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Nanobiotechnology-enabled tissue engineering strategies have emerged as an

innovative and promising technique in the field of regenerative medical science.

The design and development of multifunctional smart biomaterials compatible to

human physiology is crucial to achieve the required biological function with a

reduced negative biological response. Several medical bioimplants have been tested

to boost life expectancy and better-quality life. The concept of biocompatibility

focuses on body acceptance and no harmful effects after implantation, which

require shaping the properties of materials synthesis, surface functionalization, and

biofunctionality. Such developed bioactive and biodegradable materials have been

utilized to achieve the required function at a specific period and sustainability to withstand

the surrounding tissues for treating severe injuries and diseases. Thus, exploring

new approaches to design multifunctional biocompatible advanced nanostructures to

develop next-generation therapies for tissue engineering, this mini-review is an attempt

to summarize the advancements in biofunctional smart materials. The review focuses

on bio-mimic materials, biomaterials, self-assembly biomaterials, bioprinting functional

hydrogels, new polymeric architectures, and hybrid synthetic–natural hydrogels in the

field of tissue engineering and regenerative medicine (TERM). This mini-review will serve

as a guideline to design future research where the selection of a smart multifunctional

biomaterial is crucial to obtain best TERM performance.

Keywords: nano-bio-technology, smart materials, biomedical applications, tissue engineering, functional

biomaterials

INTRODUCTION

Body tissues possess a highly organized structure and unique composition that help in providing
mechanical and transport support to regulate biological and cellular function. Owing to
tissue injury, disease, malfunctioning, or aging, there is a need for natural biodegradable,
and biocompatible materials that can be mimicked to actual tissue architecture and structural
organization. These tissue-engineered constructs can be helpful in restoring and repairing
malfunctioned tissues and organs at the high social and economic point of view (WHO Scientific
Group, 2003; Kang et al., 2015). It is challenging to incorporate these bioengineered materials due
to limitations of onsite target and side effects such as cell toxicity, interfering with immune systems,
and transporting mechanisms. Also, designing and developing a system based on biological
features such as mechanical stress at the targeted site, strength, complex viscoelastic, nonlinear,
and anisotropic mechanical features have constantly been an area of consideration, as illustrated
in Figure 1.
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The above-mentioned features further vary based on
physiology affecting factors such as age, site, etc., in the human
body. Highly specialized structures with the well-interconnected
network should be maintained by newly designed tissue-
engineered constructs. The basic type of biomaterials can be
synthetic polymers, such as polyanhydrides, and naturally
occurring polymers, such as complex sugars (hyaluronan and
chitosan), and other inorganics (hydroxyapatite). They are also
classified based on functions such as hydrogels (Rosamond et al.,
2007), injectables (Baroli, 2007), capable of drug delivery (Singh
et al., 2015), and surface modified (Chung and Park, 2007; Ma
et al., 2007), and by other specific features. Without improper
mimicking of highly organized architectures of tissues and
organs, channelizing an adequate amount of nutrient transfer,
oxygen transport, and other biological function can be critical.
Hence, advance biomaterials are important in the emerging
role of tissue engineering (TE), and it is mandatory to have
deep knowledge about the targeted site. Biomaterial quality
also depends on the mode of application such as injectable, in
vivo implantation or minimally invasive procedure, the effect of
bioactive molecules that might be released, activated immune
cascade or signaling pathways, etc.

Considering trends, challenges, and demand in mind, our
focus in this mini-review article is to discuss state-of-the-art
advanced functional biomaterials in cardiac/heart valve TE,
pancreas TE, orthopedic interface TE, thick and vascular cell-
type TE, and implants for other growth factors. The challenges,
prospects, and viewpoint of authors are also presented in
this report.

