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ABSTRACT 

Title of Dissertation: WEYL-HEISENBERG WAVELET EXAPNSIONS: 

EXISTENCE AND STABILITY IN WEIGHTED SPACES 

David Francis Walnut, Doctor of Philosophy, 1989 

Dissertation directed by: Professor John J . Benedetto, Department 

of Mathematics . 

The theory of wavelets can be used to obtain expansions of 

vectors in certain spaces. These expansions are like Fourier 

series in that each vector can be written in terms of a fixed 

collection of vectors in the Banach space and the coefficients 

satisfy a "Plancherel Theorem" with respect to some sequence 

space. In Weyl-Heisenberg expansions, the expansion vectors 

(wavelets) are translates and modulates of a single vector (the 

analyzing vector) . 

The thesis addresses the problem of the existence and 

stability of Weyl-Heisenberg expansions in the space of functions 

square-integrable with respect to the measure w(x) dx for a 

certain class of weights w. While the question of the existence 

of such expansions is contained in more general theories, the 

techniques used here enable one to obtain more general and 

explicit results. 



In Chapter 1, the class of weights of interest is defined and 

properties of these weights proven. 

In Chapter 2, it is shown that Weyl-Heisenberg expansions 

exist if the analyzing vector is locally bounded and satisfies a 

certain global decay condition. 

In Chapter 3, it is shown that these expansions persist if 

the translations and modulations are not taken at regular 

intervals but are perturbed by a small amount. Also, the 

expansions are stable if the analyzing vector is perturbed. It is 

also shown here that under more general assumptions, expansions 

exist if translations and modulations are taken at any 

sufficiently dense lattice of points. 

Like orthonormal bases, the coefficients in Weyl-Heisenberg 

expansions can be formed by the inner product of the vector being 

expanded with a collection of wavelets generated by a transformed 

version of the analyzing vector. In Chapter 4, it is shown that 

this transformation preserves certain decay and smoothness 

conditions and a formula for this transformation is given. 

In Chapter 5, results on Weyl-Heisenberg expansions in the 

space of square-integrable functions are presented. 
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INTRODUCTION 

Anyone who has ever heard a sound such as a siren or a piece 

of music has registered the impression that the signal consists of 

a combination of different frequencies at different times. 

However, this common intuition is not reflected in classical 

Fourier analysis techniques. Specifically, expanding a compactly 

supported function, thought of as a signal of finite duration, in 

an ordinary Fourier series can be interpreted as viewing the 

signal as the superposition of signals of constant pitch and fixed 

amplitude which persist for the entire duration of the original 

signal. 

The first attempt to define a transformation which reflected 

the way the ear percieves sound was made in [Ga]. Gabor was 

inspired by some techniques in use by quantum physicists for 

decades and was the first to apply them to signal analysis. A 

version of Gabor's transform, known as the Short-time Fourier 

Transform, has been in use by signal processing engineers for many 

years. The idea behind this transform is the following. . In order 

to obtain a picture of how the frequencies present in a signal 

change over time, one divides the signal into distinct time 

intervals, then takes the Fourier transform of each piece. 

These ideas were given a rigorous mathematical foundation in 

[DGM] and [D1], where the theory of frames in Hilbert space (cf. 

Section 0.5) was used to define a short-time Fourier transform in 
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which there is more freedom in the choice of a window function, 

thereby obtaining a generalization of Fourier series to the 

2 Hilbert space L (~). These expansions were referred to as 

Weyl-Heisenberg (W-H) wavelet expansions because of their 

relationship to the so-called wavelet transform (or affine wavelet 

transform) defined in [GM], and to the wavelet orthonormal basis 

of Daubechies and Meyer. 

In [F2], Feichtinger obtains W-H expansions of distributions 

on ~k lying in certain Banach spaces called modulation spaces, 

which are defined by smoothness and decay conditions. These 

include the space L2
(~) . Here, Feichtinger used the theory of 

Wiener-type space~ (cf. [Fl]) to obtain W-H wavelet expansions by 

a method analogous to that used in [FJl] to obtain affine wavelet 

expansions in Besov spaces. This theory was superseded by the 

general theory found in [FGl] and [FG2], which proved the 

existence of W-H and affine wavelet expansions of distributions in 

a large class of spaces, the coorbit spaces. This theory is quite 

abstract and relies on the theory of group representat ions to 

obtain its results. 

Thus, there are three methods for obtaining W-H expansions of 

distributions in Banach spaces. Daubechies' method (cf. [DGM), 

[Dl]) is essentially restricted to the space L2
(~k), but provides 

very general conditions on the mother wavelets and the frame 

parameters which guarantee the existence of frames. Also, these 
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methods provide good estimates on the critical values of frame 

parameters and frame bounds for a given mother wavelet. 

The method of Feichtinger in [F2] shows the existence of W-H 

wavelet expansions in a larger class of spaces than just L2
(~k) . 

This method is a great deal more abstract than Daubechies' method 

but still gives a very general, easily checkable condition on a 

mother wavelet guaranteeing that it generate a set of W-H atoms 

for a given modulation space. Estimates on the values of the 

lattice parameters and on the atomic bounds are difficult in this 

case. 

The method of Feichtinger and Grochenig (cf. [FGl], [FG2]) is 

a very beautiful and general theory which shows the existence of 

wavelet expansions by means of both W-H and affine wavelets for a 

very large class of Banach spaces. This method gives specific 

results concerning stability of the wavelet expansions under 

perturbations. This is not done in either of the first two 

methods and makes explicit an advantage which expansions in terms 

on non-orthogonal sets of vectors possess over orthogonal 

expansions. On the other hand, this method is very abstract and 

does not give a transparent condition on a vector guaranteeing 

that it generate a set of W-H atoms, nor does it provide a simple 

means of obtaining estimates on valid parameter values or atomic 

bounds. 

This paper presents a method for finding sets of W-H atoms 

2 k for spaces other than the Hilbert space L (~ ), namely the spaces 

3 



L:(~k), with very explicit conditions on mother wavelets which 

guarantee that they generate sets of atoms. 
2 k Although Lw(~) is a 

Hilbert space with respect to the inner product<·, ·>w (cf. 

Section 0.3), it is viewed as a Banach space and no attention is 

paid to its Hilbert space structure. The question of Hilbert 

2 k 
space frames for LwC~) is dealt with in Section 2.5. It will 

turn out that the crucial property of L:(~k) that enables this 

method to work is the fact that functions in L:(~k) are locally in 

Also, this method enables one to prove more general and different 

stability results than [FGl] in this case. 

The paper is organized as follows. Chapter O contains 

notations and definitions used throughout the paper. Chapter 1 

contains the definition and properties of the types of weights for 

which the results of the paper hold. 

Chapter 2 contains the proofs of the existence of sets of W-H 

2 k 2 k 
atoms for LwC~ ). Section 2. 1 shows that the spaces Lw(~) are 

actually coorbit spaces in the sense of [FGl] so that the 

existence of such expansions for some mother wavelets can be 

inferred from [FGl]. Section 2.2 gives basic results on the 

Wiener-type space which will turn out to be the reservoir of 

2 k 
mother wavelets generating sets of W-H atoms for LwC~ ). Section 

2.3 gives the proof of the existence of these atoms for 

appropriate mother wavelets, and Section 2.4 does the same in 

certain Sobolev spaces. Section 2.5 compares the concepts of 
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Banach frames and Hilbert space frames of W-H wavelets for the 

Banach space L:(~k) and the Hilbert space L:(~k), respectively, 

and shows that they are not equivalent (cf. Section 0.5). Section 

2.6 compares the notions of a Banach frame and a set of atoms for 

2 k the space LwC~ ) . 

Chapter 3 presents some of the stability results yielded by 

the methods of the previous chapter. Section 3. 1 gives results on 

stability of sets of W-H atoms for L:(~k) under perturbation of 

the mother wavelet and of the lattice points. Section 3.2 says 

that, under a reasonable but strictly more general condition on 

the mother wavelets, the results of Section 2.3 can be modified to 

show that sets of W-H atoms exist for a "rectangle" of parameter 

values. This can be thought of as a result on stability under 

perturbation of the lattice parameters. 

Chapter 4 presents stability results of a different kind. 

2 k Given a set of W-H atoms, {EmbTnag}, for some g€Lw(~) and a, b > 

0, we can define the operator U formally by 

Uf = L L <f, EmbTnag>EmbTnag. 
n m 

If U defined in this way makes sense, and is invertible, we can 

write 

f = U(U-1f) = L L <f,EmbTnaU-
1
g>EmbTnag. 

n m 

Operators of the form 

Sf = L L <f, EmbTnacp>EmbTna'P 
n m 

for certain functions cp and rµ, are studied in Chapter 4, where is 
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is shown that, for a large class of 1 and¢, and appropriate 

values of a and b, the operator S makes sense, is continuous, and 

is continuously invertible on many Banach spaces. The reason 

these can be thought of as stability results is that on certain 

spaces the operator S defined above is the identity operator when 

-1 1 = U g and¢= g. To say that U (or more generally S) is a 

continuously invertible operator on many Banach spaces is to say 

that in the W-H expansion of a function, the function "inside" the 

inner product has many of the same properties (decay, smoothness, 

etc.) as the function "outside" the inner product. Also, this 

shows that one can obtain W-H expansions of distributions in a 

large variety of Banach spaces, though in most cases, one cannot 

conclude that {EmbTnaS} is a set of atoms for those spaces. 

In Section 4. 1, Banach spaces of functions on ~k defined by 

decay conditions, including the LP spaces and the weighted LP 

spaces are considered. In Section 4.2, the same is done for 

spaces defined by smoothness conditions, specifically Banach 

spaces of distributions defined by decay conditions on their 

Fourier transforms. Also, this section gives formulas for the 

derivative of the function Sf for appropriate f, and it is shown 

that if f, 1, and¢ are in ~(~k) then so is Sf and that in fact S 

is a continuous operator from ~(~k) into itself. Section 4.3 

-1 
gives a formula for computing the operator S , and Section 4.4 

generalizes a result of Benedetto in [BJ, and show that on the 
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p k spaces LwC~ ), the continuously defined analogue of the operator S 

can be inverted. 

Chapter 5 presents some results in the special case when w = 

1, i.e., for the Hilbert space L2
(~k). Section 5.1 presents two 

results on the general theory of frames in Hilbert spaces due to 

Gr ochenig and Heil. These are included because they are used 

elsewhere in the paper. The remaining two sections give a closer 

examination of results in [D1], specifically a result on existence 

of frames in L2
(~k), which is generalized slightly, and a result 

on phase-space localization, for which a more transparent 

hypothesis is given. 
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CHAPTER 0 

Nor ATION AND DEFINITIONS 

Section 0.1. Basic symbols. 

1. C denotes the complex numbers. 

If zEC, the modulus or absolute value of z is denoted by lzl. 

The complex conjugate of z is denoted by z. 

T denotes the torus, the set of complex numbers of modulus 1. 

2. If k ~ 1 is an integer, then 

IRk denotes k-dimensional Euclidean space, 

Ak k 
IR denotes the dual group of IR, 

lk denotes the set of k-tuples of integers. 

If XEIRk and x = ( ) th X1,X2, ... ,Xk en 

2 2 2 2 
I x I = X1 +x2 + · · · +xk, 

and 

IX I max = max{ IX J I : j = 1, 2, ... , k} . 

Note that lxlmax :5 lxl :5 klxlmax· 

Given x and yin IRk with x = (x1,Xz, .. . ,xk) and y = 

(y1,Yz, . . . ,Ykl, the inner product of x and y is given by 
k 

<x, y> = L XJYJ
J = 1 

If nElk and n = (n1 ,n2, ... ,nk) then 

lnl = max{lnJI: j = 1,2, ... ,k}. 

A multi-index is an n-tuple of non-negative integers. 
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If a is a multi-index and a= (a1 ,a2 , . .. ,ak) then 
k 

!al = L aJ, 
J=1 

Given a differentiable function f, a a multiindex, 

A rectangle R c ~k is a set of the form 

where for each i, b1 > a 1. A rectangle is a cube if for all 

i and j, la1-b1I = larbJ I- Given a> 0, the cube [-a/2,a/2]k is 

denoted Q.,.. 
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Section 0.2. Summation and integration. 

1. 
k Lebesgue measure on~ ls denoted by dx. 

k 
Given a measurable set E c ~. the Lebesgue measure of Eis 

denoted by IE I. 

Given a measurable set E c ~k. the characteristic function of 

Eis denoted by 1E. 

Unless otherwise specified, all integrals will be over ~k. 

2. Unless otherwise specified, a series of the form 

3. Given 1 ~ p < oo, and a sequence (wn) of positive numbers, we 

define the Banach space t~(lk) as the space of all sequences (cnl 

of numbers such that 

with norm given by 

4. A series of numbers, 

is said to converge to a number c if given c > 0, there is a 

finite set F c lk such that for all finite sets G containing F, 

10 



5. A series of numbers is said to be Cauchy if given e > 0, 

there is a finite set F c lk such that for any finite set G c lk, 

6. Unless otherwise specified, a sequence of the form (en) with 

CnEIC wi 11 mean a sequence over nElk. 

7. Given a Banach space B with norm 11·11 8 , a series of functions, 

is said to converge to fin B if given e > 0, there is a finite 

set F c lk such that for any finite set G c lk containing F, 

8. Given a Banach space B with norm II· II 8 , a series of functions 

is said to be Cauchy in B if given e > 0, there is a finite set F 

c lk such that for all finite sets G c lk, 

11 



Section 0.3. Function spaces. 

1. Given a measurable function f on ~k. we define f_(x) = f(-x) 

for al 1 XE~k. 

2. Given 1 ~ p < oo, and a positive, locally integrable function 

w, we define the Banach space L~(~k) as the space of all 

measurable functions f such that 

J1r(x)IP w(x) dx < • 

with norm given by 

llfllp,w = lf(xl IP w(xl dx . [I ]
1/p 

If p = oo, we define the Banach space L:(~k) as the space of 

all measurable functions f such that 

llfll.,,w = ess sup{ lf(x) lw(x): 
k 

XE~ } < oo. 

3. Given two measurable functions f and g, we define 

<f,g> = Jf(x)g(x) dx 

whenever the integral makes sense and if w is a locally integrable 

function, we define 

<f,g>w = Jf(x)g(x)w(x) dx 

whenever the integral makes sense. 

