left side). CD depends
on the integrity of the dorsal striatum but not dorsal HC, and the
opposite is true for DA (Hallock et al. 2013a). Notably, CD tasks
can be modified to make them SWM-dependent. Instead of cover-
ing the entire maze with the conditional cue, the cue is only pre-
sented at the beginning of the maze stem but absent at the
T-junction. mPFC inactivation disrupts choice accuracy on the
SWM version of the CD task, but not the SWM-independent ver-
sion (Shaw et al. 2013).

SWM depends on mPFC–HC functional connectivity. For ex-
ample,mPFC–HCoscillatory coupling in the 4–12 Hz (theta) range
is prominent during SWM (Jones and Wilson 2005). Additionally,
mPFC single neuron entrainment to the HC theta rhythm reflects
accuracy on a delayed nonmatch to sample (DNMS) task per-
formed in an operant chamber (Hyman et al. 2010). In agreement
with these findings, Hallock et al. (2016) showed that mPFC–HC
theta synchrony is strongest under situations in which SWM is re-
quired. Specifically, the authors found that theta coherence was
significantly higher on DA compared to CD tasks as rats moved
through the T-junction of the maze (Hallock et al. 2016). One im-
portant modulator of mPFC-dorsal HC theta synchrony is the ven-
tral HC. For example, Spellman et al. (2015) optogenetically
inhibited ventral HC terminals in mPFC during different phases
of the delay nonmatch to place (DNMP) task in mice. Ventral HC
terminal suppression during the sample, but not delay or choice
phases, impaired accuracy and interfered with task coding in
mPFC single-unit activity. This suggests that ventral HC inputs to
mPFC are critical for encoding task-specific spatial information.
Additionally, removal of ventral HC input to mPFC disrupted
mPFC-dorsal HC synchrony, suggesting that the direct pathway
fromventralHC→mPFC contributes tomPFC-dorsal HC function-
al coupling and SWM (O’Neill et al. 2013).

RE is ideally situated to modulate mPFC–HC interactions in
SWM (Vertes et al. 2007). Consistent with this role, inactivation
of RE with muscimol impaired performance on the SWM-depen-
dent CD task, but leaves the SWM-independent variant unaffected
(Fig. 5; Hallock et al. 2013b). Further as the delay length is in-
creased, the deficits increase (Layfield et al. 2015). Recently, the
temporal precision offered by optogenetic techniques was used
to suppress RE during the sample, delay, and choice phase of a
DNMP task (Maisson et al. 2018). Results showed that optogenetic

suppression of the RE during the sample phase, but not the delay or
choice phases, impairs choice accuracy. Together with Spellman
et al. (2015), these findings suggest that both RE and ventral HC in-
put to mPFC are critical for encoding task-relevant information
during SWM.

Another recent study answered a more mechanistic question
of how RE might affect the mPFC–HC circuit (Hallock et al.
2016). In the study, RE inactivation was combined with dual-site
LFP recordings inmPFC anddorsal HC. Rats were trained to asymp-
totic performance on the DA task. Before, during, and after RE in-
activation with muscimol LFPs were recorded from mPFC and
dorsal HC while DA trials were run. RE inactivation significantly
impaired DA choice accuracy which was also accompanied by a re-
duction in mPFC-dorsal HC coherence.

Overall, these studies show that RE is critical for both SWM
and mPFC–HC synchrony. However, many questions remain
about how RE modulates SWM. For example, is the dependence
on RE due solely to its role in synchronizing theta oscillations be-
tween mPFC and HC? What is the impact of RE inputs to mPFC,
HC, and EC at different times during SWM? Exploring these, and
other, circuit-level questions will be critical to understanding
how and when RE contributes to SWM.

RE in the temporal organization of memory

The temporal organization of memory has been studied in a wide
array of tasks, and is generally thought to help assemble events
into separate episodes (Clayton and Dickinson 1998; Tulving
2002; Kesner and Hunsaker 2010; Jacobs et al. 2013; Eichenbaum
2017). Althoughmany of our experiences occur in the same places
(e.g., our lab), with the same items (e.g., our computers), the tem-
poral information is always distinct. That is, information about
“when” an event occurred is stored in memory, in addition to
“what” occurred and “where” it occurred (Allen and Fortin 2013).

A commonly studied form of the temporal organization of
memory is the memory for sequences of events. Memory for se-
quences of events tasks are thought to model the fundamental
flow-of-events aspect of episodic memory (Allen et al. 2014).
That is, sequence memory provides a representation of the order
of events as they occurred within an experience, and underlies
our ability to “play back” experiences. Many studies have shown
that memory for sequences of events is dependent on both
mPFC and HC (Fortin et al. 2002; Kesner et al. 2002; Hannesson
et al. 2004; Knierim et al. 2006; Barker et al. 2007; Ekstrom and
Bookheimer 2007; Euston et al. 2007; DeVito and Eichenbaum
2011). Thus, if an essential role of RE is to support mPFC and HC
functions, then RE should be critical for remembering sequences.

