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Abstract: Landslides are the most frequent phenomenon in the northern part of Iran, which cause
considerable financial and life damages every year. One of the most widely used approaches to
reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and
selecting the proper conditioning factors. The current study is aimed at comparing four bivariate
models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and
evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations
of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the
locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly,
for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect,
curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI),
distance from the river, distance from the road, the slope angle, and land use were determined
to construct the spatial database. From the results of multicollinearity, it was concluded that no
collinearity existed between the 10 considered conditioning factors in the occurrence of landslides.
The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for
validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84,
and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were
0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the
highest AUC, was the most accurate method among the four implemented methods in identifying
the regions at risk of future landslides in the study area. The outcomes of this research are useful and
essential for the government, planners, decision makers, researchers, and general land-use planners
in the study area.
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1. Introduction

A landslide is the movement of a debris, rock, or soil mass down the slope and is one of the
most frequently occurring natural disasters in mountain areas that puts lives and properties of the
people at risk [1–3]. Landslides occur in smaller scales than other natural disasters, but have higher
distribution and are more dangerous in many cases [4]. Landslides lead to the evolution of landforms
and are considered as the biggest threat in a great number of regions all around the world [5]. Based
on the reports of the Centre for Research on the Epidemiology of Disasters (CRED), landslides are
the cause of 17% of all casualties of natural hazards in the world [6]. Some researchers expect this
trend to increase in the future with the increase in urbanization, deforestation, and changes in climate
conditions [2,7]. The damages due to the occurrence of landslides are also predicted to rise in the
subsequent decades with population growth, progression of residential areas and infrastructure in
high-risk areas, continuing deforestation, and the increase in regional precipitation [3].

One of the main approaches for developing hazard reduction strategies is creating the landslide
susceptibility sap (LSM). The LSM can provide spatial distribution of potential slope failures, thus has
a significant role in risk mitigation of landslides. Van Den Eeckhaut et al. [8] stated that landslides
were more likely occur in the areas with the background of occurrences of landslides. A recent work
combined LSM with rainfall threshold to have both spatial and temporal forecasting of landslide
occurrences [9].

In the past two decades, substantial research studies on LSM have been conducted worldwide.
Many scholars have tried different approaches to creating LSMs. In addition to crisis planning, LSMs
are crucial for identifying the areas prone to the risk of landslides as well as managing and reducing
the risk [10]. These maps can be provided using an appropriate model by having the landslide
data and a set of independent variables [7]. There are three main groups of landslide susceptibility
methods, including innovative, deterministic, and statistical [11]. The basis of the innovative models
is the opinion of the experts in identifying the weight of each factor. Thus, this type of models has
a high potential for error [12,13]. Deterministic models are developed on the basis of mathematical
relationships. These models are based on the physical laws, which require calculating the relationship
between the resistance forces and drivers of mass movements [14].

Recently, with the advancements in the commercial world, remote sensing, and quick access to
geographic information system (GIS) data in natural hazard mapping, landslide modeling has been
improved [15]. Many studies on LSM have been conducted using the frequency ratio (FR) [16,17],
weight of evidence (WoE) [17], evidential belief function (EBF) [15], artificial neural networks [18–20],
neuro-fuzzy systems [21,22], fuzzy logic [23,24], analytical hierarchy processes (AHPs) [25], Shannon
entropy (SE) [6], logistic regression [5], and statistical index [3,5] in GIS. Some of the aforementioned
techniques have been utilized in other fields of study, such as identification of flood-prone areas [26,27].

Zhang et al. [28] studied landslides in China by combining the statistical index and AHP methods
to prepare LSMs. They stated that residential areas and sporadic forests with geological units of red
layered moderate soft mixture of clastic rocks placed in altitude class of 0–200 m were quite prone to
landslides. In Iran, landslides have been most frequently reported in Mazandaran province, Iran [29].
Klijanrestagh Watershed, located in Mazandaran, is one of the areas with a high risk of landslides due
to special physiographic and climatic conditions, geological formations susceptible to the occurrence
of landslides, and many villages in the highlands.

As landslides frequently occur in the area under study, this research study was basically aimed at
investigating the areas with the potential of the occurrence of future landslides in order to manage and
reduce losses. Another objective is to identify the major factors of the occurrence of landslides in the
area under study using FR, SE, WoE, and EBF, and finally, evaluate the performance of these models in
the identification of landslide-prone areas. The main research gap is the lack of a comprehensive study
on the application of bivariate models. Thus, the main motivation of this study was to investigate
and determine the prediction power of the most popular and widely used state-of-the-art statistical
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bivariate models in a landslide susceptibility assessment in a Klijanrestagh Watershed, a hotspot area
for landslide occurrences.

Klijanrestagh basin with an area of 638.9 km2 is located between 53◦2′0” to 53◦21′0” east longitude
and 36◦11′40” to 36◦30′20” north latitude in Mazandaran province in northern Iran (Figure 1). The
highest and lowest altitudes of the area are 67 and 1667 m above the sea level. The slope is variable
between 0 and 60 degrees. The average annual rainfall is 450 mm. According to Emberger climate
classification, the area under study has a humid cold climate and most of the rainfall occurs in the fall
and winter seasons. The majority of the area has Cenozoic sediments with formations of Mmsl. The
basin consists of 12 different land uses and a major part of the area is allocated to semi-dense forests
with an area of 446 km2.

Figure 1. Landslide location map of the study area.

2. Materials and Methods

In this section, we describe the data collected and used and the background theory of the methods
used for landslide susceptibility modeling. From these, the data including landslide susceptibility
map and landslide conditioning factors were prepared and processed to generate the datasets for
constructing and validating the models. The methods include bivariate models (FR, SE, WoE, and EBF)
which were used for landslide susceptibility assessment, whereas validation methods (the ROC and
AUC) were selected for validating the performance of the bivariate models.