4. C0 (~k) is the Banach space of continuous functions vanishing 

at infinity, equipped with the sup-norm topology. 
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5. Cb(~k) is the Banach space of bounded, continuous functions 

equipped with the sup-norm topology. 

6. Given a non-negative integer r, we define the space Cr(~k) as 

the space of functions such that for every multiindex a, with Jal 

~ r, Daf exists and is continuous. r k We denote by Cc(~) the 

subspace of Cr(~k) consisting of those elements of Cr(~k) which 

have compact support. 

7. 
oo k 

We define the space C (~) as the space of functions 

possessing arbitrarily many continuous derivatives, and the space 

C~(~k) as the subspace of C
00

(~k) consisting of those elements of 

c00
(~k) which have compact support. 

8. J'(~k) is the space of C
00

(~k) functions such that for every 

multiindex a and integer n ~ 0, 

a n k 
sup{ ID f(x)(l+lxl) I: xe.:~} < oo. 

The dual of J'(~k), the space of tempered distributions, is denoted 

13 



Section 0.4. The Fourier transform. 

1. The Fourier transform of a function f€L 1 (Rk) is 

A 
= Jf(x)e-2m<x,a> dx . f(a) 

for 
Ak 

a€R 

2. The Fourier transform of a function f€L2(Rk) is 

A 

l. I f( ) -2m<x,P d f(a) = lm X e X 

n--)oo Qn 

in L 2(Rk). 

3. Given a> 0, the Fourier transform of an a-periodic function 

f ( n) = J f ( x) e -2m <n' x> dx 
Qa 

14 



Section 0.5. Atoms and frames. 

DEFINITION 0.5.1. Let B be a Banach space and denote by Bct an 

appropriate sequence space associated to B. A collection of 

vectors {g1 : i€I} in Bis a set of atoms for B if there is a 

collection of linear functionals on B, called Ai, such that 

(1) each f€B can be written f = L A1 (f) g1 , where the sum 

converges in B-norm, and 

(2) there exist constants c 1 , c 2 > 0 such that for all f€B, 

The smallest value of c 2 and the largest value of c 1 which work 

are the atomic bounds for {g1}, c 1 being the lower bound and c 2 , 

the upper bound. 

DEFINITION 0.5.2. Let B, Bct be as in Definition 0.1. A 

collection of vectors {e 1 : i€I} in B', the dual of B, is called a 

Banach frame for B if there exist constants d1 , d2 > 0, such that 

for al 1 f€B, 

The smallest value of d2 and the largest value of d1 which work 

are the frame bounds of {e 1}, d1 being the lower bound and d2 , the 

upper bound. 

15 



DEFINITION 0.5.3 Let H be a Hilbert space and {xn: n€I} a 

collection of vectors in H. Then {xn} is a frame for H if there 

exist constants A, B > 0 such that for all X€H, 

Allxll
2 

s [ 
2 2 I <x, Xn> I S BIi xii . 

n 

The smallest value of A and the largest value of B which work are 

called the frame bounds of {xn}. 

DEFINITION 0.5.4. Let H be a Hilbert space, and {xn: n€I} a 

collection of vectors in H. Then {xn} is a set of atoms for H if 

the following conditions hold. 

(1) there exist linear functionals an: H ~~for each n€I 

such that for each X€H, 

where the sum converges strongly in H, and 

(2) there exist constants A, B > 0 such that for all X€H, 

Allxll
2 

S L lan(x) 1
2 

S Bllxll
2 

n 

The smallest value of A and the largest value of B which work are 

called the atomic bounds of {xn}. 

DEFINITION 0.5.5. Let {xn: n€I} be a frame for a Hilbert space H. 

Let {en} be a collection of vectors such that for all X€H, 

where the sum converges strongly in H. Then {en} is said to be 

dual to { Xn} . 

16 



DEFINITION 0 . 5.6. Given u, VE~k. and fa measurable function, we 

k define the functions Euf and Tvf on~ by 

Euf(x) = e 27ll<u,x>f(x), 

Tvf(x) = f(x-v). 

Also, given a locally integrable function won ~k such that for 

each VE~k the operator Iv is bounded on Le(~k) for 1 ~ p < oo, we 

define the function w(v) by 

w(v) = IITvllL2 L2. 
w➔ w 

DEFINITION 0.5.7. 
G k 

Given a Banach space B of functions on~, gEB, 

and a, b > 0, we say that (g,a,b) generates a Weyl-Heisenberg 

(W-H) frame for B if the collection {EmbTnag} is a Banach frame 

for B. Similarly, we say that (g,a,b) generates a set of 

Weyl-Heisenberg (W-H) atoms for B if {EmbTnag} is a set of atoms 

for B. The numbers a and bare the frame parameters, a being the 

translation parameter, and b the modulation parameter. The 

collection {(na,mb): k n,mEl} is the translation-modulation 

lattice. The vector g is the analyzing vector or mother wavelet. 

REMARK 0.5.8. In the remainder of this paper, we will often use 

the terms "sets of atoms" and "atomic decompositions" to refer to 

expansions in the sense of Definition 0.5.1. It is important to 

distinguish between this type of decomposition and the type 

encountered for example in the theory of HP spaces (cf. [CJ, 
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[La]). Atomic decompositions in the sense of Definition 0.5. 1 are 

more like Fourier series expansions or some other kind of 

orthogonal expansion than those given in [CJ and [La]. 

The important characteristics of atomic decompositions in the 

sense of Definition 0.5. 1 are the following. 

1. A set of atoms is a fixed collection of vectors in terms of 

which every other vector in the space can be expanded. That is, 

the atoms are independent of the vector being expanded. 

2. The expansion coefficients depend linearly on the vector 

being expanded. 

3. The sum expanding a given vector is required to converge in 

norm to the vector. 

The corresponding characteristics of atomic decompositions in 

the sense of [CJ and [La] are the following. 

1. The atoms by means of which a distribution is expanded depend 

on the distribution. 

2. The expansion coefficients do not necessarily depend linearly 

on the distrubution being expanded. 

3. The expansion sum is only required to converge in the sense 

of distributions. 
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CHAPTER 1 

MODERATE WEIGHTS 

The notion of a moderate weight was first defined by 

Feichtinger and Grochenig in [FGl]. In this chapter, we prove 

some important and useful properties of these weights and of the 

submultiplicative functions associated to them. 

In particular, we show that these weights are well suited for 

W-H expansions of functions in L:(Rk) in that they lend themselves 

naturally to discretization, thereby allowing one to define the 

growth condition characterizing the expansion coefficients. The 

relevant property of the weights, property (4) of Theorem 1. 1.6, 

can be stated as follows: The values of a moderate weight at any 

two points are comparable, with the constants of comparability 

depending not on the location of the points but only on the 

distance between them. Thus, given a partition of Rk into cubes 

of fixed size, w can be replaced by an equivalent weight which is 

constant on each element of the partition. Such a discrete-valued 

version of w is given in Definition 1. 1.10. 

The characterization of moderate weights as those weights for 

which L~(Rk) is translation-invariant (cf. Theorem 1. 1.6) is 

well-known to Feichtinger and Grochenig (cf. [F2], [FGl]) but has 

not appeared in print. 
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Section 1.1. Properties of Moderate Weights. 

DEFINITION 1. 1. 1. A function w: Rk ~ R+ is called a 

submultiplicative weight provided that the following hold. 

(1) w(O) = 1, and 

( 2) w(x+y) ~ w(x)w(y) k for al 1 x, yER . 

DEFINITION 1. 1.2. A locally integrable function w: Rk ~ R+ is 

called a moderate weight provided that there exists a 

k 
submultiplicative weight m such that for all x, yER, 

w(x+y) ~ m(x)w(y). 

DEFINITION 1. 1.3. Given a locally integrable function 

w: Rk ~ R+ and 1 ~ p < oo, we say that L~(Rk) is 

k p k p k 
translation-invariant if for each aER, TaCLwCR )) c LwCR ). 

LEMMA 1. 1. 4. (cf. [Kl) Let m be a submultiplicative weight. Then 

mis locally bounded. 

PROOF. Suppose not then I claim that m would be unbounded in 

every neighborhood of 0. That is, suppose that for some£> 0, 

m(x) ~Mon Q for some M < oo. Then by submultiplicativity, m(x) 
£ 

2 2n 
~ M on Q +Q = Q , and in general, m(x) ~ M on Q2n~· Since £ £ 2£ c.. 

every compact set is contained in Q n for some n, mis locally 
2 £ 
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bounded. Consequently, if mis not locally bounded, then mis 

unbounded on Q for every e > 0. 
e 

This implies that on a set of positive measure, m takes the 

value +oo. To see this, fix e > 0 so small that for every yEQ , 
e 

Then given NE~, there exists XNEQ such that 
e 

k 2 Now, for each XE~, N ~ m(xN) ~ m(x)m(xN-x) which 

implies that for all XE~k. either m(x) ~Nor m(xN-x) ~ N (or 

both). 

Let AN= {xEQ1 : m(x) ~ N}. I claim that IANI ~ 1/4 for all 

that m(x) < N. Thus, m(xN-x) ~ N and so xN-xEAN as long as 

~ 3/4-1/4 = 1/2 > 1/4. Now, the sequence {AN}:=l is nested and 

each i s cont a ined in Q1 • Thus, if A= ()AN then IAI ~ 1/4 and m(x) 

= oo on A. This is clearly impossible since m was assumed to be 

real-valued. Thus, mis bounded on compact sets. ■ 

PROPOSITION 1. 1.5. Let w be a moderate weight, then w is locally 

bounded. 

PROOF. This proof is almost identical to that of Lemma 1. 1.4 . 

Let e > 0, and let m(x) ~Mon Q. Suppose that w is bounded by M 
e 

on Q. Then we have, as in the proof of Lemma 1.1.4, that for any 
e 

~2n n-1 n-2 
nE~, m(x) ~ M on Q n and hence that w(x) ~ M2 (MM)

2 on 
2 e 
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Q Thus, if w is not locally bounded, it must be unbounded in 2n£· 

every neighborhood of 0. 

Suppose this is the case. Let£> 0 and let m(x) S Mo on 

Q
1
+c· Then given B > 0 there is x0 with lx0 1 <£and w(x0 ) ~ BMo. 

For each xEQ1 , we have that BMo S w(x0 ) S m(x0 -x)w(x) S Mow(x) 

since XEQ1 implies that x0 -xEQ . Thus, w(x) ~Bon Q1 . But 
1+£ 

since B was arbitrary, this means w(x) = oo on Q1, clearly an 

impossibility. Thus, w must be locally bounded. ■ 

THEOREM 1. 1.6. Let w: ~k ~~+be a locally integrable function 

and let 1 Sp< oo. Then the following are equivalent. 

(1) w is a moderate weight. 

(2) L~(~k) is translation-invariant. 

(3) For every compact set Kc ~k there is a 

constant C(K) such that 

(4) For every v > 0 there exists a constant B(v) such that 

sup w(x) S B(v) inf w(x) 
xcQ xcQ 

for every cube Q c ~k with IQl=v . 

(5) For every cube Q c ~k centered at the origin, there exist 

k 
constants A1 (Q) > 0 and A2 (Q) < oo such that for every XE~, 

A1(Q) S [w~x) Ix+Qw(t) dt] S A2 (Q). 
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PROOF. 

(1)~(2) Suppose w is moderate. 

fE:L~(IRk), 

k Then if 1 ~ p < oo, aE:IR, and 

IITafll:,P = Jlf(x-a) lpw(x) dx = Jlf(x) lpw(x+y) dx 

5 m(y) Jlf(x) 1•w(x) dx = m(y)llfll:,P. 

Since mis finite-valued, L~(IRk) is translation invariant. 

(2)~(1) First we show that if L~(IRk) is translation-invariant, 

then IITallLP LP is finite for each aE:IRk. To do this, we use the 
w➔ w 

Closed Graph Theorem. 

Let aE:IRk, and suppose that fn~f in L~(IRk) and that Tafn~g 

in L~(IRk). We will show that Taf: g. Suppose not, then there 

exists a set E with O < IEI < oo, E c K where K is some compact set 

. IRk 1n , and m > 0 such that lg(x)-f(x-a)IP > m for all XE:E. Since 

subsequence, we may assume without loss of generality that 

fnwl/p~fwl/p almost everywhere and hence that Tafn~Taf almost 

everywhere. 

Since IE I < oo, Egoroff's Theorem implies that there is a set 

Ac E with O < IAI and such that Tafn~Taf uniformly on A. Now 

we have that 

m [L w(x) dx] 1/p < [LI g( x)-f(x-a) 1 •w(x) dx] 1/p 

~ II g-T af n II L~ ( A) + II T af n - T afll L~ ( A) 
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!, IJg-Tafnllp,w + [J AITafnCx)-TafCx) IPw(x) dxr
1

P 

!, llg-Tafnllp,w + s~plTafnCx)-TafCx) I [JAw(x) dxr
1

P ~ O 

as n~. Since w is locally integrable, this contradicts the 

assumption that m > 0. 

Now let m(a) = IITallre➔Le· Then 

J1r(x-a)l•w(x) dx = J1r(x)l•w(x+a) dx s J1r(x)l•m(a)w(x) dx 

p k 
for all f..:Lw(IR ). Thus, w(x+a) !, m(a)w(x) for all a..:IRk and almost 

k 
every x..:IR. Also, since T0 = Id and since Ta+b = TaTb, mis a 

submultiplicative weight. Thus, w is moderate. 

It should be noted here that in the above paragraphs, m was 

defined in a p-dependent way, when certainly mis independent of 

p. I claim that given 1 !, p,q < oo, IITallre➔Le = IITall~~➔L~- To see 

this, note that for all f..:Le(IRk)' IITafll~,w !, IITallre➔Lellfll~,w and 

that IITallLPP LP is the smallest such constant for which this holds 
w➔ w 

uniformly in f. We also know that IITafll~,w = IITafp/qll~,w !, 

11Tall~~➔L~llfp1qll~,w = IITall~~➔L~llfll~,w- Thus, IITallre➔Le !, 

IITall~~➔L~- The same argument with p and q reversed gives finally 

that IITallLPP LP = IITallLqq Lq. 
w➔ w w➔ w 

(1)~(3) First, by Lemma 1.1.4, we know that m is locally 

bounded. 