CARDIAC TE

Failure of cardiac muscles (CMs) is typically due to lack in
self-regenerative capacity, impaired contractility, and abnormal
stress distribution. Restoring CM’s function or malfunctioning of
heart valves require innovative strategies to create living heart
valves, and regain heart muscle function. Never-resting CMs
require robust mechanical strength to contract continuously
and efficiently over the 3 × 109 cardiac cycles of an average

FIGURE 1 | Illustration of salient features of biomaterials required for TE (A), and combination of biomaterials, cell, and growth factors (signaling) associated with

tissue engineering (B) depicts integration of smart biomaterials with specific salient features, which facilitate osteo function and regulation.

human lifetime. Mimicking three-dimensional (3D) architecture
of collagen networks such as distinct endomysia (Domb and
Mikos, 2007), perimysia (Macchiarelli et al., 2002), and epimysia
is themost challenging parameter in cardiac TE. Several strategies
are being developed to restore CM functions using various cell
sources, scaffold types, and fabricationmethods (Figure 2A). The
foremost features toward cardiac TE are mimicking, enduring
contraction of cardiac tissue without surrendering to mechanical
failure, and allowing infiltration of cells within the matrix (Pope
et al., 2008). The most utilized biomaterials are extracellular
matrix (ECM) proteins (Zimmermann et al., 2002; Kutschka
et al., 2006), natural biomaterials (Christman et al., 2004;
Zimmermann et al., 2004; Reis et al., 2012), and synthetic
biomaterials (Kraehenbuehl et al., 2008; Fujimoto et al., 2009; So
et al., 2009) to mimic stem cell differentiation (Kharaziha et al.,
2016).

Nanomaterials such as carbon nanotubes (CNTs) (Martinelli
et al., 2012; Patel et al., 2016), gold (Au) nanorods (Fleischer
et al., 2014; Navaei et al., 2016, 2017; Shin et al., 2016),
graphene oxide (GO) nanoflakes (Shevach et al., 2013; Park
et al., 2015a), silicon nanowires (Park et al., 2015b; Tan et al.,
2017), and iron oxide (Han et al., 2015; Richards et al.,
2016) in conjugation with the extracellular and intercellular
microenvironments of transplanted cells are believed to enable
regeneration of injured CMs (Singh et al., 2014; Amezcua
et al., 2016; Mehrali et al., 2017). Regenerative properties of
CMs can be measured by obtaining electrical conductivity,
protein adsorption affinity, intracellular signaling pathways,
and magnetic properties. Carbon-based nanomaterials have
high electrical conductivity, nanoscaling features, and high
affinity for physicochemical interactions with proteins and
other functional compounds (Patel et al., 2016). Further,
integrating CNTs with glass-based substrates shows higher
growth rate, metabolic activity, and better proliferation capacity
(Kojima et al., 1990; Huynh et al., 1992; Cerbai et al., 1999).
More studies based on the same system found that maturity
of CMs is directly associated with the expression level of
cardiac-specific genes.

GO is good for constructs, which need strong physiochemical
interactions such as covalent, electrostatic, and hydrogen
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FIGURE 2 | (A) Three synthetic 3D scaffolds in different shapes: a honeycomb, a square, and a rectangle (adopted from Engelmayr et al., 2008). (B)

Computer-rendered images of composite scaffold showing (a) a porous structure of the scaffold in 3D and (b) a zoomed section to better display the pore network

(1mm across) (adopted from Hatton et al., 2019). (C) Histopathology examination of pancreas sections—(a) normal pancreas, (b) diabetic pancreas, (c) silybin

(Sb)-treated pancreas, (d) Sb nanoparticle-treated pancreas (adopted from Das et al., 2014).

bonding and higher surface area (Li et al., 2016). GO nanofilms
are cell-adhesive components and have been seen preventing cell
apoptosis because of limited cell–ECM interactions (Chiarugi
and Giannoni, 2008; Shi et al., 2012). On the contrary,
reduced GO nanofilms improved cell–ECM interactions due
to high electrical conductivity, which enhances β1 integrin
expression. Silicon nanowires with self-assembled human-
induced pluripotent stem cell increased homogenous expressions
of intercellular adherents (N-cadherin) and Cx43 gap junction
proteins (Tan et al., 2017). Iron oxide with rat myoblasts shows
a variety of improvements including upregulation of Cx43
in mesenchymal stem cells (MSCs) and angiogenic markers
(Han et al., 2015). Hence, to offer a scaffold close to native-
like cells is mandatory for successfully engineered tissue. Cell
toxicity and biocompatibility have always been a controversial
issue. Moreover, the distribution profile of nanomaterials within
engineered tissues is unknown. Another major concern is the
site of administration where the nanomaterials may affect
physiological response on endocytosis. Hence, having a scaffold
nearly like a native structure is a major step toward TE.
The use of biological molecules such as ECM proteins and
synthetic biomaterials can be effective for controlled stem cell
differentiation. However, these biomaterials are in limited use
due to lack of electrical conductivity and nanotopographic
features within the biomaterials.