2.1. Landslide Inventory Mapping

The basic phase in LSM is building an inventory map based on the past landslide occurrences [24].
The accuracy of the data on past and present landslides is crucial in predicting future landslides [11,30].
In this research, for collecting the required data, extensive surveys in the field were conducted and
aerial photographs were interpreted. A sum of 109 landslides were determined and mapped for
preparing the landslide inventory map (Figures 1 and 2). Chung and Fabbri [31] noted the impossibility
of validating the functionality of a model without dividing the dataset. Accordingly, the inventory
data was randomly categorized into two parts of 70% (74 locations) for building the model, which was
called training dataset, and 30% (35 locations), which, not being used in the training step, was applied
for validating the model performance, called the test dataset. The ratio of 70/30 for dividing the data
for generating training and testing datasets was selected based on the suggestion of Pham et al. [16,30],
Pradhan [19] and Pourghasemi et al. [24].
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Figure 2. Some photos of landslides occurring in the area under study.

2.2. Landslide Conditioning Factors

To develop an assessment method for the assessment of susceptibility to landslides, identifying the
landslide conditioning factors is crucial [32]. Landslide conditioning factors have some characteristics
such as easy obtainability, representativeness, and practicality [21]. Ten conditioning factors affecting
the occurrence of landslides were determined for LSM in this study based on the literature review
and field surveys. The mechanism of landslide occurrence was identified to be related to hydrology,
geomorphology, geology, etc. These factors were the slope aspect, curvature, elevation, distance from
fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from
the road, the slope angle, and land use. In subsequent parts of the study, the first step is preparation of
the digital elevation model (DEM). Using DEM of 30 × 30 m resolution (22,819 row and 9321 column),
downloaded from ASTER global DEM, the slope angle, the slope aspect, elevation, and curvature were
identified in ArcGIS 10.1 software.

2.2.1. Slope Aspect

The slope aspect is among the most significant factors affecting the occurrence of landslides due to
various wetness of the aspect [33]. It affects hydrological processes because of evapotranspiration [34]
and then, influences soil moisture and vegetation cover [35,36]. The information about the slope aspect
was directly taken from DEM and divided into five categories, namely (1) flat, (2) north, (3) east, (4)
south, and (5) west (Figure 3a).

2.2.2. Curvature

The morphology of the topography was identified by curvature [5]. This factor controls surface
runoff and therefore, has an impact on landslide occurrence [37,38]. The curvature was straight drawn
from the DEM and categorized into three classes of negative curvature, i.e., concave (<−0.05), zero
curvature, i.e., flat (−0.05–0.05), and positive curvature, i.e., convex (>0.05) (Figure 3b).

2.2.3. Elevation

The influence of elevation is not direct on landslide occurrences, but it affects other parameters
such as rainfall, tectonics, etc. [39,40]. Similarly, this factor was taken from the DEM and categorized in
six groups based on the landslide frequency analysis: (1) 67–300; (2) 300–600; (3) 600–900; (4) 900–1200;
(5) 1200–1500; and (6) >1500 (Figure 3c).

2.2.4. Distance from Fault

The fault leads to discontinuity of soil and rocks [41]. Generally, tectonic breaks reduce the rock
strength and initiate many landslides [42]. The fault layer was derived from the fault map of Iran.
Then, the distance from the fault was extracted using the multiple ring buffers command in ArcGIS10.1
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with five classes of 0–100, 100–200, 200–300, 300–400, and >400 m, based on literature studies [41,42]
(Figure 3d).

2.2.5. Lithology

The different formations have various structures, compositions, and permeability, which influence
the formation material strength [43]. Therefore, the confluence of these factors with curvature and
slope steepness has a remarkable influence on landslide occurrences [44]. The lithological feature was
derived from the geological map of Mazandaran, which consisted of 22 units (Table 1 and Figure 3e).

Table 1. Lithological description of the study area.

No Code Lithology

1 Et.l Andesitic volcanic tuff
2 PLQmc Conglomerate, Sandston, siltstone, Silty Marl
3 JL2 Lime
4 K11 Hyporite bearing limestone (Senonian)
5 K2l Thick-bedded to massive limestone (maastrichtian)
6 K2m Lime and Quinasine
7 l Marl, shale and detritic limestone
8 K2Pems Marl, shale, limestone and mixture of conglomerate
9 M23m,s,l Marl, calcareous sandstone, sandy limestone and minor conglomerate

10 M2msl Marl and calcareous sandstone
11 Mg Red conglomerate and sandstone
12 Mm2 Marl and calcareous
13 Mms Marl, calcareous sandstone and sandy limestone
14 Pel Medium to thick-bedded limestone
15 Pelm Medium to thick-bedded limestone
16 Pemls Dark grey medium-bedded to massive limestone
17 Plc Polymictic conglomerate and sandstone
18 PLQcs Conglomerate, Sandston and siltstone
19 Pr Fusulina limestone, dolomitic limestone
20 Q2 New Alluvial
21 Qal Loose alluvium in the river channels
22 TR3l,sh Shale, Lime and Dolomite

2.2.6. NDVI

The NDVI map was generated through Landsat 7/ETM+ by ENVI 5 software (Figure 3f). The
greater the NDVI value is, the more the amount of vegetation cover. The root of vegetation leads to
stabilization of the hill slope and reduction in landslide occurrences.