Put C(K) = s~p m(x). Then for all y..:K, 

w(x+y) !, m(y) !, C(K) 
w(x) 
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independently of X€~k- Thus, 

(3)~(2) Let a€~k be contained in some compact set K. Then by 

k (3), w(x+a) S C(K)w(x) for every X€~. Thus, 

J 1r(xll'w(x+a) dx s C(K) J lf(xll'w(x) dx 

and L~(~k) is translation invariant. 

(3)~(4) k Suppose that w is a moderate weight and let Q c ~ be a 

cube with IQ l=v. Then Q=x'+Q' where x' is some point in ~k and Q' 

is that unique cube of volume v such that Q'=-Q', i.e. such that 

Q' is centered at the origin. 

Since w is a moderate weight, there exists a constant C(Q") 

k such that for every X€~, w(x+y) S C(Q")w(x) for all y€Q". Also, 

we have that w(x)=w(y+(x-y)) S C(Q")w(x-y) for all y€Q". Since 

Q"=-Q", we may write the above as w(x) S C(Q")w(x+y). 

Certainly the above holds when x=x' . Fix y1 and y2 in Q". 

Then 

1 w(x'+y2 ) S C(Q") C(Q")w(x') = C(Q") 2 < oo. 
w(x'+y1) w(x') 

Since Q=x'+Q", we have that 
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sgp w(x) SUB w(x) 
X, + II 

5 C(Q")2 B(v) = = 
inf 

Q 
w( x ) . f 

xl1:o" w(x) 

since Q" depends only on the volume of Q. 

(4)=>(3) Let Kc ~k be a fixed compact set . Then Kc Q for some 

cube Q and 

s~p [~~~ w~7:r)] 5 s~p [~~8 w~7:r) J 

= s~p(w~x) ~~8 w(x+y)J 5 s~p [t~~ro w~t) t~~ro w(t)] 

5 B(IQI) 

since w(x) > 0 for all x~~k implies that suo 
1 

-
1 

for 
tcE w(t) - inf w(t) 

any set E. 

k (4)=>(5) Let Q c ~ be a cube. Then 

J w(t) dt 5 IQl~~8 w(t) 
x+Q 

5 BCIQI l I QI inf w(t) 5 BCIQl)IQlw(x) 
x+Q 

k 
for almost every x~~ . Similarly, 

f w(t) dt ~ IQlinf w(t) 
x+Q 

x+Q 

k 
for almost every x~~. 
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(5) ~ (4) Let Q be a cube in Rk centered at the origin and let 

XE:Rk be fixed. Let Q' = Q+Q, and Q" = Q'+Q'. Then, given yoe:x+Q, 

x+Q c y+Q' c x+Q" and y+Q c x+Q' c y+Q". Now, 

w~ )J w(t) dt ~ w~ )J w(t) 
y x+Q' y y+Q" 

< A2(Q") _1_ J 
- A1(Q') w(x) w(t) dt. 

x+Q' 

Thus, for all xoe:Rk and yoe:x+Q, 

(.) 

Also, 

w(x) 
~ w(y) 

w~ ) J w(t) dt 
y x+Q' 

1 J ( ) > A1 (Q) ~ w() wt dt _ A (Q') 
y y+Q 2 

~ A1(Q) 1 J (t) dt 
A (Q') w(x) w · 2 x+Q' 

Thus, for all xcRk and yoe:x+Q, 

(**) 

Therefore, for all yoe:x+Q, 

w(x) 

and so 

w(x) :::; 

by ( •). Similarly, by ( **)' 

w(x) ~ 

which gives finally 

w(x) 
~ w(y) 

A2(Q") 
A1 ( Q' ) 

A1 (Q) 
A2(Q') 

inf w(t) 
tc x+Q 

SUf W( t) 
tc X Q 

inf w( t). 
tc x+Q 

Since x was arbitrary, and the constant does not depend on x, we 

are done. ■ 
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PROPOSITION 1. 1.7. Let w be a moderate weight. Then there exist 

a continuous function w0 and positive constants c 1 and c 2 such 

that 

c 1w0 (x) :S w(x) :S c 2 w0 (x) 

for all XE~k- Thus, L~(~k) = L~ (~k) for 1 :Sp< oo. 
0 

PROOF. 
k 

Let kECcC~) with supp(k) c K, for some cube K. Suppose 

that Jk(x) dx = 1 and that k ~ 0. Let 

w0 (x) = Jw(y)k(x-y) dy = J w(y)k(x-y). 
x+K 

Certainly, w0 is continuous and 

inf w(y) :S w0 (x) :S sup w(y). 
ycx+K ycx~K 

By property (4) of moderate weights given in Theorem 1. 1.6, we 

have that 

1/B( I Kl) sup w(y) :S w0 (x) :S B( I Kl) inf w(y) 
ye x~K ye x+K 

k and finally that for every XE~, 

1 /B ( I KI ) wo ( x ) :S w ( x) :S B ( I K I ) w0 ( x ) . ■ 

REMARK 1. 1.8. Proposition 1. 1.7 says that given a moderate weight 

w, there is a continuous function which defines the same 

weighted-LP space as w. 

PROPOSITION 1. 1.9. Let w be moderate with associated function m. 

Then 
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(1) 

(2) 

m(x) ~ 1/w(O) w(x) for all X€Rk, 

m_(x) ~ w(O) 1/w(x) for all x€Rk. 

PROOF. (1) follows immediately from the fact that w(x+y) :5 

m(y)w(x) and by putting x = 0. (2) follows from the fact that 

w((x+y)-y) S m(-y)w(x+y) which implies that 
1 . 1 

w(x+y) S m(-y)w(x) 

which gives the result when x = O. ■ 

DEFINITION 1.1.10. Given a cube Q c Rk, a> 0, nElk, we define 

w(n;Q,a)= inf w(x-na). We will denote w(n;Q1,a) by w(n;a). 
xc Q 

PROPOSITION 1. 1. 11. k k Let a€R, Q0 c Q c R be cubes. Then there 

k 
are constants c 1 and c2 independent of n such that for all nEl, 

c1 w(n;Q,a) :5 w(n;Qo,a) :5 c2 w(n;Q,a). 

Moreover if Q and Q0 are any two cubes in Rk, then there are 

k constants d1 and d2 such that for all n€l, 

d1 w(n;Q,a) s w(n;Qo,a) :5 d2 w(n;Q,a). 

PROOF. w(n;Q,a) = inf w(x-na) :5 inf w(x-na) = w(n;Q0 ,a), so that 
xcQ xcQo 

c1 = 1. Now, 

inf w(x-na) s sup w(x-na) 
xcQ 0 xcQ 

= SUP w(x) 
xc Q~na 

:5 B( IQI) inf w(x) = B( IQI )inf w(x-na). 
xcQ+na xcQ 

Thus, c2 = B( IQI) and the first part of the conclusion holds. 

Now, given arbitrary cubes Q, Q0 in Rk, we can certainly find 
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a cube Q' such that Q c Q' and Q0 c Q'. From this the result 

-1 
follows with d1 = BC IQ' I) and d 2 = BC IQ' I). ■ 

EXAMPLES: 1. 1. 12. 

(1) Any finite-valued, submultiplicative function is a moderate 

weight. In particular, a Beurling weight, i.e., a continuous 

submultiplicative function, is a moderate weight. For example, if 

0 th ( 1 + I x I 2 
) n/

2 1· s a B 1 · · h t n ~ , en eur 1ng we1g t and hence a modera e 

weight. 

(2) For XEIR, let w(x) = ex Then w(O) = 1, and w(x+y) ~ w(x)w(y) 

for all x,yEIR. Thus, w is moderate with itself as the associated 

submultiplicative function. This example shows that if mis a 

submultiplicative function associated to a moderate weight, then m 

need not be bounded away from zero. 

(3) It is easy to see that condition (4) of Theorem 1. 1.6 is 

symmetric in wand 1/w. That is, if w is moderate then so is 1/w. 

If mis a submultiplicative function associated tow then m_ is a 

submultiplicative function associated to 1/w. To see this, note 

that for every x and y, w(x) = w(-y+(x+y)) ~ m(-y)w(x+y), so that 

1/w(x+y) ~ m_(y)[l/w(x)]. 
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2 n/2 . 
We can now say that for every nE~, (l+lxl ) 1s moderate. 

In fact, the reciprocal of any finite valued (and non-zero) 

submultiplicative function is moderate. 

(4) A finite-valued submultiplicative function need not be 

continuous. For example, let w(O) = 1, and w(x) = 2 if x ~ 2. 

Then w is submultiplicative, but discontinuous at 0. 

Consequently, a moderate weight need not be continuous. 
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CHAPTER 2 

SETS OF ATOMS FOR L!CRk). 

This chapter is devoted to showing the existence of W-H atoms 

for L:(~k). That such atoms exist is shown in [F2] and [FGl], 

using different techniques in each case. The theory of 

Feichtinger and Grochenig ([FGl], [FG2]) demonstrates in part the 

existence of such wavelet expansions in a large collection of 

Banach spaces . Also, Feichtinger's theory of Gabor-type 

decompositions of modulation spaces ([F2]), while only done for 

polynomial weights, goes through without modification for moderate 

weights. 

The method used here is adapted from [F2] and exploits the 

local character of L:(~k), i.e., that a function in L:(~k) is 

locally in L2
(~k), to obtain a larger class of mother wavelets for 

2 k 
Lw(~) and also to give a more computationally explicit means of 

obtaining appropriate translation and modulation parameters for 

generating the atoms. 

Also, as we shall see in Chapter 3, this technique can be 

used to prove stability results for W-H atoms which are stronger 

than similar results in [FGl]. 

In Section 2. 1, we show directly that [FGl] can be applied to 

the case of L:(~k) by showing that L:(~k) is the coorbit space 

associated to a function space on the Heisenberg group. 
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The techniques of [F2] rely heavily on the theory of 

Wiener-type spaces developed in [Fl], especially on the 

convolution relations between these spaces. This is necessary 

because most of the work there is done in the frequency domain. 

Since the spaces L:(~k) are defined by a local L2(~k) condition, 

we can do all of our work in the time domain. Consequently, we do 

not require all of the power of the theory of Wiener-type spaces. 

We do, however, require at least some definitions and basic 

properties of these spaces. These are given in Section 2 . 2. 

Section 2.3 gives conditions on a function in a certain 

Wiener-type space which guarantee that, as a mother wavelet, it 

2 k generates a set of W-H atoms for LwC~ ). Section 2.4 shows that 

such expansions exist for functions in certain Sobolev spaces. 

Related to the notion of a set of atoms for a Banach space is 

that of a Banach frame (cf. Section 0.5). In a Hilbert space, 

these notions are equivalent but the proof of the result breaks 

down for general Banach spaces (cf. [Grl], Theorem 5.1.1). Also, 

in a Hilbert space, the coefficient functionals are unique (cf. 

[H], Theorem 5. 1.6). Here, too, it is not clear how the result 

can be extended to general Banach spaces. 

Of course, L:(~k) is a Hilbert space with respect t o a 

weighted inner product. However, the notions of a set of atoms 

for the Hilbert space L:(~k) and that of a set of atoms for the 

2 k Banach space Lw(~) are not the same. This is also true of the 
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2 k 
notions of a Hilbert frame and a Banach frame for Lw(~ ). The 

latter is the subject of Section 2.5. 

In Section 2.6, we examine the relationship between sets of 

2 k 
atoms for the Banach space Lw(~) and Banach frames for the same 

space. 

Section 2.1. Coorbit spaces 

In this section, we show that L:(~k) is a coorbit space in 

the sense of [FGl) and [FG2) whe never w is moderate. This implies 

the existence of W-H expansions of functions in L:(~k) by means of 

the Feichtinger/Grochenig theory. 

DEFINITION 2. 1 . 1. The Heisenberg group, ~. is the set Tx~kx~k 

with the following group operation. Given (t 1 ,a1 ,b1 ), 

Also, 

-1 -1 2rr1ab 
( t, a, b) = ( t e , -a, -b). 

The identity element in~ is (1,0,0). ~ is topologized by the 

k Ak 
product topology on Tx~ x~ 

The left-invariant Haar measure on~ is denoted dµ. The 

k Ak 
measuredµ is also given by the product measure on Tx~ x~, dt da 

db, where dt is normalized so that J
1
dt = 1. 
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Given functions F and G on~. we define the convolution of F 

and G by 

F*G(x) = JF(y- 1x)G(y) dµ(y). 

Given f, gin appropriate spaces, we define the function 

Vg(f) on~ by 

Vg(f)(t,a,b) = t<f,TbEag> = te2m<a,b>Jf(s)g(s-b)e-2m<b,s> ds. 

The function Vg(f) is referred to as the voice transform off with 

respect tog (cf. [FGl]). 

DEFINITION 2. 1.2. Given a moderate weight, w, we define the 

corresponding weight w3 on~ by w3 (t,a,b) = w(b). 

Define w3 (t,a, b) = IITct,a,b)II where T is the left-translation 

2 operator on the space Lw (~). That is, if x,y~~. then TxF(y) = 
3 

-1 F(x y). 

DEFINITION 2. 1.3. 
. 2 k 2 k Given w moderate, we define W(L (~ ),LwC~ )) as 

the Banach space of functions, f, on ~k such that, for some fixed 

llfllw(L2, L~) = (J11nbkll;L2 w(b) dbr
12 

< co 

where llgll'.1L2 = llgll2 = llgll 2 (see [Fl] for details). 

LEMMA 2. 1.4. Let w be a moderate weight. Then w3 (t,a,b) = w(b) 

for almost every b~~k (w is defined in Definition 0.5.7). 
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PROOF. Note first that for every XE~k. w(x+y) ~ w2(x)w(y). Let 

2 FELw (IH) and let (t 0 ,a0 ,b0 )EIH . Then 
3 

JJJJF(t-to,a-ao,b-bo) 1
2 

w3(t,a,b) dt da db 

= JJJIF(t,a,b-b0 )1
2 

w(b) dt da db 

= JJJIF(t,a,b)l
2 

w(b+b0 ) dt da db 

<_ w2(bo) IIF ll
2 
L2 (IH)" w3 

Thus w3(t,a,b) ~ w(b) almost everywhere. To see equality, let c > 

2 k 
0 and fELw(~ ) be such that l1Tbfll2,w ~ (w(b)-c) llfll2,w• Let 

2 k gEL (~) be such that llgll 2 = 1 . Then defining F(t,a,b) = f(b)g(a) 

gives that IIFIIL!(IH) = llfll2,w· Now, 

JJJIF(t-t 0 ,a-ao,b-bo)l
2 

w(b) dt da db 

- Jlg(a-aoJl 2 da Jlf(b-boll 2 w(b) db> 

k Thus, w2(t,a,b) ~ w(b)-c for almost every bE~ and all c > 0. 