Many studies based on the scaffold design including 3D
scaffolds are under investigation. One study aimed to design a
3D scaffold composed of poly(vinyl) alcohol (PVA) fabricated
using gas foaming and freeze-drying processes without requiring
crosslinking agents. This forms a biocompatible matric with
strong stress–strain curves of the PVA scaffolds with expected
elastic behavior as of ECM of muscles (Sarker et al., 2014).
Decellularized cells were integrated, which helped in improving
limitations with transport. The scaffold was prepared using
decellularized heart cells from a rat with 1% sodium dodecyl

sulfate (SDS). This maintained myocardial ECM structure and
blood vessels. Further, perforation was done using electric
stimulation, which restored nascent pump function (2% of
adult heart rate) (Zimmermann et al., 2006; Dattola et al.,
2019). Another work explained honeycomb-like materials with
hexagonal-shaped wax to balance the mechanical properties
(Polo-Corrales et al., 2014). Several honeycomb-like structures
were used in native myocardium including endomysial sheaths
and interconnecting CM fibers (Shapiro and Cohen, 1997).
Some studies have incorporated PGS [poly(glycerol sebacate)]
with honeycomb structures, which improved oxygen-carrying

capacity (Zmora et al., 2002). PGS foams with laser-perforated
flow channels were ingested into neonatal rat heart cells. The

system further involved perfluorocarbons in a culture medium
to increase oxygen transportation (Zmora et al., 2002). Various
natural and synthetic poly-materials have been tested along
with “scaffold-less” approaches, which have been under review
(Eschenhagen and Zimmermann, 2005; Furuta et al., 2006).
One study demonstrated improved left ventricular function
after implanting heart cells embedded in a mixture of type 1
collagen gel and matrigel in rat (Khademhosseini et al., 2007).
However, this raises many limitations related to mechanical
weakness of collagen gels and foams, and bring the clinical
application in doubt. Conventional TE was shown to have
successful approaches, but they still have certain limitations.
Most importantly, fabrication of full functional construct to
regenerate defected cells is important to understand. 3D printed
scaffold and 3D bioprinting technique have potential to develop
fully functional heart construct.

BONE TE

Bone TE equips the best combination of biomaterials with
biodegradable polymers to support the existing state of bone
tissue structure or to enable bone tissue growth. Surface
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modification plays a key role to hold tissue–implant interface
regenerated structure against stress and strain imbalance. Poor
integration of orthopedic implants can lead to loosening
of bioimplants, malfunctioning, and permanent failure. The
absorption kinetics, mechanical strength, and adequate surface
are important factors for maintaining cell viability, and scaffold
permanent stability. Bone scaffolds provide a surface area for
bone cells to aggregate and proliferate by providing mechanical
stability and protection to the area and cell attachment sites.
An average standard pore size of 100µm in a bone scaffold
in an interconnected arrangement with osteoprogenitor cell
colonization allows new bone tissue to be formed. In some cases,
≥300µm pore size has been used. Large pore size can mature
bone formation, which leads to angiogenesis and invasion of
nerve fibers (Shapiro and Cohen, 1997; Zmora et al., 2002; Polo-
Corrales et al., 2014). However, greater increase in pore size
may reduce cell-adhering properties due to reduced volume-to-
surface area ratio (Sarker et al., 2014).

Natural bioceramics have excellent compressive strength, high
resistance, and low frictional properties (Green et al., 2003;
Baino and Vitale-Brovarone, 2014, 2015; Baino and Verné, 2017;
Tagliabue et al., 2017). They can be found in marine sponges
and corals (Ben-Nissan, 2003). These biomaterials have shown
osteoprogenitor cell attachment, growth, and differentiation in
vitro (Baino and Ferraris, 2017). Coral scaffolds and coral
derivatives have been studied in various clinical treatments
including spinal fusion, maxillofacial surgery, and dental surgery
(Martina et al., 2005; Coughlin et al., 2006; Oliveira et al., 2007;
Chen et al., 2008). Marine sponges are also naturally derived
ceramics that have an interconnected porous architecture. An
organic marine sponge was mimicked to vertebral collagen
(Granito et al., 2017). These sponges possess properties that
help in promoting cell growth, bone mineralization, and bone
formation (Clarke et al., 2015; Nandi et al., 2015).