2.2.7. Distance from River

The water of the river is considered as one of the main sources of e soil moisture. Binh Thai et al. [45]
in their research stated that 65.12% of landslides occurred in the first class of the distance from the
river (0–40 m). Accordingly, it is a very important factor in LSM. This factor was extracted for the river
layer through buffering and classified into five classes including (1) 0–100, (2) 100–200, (3) 200–300, (4)
300–400, and (5) >400 m (Figure 3g).

2.2.8. Distance from Road

Tuan and Dan [46] stated that landslides were mostly distributed near the road system. By cutting
the slope hills for construction of roads in the slopes more than 10 degrees, discontinuity is made in the
soil and rock. Accordingly, the area can be prone to landslides [41]. The distances to the roads were
obtained and divided into six classes of (1) 0–100, (2) 100–200, (3) 200–300, (4) 300–400, and (5) >400 m
(Figure 3h).
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2.2.9. Slope Angle

The slope angle is among the most significant conditioning factors in the occurrence of landslides [8],
because it is related to shear stress and contributes to the displacement of the hill slope [47–49]. Wherever
the thickness of the soil is sufficient, by increasing the slope angle, the hill slope can be more unstable.
The slope angles in the area under study were reclassified into five groups of (1) 0–5, (2) 5–15, (3) 15–30,
(4) 30–45, and (5) >45 degrees (Figure 3i).

2.2.10. Land Use

Land use is a significant factor that affects the landslides in the area under study. The land-use
map for Mazandaran province was extracted with the following types: Dry farming (DF), sparse forest
(F1), semi-dense forest (F2), integrated forest and orchards (FO), irrigated farming (I1), integrated
irrigated farming and orchards (IO), bare land (L2), orchards (O), integrated orchards and irrigated
farming, sparse rangeland (R1), storage dams (SD), and residential area (U1) (Figure 3j). In the regions
covered by vegetation, the vegetation roots play the role of anchors and lead to an increase in soil and
rock mass stability [50].

Figure 3. Cont.
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Figure 3. (a) Slope aspect, (b) curvature, (c) elevation, (d) distance from the fault, (e) lithology, (f)
NDVI, (g) distance from the river, (h) distance from the road, (i) the slope angle, and (j) land use.

2.3. Bivariate Models

2.3.1. Frequency Ratio (FR)

As Bonham-Carter [51] stated, FR represents the possibility of the occurrence for a given
characteristic. The FR method is on the basis of the observed relationships between the distribution of
landslide occurrence locations and each of the factors influencing landslides and is used to reveal the
correlation between them [52]. Greater FR values than 1 indicate the great proportion of landslide
occurrences to the area and a high correlation. Conversely, the smaller FR values than 1 show a weak
correlation [53]. Equation (1) shows the FR algorithm used in this study [54]:

Wi j =
FLi j

FNi j
(1)

where Wi j shows the FR of class i of parameter j; FLi j is the frequency of occurrence of landslides for
class i of parameter j; and FNi j is the frequency of non-occurrence of landslides for class i of parameter j.

To calculate and make the LSM, the FR values of parameters influencing landslides were added
together [54]. Finally, the LSM was determined by adding the FR values of parameters together using
Equation (2).

LSM =
∑n

j=1
Wi j (2)
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where Wi j is the weight of class i of parameter j, and n is the number of conditioning factors.

2.3.2. Shannon Entropy (SE)

Entropy is the measure of abnormality, changeability, unstable behavior, and uncertainty in each
system [6]. Generally, the entropy concept is described as the quantity of abnormality between causes
and results or in determination on various topics [55]. The entropy index is an estimate of the difference
between the average shares of single groups in the whole system [55]. The SE model benefits from an
extremely close relationship between the quantity and entropy, called Boltzmann, which is utilized to
show the thermodynamic conditions of a system [6]. The Shannon method is adjusted on the basis of
the Boltzmann concept and the entropy model is utilized in information theory [6]. The following
formulae are used in the calculation of the information coefficient and Vj represents the parameter
value to total value ratio [56], determined the equation below:

Ei j =
FR∑M j

j=1 FR
(3)

where FR represents the value of the frequency ratio and Ei j is the probability density for each class:

H j = −

M j∑
i=1

Ei j log2 Ei j, j = 1, . . . , n (4)

H jmax = log2 M j, M j−number o f classes (5)

I j =
(
H jmax −H j/H jmax

)
, I = (0, 1), j = 1, . . . (6)

V j = I jFR (7)

where H j and H jmax are the values of entropy, I j is information coefficient, M j is number of classes in
each conditioning factor, and V j is the achieved weight value for the given parameter. The range of
variations is between zero and 1. The values close to 1 have higher inconsistency and imbalance [27].

2.3.3. Weights of Evidence (WoE)

Some binary patterns may be joined together to predict another binary pattern for the WoE model.
Many benefits of the WoE model over other statistical methods, including being data-driven based on
the Bayesian probabilistic method, have made it a fairly popular statistical method [19].

The two basic parameters, which are very crucial to running the model, are negative weight (W−)
and positive weight (W+) [19,27]. This method estimates the weight of each conditioning factor (A) on
the basis of the presence or absence of occurrences (e.g., of landslide) within a specified area as in the
following [51].

W+ = ln
P{B|A}
P{B|A}

(8)

W− = ln
P
{
B
∣∣∣A}

P
{
B
∣∣∣A} (9)

where P is probability and Ln is the natural logarithm. B and B are the presence or absence of landside
conditioning factors, respectively. Further, A and A are the presence or absence of a landslide occurrence,
respectively [26,57]. The variation of the parameter W+ from W− is called weight contrast [58].