Hence, the lemma is proved . ■ 

LEMMA 2 . 1. 5 . The space L~ (IH) is a Banach module over L: (IH) with 
3 3 

respect to convolution . 

PROOF . 
2 

Let HELl/o (IH). Then 
3 

l <F*G,H>l = 1JJF(y-
1
x)G(y)H( x ) dµ(y) dµ(x)I 

~ I J G ( Y) J J J F ( Y -l X) J J H ( X) J dµ ( X) dµ ( Y) 
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:5 IIHll2,1/w 3JIG(y) I IITyFll2,w 3 dµ(y) 

:5 II HII 2, 1/i:i311 FIi 2,i:i3II GIi 1 ,i:i3· 

Since IIF*Gll2,i:i 3 = sup{l<F*G,H>I: IIHll2,i/i:i 3 = 1}, we are done. ■ 

2 k 2 k 2 LEMMA 2. 1.6 . W(~L (R ),LwCR )) = Co(Y) where Y = Lw (~). That 
3 

is, given g such that V9 (g)EL1
3

C~). fEW(~L2(Rk),L:(Rk)) if and 

only if V9 (f)EY . 

PROOF. First observe that 

(f) (t b) t f TE -- te2Trl<a,b>Jf(s)-g(s-b) e-2Trl<a,s>ds V9 , a, = < , a bg> 

Now, 

llfllw(L2,L~) = J11nbg"11;L2 w(b) db= JJl(fTbg)"(a)1
2 

w(b) da db 

= JJJIV9 (f)(t , a,b)l
2 

w(b) dt da db< oo. 

The Feichtinger/Grochenig theory asserts that if the above holds 

for some g with V9 (g)EL1 3(~). then it holds for all such g. Thus, 

1 we can extend to all g such that V9 (g)ELi:i (~) since certainly, if 
3 

THEOREM 2 . 1.7 . (Feichtinger/ Grochenig) 

L:(Rk) = Co(Y) where Y = L: (~). 
3 

PROOF. This is true since, by Plancherel's Theorem, 
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Section 2.2. Lemmas on Wiener-type spaces 

This section contains results on the compatibility of norms 

00 1 
in Wiener-type spaces of the form W(L ,Lw) where w is a moderate 

weight. The purpose of this section is to provide specific 

estimates for constants whose existence can be inferred directly 

from [Fl]. These constants will play a role in the results which 

follow in this chapter. 

DEFINITION 2 . 2 . 1. A partition, P, of ~k into a countable 

collection of closed rectangles with disjoint interiors, P = 

{Iv} , where A is some index set, is called a bounded partition 
vc A 

if there exist numbers, r, R > 0 such that O < r ~ i(Iv) ~ m(Iv) ~ 

R < oo, for all v~A, where i(Iv) is the length of the smallest side 

of Iv, and m(Iv) is the length of the largest side of Iv. The 

numbers rand Rare the bounds of P, r being the lower bound and R 

the upper bound of P. 

for al 1 v~A. · 

k k 
In particular, observe that r ~ IIvl ~ R 

DEFINITION 2.2 . 2. Given a function g, a moderate weight w, and a 

partition P of ~k. we define the Wiener space norm cor responding 

tow and P, or just the Wiener space norm corresponding to P when 

w is understood, by 
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II g II w, P = L II g1 I} ., w C P, v) 

VEA 

where w(P,v) = inf w(x). 
xc IV 

If d > 0, and P = {Qd+dn: nEa'.k}, then ll·llw,P is denoted 

II· llw,d· If w = 1, then ll·llw,P is denoted 11·11.,, 1 ,d-

We define 

oo k 1 k 
W ( L ( IR ) , Lw ( IR ) ) = { f: II f II w, 1 < oo} . 

k oo 1 
Since IR is understood, we will write simply W(L ,Lw), and if w = 

00 1 
1, W(L ,L ). 

REMARK 2.2.3. Let us define, for Pa bounded partition with 

bounds rand R, the norm 

VEA 
• where w (P,v) = sup w(x). Since Pis bounded, for each VEA, Iv is 

xc 1v 

contained in a cube Ov such that IQl-<Rk. 
V Hence by Theorem 

1. 1. 6 ( 4 ) , for a 1 1 VE A , 

w(P,v) = inf w(x) ~ sup w(x) = w•(P,v) 
xc Iv xc 1 v 

and 

~ B(Rk) inf w(x) 
x<:Ov 

~ B(Rk) inf w(x) = B(Rk) w(P,v) 
xc IV 

• 
and hence 11 · llw,P is equivalent to II· llw,P• Actually, all that was 

required was the upper bound on P. It is clear from the above 

that we could replace w(P,v) by wCxv) for any XvEiv and still 

define an equivalent norm. 
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LEMMA 2.2.4. Let P1 = {Iv: VEA}, P2 = {Lm: mEB} be bounded 

partitions of ~k with bounds r 1 , R1 , and r 2, R2 respectively. 

Suppose that P2 refines P1 . Then there exists a number M > 0 such 

that for all jEA, 

PROOF. Since P1 and P2 are bounded partitions with the given 

bounds, Thus if Iv= 
Nv 

U Lm then since the sets Lm are pairwise disjoint almost 
l l 

l =1 

everywhere, we have that 

Putting M k 
= (R1/r2), we are done. ■ 

LEMMA 2.2.5. Let P1 = {Iv: VEA}, P2 = {Lm: mEB} be two partitions 

of ~k into non- empty, closed rectangles with disjoint interiors 

which are not necessarily bounded and let w be a moderate weight. 

Suppose that P2 refines P1 and that for each vEA, there exists a 

number Mv such that 

and such that 

sup Mv = M < co. 
VEA 

Finally, suppose that P1 has an upper bound in the sense of 

Definition 2.2. 1, that bound being R. 

and II· II w p are equi vaient. , 2 
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PROOF. Note first that, as in Remark 2.2.3, if Lm c Iv then, 

= inf w(x) ~ sup w(x) 
x<: Lm x<: 1 v 

~ B(Rk) inf w(x) = B(Rk) w(P1,v). 
x-= Iv 

Nv 
Now, given j, Iv = U Lm where the collect ion of Lm are 

i=l I I 

pairwise disjoint almost everywhere and 1 ~ Nv ~ M. Now 

for some 1 ~ i ~ Nv. Also, because P2 refines P1 , there is a 

one-to-one correspondence between v and m1 (v). Thus 

Now, 

L llg1L}"' w(P2, m) = 
m 

(since Lm c Iv) 

~ M B(Rk) L l[g1I}"' w(P1,v). 
V 

That is, 

LEMMA 2.2.6. Let P1 = {Iv: VEA}, P2 = {Lm: mEB} be two bounded 

partitions of ~k with bounds r 1, R1 and r 2, R2 respectively and 
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let w be a moderate weight. Then l\·llwP is equivalent to 
' 1 

II· l\w,P
2

• 

PROOF. Consider the partition of ~k defined by P3 = {Iv n Lm: 

vEA, mEB}. Relabel the sets in P3 so that we may write P3 = {Qs: 

SEC}. Clearly, P3 refines both P1 and P2 and I claim that there 

is a number M such that for all VEA and mEB, 

and 

To see why this is true, let 

Nv Nv 
Iv= u Os

1 
= u Lm n Iv. 

i=l i=l 
l 

Since t( Iv) !, R1 and m(Lm) ~ r2 > 0 for all VEA and mEB any 

of Iv can pass through at most LR1/r2J+2 of the Lm. Thus 
I 

#{sEC: Qs C Iv}= #{mEB: Lm n Iv~ 0} !, [LR1/r2J+2]k 

edge 

independent of j. A similar calculation shows the same result for 

the Lm where the upper bound is [LR2/r1J+2]k Thus we let 

M = max {[LR1/r2J+2f, [LR2lriJ+2f}· 

Also, since P1 and P2 are bounded, Lemma 2.2.5 implies that 

Hence the two norms are equivalent. ■ 

42 

,I " 



COROLLARY 2.2.7. Let c, d be positive numbers, and assume that d 

> c. Then for any function g, 

k 
=, 2 II g II., , 1, c · 

and 

[ )

-k 
k -1 k k 

L d/ C j + 2 B ( d ) II g II o , c =, II g II o , d =, 2 B ( C ) II g II o, c. 

PROOF. k Consider the two partitions P1 = {Qc+nc: nEl} and P2 = 

k 
{ Oct+nd: nEl } . It is easy to see that the largest number of 

k 

elements of P1 intersecting a given element of P2 is [LdlcJ+2) 

and the largest number of elements of P2 intersecting a given 

element of P1 is 2k. Thus the results follows from the arguments 

of Lemma 2.2.6. ■ 

COROLLARY 2.2.8. 
k oo 1 oo 1 

Let d > 0, aE~, gEW(L ,L ), and gEW(L ,Lw) for 

w a moderate weight. Then 

k 
=, 2 llgll.,,1,d 

and 

k k II Tag II w, d ::;; 2 B ( d ) II g II w, d • 

PROOF. We are comparing the Wiener space norms corresponding to 

k k 
the partitions P = {Qct+nd: nEl} and Pa= {Qd+a+nd: nEl }. It is 

easy to see that the largest number of elements of P intersecting 

a given element of Pa is 2k and the largest number of elements of 

Pa intersecting a given element of Pis also 2k. Thus the results 

follow from the arguments of Lemma 2.2.6. ■ 
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PROPOSITION 2.2.9. 
oo 1 2 k Let g_EW(L ,L0 ). Then gELl/w(IR ). 

PROOF. Note first that any function hEW(L00 ,L6) if and only if 

hwEW(L00 ,L1). Since w(x+y) ~ w(x) 2w(y) for all x, yEIRk, 

Proposition 1. 1.9 says that 

w~x) ~ w(O)w:(x). 

2 k 2 k Thus, L0 ~(1R ) c Ll/w(IR ) . 

I claim that gELi2(1Rk). Note that 

[Jlg(x) 1
2
w:(x) dxr/

2 
= [J1g_w(x) 1

2
dxr/

2 

= [JL lg_w1Q
1
+n(x)l

2
dx]

1
/
2 

~ L [J lg_w(x)l
2
dx]

1
/
2 

n n 01 +n 

~ L llg_w1Q1+nlloo < oo. ■ 
n 

EXAMPLE 2. 2. 10. 

( 1 ) k If there is a C > 0 such that for almost all xEIR, 

lg(x)I ~ C(l+lxl)k+l 

oo k 1 k then gEW(L (IR ),L (IR)), k ~ 1. 

(2) Let w(x) = (l+lxl)n for some integer n ~ 0. k Let gd'(IR ) . 

O'. 00 1 Then for all multiindices o:, D gEW(L ,Lw). This is true because 

O'. n k+l II D g ( x) ( 1 +Ix I ) ( 1 +Ix I ) II 
00 

< oo, 

so that 

O'. n k+l D g(x)(l+lxl) ~ C(l+lxl) . 

O'. 001 O'. 001 Thus, (D g)wEW(L , L ) , so that D gEW(L , Lw). 

Since w is a Beurling weight, we can take 

w(x) = (l+lxl )n_ 

O'. 00 1 Thus, D gEW(L ,L0 ) for all ex. and n. 
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Section 2.3. Existence of atoms for L2 (Rk) 
w 

In this section, we present a two-step method for obtaining 

sets of W-H atoms for the space L:(~k), when w is moderate. 

First, we assume that the analyzing vector is bounded and 

compactly supported, and compute explicitly the coefficient 

functionals. Next, we extend the collection of possible analyzing 

vectors to a large class of functions which do not necessarily 

have compact support. We show how to determine the coefficient 

functionals in this case also. 

The following two lemmas establish the existence of 

appropriate decompositions of L:(~k) when the analyzing vector has 

compact ·support. 

LEMMA 2.3. 1. Let~ be a compactly supported function, Q a cube 

with side b0 and supp(~) c Q. Suppose that for some a> 0, there 

exist numbers A, 8 > 0 such that 

A $ L l~(x-na) 1
2 

$ 8 
n 

k 
for almost every XE~. If 0 < b::; b0 then there exist constants 

2 k C2 > 0, independent of b, such that for all fELw(~ ), 

PROOF. 

LL 
n m 

2 
l<f,Embina~>I w(n;Q,a) 

2 
l<f,Embina~>I w(n;Q,a) 
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n m 

= b-k [ w(n;Q,a)J lf(x) 1
2

lip(x-na) 1
2 dx 

n Q+na 

= ( *). 

Now, 

(*) :$ b-k [ I lf(x) 1
2
w(x) lip(x-na) 1

2 
dx 

n Q+na 

= b-kJlf(xl l
2
w(x) ~ lip(x-na) 1

2 
dx :$ b-kBllfll~,w-

Since w is a moderate weight, by Theorem 1.1.6(4), we have that 

(*) ~ b-kB( IQI l-
1 

[ I lf(x) 1
2

lip(x-na) l 2 w(x) dx 
n Q+na 

Since B( IQI) is independent of b, we are done. ■ 

LEMMA 2.3.2. Let <p, g be bounded, compactly supported functions 

such that 

(1) supp(<p) c Q, and supp(g) c Q0 where Q and Q0 are cubes, Q c 

Qo, and Q0 has side bo, and 

(2) for some a> 0, there exist numbers Ao, Bo> 0 such that 

Ao :$ I [ g(x-na)ip(x-na) I :$ B0 • 

n 

Define the operator, S, by 

n m 

Then the sum defining S converges strongly in L~(~k) and moreover, 

Sf(x) = f(x)b-k [ g(x-na)q)(x-na) 
n 
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for all O < b < b0 , Sis a bijective homeomorphism of L~(~k) onto 

itself, and for all fEL~(~k) 

f = L [<s-1f,EmbTna'P> EmbTnag. 
n m 

PROOF. We will see in Lemma 2.3.7 that the sum defining S 

CXl 1 converges strongly since gEW(L ,Lw) and 

L L I <f, EmbTna'P> 1
2 

w(n; Q, a) < oo, 
n m 

where supp(rp) c Q. Since the sum defining S converges strongly, 

it converges as an iterated sum in L~(~k). Since g is bounded and 

compactly supported, Tnag·~<fTnaq,,Emb>Emb converges strongly in 

2 k -k -LwC~ ), provided O < b ~ b0 , to b fTna(grp). Specifically, since 

2 k - 2 -
fELwC~ ), fTna'PEL (Q0 ). Thus, ½n<fTna'P,Emb>Emb converges in 

2 -k -
L (Qo) to b fTna'P• Since supp(Tnag) is compact, 

Tnag L <fTnaq,, Emb>Emb 
m 

2 k 2 k -k -converges in L (~ ) and ¼(~ ) to b fTnaCgrp). 