Natural polymers in bone TE include proteins and
polysaccharides. A unique group of natural proteins such
as collagen, gelatin, silk fibroin, and fibrin has been studied in
bone TE. Different forms of film, sponge, and fiber are generated
using 3D scaffolds made partially, or totally of these proteins
(Sayin et al., 2014). Collagen and denatured form of collagen,
gelatin, possess excellent properties including low antigenicity,
low inflammatory, and cytotoxic response and excellent cell
compatibility (Ferreira et al., 2012). The limitations on high
degradation rate, which results in loss of various mechanical
properties, was overcome by crosslinking them with chemicals
(Green et al., 2003; Ferreira et al., 2012; Kane and Roeder, 2012).
Natural fibrous proteins, mainly silkworm fibroin, are highly
used in the development of bioengineered constructs due to good
elasticity, strength, and compatible to mammalian cells (Melke
et al., 2016). The Silkworm fibroin is used in musculoskeletal TE
as mineralized and nanofibrous scaffolds (Bhattacharjee et al.,
2017). Fibrin has been used for its excellent biocompatibility,
controllable biodegradability, and good ability to be a drug
carrier (Park et al., 2009; Galler et al., 2011). Polysaccharides
have unique properties such as lack of toxicity, biodegradability,
stability to pH variations, and range of chemical structures
(Noori et al., 2017).

Chitosan can support the proliferation of osteoblast cells,
mineralized bone matrix, and neovascularization (Costa-Pinto
et al., 2011). Chitosan–pectin hydrogel conjugation resulted in
regeneration of alveolar bone (Iviglia et al., 2016). Alginate is a
natural polysaccharide obtained from brown algae and seaweed.
This is highly effective due to its biocompatibility, low toxicity,
and relatively low cost. It has been very effective in 3D cell
matrices and now has been used in bone scaffold research
(Shapiro and Cohen, 1997; Zmora et al., 2002; Polo-Corrales
et al., 2014). It forms a hydrogel when certain divalent atoms
are chemically crosslinked through ionic interaction between
the cationic and the carboxyl functional groups (Shapiro and
Cohen, 1997; Draget et al., 2005; Turco et al., 2009; Polo-
Corrales et al., 2014). Similarly, bioglass has a huge impact in
support bone healing and coat orthopedic implants and improves
the interface between prostheses and living tissues (Xie et al.,
2010). These bioactive silicate glass are considered under class A
bioactivematerials. Recently, sodium alginate (Figure 2B) is used
in fabrication with glass particles in conjugation with strontium
and zinc to synthesize porous, biocompatible novel composite
scaffold (Hatton et al., 2019).

Synthetic biomaterials including bioceramics and synthetic
polymers are polyesters and poly-andrihydes. Calcium
phosphates and bioactive glasses are the most common
biocompatible materials due to their osteoconductive and
osteoinductive properties (Habraken et al., 2016). Studies
have also utilized bioactive glasses in bone/tooth repair and
regeneration (Kargozar et al., 2016). Polyesters (PGA) are mainly
used in sutures and biomedical implants because of their high
crystalline nature, high melting point, tensile modulus, and
controlled solubility. Limitation of PGA was overcome by adding
β-TCP for controlled polymer degradation and regeneration
of hard tissues (Cao and Kuboyama, 2010). Poly(lactic acid)
(PLA) can be modified with other biomaterials using modifiers,
blending, copolymerization, and physical treatments. PLA
with bioactive glasses improved biological properties such as
osteoblast cell growth or differentiation (Haimi et al., 2008).
Poly(lactic-co-glycolic acid) (PLGA) is an excellent source that
can be modified into different forms such as scaffolds, fibers,
hydrogels, or injectable microspheres. PLGA with inorganic
materials is used to improve bioactivity and osteoconductivity
(Jose et al., 2009). Poly(ε-caprolactone) (PCL), a hydrophobic,
semicrystalline polymer with a low melting point, has caught
the attention of biomedical researchers due to its ability to
improve osteoblast activity (Ciapetti et al., 2003). Poly(ethylene
glycol) (PEG), also known as polyethylene oxide (PEO) or poly-
oxyethylene (POE), is a non-toxic and water-soluble polymer.
Because of good biocompatibility, biodegradation, and low
immunogenicity, this polymer is identified as a good candidate
for medical applications, as it is tailored in a way that many
mechanical properties can be improved.