Although little is known about the role of RE in sequence
memory, a recent report tested the hypothesis that RE is critical
to remembering sequences of events in rats (Fig. 6; Jayachandran
et al. 2018). In this study, rats were trained on an odor-based se-
quence memory task in which they had to identify odors as “in
sequence” or “out of sequence” for water rewards. Notably, the se-
quence task explicitly controls for spatial variables by presenting
all the odors within a sequence in the same nose port, thus ex-
tricating performance from a simple spatial interpretation.
Importantly, a previous study has shown that the sequence task
drives sequential representations in individual CA1 neurons,
with spike timing that phase locks to the beta frequency band,
and this activity correspondedwith accuratememory performance
(Allen et al. 2016). To test the role of RE in the task, Jayachandran
et al. (2018) used a DREADD-based synaptic silencing approach
(Stachniak et al. 2014) to suppress activity in the mPFC→RE pro-
jection prior to sequence memory testing in well-trained rats
(memory was tested, not learning). Local infusions of clozapine
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N-oxide (activating hM4Di receptors on presynaptic terminals
frommPFC) were made directly into RE through cannulas. The re-
sults showed that silencing the mPFC→RE projection repeatedly
and effectively abolished sequencememory in rats, but that silenc-
ing the mPFC→RE pathway did not affect running speed, odor
sampling, reward retrieval, or nose poke times. An analysis of
the distribution of nose poke times reinforced the conclusion
that the effect of silencing the mPFC→RE projections is to reduce
the accuracy of sequence memory decisions, rather than change
the distribution of reaction times.

Through a detailed lag analysis, Jayachandran et al. (2018) re-
vealed a pattern of deficits that resembled a reduction in a working
memory retrieval strategy after silencing the mPFC→RE pathway,
in contrast to a temporal context memory retrieval strategy, which
was instead impaired by silencing mPFC→PRC. To clarify this is-
sue, temporal contextmemory in the sequence task refers to the re-
trieval gradients that are observed in human studies of list learning
(e.g., Howard andKahana 2002; Kragel et al. 2015).When items are
recalled from the list, people will tend to remember the nearby
items (short lags), but they are less likely to recall distal items (lon-
ger lags). Because verbal recall cannot be performed by animals, the
sequence task models list learning using a nonverbal response to
probe memory (in and out of sequence decisions). Temporal con-
text memory is demonstrated in this task with a lag analysis in
which the retrieval of nearby items interferes with out of sequence
decisions but distal items do not. In this same task, working mem-
ory is simultaneously tested on reverse lags because delay-match-
to-sample strategies can contribute to successful performance.
That is, in contrast to temporal context memory, workingmemory
helps reject nearby items but does this less well for distal items (the
opposite pattern). The mPFC→RE silencing effect on working
memory retrieval during memory for sequences of events is gener-

ally consistentwith the role of RE in SWM
tasks (e.g., Hembrook et al. 2012; Cassel
et al. 2013; Hallock et al. 2013b; Griffin
2015; Viena et al. 2018), and, from a re-
trieval standpoint, similar to the role of
RE in hippocampal-dependent contextu-
al fear memory (Ramanathan et al.
2018). Though more work needs to be
done to test the role of RE in a variety of
temporal tasks, these early findings sug-
gest that the cognitive role of RE is not re-
stricted to processing spatial variables,
but rather RE influences multiple memo-
ry functions that likely contribute to epi-
sodic memory.

RE in executive functions

As discussed above, it is now fairly well es-
tablished that RE directly participates in
memory but considerably less attention
has been paid to the role of RE in “execu-
tive functions,” such as attention, goal di-
rected behavior, or behavioral flexibility.
This is despite strong RE connections
with the medial and orbital PFC, known
to be critical for behavioral regulation
(Bannerman et al. 2004; Dalley et al.
2004; Kehagia et al. 2010; Chudasama
et al. 2012; Abela and Chudasama 2013;
Abela et al. 2013). Regarding executive
functions, Dolleman-van der Weel et al.
(2009) initially reported that lesions of
RE did not impair acquisition or retention