Since the series L g(x-na)~(x-na) converges uniformly on 

compact sets, we have that L fTnaCg~) converges strongly in 

L:(~k). Specifically, since fEL:(~k), for all c > 0, there exists 

R > 0 such that 

J lf(x)l
2
w(x) 

lxl<:'.R 

2 dx < (c/Bo) . 

Also, there exists N > 0 such that if lnl<:'.N then 

Thus, 
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2 

II L f ( x) g ( x-na) cp( x-na) 11
2

, w 

lnl~N 

= Jlf(x) 1
2
w(x) \ L g(x-na)cp(x-na) I dx 

lnl~N 

!, II L g(x-na)cp(x-na)11: I lf(x) J
2
w(x) dx < e

2 

lnl~N lxl~R 

Th f }'fT T - t 1 . L2wC IRk). ere ore, ~ nag na'P converges s rangy 1n 

Since Sis given by multiplication by a function bounded 

2 k 
above and below, it is a continuous map from LwCIR) onto itself, 

and has a continuous inverse. Therefore, we have that 

f = S(S-
1
f) = L L <S-

1
f,EmbTna'P> EmbTnag. ■ 

n m 

COROLLARY 2.3.3. Let <p, g, satisfy the hypotheses of Lemma 2.3. 1 

for some a> 0. Then for any O < b !, b0 , there exists a 

collection of continuous linear functionals, an,m= L~(IRk) ~ C 

2 k such that for all fELwCIR ), 

f = L L an, m ( f ) Emb T nag 
n m 

strongly in L~(IRk) and there exist constants C1 , C2 > 0, 

independent of b, such that 

PROOF. 

that 

-1 
By Lemma 2. 3. 1 we can let an,mCf) = <S f, EmbTna'P> and get 

f = L L an' m ( f ) Emb T nag 
n m 

strongly. Letting C=B( IQI ), Lemma 2.3. 1 says that 
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LL -1 2 
l<S f,EmbTna~>I w(n;Q,a) ~ 

n m 

Now, 

so, 

2 
I an,mCf) I w(n; Q, a) ~ 

k 2 2 
b ( 8/ A ) II f 112' w •• 

n m 

REMARK 2.3.4. The reason for using two functions, ~ and g to 

define the decompositions is to get atomic decomposition 

constants, called C1 and C2 in Corollary 2.3.3, which do not 

depend on b. 

The only requirement of g, besides that it be bounded and 

compactly supported, is that ½-,g(x-na)~(x-na) be bounded above and 

below. This condition depends only on the values of g on the 

support of~- Thus, we can alter g arbitrarily off the support of 

~. provided we keep it compactly supported and bounded, and still 

infer the existence of appropriate coefficient functionals as in 

Corollary 2.3.3 (cf. Example 5. 1.3). 

The following results establish the existence of a large 

2 k 
class of mother wavelets for LwCR ). 

LEMMA 2.3.5. 
00 1 Let g be such that g, g_EW(L ,L0 ). Suppose that for 

some a> 0, there exist constants A, B > 0 such that for almost 
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k 
every XE:IR , 

A S L lg(x-na) 1
2 s 8. 

n 

Then there exists a cube Q and constants A', B' > 0, depending on 

Q, such that for every cube Q0 containing Q, and almost every 

k 
XE:IR ' 

A' s L s1Q(x-na)g1Q~x-na) I s B'. 
n 

In particular, 

A' S L lg1Q(x-na) 1
2 

SB'. 
n 

Claim: Leth be any function. Then 

[L lh(x-na) 1
2r/2 S llhll.,,1,a 

n 

for almost every x in IR\ 

Proof of claim: 

essxsup [ L I h(x-na) 1
2 

n 
] 

1/2 

[ 

1/2 
S \ ess sup I h(x-na) I 2] L xE:Qa 

n 

L lg(x-na) I = I L g(x-na)g(x-na) I 
n n 

= L [g1(x-na)+h1(x-na)] [g2(x-na)+h2(x-na) 1 I 
n 

= L g1(x-na)g2(x-na)+ L h1Cx-na)g2(x-na) 
n n 

+ L g2(x-na)h2(x-na)+ L h 1(x-na)h2(x-na) I 
n n 

= (.). 
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Now, since for all x, 1 = w(O) ~ w(x)w(-x), we have that 

(*) ~ I L g1(x-na)gz(x-na) I 
n 

+ [I L h1 (x-na)gz(x-na) I+ I L 81 (x-na)h2(x-na) I 
n n 

+ j ~ h1(x-na)h2(x-na) I] 
~ L g1(x-na)gz(x-na) I 

n 

+ L lh1(x-na) lt..l(x-na) 182-Cna-x) lt..l(na-x) 
n 

+ L lg1(x-na) l t..l(x-na) l h2_(na-x) l w(na-x) 
n 

+ L l h 1(x-na) lw(x-na) lh2_(na-x) l w(na-x) 
n 

= L 81 (x-na)gz(x-na) I + L I h1w(x-na) 1 1 g2_w(na-x) I 
n n 

+ L l g 1w(x-na) I lh2_w(na-x) I+ L lh1w(x-na) I lh2_w(na-x) I 
n n 

~ L 81Cx-na)gz(x-na) l + [ llh1t..lll.,,1,all82-wll.,,1,a 
n 

+ II 81 wll .,. 1, a II h2-t..1II.,. 1, a+ II h1 t..111.,, 1, a II h2-t..1II \., 1, a] . 

Similarly, 

(*) ~ IL 81Cx-na)gz(x-na) l -[llh1wll.,,1,all82-wlJ.,,1,a 
n 

+ 1181 wJJ., , 1, all h2-wll., , 1. a+ II h1 wJI.,, 1, all h2-wll.,, 1, a] . 

Now, given c > 0, there exists a cube Q such that 

for all cubes Q0 containing Q. Let c be so small that 

2 
dllgwll.,,1,a+Jlg_t..lll.,,1,a)+c < A/2 and choose Q corresponding to 

this c. Let Q0 be any cube such that Q c Qo. Let g1 = g1Q' h1 = 
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g - g1Q' gz = g1Qo' and h2 = g - g1Q
0

. Then 1lh1wllm,l,a < c, 

llh2_wJlm,l,a < c, l!g1wllm,l,a ~ llgwl!m,l,a• and llgz_wflc.,1,a ~ 

ilg_wllm,1,a• Combining this with the above inequalities gives that 

k for almost every X€~, 

0 < A/2 ~ I [ g1Q(x-na)g1Q~x-na) I ~ B+A/2 < oo. ■ 
n 

The functions g1Q and g1Q
0 

will play the roles of~ and g 

respectively in Lemmas 2.3 . 1 and 2.3.2. 

c Q+nc for each n€lk where Q is a cube of sided> 0. If c ~ d > 

0, then 

~ B(dk)
112

[[ llhnll~ w(n;Q,c)f
12

. 
n 

If O < c < d, then 

II ~hnll2,w ~ [B(dk)3kc-kdk]l,(2[~ llhnll~ w(n;Q,c)] 
1/2 

PROOF. If c ~ d > 0, then the supports of the hn are all disjoint 

and 

I I ~ ho( x) 1
2 

w(x) dx - ~ J1h0 (x) 1
2 

w(x) dx 

~ B ( I Qd I ) ~ I I hn ( x) I 2 
dx w ( n; Q, c ) 

= B(dk) [ llhnll~ w(n;Q,c). 
n 

If c < d then let R = Ld/cJ+2. k 
then given n€l, n * 0, 

Q ('\ (Q+cRn) = 0. 
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Thus we may partition Zk into Rk disjoint pieces. That is, we may 
Rk 

write Zk = U 11 where 
i=l 

More specifically, for each multi-index j = (j 1 , •.. ,jk) with jmEZ 

k and O .:5 jm .:5 R-1 for m=l,2, ... ,k, set IJ = {j+Rl: lEZ }. 

Relabeling the IJ gives us the partition we want. Since for any 

numbers a 1 EiC, 

n[ 
l=l 

we have that 

J I ~ h.(x) I "wcx) dx < Jct: .t lh.(x) Ir w(x) dx 

< Rtt: l~r, I h.(x) if w(x) dx = Rt( Ji, ll>n(x) I 
2
w(x) dx 

= R' ~ J 1h0 (x) 12w(x) dx < RkB( 10.1) ~ J 1h0 (x)l 2 dx w(n;Q,c) 

.:5 3kc-kdkB(dk) L ll hnll~ w(n;Q,c). ■ 
n 

LEMMA 2.3.7. Let Can,m) be a sequence of numbers only finitely 

many of which are non-zero, co 1 a, b > 0, and gEW(L ,L0 ). 

any O < d .:5 1/b, and cube Q of sided, 

.:5 [B(dk)3ka-kd-k)1/2[ L llg1Q+dvllco 
V 

w(dv) ] 

b-k/
2

[ L L lan,m1
2 

n m 
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Then for 



where B(dk) is the constant defined in Theorem 1.1.6(4) and hence 

is independent of b. 

PROOF. We can write 

g = L Tdv(T_dvg1Q+dv) = LTdvgv 
V V 

where gv is supported in Q for all v and where Ilg)'" = llg1Q+dvll'". 

Thus, 

II L L an, m T naEmbll 2, w 
n m 

= II L Tdv [ L Tna [ L an,m Emb8V ]] 112,w 
V n m 

= ( *) 

by Lemma 2.3.6 since 

for all n in Zk. Now, since the side length of Q is~ 1/b and 

Thus, 

] 

1/2 

w(n;Q,a) . ■ 
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COROLLARY 2.3.8. Let w(n;a) = w(n;Q1 ,a) and denote by B(v) the 

constant corresponding to the moderate weight was in Theorem 

1. 1.6(4). Then for any sequence of numbers (an,m), with the 

property that 

L I an, m I 2 
w ( n; a) :5 00, 

n,m 

there is a constant C independent of g and b, for b :5 1, such that 

[ 

1/2 

II L L an,m TnaEmbgt,w :5 Cllgllc;,1b-k
12 L L lan,m1

2 
w(n;a)) 

n m n m 

and the sum on the left side converges strongly in L:(Rk). 

PROOF. Suppose first that only finitely many of the an,m are 

non-zero. By Proposition 1.1.11, if we let C1 = B(IQal) where a= 

max{l,d} then w(n;Q,a) :5 C1w(n;a). Now, by definition, 

k k 
and by Corollary 2.2.6, if d > 1 then llgll 0 ,ct :5 2 B(d )llgll 0 ,1 and 

if d < 1, llgllo,d :5 ( LdJ+2)kB(l)llgllo,1- Combining the above with 

Lemma 2.3.7 gives the conclusion with 

Since the only requirement of d was that O < d :5 1/b, the 

inequality follows in this case. For arbitrary (an,m), the fact 

that 

L lan,m1
2 

w(n;a) < oo 
n,m 

enables us to show that the series 

L L an,m. TnaEmbg 
n m 
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is Cauchy in L:(!Rk). The conclusion follows from completeness of 

2 k 
Lw( IR ) • ■ 

THEOREM 2.3.9. 
Cl) 1 Let g be such that g, g_€W(L ,L0 ) and for some a> 

k O there exist constants A, B > 0 such that for almost every X€IR, 

(.) A~ [ lg(x-na)l
2

~B. 
n 

Then there exist a cube Q and b0 > 0 such that for all O < b ~ bo, 

2 k there exist linear functionals an,m: Lw(IR) ~ C such that for 

2 k all f€Lw(IR ), 

f = L L an,m(f) TnaEmbg 
n m 

strongly and there exist constants • 1 , • 2 > 0 such that for all 

PROOF. By Lemma 2.3.7, there exists a cube Q and constants A', B' 

>Osuch that Q has sided and 

k for every cube Q0 containing Q and almost every X€IR. Now fix Qo 

such that Q c Qo, Qo has side bo and 

~ ll(g1Qo-g) 1Q+dvllCI) w(dv) < A[3k/2a-k/2dk/2B(IQl)B'l/2rl 

for some O <A< 1. Now by Lemmas 2.3.1 and 2.3.2, for all O < b 

~ bo, there exist linear functionals Cn,m: L~(!Rk) ~ C such that 

f = L L Cn,mCf) TnaEmbCg1Q
0

) 

n m 

and 
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C11/
2

11fll2,w 5 b-k/2(L L /cn,mCfl/
2 

w(n;Q,a)f
12 

5 
n m 

where C2 is independent of b. By Lemma 2.3.7, 

llr- L 
n 

L Cn,mCf) TnaEmbgll 2 ,w 
m 

= II [ L Cn,m(f) TnaEmb(g1
00

-g)ll 2 ,w 
n m 

] 

l/2 
-k/2 2 

b ( L L lcn,mCf) I w(n; Q, a) 
n m 

< i\llfll . 2,w 
2 k 2 k 

Hence if we define the operator U: LwC~) ~ LwC~) by 

U( f) = L L Cn,mC f) EmbTnag, 
n m 

we have that II I-UI/ 5 i\ < 1 so that U is continuously invertible. 

Defining 

we have that 

f = U(U-
1
f) = L L an,mCf) TnaEmbg 

n m 

where the coefficient functionals, an,m, satisfy the appropriate 

estimates. ■ 
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Section 2.4. Existence of atoms in Sobolev Spaces 

Because the translation and modulation operators exchange 

roles under the action of the Fourier transform, the results of 

Section 2.3 give decomposition theorems for functions whose 

Fourier transforms lie in L~(~k). In particular, if the weight w 

is a polynomial, then we have decompositions for certain of the 

Bessel potential spaces, or Sobolev spaces (cf. [F2]). 

DEFINITION 2.4. 1. 
~k 

Let w be a moderate weight on~, then we 

define the spaces f~(~k) by 

If w( r) 

f~(~k) = {f: J1rcr)l
2
w(r) ctr= llfll~~ < 00} 

= (l+lrl 2
)a/Z for some a> 0, we denote f~(~k) by f 2 (~k). 

a 

This is a Sobolev space of order a . 