PANCREAS TE

Reprogramming of human liver cells into insulin-secreting
pancreatic β cells has been successfully validated to maintain
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normal blood glucose level. Previous studies have shown
an increase in insulin secretion on PEG hydrogel matrix
encapsulation with pancreatic islets in rat bone marrow-derived
MSCs. This construct was designed for the treatment of type
1 diabetes mellitus (TIDM), and when amount of glucose was
elevated, results were shown by an increase in insulin level (Bal
et al., 2017). Insulin-secreting pancreatic islet cells have poor
proliferation capacity, but the use of these cells with proper
scaffolds has seen an improvement in blood glucose level (Gefen-
Halevi et al., 2010). Activation of transcription factors, which
play a role in β cell regeneration, can be utilized to generate
insulin-secreting pancreatic islet cells. Other transcription factors
such as pancreatic duct alpha cells are also considered under
new strategy development (Mellado-Gil et al., 2012; Ben-Othman
et al., 2013; Das et al., 2014). To promote 3D growth of pancreatic
tissue, scaffold matrix is essential. PLGA scaffolds have been
used in diabetic mice to reverse hyperglycemia. Moreover, these
PLGS hybrid meshes coated with various natural biopolymers
in 3D culture of RIN5 cells, which resulted in stimulating
insulin secretion, supported extra adhesion, proliferation, and
differentiation of RIN5 cells. Encapsulation of silybin (Sb)
molecules by PLGA along with solvent diffusion of acetone in
water was engineered to diffuse interface turbulence. However,
PLGA is sensitive to hydrolysis while passing through the
gastrointestinal tract. Thus, chitosan due to its cationic property
was used to enhance mucoadhesive permeability along with
PLGA itself. This conjugation promoted serum insulin-reduced
blood sugar in diabetic mice, which indicated regeneration of β

cell regeneration in the pancreas. Further, upon increasing Sb
content in conjugation, there is an increase in serum insulin
(as an indicator of hyperglycemic damage restoration) and
reduction in glycated hemoglobin levels and restoration of the
liver glycogen (Figure 2C, Hinderer et al., 2016).

Many nanofibrils have also been under investigation, and use
of nanofibril-shaped biomaterials has increasing evidence in TE.
Collagen, a natural ECM, has emerged as a novel fundamental
component of the natural ECM. Collagen is biodegradable and
biocompatible, which are essential properties in drug, gene, and
protein delivery systems. Emulsification solvent evaporation
and emulsification solvent diffusion are the two methods used
for fabrication of collagen in thin films or nanosized particles
(Hinderer et al., 2016). Cell-based therapy using MSCs for
the treatment of diabetes is also a novel material in TE. In
conjugation with ECM, differentiation and stimulation of
insulin-secreting cells are achieved (Ma et al., 2016). Further,
to generate pancreatic islet-like clusters from MSCs, a culture
medium developed by fabricating nanosized collagen with
high-voltage electrostatic field system was used. Nicotinamide
(NCT) and exendin4 (Ex4) promoted differentiation of
MSCs into insulin mRNA-expressed and insulin-producing
cells. This also showed pancreatic islet cell regeneration and
regulation of blood glucose, which further reverses T2DM
in rats, by ingestion of the differentiated cells derived from
incubation of MSCs with collagen 1 nanofibrils/NCT/Ex4
(Niemeyer et al., 2010).

Non-surgical procedures also have a great potential in
the clinical setting by providing biological treatments using

interface constructs compatible to the host environment or
themselves. In a recent study, a total of 33 sheep underwent
anterior cruciate ligament (ACL) resection. The interface was
constructed at the femoral and tibial bone tunnels using silk-
based scaffold. The novel silk fiber-based scaffold for ACL
regeneration demonstrated integration into the bone tunnels
via the formation of a fibrous interzone. These interzone
obtained similar structure as in surgical procedures, allografts,
and autografts (Zheng et al., 2009; Teuschl et al., 2019).