The amount of the weight contrast displays the spatial relationship between factors affecting the
occurrence of a landslide. The standard deviation of positive and negative weights, S(c), is computed
as follows:

S(C) =
√

S2W+ + S2W− (10)
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where SW+ and SW− are the variances of positive and negative weights, respectively. The variances of
positive and negative weights can be estimated through the following equations:

S2W+ =
1

N{B∩A}
+

1

B∩A
(11)

S2W− =
1{

B∩A
} + 1

B∩A
(12)

The studentized contrast, i.e., the ratio of the contrast to its standard deviation, is used to calculate
confidence:

W f inal = (C/S(C)) (13)

2.3.4. Evidential Belief Function (EBF)

The EBF model is fundamentally based on the theory of Dempster-Shafer of evidence [59].
The advantage of this model is that it presents predicted flood zones, landslide zones, etc. with
uncertainty [60]. There are four basic parameters in EBF model, including degree of belief (Bel), degree
of disbelief (Dis), degree of uncertainty (Unc), and degree of plausibility (Pls) [15,61].

It should be noted that suitable classification of all factors influencing landslides should have the
same size of cells and appropriate time resolution. In this phase, L number of the input data layers can
be considered as probability (Eij) in order to achieve correct results, in which (ij) represents i number of
factors and j is the class characteristics. The total values of the EBF for factors affecting landslides were
calculated one after the other by Equations (14) to (19). Equations (14) and (15) show how to achieve
the results of Bel.

λ(Tp)Eij = N/D = [N[L∩ Eij]/N[L]]/[N(Eij) −N(L∩ Eij)/(N(A) N(L)) (14)

Bel = λ(Tp)Eij/
(∑

λ (Tp)Eij
)

(15)

where N(L∩ Eij) represents the number of landslide pixels per class, N (L) stands for the sum of the
occurrences of landslides, N (Eij) is pixels per class for each factor, N (A) denotes the sum of pixels in
the area under study, N is the proportion of areas with landslide occurrences, and D represents the
proportion of areas without landslides. These values are obtained by Equations (16) and (17).

λ(Tp)Eij = K
H = [[N[L] −N[L∩ Eij]]/N[L]]/[N(A) −N(L) −N(Eij) + N(L∩ Eij)/(N(A) −N(L)) (16)

Dis = λ(Tp)Eij/
(∑

λ(Tp)Eij
)

(17)

where K is the rate of landslides not occurring and H is the rate of occurrences in non-landslide
areas. Equations (18) and (19) were utilized for all classes of factors affecting landslides and then,
Equations (13) and (15) were used to prepare the results for Bel and Dis. The values of Pls and Uuc
were determined by the following equations.

Unc = 1 − Dis − Bel (18)

Pls = 1 − Dis (19)

The range of Bel and Pls values is between 0 and 1. The most important limitation of the EBF,
according to the findings of Park [60], is that if there is no occurrence of landslide in a specific class,
then Bel results are equal to zero. Dis is also be equal to zero and in this case, Unc or uncertainty values
are equal to 1.
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2.4. Model Verification

To verify the performance of LSM, in this study, the authors have used the receiver operating
characteristic (ROC) curve and the area under the curve (AUC). ROC is one of the most popular
methods [62,63] and it is a practical technique of showing the quality of deterministic and probabilistic
detections [64] used to determine the accuracy of the LSMs [23]. The ROC curve was drawn by plotting
specificity on the X axis and sensitivity on the Y axis. Sensitivity is the false positive rate and specificity
is the false negative as presented below:

Sensitivity = TP/(TP + FN) (20)

Specificity = TN/(FP + TN) (21)

where true positive (TP) is the number of observed landslides predicted accurately and true negative
(TN) is the total non-occurring landslides that have been predicted accurately. On the other hand,
false positive (FP) is considered as the number of occurring landslides inaccurately categorized in the
non-landslide classes and false negative (FN) is considered as the number of non-occurring landslides
inaccurately categorized in the landslide classes.

The AUC can identify the model’s accuracy and ability in predicting future landslides. The range
of the AUC ranges from 0.5 to 1 with the AUC of 1 representing perfect prediction and the closer the
value of the AUC to this number, the better the performance of the model [58].

3. Results

3.1. Multicollinearity Diagnosis

In this study, a multicollinearity test was conducted by variance inflation factors (VIF) and the
tolerances method for selection of suitable landslide conditioning factors to identify whether there was
correlation between the conditioning factors (Table 2). The values of VIF > 10 or tolerance < 0.1 show a
problem of multicollinearity in conditioning factors [6]. According to the multicollinearity test results
(Table 2), no collinearity was observed among the 10 conditioning factors affecting the landslide.

Table 2. Indices of multicollinearity diagnosis for landslide conditioning factors.

Model
Collinearity Statistics

Tolerance VIF

Slope aspect 0.353 2.833
Curvature 0.300 3.331

Altitude (m) 0.806 1.240
Distance from fault 0.774 1.293

NDVI 0.332 3.016
Lithology 0.784 1.275

Distance from river (m) 0.714 1.401
Distance from road (m)

0.876 1.142Slope angle (degree)
Land use 0.377 2.656

3.2. FR Model

The results of the FR method showed the weights obtained for each of the classes of factors. As
represented in Table 3, the FR was calculated for 10 factors based on their relationships with landslide
occurrences. The ratio of the area with landslide occurrences to the whole area was identified. The
higher the value of the FR is, the stronger the correlation of the factors with landslide occurrences. The
greater values of the FR than 1 show a strong correlation and those below 1 show a weak correlation [65].
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Table 3. The correlation between occurring landslides and each conditioning factor using
bivariate models.