THEOREM 2.4.2. 
2k /\/\ tol 

Let g~fwC~) be such that g, g_~~(L ,L0 ) and 

suppose that for some a> 0, there exist constants A, B > 0 such 

that 

A ~ L l~(r-na) 12 ~ B 
n 

~k 
for almost all r~~ Then there exist a cube Q and b0 > 0 such 

that for every O < b ~ b0 , there exists a collection of linear 

W
2w('°k) IC d O h th t functionals an,m= .I., LI\ ~ an constants -r 1 , -r2 > sue a 

2 k 
for every f~fwC~ l, 
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f = L L an,m(f) TmbEnag 
n m 

PROOF. Thus, it follows from Theorem 

2.3.9 that there exists a cube Q, and b0 > 0 such that for every 0 

< b < b0 , there exists a collection of linear functionals bn,m: 

2 Ak 
Lw(~) ~ t such that 

n m 

where the sum converges strongly in L:(~k). Thus we have that 

f = L L bn,m(f) TmbLnag 
n m 

where the sum converges strongly in 1:c~k). Also by Theorem 

2.3.9, there exist constants • 1 and •2 such that 

A [ A ] 1/2 
•1 ll f ll 2,w :,; L L lbn,mCf) 1

2 
w(n;Q,a) ::; 

n m 

Putting an, mCf) = b-n,mCf) we are done. ■ 

REMARK 2.4.3. A comparison of Theorems 2.3.9 and 2.4.2 reveal how 

the properties of a function are reflected in the coefficients in 

a Weyl-Heisenberg decomposition. Roughly speaking, f€f:(~k) is 

characterized by a smoothness condition. For example, if the 

n 2 k 
weight being considered is w(x)=(l+ lx l ) then to say that f€Lw(~) 

says that the nth order distributional derivatives off are in 

L2(~k). The smoothness off is reflected in the local behavior of 

the coefficients of the W-H decomposition. If we suppose that f = 
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L L an,m TmbEnag for some g, one can think of the sequence {an,m}, 

m fixed, as reflecting the behavior off in a neighborhood of the 

point mb. The smoothness off appears in the rapid decay of the 

sequence {an,m}, m fixed, specifically that 

L I an, m 1
2 

w ( n; Q, a) < oo 

n 

for each m. 

If we are decomposing L~(~k), the situation is reversed. A 

. 2 k function fELw(~) is characterized by a decay condition which is 

global in nature. If we suppose that f = L L bn,m EmbTnag, then 

the sequence {b0 ,m}, n fixed, reflects the behavior off in a 

neighborhood of the point na. The most we can say about this 

sequence is that it is square summable for each n. That is, the 

global structure off is not present in the local coefficients. 

The global properties off are reflected in the behavior of the 

sequence {bn,m}, m fixed, specifically that 

L lbn,m1
2 

w(n;Q,a) < oo 

n 

for each m. 
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Section 2.5. Banach frames and Hilbert frames for L2 (Rk) 
w 

What we have shown in the previous sections of this chapter 

is that if the number a and the function gEW(L00 ,L;) satisfy 

certain conditions then for all sufficiently small b, the 

collection of functions {EmbTnag} is a set of atoms for L~(IF/). 

Dual to the notion of a set of atoms for a Banach space is the 

notion of a Banach frame (cf. [Grl]). In a Hilbert space, these 

notions are equivalent. 

Since L~(IRk) is a Hilbert space with respect to a weighted 

inner product (cf. Section 0.3), it .is natural to investigate the 

relationship between Banach frames of W-H wavelets for the Banach 

2 k space Lw(IR) and frames of such wavelets for the Hilbert space 

In this section, we show that the two notions are not 

equivalent in the simple case of a compactly supported, continuous 

mother wavelet. 

THEOREM 2.5. 1. Let g be a bounded function supported in a compact 

set, say in a cube Q with side length at most 1/b. If for some a 

> 0, 
k 

there are constants A, B > 0 such that for almost every XEIR, 

( 1 ) A !, L w(n;Q,a) lg(x-na) 1
2 

!, B 
n 

then {EmbTnag} is a frame for the Hilbert space L~(IRk). 

2 k 
there are constants C1 , C2 > 0 such that for all fELw(IR ), 
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Moreover, condition (1) is necessary for the conclusion to hold. 

PROOF. 

LL 
n m 

2 
I <f, EmbTnag>wl 

= ~ ~ 1Jf(x)w(x)g(x-na) e
2
mb<m,x> dxl

2 

= b-kLI lf(x)l
2
w(x)

2
lg(x-na)1

2 
dx = (*). 

n Q+na 

Now, since w is a moderate weight, 

(*) ~ B(IQl)d2b-k~w(n;Q,a)Jlf(x)l
2
w(x)lg(x-na)l

2 
dx 

= B( IQI ld2b-kJlf(x) 1
2
w(x) ~ w(n;Q,a) lg(x-na) 1

2 
dx 

~ B( IQI )d2Bb-kllfll~ w 
' 

where d 2 is the constant given in Proposition 1. 1. 11. Also, 

(*) ~ d 1b-k~w(n;Q,a)Jlf(x)l
2
w(x)lg(x-na)l

2 
dx 

-k 2 
~ Ad1 b II f II 2, w 

with d 1 the constant of Proposition 1. 1.11. 

To see that the condition (1) is necessary, suppose for 

example that L w(n;Q,a) lg(x-na)i
2 

is unbounded above. Then given 

M > 0 there is a set E with O < IEI < oo such that 

L w(n;Q,a) lg(x-na) 1
2 

> M 
n 

for all xEE. Let f(x) = w(x)-
1

/
2
1E(x)IEl-

1
/
2 

(this can be done 

since w is positive and finite-valued). Then llfll 2,w = 1 and by 

the above calculations, 

LL 
n m 
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.:: d1b-kJlf(x) 1
2
w(x) ~ w(n;Q,a) lg(x-na) 12 dx 

:::: d1b-klEIJ L w(n;Q,a) lg(x-na) 12 dx > d1b-kM. 
E n 

Thus, there is no upper frame bound. A similar calculation shows 

that if L w(n;Q,a)lg(x-na)l 2 were not bounded below, there would 

be no lower frame bound. ■ 

THEOREM 2.5.2. Let g be a bounded function, supported in a 

compact set, say a cube Q with side length at most 1/b. If for 

some a> 0, there are constants A, B > 0 such that for almost 

k every XE:IR , 

(2) A ~ L I g(x-na) I 
2 ~ B, 

n 

2 k then {EmbTnag} is a Banach frame for LwCIR ). That is, there are 

constants C1, C2 > 0 such that for all fE:L:(IRk), 

C1llflltw ~ L L l<f,EmbTnag>l
2 

w(n;Q,a) ~ C2llflltw• 
n m 

Moreover, condition (2) is necessary for the conclusion to hold. 

PROOF. 

LL 
n m 

2 
l <f,EmbTnag>I w(n;Q,a) 

:::: ~ ~ I Jrcx)g(x-na) 
2 

e-2Trlb<m,x> dxl w(n;Q,a) 

:::: b-kLJ lf(x)l 2 lg(x-na) l2 dx w(n;Q,a):::: (*). 
n Q+na 

Now, since w is a moderate weight, there is a constant d1 (cf . 

Proposition 1. 1. 11) such that w(x) ~ d1w(n;Q,a) for every XE:Q+na . 

Thus, 
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(*) $ d1b-k L f lf(x) l2w(x) lg(x-na) 12 dx 
n Q+na 

= d1b-kf lf(x) l
2
w(x) ~ lg(x-na) 1

2 
dx 

-k 2 
$ d1Bb ll fll2,w• 

Also, there is a constant d2 (cf. Proposition 1. 1.11) such that 

w(x) $ B(IQI )d2w(n;Q,a) for every X€Q+na. Thus, 

(*) ~ [B( IQI )d2]-1b-k L f lf(x) 12w(x) lg(x-na) 12 dx 
n Q+na 

= [B( IQ I )d2]-1b-kf lf(x) 12w(x) ~ lg(x-na) 1
2 dx 

~ [B( IQI )d2 ] -1Ab-kllflltw-

The necessity of condition (2) follows as in the previous 

theo r em. 2 Specifically, suppose that Llg(x-na) I was not bounded 

below, then given o > 0 there would be a set E such that O < IEI < 

2 
oo and such that Llg(x-na) I < o for all X€E. Let f(x) = 

-1/2 -1/2 w(x) 1E(x) IEI which can be done since w is positive and 

finite-valued. Thus, 1ifll2,w= 1 and 

(*) ~ d1b-kf lf(x) 1
2
w(x) ~ lg(x-na) 12 dx 

= d1b-k lE1-1J L lg(x-na) l
2 

dx < d1b-kBollfll~,w. 
E n 

Since o was arbitrary, there is no lower frame bound . Similarly, 

2 if L lg(x-na) I were unbounded above, there would be no upper frame 

bound. ■ 

REMARK 2.5.3 . An examination of Theorem 2.5. 1 reveals that unless 

w is bounded above and away from zero, condition (1) i s vacuous . 
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That is, if g is any function, compactly supported or not, which 

satisfies (1), then g = 0 almost everywhere. 

To see this, suppose not. Then there is a set E c ~k with 0 

< IEI < oo such that for some ~ > 0, lg(x) I 2:: ~ on E. If w(x) is 

unbounded above, then given M > 0 and any cube Q, there is an 

n0 €Zk such that w(no;Q,a) > M. If X€E+noa, then 

L w(n;Q,a) lg(x-na) 1
2 

2:: w(no;Q,a) lg(x-n0 ) 1
2 

2:: ~M . 
n 

Since M was arbitrary, (1) fails. If w(x) were not bounded away 

from zero, we could in a similar fashion show that {EmbTnag} 

failed to have a lower frame bound. Thus no compactly supported . 
2 k function can generate a Hilbert space frame for Lw(~) for all b 

in a neighborhood of zero. 

Now, let g be a continuous function with compact support 

which does not vanish in the interior of its support. Then for 

some small a> 0, condition (2) of Theorem 2.5.2 is satisfied so 

that for all b sufficiently small, (g,a,b) generates a Banach 

2 k frame for Lw(~ ). Obviously, then, the notions of a Banach frame 

and a Hilbert space frame for L~(~k) are not equivalent . 
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Section 2.6. Banach frames and sets of atoms in L2 (Rk) 
w 

In this section, we examine the relationship between sets of 

2 k 
atoms and Banach frames for Lw(IR ) . It is well-known (cf. [Grl]) 

that, in a Hilbert space, the notion of a set of atoms and a frame 

are equivalent. Also, Chris Heil has proven a remarkable result 

which says that in a Hilbert space, the dual frame associated to 

any frame is unique. We will prove slightly weaker analogues of 

these results. 

In what follows, w(n;a) is taken to mean w(n;Q1 ,a) for a> 0. 

THEOREM 2. 6. 1. 
1X1 1 Let a, b > 0 and gEW(L ,L0 ). 

set of atoms for L~(IRk) with atomic bounds A, Band coefficient 

functionals am,n, then it is a Banach frame for Li/w(IRk). PROOF . 

2 k Suppose that {EmbTnag} is a set of atoms for Lw(IR ). Note that 

2 k for any hELw(IR ) , 

l<f,h>I = l<f, L [an,m(h) EmbTnag> I 
n m 

1/2 
l<f,EmbTnag>l

2 
1/w(n;a)] 

2 
Since llf!l2,1/w = sup{l<f,h>I: llhll2,w = 1}, we have that 

llfllt1/w ~BL L l<f,EmbTnag>l
2 

1/w(n;a). 
n m 

Now, let an,m = <f,EmbTnag>, and observe that for any sequence 

{ bn, m} we have that 
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= l<f, L L bn,m EmbTnag>I ::; llfll2,1/w II L L bn,m EmbTnagll 2,w• 
n m n m 

By Corollary 2.3.8, we know that there is a constant, C, depending 

only on k, a, g, and b such that 
2 

II L L bn,m EmbTnagll 2,w ::; CL L I bn,ml 
2 

w(n; a). 
n m n m 

Since the dual space of t! is tf/..,, we have that 

LL 2 I <f, EmbTnag> I 1/w(n; a) 
n m 

and hence that 

LL 
n m 

Here we state the result due to Heil mentioned in the 

introduction to this section. Its proof can be found in [H] and 

is reproduced in Section 5.1. 

THEOREM 5. 1.6. (Heil) Let H be a Hilbert space, and {xn} a set of 

atoms for H. Let an be the collection of coefficient functionals 

associated to {xn}. 
-1 

Then an ( f) = <f, S Xn> where 

Sf = L <f, Xn>Xn. 
n 

THEOREM 2. 6. 2. let wo(x) = max{ 1, w(x)}, and let g be such that g, 

co 1 g_€W(L ,Lw ). Suppose that for some a> 0, there exist constants 
0 

k A, B > 0 such that for almost every X€~, 
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A :S L lg(x-na) 1
2 

:S B. 
n 

Then there is a b0 > 0 such that for al 1 0 < b S b0 , {EmbTnag} is 

2 k 
a Banach frame for LwC~ ), that is, there exist constants c 1, c2 > 

2 k O such that for al 1 fE:LwC~ ) , 

c1llflltw :S LL l<f,EmbTnag>l
2 

w(n;a) S c21ifll2,w• 
n m 

PROOF. Consider the coefficient functionals, an,m, defined in 

Theorem 2.3.9. I claim that if bis sufficiently small and if 

2k 2k 2 • 2 fE:L (~ ) r. LwC~ ), then LL lan,mCf) I is equivalent to 1ifll2, and 

LL lan,mCf) 1
2 

w(n;a) is equivalent to llfll~,w-

Choose a cube Q0 so large that there are constants Ao, Bo> 0 

k such that for almost every XE:~, 

Such a cube exists by Lemma 2.3.5. 

-1 
Let Cn,mCf) = <S1 f,EmbTnaCg1Q)> where 

S1f = L L <f, EmbTnag1Q> EmbTnag1Qo' 
n m 

Q and Q0 are cubes, Q c Qo, and Qo has side length at most 1/b. 

2 k 2 k 
Since f.;:L (~) r. LwC~) and since g1Q and g1Qo are bounded and 

compactly supported,the sum defining S1 converges strongly in 

L2(~k) and in L~(~k) and converges to 

f(x) b-k L g1Q(x-na)g1Q (x-na). 
n 0 

2 k 2 k . Thus S1 is bounded on L (~) and LwC~) with a bounded inverse. 