STEM CELL-BASED TE

New therapeutic approaches utilize multipotential stem cells
which may benefit from cellular engineering methods to
increase cell survival, immunomodulatory signaling pathways,
reducing inflammation and enhancing tissue repair. Stem cell-
based therapies provide tremendous promise for repairing
musculoskeletal conditions (Peng et al., 2011; Ren et al., 2012; Liu
et al., 2014; Kuroda et al., 2015; Kharaziha et al., 2016). Recently,
various studies have been designed by combining recent advances
in gene editing, synthetic biology, and TE. These designer cells
have required cell surface and receptors that will provide a
strong scaffold for tissue repair and regeneration. In orthopedics,
embryonic stem cells, induced pluripotent stem cells, and adult
stem cells, also termed as MSCs, are the most explored in
musculoskeletal conditions (Liu et al., 2008). The functions of
MSCs include direct differentiation to become a cell, assigning
roles to other cells, and creation of regenerative pathways via
production of various growth factors. MSCs have been promising
and a living therapeutic solution for functional and restoration of
musculoskeletal problems. Different kinds of stem cells have been
utilized in recent research studies as discussed in Table 1.

CHALLENGES, FUTURE PERSPECTIVE,
AND CONCLUSIONS

The accuracy and efficiency of bioengineered constructs
are very challenging, as they require a deep understanding
with regard to mechanisms of regeneration. New treatment
approaches are required, as designing new nanostructures and
constructs can provide more precise, target-specific scaffolds
with varying functionalities. For example, only drugs and/or
heart transplantation solutions are available for cardiac diseases.
In summary, bio-mimicked constructs possess advanced
architectures and surface topography like native tissues and
organs to recover intrinsic properties of damaged tissues and
organs. It is possible to change cell behavior using nano-
enabling platforms, which can be modified using their unique
properties. Various methods are used such as nanolithography,
electrospinning, nano-enabled patterning, and electrochemical
to enhance protein adsorption, cellular attachment, proliferation,
differentiation without affecting immune cascade, and different
signaling pathways. Thus, designing constructs to understand
physiochemical interactions with living tissues can significantly
advance the field of TE and regenerative medicine. This article
introduces recent work using new bio-mimicked biomaterial
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TABLE 1 | Various types of stem cells are utilized in treating defects and increasing tissue repair and regeneration for different cell types.

Engineering Cell type Source type Type of defect/diseases/injury Implants References

Gene editing cyclooxygenase 2 upstream

of the IL-4 gene, B cells

(NF-κB), IL-4 as a regulator

of macrophages

Promoter gene, multiple

consensus elements for the

nuclear factor kappa-light-chain

Inflammation, homing, and retention,

amplification and increased

expression of anticytokine drugs such

IL-1Ra in response to IL-1, improving

responses to inflammatory cytokines

self-limiting promoter construct, synthetic

gene promoter system, synthesis of IL-4

Lin et al., 2017; Guilak et al.,

2019; Pferdehirt et al., 2019

Bone Marrow

Engineering

MSCs Bone Marrow Mandibular, Metatarsal, Femoral

head, Femurs, Tibial, Tibial diaphyseal

defect, Craniofacial, Inferior orbital rim

bone, Tibial, Jaw bone loss

MSCs + PRP injection, MSC-seeded BCP

scaffold implantation, MSC-seeded β-TCP

scaffold implantation, Preosteogenically

differentiated MSC, transplantation, hMSC

transplantation

Linero and Chaparro, 2014

Lucarelli et al., 2005

Zhou et al., 2011

Li et al., 2007

Sijbesma et al., 1997

Hou et al., 1491

Pferdehirt et al., 2019

Field et al., 2011

Liao et al., 2011

Skeletal Muscle

Engineering

MDSCs Skeletal Muscle Skull, Calvarial BMP-2, VEGF, sFlt1 expressing MDSC

transplantation, BMP-4 expressing MDSC

transplantation

Usas et al., 2009

Adipose TE ASCs, MSCs Adipose Tissue Parietal bones, Ulna, OA-like

damage, Jaw bone

MSC-seeded coral scaffold implantation,

US2/US3 gene-transfected ASC

transplantation, hASC injection, hMSC

transplantation

Linero and Chaparro, 2014

Cui et al., 2007

Yamada et al., 2004

Wang et al., 2010

Fat TE ASCs Fat Tissue Ulna BMP-2-expressing ASC transplantation Kuroda et al., 2015;