of spatial reference memory on a water maze task, but nonetheless
led to a maladaptive search strategy which was deemed a PFC def-
icit. Specifically, on the probe test following acquisition,
RE-lesioned rats swam directly to the correct quadrant of the
pool but upon not finding the platform, immediately began to
search the entire pool for the missing platform. This contrasted
with sham-operated controls that persistently searched in the
training quadrant of the pool. This very rapid switch in strategies
of the RE-rats coupled with a failure to adopt a more efficient strat-
egy was described as a deficiency in strategy shifting, typically seen
with alterations of the orbital PFC (Amodeo et al. 2017; Izquierdo
2017). Consistent with this, Prasad et al. (2013) demonstrated that
RE lesions produced premature responding on a 5-choice serial re-
action time task (5-CSRTT), whereas other indices such as omitting
responses (a measure of attention) were unaffected by the lesions.
Premature responding is viewed as a deficit in impulse control and
is produced with lesions of IL on the 5-CSRTT task (Chudasama
et al. 2003). Cassel and colleagues (see Cholvin et al. 2013) further
reported that following RE inactivation, rats were unable to suc-
cessfully navigate a “double H” water maze which required a
switch in strategy from response to place responding. Linley
et al. (2016), using a seven-stage odor/texture discrimination task
(Birrell and Brown 2000), found that rats with RE lesions were sig-
nificantly impaired in reversal learning, indicating an inability to
shift to new stimulus-reward contingencies—or behavioral inflex-
ibility. Finally, Viena et al. (2018) recently reported that inactiva-
tion of RE with muscimol in rats produced deficits in SWM on a
DNMS T-maze task, and additionally resulted in severe persevera-
tive behavior (Fig. 7). Specifically, following incorrect choices on
the T-maze, rats were given no-delay correction runs wherein
they could immediately choose the correct arm of the maze to re-
trieve food. Unlike controls, rats infusedwithmuscimol repeatedly

A

B

C

D

Figure 5. RE is critical for workingmemory in a T-maze. (A) A workingmemory-dependent conditional
discrimination (CDWM) task was used in which a texture floor insert determined the availability of
reward in the left or right reward zone (open/closed circles). However, the texture only covered the
first half of the stem and was not present at the T-junction (the choice point) and thus successful perfor-
mance required working memory. (B) A working memory-independent conditional discrimination (CD)
task was used as a control in which all the same task demands were present, except workingmemory was
not required because the floor insert covered the whole stem and T-junction. (C ) Prior to testing, the
GABAA-agonist muscimol was administered into the RE through a chronically implanted cannula.
Cannula tip locations are depicted with pink circles for the CDWM task, and pink stars for the CD
task. (D) Compared to vehicle infusion, RE inactivation with muscimol impaired performance on the
CDWM task, but not the CD task, demonstrating a critical role for RE in working memory.
Abbreviations: (RE) nucleus reuniens of the thalamus. Reprinted from Hallock et al. (2013b) with
permission.
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made incorrect choices on the maze in
the absence of reward—or showed strong
perseverative responding indicative of a
lack of behavioral flexibility. Viena et al.
(2018) concluded that RE not only serves
a role in the SWM but “appears to be a
core structure in an extended network
mediating executive functioning.”

Regarding the network contributing
to perseverative behavior (or the inability
to switch strategies to changing environ-
mental conditions), the HC and the
orbital PFC appear to serve pivotal roles
(for review, see Viena et al. 2018). For in-
stance, Torres-Berrío et al. (2019) recently
reported that ventral HC is critically
involved in behavioral flexibility, as
TTX-induced inactivation of the ventral
HC significantly impaired the ability of
rats to switch strategies on a plus maze.
As there is limited direct communication
between the HC and orbital PFC (Dolle-
man-van der Weel and Witter 1996;
Reep et al. 1996; Vertes et al. 2006, 2007;
Hoover and Vertes 2011, 2012), RE ap-
pears to be an important link between
HC and orbital PFC as well, possibly serv-
ing a vital role in the adaptation to chang-
ing environment contingencies.

Clinical relevance of RE

dysfunction

Due, in part, to its key position inbetween
the HC and mPFC, RE dysfunction may
lead to major clinical problems, such as
persistent working memory impairments
and other types of cognitive dysfunction
shared by many neuropsychiatric dis-
orders (Meyer-Lindenberg et al. 2001,
2005; Lawrie et al. 2002; Bassett et al.
2012; Venkataraman et al. 2012; Argyelan
et al. 2014). Although little is known
about RE dysfunction, to date, RE has
been suggested to be involved in Alz-
heimer’s disease (Braak and Braak 1991;
Moretti et al. 2011; Hardenacke et al.
2013), Korsakoff’s syndrome (Visser et al.
1999), autism (Ray et al. 2005), stress
and depression (Kafetzopoulos et al.
2018), epilepsy (Hirayasu and Wada
1992; Bertram et al. 2001; Graef et al.
2009; Sloan and Bertram 2009; Wang
et al. 2009; Drexel et al. 2011), and schizo-
phrenia (Cohen et al. 1998; Lambe et al.
2007; Lisman et al. 2010; Sigurdson et al.
2010; Lisman 2012; Zhang et al. 2012;
Saalman 2014; Duan et al. 2015). In Alz-
heimer’s disease, there is a highly specific
pattern of neurofibrillary tangles in RE, a
pattern that was consistently restricted
to those patients with the most severe
symptoms (Braak and Braak 1991). In
schizophrenia, theta and delta frequency