Applying Corollary 2.3.3 twice, once with the weight 

identically 1 and again with weight w, we have that 
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bk A0B;
2

11 fl!~ s L L lcn,m(f)l
2 s bkBo~

2
ilfll~ 

n m 

and that 

bkAoB;
2
B( !QI )-

1
llflltw s LL 2 

lcn,m(f)I w(n;a) s k -2 2 
b BoAo !lfll2,w• 

n m 

Define 

Uf = L L Cn,m(f) EmbTna8• 
n m 

We wish to estimate !lf-Uf!l 2. To do this, note that the estimates 

of llf-Uf!l 2 ,w in Theorem 2. 3. 9 are valid when w = 1. Thus we have 

l!f-Uf!l 2 S 3k/
2
a-k/

2
dk/

2 L II (g10o-g)1Q+dvll
00

[B0A;
1Jl/2llfll2, 

V 

Let Q0 be so large that 

< A[3k/2a-k/2dk/2B( IQ! HB0A;111/2r
1 

Since B(IQI) ~ 1, we have that 

~ II (g1Qo-g) 1Q+dvlloo S ~ II (g10o-g) 1Q+dvlloo Wo(dv) 

< ;\_ [ 3k/2a-k/2dk/2B ( IQ I ) [ BoA;t J 1/2]-t 

s ;\_ [3k/2a- k/2dk/2[ BoA;t 1 l/2]-1 

and also that 

~ ll(g1Qo-g) 1Q+dv lloo w(dv) s ~ ll(g1Qo-g) 1Q+dvlloo wo(dv) 

< ;\_ [3k/2a-k/2dk/2B( I QI) [ BoA;t l 1/2rl 

Therefore !lf-Uf!l 2 < ;\.llfll 2, where ;\. < 1, and consequently, U maps 

2 k 2 k 
L (~) onto L (~) and has a continuous inverse. Similarly, 
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llf-Uf112,w < Allfll2,w and U is a continuous bijection on L:ca/) with 

a continuous inverse. 

-1 2 
Letting an,mCf) = Cn,mCU f) we have that LL lan,mCf) I is 

equivalent to llfll~ and that f = LL an,mCf) EmbTnag where the sum 

converges strongly in L
2

(1Rk). Thus by Heil's Lemma (Theorem 

-1 2 k 2 k 
5.1.7), an,mCf) = <f,EmbTnaS g> for all fEL (IR) n Lwrn ). Since 

each an,m is a continuous linear functional on L:(IRk) and since 

L2 (1Rk) n L:(IRk) is dense in L:(IRk), we have that an,mCf) = 
-1 2 k 

<f, EmbTnaS g> for al 1 f<:Lw(IR ) . 

To complete the proof we must show that in fact 

-1 -1 2 k 
<f, EmbTnaS g> = <S f, EmbTnag> for al 1 fELwCIR ) . Certainly, this 

is true for f<:L2 (1Rk). 

-1 2 k 
By Theorem 4 . 1. 6, S is a bounded operator on Lw(IR ) and 

2 k 2 k L1/ wCIR) for all sufficiently small b. Thus let fn<:L (IR) n 

L:(IRk) be such that fn ~fin L:(IRk). Then 

-1 -1 
+ II S II L:➔L:11 f-f nil 2, wll Emb T naS gll 2, 1/w· 

co 1 2 k 
Since g_<:W(L ,Lw), g<:L1/ wCIR) by Proposition 2.2.8. Also, since 

S-1 is a continuous operator on Lf/wCIRk) for all sufficiently 

-1 
small b by Theorem 4. 1.6, we have that IIEmbTnaS gll2,1/w < oo. 

-1 -1 
Thus, we have shown that <f,EmbTnaS g> = <S f,EmbTnag>. 
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2 
Now, an,mCSf) = <f,EmbTnag> and LL lan,mCSf) I w(n;a) is 

equivalent to IISflltw which is equivalent to llflltw. That is, 

there exist constants c 1 and c 2 independent off such that 

LL oo. ■ 

n m 

THEOREM 2.6.3. Suppose that g is such that g, g_~W(L00 ,L6), and 

that for some a> 0, there exist constants A, 8 > 0 such that 

A :$ L lg(x-na) 1
2 

:$ 8. 
n 

Finally suppose that there exists b0 > 0 such that for all O < b < 

2 k 
b0 , {EmbTnag} is a Banach frame for LwC~ ), that is, there exist 

2 k constants c 1, c 2 > 0 such that for all f~LwC~ ), 

c1ilfll~,w :$ L L l<f,EmbTnag>l
2 

w(n;a) :5 c2ilflltw-
n m 

Then there exists a O < b1 :5 b0 such that for all O < b :5 b1, 

2 k 
{EmbTnag} is a set of atoms for LwC~ ). In fact, for each 

n m 

= L L -1 <f,EmbTnaS g> EmbTnag 
n m 

L L <f, EmbTnag> 
-1 = EmbTnaS g 

n m 

where 

Sf = L L <f, EmbTnag> EmbTnag. 
n m 

PROOF. Since g~W(L
00

,L6), since {EmbTnag} is a Banach frame, and 

by Lemma 2.3.6, the sum defining the S operator converges strongly 

in L:(~k). By Theorem 4. 1.6, for all sufficiently small b, the S 
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operator is continuously invertible on L~(~k). Therefore the 

formulas for f hold. Also, since {EmbTnag} is a Banach frame for 

L~(~k), LL l<S-
1
f,EmbTnag>l

2 
w(n;a) is equivalent to llflltw-• 
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CHAPTER 3 

STABILITY OF ATOMS IN L 2(Rk) w 

The stability results in this chapter are in the spirit of 

similar results proven by Feichtinger and Gr6chenig in [FG2]. The 

results obtained in [FG2] concern W-H decompositions for a wide 

variety of spaces, namely coorbit spaces for the Heisenberg group. 

In this chapter, we prove similar but more general results for the 

spaces L:(IRk) using the techniques of Chapter 2. 

In Section 3.1, we prove that, under suitable hypotheses, a 

set of W-H atoms for L:(IRk) continues to be a set of atoms under 

perturbation of the mother wavelet and of the translation and 

modualtion lattice. 

In Section 3.2, we show that, under suitable hypotheses, a 

t f W H t f L
2
w ( IRk ) t i t b d h . se o - a oms or con nues o e so un er a c ange 1n 

the lattice parameters. 

Section 3.1. Stability under perturbations 

The results of this section fall into two categories: 1) 

stability with respect to a perturbation of the mother wavelet and 

2) stability with respect to a perturbation of the lattice. 

The notion of c loseness for mother wavelets is simply the 

metric in W(L
00

,Lt). The theorem here is valid whether the mother 
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wavelet being perturbed is in W(L
00

,L6) or not. 

The notion of closeness of two collections of points in this 

section is simply uniform closeness of the corresponding points, 

i.e., two collections of points in ~kx~k. (an,bn) and (cn,dn) are 

within a distance c if lan-cnl < c and lbn-dnl < c. This notion 

is more general than the one in [FG2] which is given in terms of 

closeness with respect to the topology of the Heisenberg group. 

The result here is the expected stability result for the W-H 

wavelet decomposition. 

The problem with defining closeness in terms of the 

Heisenberg group, ~ (cf. Definition 2.1.1), is that the toral 

component of elements in~. while essential to the group 

structure, is simply superfluous when one is obtaining 

decompositions of L!(~k) in terms of translations and modulations. 

Requiring that two points in the lattice, x and y, be close in~ 

requires that the toral component of their difference, i.e., of 

y- 1x be close to 1. In doing so, one may force the two other 

components to be artificially close together. Specifically, we 

have the following result. 

THEOREM 3.1.1. Let c > 0 and let x, y€~ be given by x = 

(t 1 ,a1 ,b1 ) and y = (t 2 ,a2 ,b2 ). Then there is a neighborhood U, of 

the identity, (1,0,0), in~ such that y- 1x€U implies that la1-a2 1 

< c and lb1-b2 1 < c. However, the converse is false, that is, 

there exists a neighborhood U of the identity in~ such that given 
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PROOF. Recall that the Heisenberg group~ is identified with the 

k Ak 
set Tx~ x~, and is equipped with the product topology. To prove 

the first part, we can take U = TxB(O,c)xB(O,c), then clearly, if 

To prove the second part, we may take, for any O <A< 1, U = 

{zET: arg(z)E[-rrA,rrA]}xB(O,c)xB(O,c). k Take any a, bE~ such that 

-1 
y x = (-1,0,0) which is not in U, but of course la1-a2 1 < c and 

THEOREM 3. 1.2. Suppose that gEL~(~k) is such that for some a, b > 

0, {EmbTnag} is a set of atoms for L~(~k) with atomic bounds A, B. 

Then given c > 0 there is a o > 0 such that if g 1EL~(~k) is such 

that II g-g1 II o, 1 < o then {EmbTnag1} is also a set of atoms for 

L~(~k) with atomic bounds A1, 8 1 where A1 ~ A(l-c) and 81 ~ 

B(l+d. 

PROOF. Let an,m be the collection of coefficient functionals 

associated to the set of atoms {EmbTnag}. Then we have 

f = L L an,m(f) EmbTnag 
n m 

2k 2k 001 
for all fELwC~ ). Let g 1ELwC~) be such that g-g1EW(L ,L0 ) and 

define the operator S1 by 

S1f = L L an,m( f) EmbT nagl. 
n m 
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We show first that the sum defining S1 converges strongly in 

2 k 2 k Lw(R) for each f€Lw(R ). Given a finite set of indices J = 

k k J J 
(J1,J2) cl xl define the partial sum operators S and S1 by 

SJf = L L an,m(f) EmbTnag 
no: J1 mo: J2 

and 

Sif = L L an,m(f) EmbTnagl. 
no:J1 mo:J2 

Let c > 0. Then there is a finite set of indices F = (F1,F2) c 

lkxlk such that for any other finite set of indices G = (G1,G2), 

we have that 

2 lan,m(f)I w(n;a) < c. 

We know also that, since {EmbTnag} is a set of atoms, the sum 

defining Sf converges strongly. Thus there is a finite set of 

indices H = (H1,H2) such that if G = (G1,G2) is any finite set of 

indices, we have that 

Now let I= Fu H = (I 1,I 2). Then for any finite set of indices G 

= (G1,G2), we have that 

11sr1fll2,w :$ 11s~'1f-sG'
1
fll2,w+IISG'

1
fll2,w 

2 
lan,m(f) I w(n;a)+c 

where C depends on a, b, and w. Since c was arbitrary, we are 

done. 
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Since by definition, Sis the identity, we have that 

llf-S1fll2,w == II L L an,mCf) EmbTnaCg-gi) 11 2 ,w 
n m 

where C is independent of g, g 1 and f. Assuming that A< 1, we 

have that II I-S111 :S A < 1 which implies that S1 is a bijective 

h . f L2
w ( IRk ) . homeomorp ism o 

-1 -1 
IIIII-III-S111 :e:: 1-A, and 11S1 II :S (1-A) . Letting c 0 ,m(f) = 

-1 2 k 
a 0 ,m(S1 f), we have that for all fELwCIR ) , 

f == L L Cn,m(f) EmbTnagl. 
n m 

Now, 

n m n m 

2 -1 2 2 -2 2 
:SB 11S1 fll2,w :SB (1-A) llfh,w-

Also, 

n m n m 

Now, given c > 0, there is a O < Ao :S 1 such that for all O < 

-2 -2 
A< Ao, (1-A) < l+c and (l+A) > 1-c. Let 8 be such that C8 :S 

A0 . Then if llg-g1llc;,1 < 8, III-S1II ==A< Ao and the conclusion 

fol lows. ■ 

LEMMA 3 . 1. 3 . 
k 

Let c > 0 be given and let {h0 : nEl} be a 

collection of functions such that supp(h0 ) c Q for some cube Q 

with sided> 0. Let (c 0 ) be a collection of points in IRk such 

that for some A < oo, I c 0 -cn I < A. Then there is a constant C 
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depending only on c, d, A, and k such that 

II [Tcnhnll2,w ~ c[[ llhnll~ w(n;Q,c)f/
2 

n n 

PROOF. The result will follow as in Lemma 2.3.6 if we can show 

that for some R > 0, we can partition Zk into Rk disjoint subsets, 

such that if n1 and n2<:It, then (Q+cn ) f'I (Q+cn ) = 0. 
1 2 

Now, 

let R = Ld/cJ+l+l2A/ckJ. For each j = (j 1,j2, ... ,jk) with jmEz, O 

~ jm ~ R-1, m = 1,2, ... ,k, let IJ = {j+Rl: l<:Zk}. We have that if 

= c( Ld/cJ+l+l2A/kJ) ~ c(d/c+1+2A/kc) = d+2A/k. 

Hence, we have that 

I Cn -en I max = I ( Cn -cn1) + ( cn1 -cn2) + ( cn2-cn ) I max 
1 2 1 2 

Thus, 

> I cn1 -cn2 I max-2A/k ~ d. 

(Q+cn) f'I (Q+cn) = 0. ■ 
1 2 

LEMMA 3.1.4. Let w(n;a) = w(n;Q1,a) and denote by B(v) the 

constant corresponding to the moderate weight was in Theorem 

1. 1.6(4). Then given a sequence of numbers (an,m) only finitely 

many of which are non-zero, and a collection of points (an) in ~k 

such that there exists a number A such that suplan-nal ~ A, there 
n 

is a constant C independent of g and b, for b ~ 1, such that 
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PROOF. Let d s 1. Then by the arguments of Lemma 2.3.7, there is 

a constant C1 independent of g and b (as long as b $ 1) such that 

where g = T d (g1Q d ). Thus, by Lemma 3.1.3, 
V - V + V 

we have 

( *) $ C111gllc;,d[RkB(1)]
1
/

2
(b-k LL lan,m1

2 

$ Cllgl\;;;,1(b-k LL lan,m1 2n w(:;a)f/
2 

n m 

] 

1/2 

w(n;Q,a) 

that 

THEOREM 3 . 1. 5 . 
oo 1 

Let gEW(L ,Le;), g continuous, be such that for 

some a, b > 0, {EmbTna8} is a set of atoms for L~(~k) with atomic 

bounds A, 8. Then given c > 0 there is a o > 0 such that if (an) 

is any collection of points in ~k such that suplna-anl < o then 
n 

2 k {EmbTa g} is also a set of atoms for Lw(~ ) with atomic bounds A1, 
n 

81 where A1 ~ A(l-c) and 81 $ 8(1+c). 