Landslide
Number

Percent
of

Landslide

Number
of

Pixels

Percent
of

Pixels
FR SE WoE BEL DIS UNC PLS

Factors

Aspect

Flat 0 0.00 32625 2.04 0.00

0.14

None 0.00 0.20 0.795 0.79
North 33 44.00 448162 28.05 1.57 3.01 0.39 0.15 0.448 0.84
East 12 16.00 346063 21.66 0.74 −1.18 0.18 0.21 0.598 0.78

South 14 18.67 387209 24.24 0.77 −1.12 0.19 0.21 0.590 0.78
West 16 21.33 383399 24.00 0.89 −0.54 0.22 0.20 0.568 0.79

Curvature

Concave 8 10.67 198991 12.46 0.86
0.005

−0.47 0.21 0.20 0.579 0.79
Flat 51 68.00 1091866 68.35 0.98 −0.07 0.25 0.20 0.546 0.79

Convex 16 21.33 306601 19.19 1.11 0.47 0.28 0.19 0.524 0.80

Elevation

67–300 18 24.00 241935 15.14 1.58

1.804

2.11 0.40 0.18 0.421 0.82
300–600 47 62.67 682822 42.74 1.47 3.39 0.37 0.13 0.499 0.86
600–900 9 12.00 490349 30.70 0.39 −3.32 0.09 0.25 0.646 0.74

900–1200 1 1.33 156384 9.79 0.14 −2.07 0.03 0.22 0.746 0.78
1200–1500 0 0.00 24115 1.51 0.00 None 0.00 0.20 0.796 0.79

>1500 0 0.00 1853 0.12 0.00 None 0.00 0.20 0.799 0.79

Distance to
Fault

0–100 14 18.67 225014 14.09 1.33

0.035

1.13 0.33 0.19 0.476 0.81
100–200 4 5.33 212463 13.30 0.40 −1.95 0.10 0.21 0.680 0.78
200–300 8 10.67 190586 11.93 0.89 −0.34 0.22 0.204 0.571 0.79
300–400 7 9.33 165573 10.37 0.90 −0.29 0.22 0.203 0.570 0.79

>400 42 56.00 803733 50.32 1.11 0.98 0.28 0.178 0.542 0.82

Lithology

Etl 0 0.00 7587 0.47 0.00

40.7

None 0.00 0.202 0.798 0.79
PLQmc 0 0.00 1586 0.10 0.00 None 0.00 0.201 0.799 0.79
DAM 0 0.00 1620 0.10 0.00 None 0.00 0.201 0.799 0.79

JL2 0 0.00 2113 0.13 0.00 None 0.00 0.201 0.799 0.79
K11 0 0.00 61922 3.88 0.00 None 0.00 0.209 0.791 0.79
K21 0 0.00 21591 1.35 0.00 None 0.00 0.204 0.796 0.79
K2m 0 0.00 48897 3.06 0.00 None 0.00 0.207 0.793 0.79
K2ml 0 0.00 17979 1.13 0.00 None 0.00 0.203 0.797 0.79

K2pem, s 0 0.00 8257 0.52 0.00 None 0.00 0.202 0.798 0.79
M2,3m, s, l 0 0.00 935299 58.55 0.00 None 0.00 0.484 0.516 0.51

M2,3msl 39 52.00 857 0.05 969.2 32.75 256 0.096 −255 0.90
Mg 0 0.00 76790 4.81 0.00 None 0.00 0.211 0.789 0.78

Mm2 1 1.33 57006 3.57 0.37 −1.00 0.09 0.205 0.700 0.79
Mms 2 2.67 61271 3.84 0.70 −0.52 0.17 0.203 0.621 0.79
Pel 0 0.00 30284 1.90 0.00 None 0.00 0.205 0.795 0.79

Pelm 1 1.33 21613 1.35 0.99 −0.01 0.24 0.201 0.551 0.79
Pem,l,s 0 0.00 4655 0.29 0.00 None 0.000 0.201 0.799 0.79

PLC 0 0.00 109490 6.85 0.00 None 0.00 0.216 0.784 0.78
PLQCs 17 22.67 11766 0.74 30.77 13.33 7.77 0.156 −6.927 0.84

Pr 0 0.00 2445 0.15 0.00 None 0.00 0.201 0.799 0.79
Q2 1 1.33 85342 5.34 0.50 −1.42 0.06 0.209 0.728 0.79
Qal 13 17.33 19138 1.20 14.47 9.34 3.65 0.168 −2.818 0.83

TR31, sh 1 1.33 9909 0.62 4.30 0.77 0.54 0.199 0.259 0.80

NDVI

<0.15 24 32.00 104780 6.56 4.88

0.57

7.69 1.23 0.146 −0.376 0.85
0.15–0.3 22 29.33 116634 7.30 4.02 6.55 1.01 0.153 −0.166 0.84
0.3–0.45 10 13.33 210087 13.15 1.01 0.05 0.25 0.200 0.544 0.80

0.45–0.55 13 17.33 543431 34.02 0.51 −2.95 0.12 0.252 0.620 0.74
>0.55 6 8.00 622515 38.97 0.21 −4.68 0.05 0.303 0.646 0.69
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Table 3. Cont.