A

B C

Figure 6. mPFC→ RE projections are critical to memory for sequences of events. (A) Rats were tested
on a linear track where two separate four-odor sequences are presented (one sequence on each side).
Odor presentations were initiated by a nose-poke, and the rats had to correctly identify the odor as in
sequence (hold for 1 sec) or out of sequence (withdraw prior to 1 sec). (B) Rats were injected with
AAV-hM4Di (an inhibitory DREADD) in mPFC or a control virus, and a cannula targeted RE.
(C) Well-trained rats were infused with CNO in RE (the DREADD agonist) or vehicle prior to testing.
Silencing the mPFC→RE terminals (the CNO-hM4Di group) abolished sequence memory, demonstrat-
ing that the role for RE is not limited to spatial tasks. Abbreviations: (CNO) clozapine N-oxide, (mPFC)
medial prefrontal cortex, (RE) nucleus reuniens of the thalamus. Reprinted from Jayachandran et al.
(2018) with permission.

BA

C

Figure 7. RE inactivation impairs behavioral flexibility. (A) Rats were trained to alternate in a T-maze
after a delay, but this version of the task included error correction trials in order to test behavioral flex-
ibility. During the sample phase, rats could choose either side for reward, but next had to choose the
opposite side for reward following a delay (standard SWM test). If the rat made the correct choice
(green arrow, trial 1) they would move onto the next trial. However, if the rat made a working
memory error (red arrow, trial 2) they would be given an immediate opportunity to correct this
choice with no delay (the correction phase; green arrow, trial 2). Rats were given repeated correction
opportunities until they made the correct response. (B) Prior to testing, rats were infused with the
GABAA-agonist muscimol into RE. (C) RE inactivation impaired SWM, but importantly, also resulted in
severe spatial perseveration (repeatedly making the same wrong turn). An example performance follow-
ing RE inactivation shows many repeated errors on correction runs (purple boxes), suggesting a role for
RE in behavioral flexibility. Reprinted from Viena et al. (2018) with permission.
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abnormalities have been specifically attributed to RE dysfunction
(Lisman et al. 2010; Lisman 2012; Duan et al. 2015), and themassa
intermedia (or interthalamic adhesion) has been frequently report-
ed as absent, or shorter/smaller in schizophrenic patients (e.g.,
Nopoulos et al. 2001; Ceyhan et al. 2008; Takahashi et al. 2008;
Trzesniaket al. 2011, 2012; Landin-Romero et al. 2016). In epilepsy,
the hyperexcitability critical for the generation and/or propagation
ofhippocampal seizure activity (Anget al. 2006)has been suggested
to be due, in part, to the loss of RE-induced feedforward inhibition
targeting CA1 (Dolleman-van der Weel et al. 1997, 2017;
Dolleman-van der Weel and Witter 2000). This would reflect a
RE-HC circuit failure that facilitates a transition from a normal, to
a hyperactive, HC-EC loop in limbic epilepsy (Stefan and Lopes
da Silva 2013). Altogether these, and other studies, make it very
clear that adetailedunderstandingofREwill importantly shed light
on a variety of neurocognitive disorders and in particular why RE
dysfunction can be such a detrimental pathological insult.

Conclusions

The mPFC–RE–HC system, and its complex circuits, are central to
memory and executive functions. HC function is needed for peo-
ple to remember episodes, and selective CA1 lesions cause amnesia
(Rempel-Clower et al. 1996). PFC damage does not cause amnesia,
but impairs the flexible use of memory especially when recent ep-
isodes interfere with one another (Postle 2006). Integrating mPFC
and HC requires RE. Although a rich body of anatomical, physio-
logical, and behavioral work has been conducted on RE, the data
on RE are far from complete. It has become increasingly clear
that gating the flow of information through CA1 involves highly
complex interactions between RE- and EC-mediated excitatory/in-
hibitory mechanisms, which require further testing. Additionally,
the representations and functions of the HC→mPFC→RE→HC
loop appear central to RE function, but few studies have been con-
ducted observing part or all of the loop. Lastly, the role of RE in cog-
nition and behavior likely depends on the activity of specific
mPFC–RE–HC pathways and the RE subregion (e.g., rostral/caudal,
RE/periRE) most involved. Thus, future studies on RE will benefit
greatly from current advances in genetic and circuit manipulation
tools (e.g., optogenetics andDREADDs) that are able to provide the
level of specificity needed to rigorously examine detailed aspects of
RE circuitry.
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