Muylaert et al., 2016

Umbilical Cord

Engineering

MSCs Umbilical cord blood Radial MSC injection Sijbesma et al., 1997

Teeth Engineering DPSCs Teeth Mandibular DPSC transplantation Bueno et al., 2009

Orbicular Oris Muscle MDSCs Orbicular oris muscle Cranial defect hMDSC transplantation Gao et al., 2014

Cardiac TE Hydrated ECM Cardiovascular tissue complete replacement of lost or

damaged tissues,

hydrogels bonding motifs

(Stimuli-Responsive Cyclodextrin

Derivatives, Cyclodextrin Derivatives,

Benzene-1,3,5-Tricarboxamide,

Ureidopyrimidinone)

Hou et al., 1491;

Rachakonda et al., 2008;

Highley et al., 2015;

Khodaverdi et al., 2016;

Muylaert et al., 2016

Skin TE MSC Bone marrow Repairing burn wounds, healing,

keratinization, more vascularization

Collagen–GAG scaffolds, Liu et al., 2008

Nerve TE Embryonic Stem Cells,

MSCs, and neural stem cells

Skin fibroblasts PD, HD, ALS, and AD Induced pluripotent stem cells, genetic

manipulation, and gene transfer

Su et al., 2013

IL-4, interleukin-4;BMP-2, bone morphogenic protein-2; NF-κB, nuclear factor κB; PRP, platelet-rich plasma; BCP, biphasic calcium phosphate; VEGF, vascular endothelial growth factor; hMSC, human mesenchymal stem cell; MDSC,

myeloid-derived suppressor cell; ASC, adipose-derived stromal cells; OA, osteoarthritis; hASC, adipose-derived stromal cell; DPSC, dental pulp stem cell; GAG, glycosaminoglycan; PD, Parkinson’s disease; HD, Huntington’s disease;

ALS, amyotrophic lateral sclerosis; AD, Alzheimer’s disease.
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constructs designed to overcome disease and defects from tissue
injury. By mimicking complex environment using nanoparticles
to nanocomposite materials to nanopatterned materials, the
cardiac TE has the potential to improve cardiac health and
medicine. Successful application would help reduce significant
dependence on heart donors in the treatment of cardiac failure.
As shown in Figure 2, nanoscale patterning and texturing
are another approach that hold great promise in the field of
cardiac TE.

Interface TE has the potential to regenerate anatomic
interface between different tissue types. The main challenges
in building interfaces are how boundaries are defined with
the tissue constructs, re-established postinjury, and maintaining
these mimicked constructs within the body. This will bring
greater understanding of the structure–function relationship of
biomolecules and receptors at the site of insertion and the
mechanism behind interface generation. Engineering multiple
tissue types along with dense interconnected interactions will
play important an role in unfolding complications in interface
design. New constructs are critical to understand the theory
behind the differentiation, proliferation, and migrations of
cells. Stem cells provide tremendous opportunities for the
development of novel therapies for a range of musculoskeletal
disorders. With the advent of a new generation of stem cell
therapies, new methods for TE will emerge that can provide
functional tissue replacements.

The most successful approach was the design and synthesis
of hybrid biomaterials until 3D printing came into the
market. Important evaluation of 3D-printed tissues and organ
engineering, the most innovative approach, improved and
was accepted over the conventional culture systems but had
no better results than the conventional approaches. Hence,
more work needs to be done in this aspect to utilize its
benefit. 3D bioprinting can advance current research and
support novel therapeutics, which has excellent potential in
curing cardiovascular pathologies as well. These methods
and techniques therefore facilitate better protein adsorption,
cellular attachment, proliferation, cellular attachment, and
differentiation. Moreover, understanding surface interaction,
mechanism, and their effect on bonding with living tissues
can help in the advancement of tissue regeneration, and
regenerative medicine.
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