Landslide
Number

Percent
of

Landslide

Number
of

Pixels

Percent
of

Pixels
FR SE WoE BEL DIS UNC PLS

Distance to
River

0–100 13 17.33 157133 9.84 1.76

0.06

2.14 0.44 0.184 0.372 0.81
100–200 15 20.00 168234 10.53 1.90 2.61 0.47 0.180 0.342 0.82
200–300 9 12.00 182699 11.44 1.05 0.15 0.26 0.200 0.536 0.80
300–400 15 20.00 196794 12.32 1.62 2.00 0.40 0.183 0.407 0.81

>400 23 30.67 892509 55.87 0.55 −4.20 0.13 0.315 0.546 0.68

Distance to
Road

0–100 36 48.00 422355 26.44 1.82

0.11

4.08 0.45 0.142 0.400 0.85
100–200 18 24.00 291134 18.23 1.32 1.29 0.33 0.187 0.481 0.81
200–300 6 8.00 210762 13.19 0.61 −1.31 0.15 0.213 0.634 0.78
300–400 8 10.67 155134 9.71 1.10 0.28 0.27 0.199 0.524 0.80

>400 7 9.33 517984 32.43 0.29 −3.88 0.07 0.269 0.658 0.73

Slope
(degree)

0–5 7 9.33 231304 14.48 0.64

0.11

−1.25 0.16 0.213 0.625 0.78
5–15 39 52.00 804153 50.34 1.03 0.29 0.26 0.194 0.545 0.80

15–30 26 34.67 477816 29.91 1.16 0.90 0.29 0.187 0.521 0.81
30–45 3 4.00 78286 4.90 0.82 −0.36 0.20 0.203 0.591 0.79
>45 0 0.00 5899 0.37 0.00 None 0.00 0.202 0.798 0.79

Land use

Df 18 24.00 111868 7.00 3.43

0.62

5.30 0.86 0.164 −0.028 0.83
F1 25 33.33 1115519 69.82 0.48 −6.25 0.12 0.444 0.436 0.55
F2 1 1.33 3747 0.23 5.69 1.74 1.43 0.199 −0.632 0.80
Fo 3 4.00 65227 4.08 0.98 −0.04 0.24 0.201 0.552 0.79
I1 4 5.33 111053 6.95 0.77 −0.55 0.19 0.204 0.602 0.79
Io 1 1.33 23016 1.44 0.93 −0.08 0.23 0.201 0.566 0.79
L2 0 0.00 238 0.01 0.00 None 0.00 0.201 0.799 0.79
O 2 2.67 5088 0.32 8.37 3.00 2.11 0.196 −1.308 0.80
OI 21 28.00 150690 9.43 2.97 5.12 0.74 0.160 0.092 0.84
R1 0 0.00 7197 0.45 0.00 None 0.00 0.202 0.798 0.79
SD 0 0.00 3046 0.19 0.00 None 0.00 0.201 0.799 0.79
U1 0 0.00 1015 0.06 0.00 None 0.00 0.201 0.799 0.79

The results showed that among the geographical directions, north weighing 1.57 had the most
significant impact on the landslide occurrences in Klijanrestagh Watershed in Mazandaran province.
The lowest weight was for the flat areas where no landslide had occurred.

Regarding the conditioning factor of curvature, convex curvature with the value of 1.1 had the
greatest impact and concave and flat curvatures respectively weighing 0.86 and 0.98 had very small
impact on the landslides in the area under study. The other important factor that may affect landslide
is elevation. The lowest elevation (67–300 m) had the greatest impact on the landslide (1.58) followed
by the second class (300–600), which had a weight of 1.47. Other elevation classes had a low impact on
landslides. To study the influence of regional faults on landslides, the impact of different distances
from the fault on landslides was calculated and the outcomes revealed that the first class (distance of
0 to 100 m) weighing 1.33 had the highest impact on landslide occurrences in the area under study.
The units of PLQCs, Qal, and TR31, sh with the respective weights of 30, 14, and 4 had a high impact
on landslides in the area under study.

The lowest NDVI value had the highest impact on landslides. Another factor affecting landslides
is the distance from the river. In the results, the first 4 classes (from 0 to 400 m) had positive effects on
landslides and the effects were smaller for classes of more than 400 m. Among various distances in the
road network, the first class (0–100 m) weighing 1.8 had the greatest impact on landslides and then
was the second class (100–200 m) with a weight of 1.3. The analysis of the FR method showed that the
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third class (15–30) and second slope (5–15) with FR values of 1.16 and 1.03 exerted the greatest effect on
landslides occurring in the area under study.

Regarding land use, the garden with the weight of 8.3 and dry farming with the weight of 3.4 had
the most significant effects on landslide occurrences. Equation (22) was used in GIS and finally, LSM
was prepared using the FR model.

LSMFR = FRSlope + FRCurvature + FRDis−River + FRelevation + FRLanduse+

FRDis−Roadl + FRDis− f aultI + FRaspect + FRLitho log y + FRNDVI
(22)

3.3. SE Model

The results of SE for the relationship of the effective factors with the occurrence of landslides are
presented in Table 3. Lithology factors, elevation classes, land use, and NDVI respectively weighing
40.7, 1.8, 0.62, and 0.57 are the most important factors affecting landslides in Klijanrestagh Watershed.
Other factors in order of importance and the effects on landslides are aspect, slope, distance from the
road, distance from the river, distance from the faults, and terrestrial curvature weighing 0.14, 0.11,
0.09, 0.06, 0.03, and 0.005, respectively. Using Equation (23), the LSM was prepared using the SE model.

LSMSE = 0.14 ∗AspectFR + 0.005 ∗ curvatureFR + 1.804 ∗ elevationFR + 0.35 ∗ f aultFR + 40.7 ∗ litoFR
+0.57 ∗NDVIFR + 0.065 ∗Dis−RiverFR + 0.094 ∗Dis− road + 0.112 ∗ Slope FR + 0.62 ∗ LULCFR

(23)

3.4. WoE Model

Like the FR model, this model is utilized to attain the weights of factors affecting landslides and
the relationship of landslide occurrences with the related classes. The results of this model in this study
are shown in Table 3. The WoE model is based on W+ and W−. W+ indicates that predictable variables
are present in landslide locations and its magnitude represents the effect magnitude of the condition
factors on landslides [66]. W− indicates the absence of conditioning factors in landslide occurrences
and indicates a negative correlation between factors and the occurrence of landslides [3]. Therefore, C
for the positive spatial association is positive and for the negative spatial association is negative.

S2W+ and S2W− are variances of W + and W−, respectively. S(C) is the standard deviation of
contrast and C/S(C) is studentized values of contrast (Table 3). C/S(C) is the final weight of the WoE
method. The map of effective weighted factors was prepared by assigning this weight to each factor.
Finally, the LSM was produced implementing the following equation.

LSMWO f E = AspectWO f E + curvatureWO f E + elevationWO f E + f aultWO f E + lit joWO f E
+NDVIWO f E + Dis− riverWO f E + Dis− roadWO f E + SlopeWO f E + LULCWO f E

(24)

Considering the values of C/S(C) in Table 3 for the aspect, the northern class of the aspect had
the most significant effect (3.05) on landslides. Other classes, having negative weights, showed no
significant correlation with the occurrence of landslides. The results showed that the convex curvature
had a significant positive effect (0.47) and concave and flat curvatures had negative effects on landslides.
Like in the FR method, the first 2 classes of the elevation conditioning factor had the largest impact and
the rest had lower effects on landslide occurrences. The elevation of 300–600 m weighing 3.39 had the
greatest effect on landslides. Class 0–100 m of the distance from the fault weighing 1.13 exerted the
most remarkable effect on landslides, and classes 100–200 and 200–300 m had the lowest effects on
landslides in the area under study.

Regarding the lithology factor, the M2msl unit weighing 32 had the highest impact on landslide
occurrences. Another effective factor affecting landslides was NDVI. The lowest NDVI values had the
highest impact on landslides Therefore, the landslide occurrence probability was reduced with the
increase in the NDVI value. The risk of landslides decreased with the distance from the river, because
moisture, as a major cause of landslide occurrences, decreased. The first class of the distance from
the river (100–200 m) weighing 2.61 had the greatest effect on landslides. As with the distance from
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the river, the risk of landslides was reduced with the distance from the road. In this study, the first
class of the distance from the road (0–100 m) with a weight of 4 had the greatest effect on landslides.
The probability of the occurrence of landslides increased with the slope up to 30 degrees and then,
decreased. The highest effect on landslides was related to the slope class of 15–30 degrees. Based on
this method, dry farming had the greatest effect on landslides, while the FR method introduced garden
use for the greatest effect. After dry farming weighing 5.3, the combination of garden and dry farming
weighing 5.1, and garden weighing 3 as well as the forest with the average density had the highest
effects on landslides, respectively.

3.5. EBF Model

The EBF method was utilized to explore the relationship between locations of the occurring
landslides and the landslide conditioning factors. The results depicted the weight of each class of
factors in landslides (Table 3).

In the map of the aspect, the northern direction with 44% events had the highest probability of the
occurrence of landslides weighting 0.39, as it was less exposed to sunlight and had higher moisture
than other directions. The results of the curvature map analysis showed that the convex curvature had
the greatest impact on landslides.

As in the FR method, the first class of elevation weighing 4 had the greatest effect on landslides in
this method. Class 0–100 m of the distance from the fault had the greatest effect on landslides as 19%
of landslide events were observed in this distance, which consisted in only 14% of the basin area. In
the case of the lithology factor, the M2,3msl and PLQC units weighing 256 and 7, respectively, had the
greatest effects on the occurrence of landslides in Klijanrestagh Basin.

Another factor that would affect landslides and was considered in this study was NDVI. The
lowest NDVI value, which was less than 0.15 and weighed 1.2, had the highest impact on the occurrence
of landslides. The results of the distance from the river and locations of the occurring landslides
showed that the risk of landslides decreased with the distance from the river. Therefore, the second
class (100–200) and first class (0–100 m) had the highest effect on landslides occurring in the study area.

The landslide risk decreased with the increase in the distance from the road. The first class
(0–100 m) had the greatest effect (BEL = 0.45) on landslides. Considering the slope factor, the slope of
15–30 degrees with BEL of 0.29 had the greatest effect and the slopes more than 45% (BEL = 0) had the
lowest effect on landslides. The highest weights were for garden (BEL = 2.1) and forest (BEL = 1.4).

Figure 4 presents the EBF results. The map of bel (Figure 4a) shows the distribution of landslides.
A comparison was drawn between belief and disbelief maps (Figure 4b), and the results showed that
areas with higher bel values had lower dis and vice versa, that is, the areas more prone to landslides
were those with higher degrees of belief and lower degrees of disbelief about the occurrence of
landslides. According to Unc map, areas with the highest sensitivity to landslides had the minimum
values of Unc. Pls map is almost similar to bel and represents great values for areas with high belief
values and low uncertainty. The results comply well with Carranza and Hale [61], Bui et al. [67] and
Nampak et al. [68].

Finally, the LSM was utilized through the relationships provided above for the FR, SE, WoE, and
EBF models and then, four maps were prepared based on the quantile method, which is one of the
most popular classification methods [26], which are shown in Figure 5.
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Figure 4. The combined results of the EBF model: (a) belief, (b) disbelief, (c) uncertainty, and
(d) plausibility.
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Figure 5. Landslide susceptibility maps produced by (a) FR, (b) SE, (c) WoE, and (d) EBF models.

3.6. Assessment and Comparison of the Models

In this research study, the well-known ROC and area under the curve (AUC) techniques were
applied.to assess and compare the models There are two main steps in model evaluation by AUC,
namely, the success rate evaluation and the prediction rate evaluation. The results for the success rate
were achieved on the basis of training data and the prediction rates were attained by a set of validation
data. The results of the success rate represented the fitness of the model for the training data and
because the training points on which the model was built were used in the success rate. The success
rate method was not useful in assessing the predicting power of the model [68].

The area under the curve of the success rate for the FR, SE, WoE, and EBF models was 0.85, 0.84,
0.86, and 0.8, respectively (Figure 6a). Further, the area under the curve of the prediction rate for
the FR, SE, WoE, and EBF models was 0.83, 0.82, 0.84, and 0.79, respectively (Figure 6b). The AUC
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amount of 0.84 for the WoE shows 84% prediction accuracy of the model. Considering the results of
the evaluation by the AUC, the most accurate prediction in the identification of LSM is for the WoE
model and the least accurate prediction is for the EBF. However, generally, prediction accuracies of
these four models are reasonable.

Figure 6. Model validation for Klijanrestagh Watershed: (a) success rate curve and (b) prediction
rate curve.

4. Discussion

The preparation of landslide susceptibility is one of the most practical approaches for landslide
hazard assessment and proper management tasks [69]. Although, there are many models developed
for the LSM, there is no a universal guideline for model selection to model better LSMs. In this study,
the four most popular and widely used state-of-the art statistical bivariate models (i.e., FR, SE, WOE
and EBF) were applied for the LSM in Klijanrestagh Watershed, Iran.

Modeling results mostly depend on both the model’s structure and quality of data [70]. The most
effective data were selected and their quality was investigated through a multicollinearity test and the
SE model. The results of these two tests showed that all applied conditioning factors are effective and
independent. According to the SE model, the aspect, the slope and the distance from the road were the
most effective factors and curvature was the least effective factor on landslide occurrences. This result
is in accordance with the results of other research reports [70–75]. The improper road construction in
the study area can be revealed as the one of the most effective criteria on landslide occurrences.

The results showed that the north aspect had the highest effect on landside occurrences, and the
main reason may be that the north aspect has the most wetness among other aspects resulting from
less solar radiation [70]. Regarding the curvature, convex has the most effect on landslide occurrences,
especially when combined with improper road construction that cause failure slopes. The risk of
landslides decreased with the elevation in the area under study as the depth of soil reduced sharply.
The results show that there is a linear relationship between landslide occurrences and faults, as faults
are a disconnection in the earth and thus, can cause landslides more easily. The lowest NDVI value
had the highest impact on landslides. This is because a higher NDVI value means higher vegetation
cover, which can help to prevent landslides. The distances of 100 to 200 m from the river and road
exerted the greatest impact on landslides occurring in the area under study since the closer to the river
the higher the wetness, therefore, the higher the landslide occurrences probability. These findings are
consistent with results of other literature studies [75–77]. These results are approximately consistent
among the FR, WoE and EBF models.

This study showed that WOE has the highest prediction power, followed by FR, SE and EBF,
respectively. According to Park [60], the main limitation of the EBF method is that if a landslide event
does not happen in a given class, the Bel results will be equal to zero. In addition, when the Unc
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or uncertainty values are equal to 1, Dis will be zero. But EBF model despite its lower capability
for prediction of landslide-prone areas benefited from belief, disbelief, plausibility, and uncertainty
maps, which were very practical. Thus, it can be concluded that the results of the predictions about
the landslide-prone areas by modeling the uncertainty degree (Unc) show the relationships between
landslide occurrences and multiple spatial data layers quantitatively [60]. The power of prediction of
the FR was highly identical to that of SE method, which complies well with Youssef et al. [17].

In general, WOE model was found the best model in this study for identification of landslide-prone
areas as this data-driven method has some advantages, which may lead to its high accuracy in
comparison with other methods. They are (i) WoE model benefits from the Bayesian-based theorem
in a log-linear form using prior and posterior probabilities and (ii) WoE model is effectively utilized
when sufficient dataset is in hand for predicting the relative significance of evidential themes using
statistical tools.

5. Conclusions

Landslide susceptibility modeling for the future is one of the vital and difficult tasks in the
assessment of the risk of landslides. Many methods have been proposed for spatial prediction of
natural hazards including landslides, e.g., bivariate statistical, multivariate statistical, data mining, etc.
However, the accuracy of the predictions of these models is still under debate as their accuracy varies
from one watershed to another. Kelijanrestagh Watershed in Mazandaran province, Iran, is a hot spot
of landslide occurrences with many landslides occurring in each year. In this research, four models,
namely FR, SE, WoE, and EBF, were utilized in landslide susceptibility mapping of Kelijanrestagh
Watershed in Mazandaran province, Iran.

A total of 109 locations of landslides were determined by extensive surveys in the field and
mapped in a landslide inventory map. The locations were categorized into two main datasets for
training and validation. In the next step, 10 landslide conditioning factors were selected by a review of
the literature and on the basis of the characteristics of the area under study and availability of data.
Finally, the LSMs were prepared and mapped with five classes (very low, low, moderate, high and very
high) using four models.

Next, the four produced maps were evaluated using training and testing datasets and ROC and
AUC (success rate and prediction rate) methods. The AUC results indicated the success rates of 0.8,
0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Further, they presented the prediction rates
of 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF models, respectively. Therefore, the WoE model,
having the greatest AUC, was the most accurate method among the four implemented methods in
identifying areas at risk of future landslides in the area under study.

The outcomes of this research can be helpful for decision makers and future development planners
to avoid the zones with high susceptibility during implementing a project. However, it is recommended
that a comparative study needs to be conducted (i.e., comparison between data mining algorithms,
data intelligence, statistical bivariate models, multivariate models, multi criteria decision making
models) applied for solving this challenge of which model should be applied, which precision and
accuracy is reasonable, and so on. The field survey is a difficult approach for the preparation of the
landslide inventory map, especially for elevation which often affects landslide distribution. Landslides
that occur in high altitude areas are often lost, because of the difficulty of accurate field surveys.
Thus, it is recommended that identification of landslide locations should be based on high-resolution
satellite images.
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