PROOF. For any collection of points (an) in ~k we define the 

operator corresponding to it by 

n m 

k If there is a number A such that lan-anl < A for all nEl, then by 

Lemma 3. 1.4, we have that the sum defining S1f converges strongly 

k 
Let goECc(~ ). Since {EmbTnag} is a set of atoms, we have 

that 
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= II L L an, m ( f ) Emb ( T nag-Tang) II 2 , w 
n m 

$ II [ L an, m ( f ) Emb T na ( g-go) \\ 2, w 
n m 

+ II L L an,m(f) EmbTna(go-T(an-na)go) l\ 2 ,w 
n m 

-k/2 
Now, N1 $ C1b Bllg-goll;:;,1llfll2,w, where C1 is given in Corollary 

2.3.8, and by Lemma 3. 1.3, there is a constant C2 such that N3 $ 

To get the desired estimate on N2 , let hn = g0-Tca -na)go. 
n 

h
V _ V 

For any O < d $ 1/b, define n - T d hn1Q d . Thus, hn = l' hn 
- V ct+ V ½, 

V 
and each hn is supported in Q11b· Repeating the arguments of 

Lemma 2.3.7, we have that 

N2 $ [w(dv)[3ka-kdk B(dk)] 112 

V 

[ 

1/2 
$ C3 L w(dv) s~pllh~II., b-k/

2 L L 1an,m1
2 

w(n;Qct,a)) 
V n m 

k -k k k 1/2 
where C3 = [ 3 a d B ( d ) ] . 

I claim that given c > 0, there is a o >Osuch that if 

suplan-nal < o, then 
n 

\ w(dv) supiih~II < c. L n "' 
V 

To see this, observe that if suplan-nal < A for some constant A, 
n 

then the functions hn = go-T(a -nalgo are supported in a single 
n 

compact set K for all nElk. Consequently, letting M = 
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k 
{mEiZ: Kn (Q1+m) * 0}, we see that t(M) = CM is finite. Now, 

since w is locally bounded, there is a constant R such that w(dv) 

~ R for each VEM. Also, since g0 is uniformly continuous , there 

is a o > 0 such that if suplan-nal < o then Jg0 (x)-Tca -nalgo(x) I 
n n 

-1 -1 k k V 
< cCM R for all XEIR and nE/l . Consequently, supJlhnll., ~ 

n 

-1 -1 k 
sup\\ hnl\ 00 < £CM R for all vE:il . Finally, we have that 

n 

L w(dv) s~pllh~l\ 00 

V 

whenever suplan-nal < o. 
n 

~ R L s~pl\h~l\ 00 ~ RCM s~pllhnll 00 

V<: M 

< £ 

Now I claim that given c > 0 there is a o > 0 such that if 

suplan-nal < o then III-S1 11 = i\ < £. Given c 1 > 0 there is a 
n 

function g 0 .,;Cc(1Rk) such that l\g-g0 l\ 0 , 1 < c 1. Also, by the above 

paragraph, there is o > 0 such that if suplan-nal < o then 
n 

-k/2 
~ Be 1 b 11 f II 2, w. 

Hence, 

Thus, if c 1 is small enough, we have that II I-S1 1\ = i\ < £. 

Now, as in Theorem 3.1.2, we have that IIS1 1\ ~ I\I-S1II + IIIII = 

l+i\. If i\ < 1 then we have that S1 is a bijective homeomorphism 

2 k 
we have that for all fELw(IR ), 

-1 
Letting Cn,m(f) = an,mCS1 f), 

f = L L Cn,m(f) 
n m 
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h th t 1 1• n L2w(IRk). were e sum converges s rong y Also, by the same 

argument as in Theorem 3. 1.2, we have that 

A
2

(1+;\.)-
2

\lflltw ::S LL lcn,mCf) l
2 

w(n;a) ::S B
2

(1-A)-
2

\lflltw-
n m 

Finally, given c > 0 there is a Ao such that if O <A< Ao 

then (1-A)- 1 
::S l+c and (l+A)-1 ~ 1-c. Moreover, there is a o > 0 

such that if suplan-nal < o then A< A0 . ■ 
n 

The idea for the following lemma has appeared in many places 

inc 1 ud i ng [ PW] , [ Le ] , [ DE] , and [ Y] . 

LEMMA 3. 1.6. Let b > 0 and c > 0, Then there exists o > 0 such 

that if (bm) is such that suplbm-mbl < o, then 
m 

II [ ] 

1/2 

~ Cm(e2rr1<mb,t> -e2rr1<bm,t>) lk 2(Ql/b) < c ~ I Cm l 2 

for every sequence (cm) with only finitely many non-zero 

terms.PROOF. First observe that 

where the sum is taken over all non-zero multiindices. 

Now, 

II
\ ( 27I1<mb,t>_ 27I1<bm,t>)II 
L Cm e e L 2 ( Ql/b) 
m 

= II 

= II 
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) (2rrb-1 ) lal 1/a!b-k/2(L 

a7'o m 

1/2 

~ b-k/2 [ L I Cml 2) ) (2rrb-1o) I al 

m a7'o 
1/a! (since suplbm-mbl < o) 

Now, given c > 0 we can choose o > 0 such that 
-1 I ( e 2rrb ko -1) b-k/21 < C. ■ 

m 

COROLLARY 3. 1.7. Let a> 0 and (bm) a collection of points in ~k 

such that for some b > 0, suplbm-mbl ~A< oo. Then there is a 
m 

constant M depending only on A such that for any function g, 

L I an,ml 
2 

w(n; a)] 
m 

1/2 

for each sequence (an,m) with finitely many non-zero terms and 

where C is the constant from Corollary 2.3.8. 

PROOF. First, observe that by Lemma 3. 1.6, 

= e 2rrb-1kA b-k/2 [ L I Cm 12] 1/2 

m 
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where (cm) is any sequence with only finitely many non-zero terms. 

Now, by the arguments of Lemma 2.3.7, we have 

2rrb -
1

kA -k/2 [ 2 ] 
1
/
2 

~ Ce llgl\c,,1 b L L lan,ml w(n;a) 
n m 

-1 

Hence we are done with M = e 2rrb kA. ■ 

THEOREM 3. 1.8. 
00 1 

Let gE~(L ,L0 ) be such that for some a, b > 0, 

{EmbTnag} is a set of atoms for L~(~k) with atomic bounds A, 8. 

Then given£> 0 there is a o > 0 such that if (bm) is any 

collection of points in ~k such that suplmb-bml < o then {Eb Tnag} 
m m 

is also a set of atoms for L~(~k) with atomic bounds A1 , 8 1 where 

A1 ~ A(l-c) and 8 1 ~ 8(1+£). 

PROOF. Observe first that ExTyg = e 2m<y,x>TyExg for all x, yE~k

Let a~,m(f) = e
2
m<na,mb>an,mCf) and note that la~,m(f) I = 

lan,m(f) I. Define the operator S1 by 

S1f = L L a~,m(f) TnaEbmg. 
n m 

Then by Corollary 3. 1.7 the sum defining S1 converges strongly in 

2 k 2 k 
Lw(~) for each fELw(~ ). 

Now, 

l\f-S1fl\2,w = II L L an,m(f) EmbTnag- L L a~,m(f) TnaEbmgll 2 ,w 
n m n m 

= II L L a~,m(f) TnaCEmb-Ebm)gll 2 ,w. 
n m 

By the arguments of Lemma 2.3.7 and Corollary 2.3.8, there is a 
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constant C such that 

By Lemma 3. 1.6, given c > 0 there is a o > 0 such that if 

suplbm-mbl < o then 
m 

Consequently, we have that 

[ ] 

1/2 
llf-S1fll2,w $ Cligllo,1C LL la~,m(f)l

2 
w(n;a) 

n m 

Now, as in Theorem 3.1.2, 11S111 $ III-S111 + IIIII $ 1+::\.. If::\.< 

1 then S1 is a bijective homeomorphism of L~(11/) and IIS~
1

11 $ 

Let Cn,m(f) Then 

f = L L Cn,m(f) 
n m 

and arguing as in Theorem 3. 1.2, 

A
2

(1+;\.)-
2

llflltw $ LL lcn,mCf)l
2 

w(n;a) $ 82
(1-::\.)-

2
\lfll~,w-

n m 

Finally, given c > 0 there is a o > 0 such that if suplbm-mbl < o 
m 

-2 -2 · then (l+;\.) ~ 1-c and (l-;\.) $ l+c. ■ 

The following theorem shows that one can combine the two 

previous results to obtain the expected theorem on stability of 

atomic decompositions under simultaneous perturbation of the 

lattice in both time and frequency. 
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THEOREM 3 . 1 . 9 . Let g€W(L
00

,L~), g continuous, be such that for 

some a, b > 0, {EmbTnag} is a set of atoms for L:(~k) with atomic 

bounds A, B. Then given c > 0 there is a o > 0 such that if 

(an,bm), n, m€lk, is any collection of points in ~k x ~k such that 

suplna-anl < o and suplmb-bml < o then {Eb Tag} is also a set of 
n m m n 

2 k 
atoms for Lw(~) with atomic bounds A1, B1 where A1 ~ A(l - c) and 

B1 :S B(l+c) . 

PROOF. Let us define the operator S1 by 

n m 

Then 

l1f - S1fll2,w :S ll L L an,m(f) (EmbTnag-EbmTang) 11 2,w 
n m 

:S II L L an,m(f) EmbTna(g-T(an-na)g)\1 2,w 
n m 

::;:;(1)+(2) 

1 _ 2Tr1 <an, mb-bm> ( f) 1 where an,m(f) - e an,m and in particular, lan ,m(f) I 

= lan,m(f)I . Now, by Theorem 3.1.5, given c 1 > 0, there is a o1 > 

0 such that if suplan-nal < 01 then (1) < c 1\lf\1 2,w. We wish to 
n 

obtain a similar estimate on (2). By Lemma 3.1 . 3 and the 

arguments of Lemma 2.3.7, we know that there is a constant C such 

that 

By Lemma 3.1.6, given c2 > 0 there is a o2 > Osuch that if 

suplbm-mbl < 02 then 
m 
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Finally, we have that (2) ~ c2CB1lgllo,1\lfll2,w• 

Thus given A > 0 there exist numbers o1 and o2 such that if 

suplan-nal and suplbm-mbl < o = min{o1,02} then III-S111 < A. Hence 
n m 

the conclusion follows from the same arguments used in Theorems 

3. 1 . 2, 3 . 1 . 5 and 3. 1.8. ■ 

87 

1: ,, 



Section 3.2. Stability with respect to lattice parameters 

In this section, we show that, under certain assumptions, a 

set of W-H atoms is stable under a change in the values of the 

frame parameters. To do this, we require a stronger assumption on 

the analyzing vector g which is strictly weaker than the 

2 
assumption that E Jg(x-na)I be bounded above and below (cf. 

Example 3. 2. 8). 

THEOREM 3. 2. 1. 
00 l 

Let g be such that g, g_EW(L ,L0 ) and suppose that 

there exists a cube R c ~k such that 

( 1 ) 0 < ess inflg(x)I ~ ess suplg(x)I < co. 
x<: R x<: R 

Then there exist numbers ao and b0 such that for any O <a~ a 0 

2 k 
and O < b ~ ho, { EmbTnag} is a set of atoms for Lwrn ) . 

The proof of this theorem will follow from analogs of certain 

lemmas in this chapter. First, we show that one may assume 

without loss of generality that R is centered at the origin. 

LEMMA 3.2.2. 

almost every SE~k. {EmbTna(T5 g)} is also a set of atoms for 

PROOF. We know that for some collection of linear functionals, 

2 k 
and for al 1 fELwrn ) , 

88 



n m 

2 k 
Thus it follows that for all f€LwC~ ), 

f = 

Now, 

T5 T_5 f = L L an,m(T_5 f) T5 ( EmbTnag) 
n m 

= [ L -2rrl<mb,s> an, m ( T -sf ) e Emb T na ( T sg ) 
n m 

- L L a~,m(L5 f) EmbTnaCTsg). 
n m 

2 k there exist constants • 1 , •2 > 0 such that for all f€LwC~ ), 

But, llf ll 2,w = IITsLsfll2,w $ w(s)IILsfll2,w and IILsfll2,w $ 

w(-s)llfll 2,w and for every S€~\ 0 < w(s), w(-s) < oo. Thus 

{EmbTnaCT5 g)} satisfies the definition of a set of atoms. ■ 

LEMMA 3.2.3. Let~ be a bounded function supported in a cube Q. 

Suppose that~ is essentially bounded above and below on some 

subcube Q0 of Q. Then there exists ao > 0 such that for some 

constants A, B > 0 depending only on ao, ~. and k we have that for 

k all O <a$ a 0 and almost every X€~, 

a-kA $ L l~(x-na) 12 $ a-kB. 
n 

PROOF. Lets be the side length of Q, s 0 the side length of Q0 , 

k and let O < ao < s 0 . Then for each X€~ and each O <a$ a 0 , 

#{n<!k: x-na€Q} $ [ LslaJ+lr $ a-k(s+al $ a-k(s+ao)k. 

Therefore, 

\ 2 2 k -k k 2 L l~(x-na)I $ ll~llm s~p #{nd: x-na€Q} $ a [(s+a0 ) ll~llm] . 
n 

Observe now that - for all X€~k and O <a$ ao, 
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k L J k -k k -k k :ll={nE;I : x-naEQ0 } ~ s 0 /a ~ a (s0 -a) ~ a (s0 -a0 ) . 

Therefore, 

n 

We now state results corresponding to Lemmas 2.3.5, 2.3.1, 

2.3.2, and Corollary 2.3.3. The proofs of these results are 

almost exactly the same as the originals, the only difference 

being in the nature of the constants. 

LEMMA 3.2.4. (Lemma 2.3.5) Let g satisfy condition (1) of Theorem 

00 1 
3.2. 1 and suppose that g, g_EW(L ,L0 ). Then there is a cube Q and 

a number a 0 such that there exist constants A', B' > 0 depending 

on a 0 and g only such that for every cube Q0 containing Q, 

a-kA' ::; I L g1Q(x-na)g1Q
0 
(x-na) I ::; a-kB'. 

n 

In particular, 

a-kA' ::; L lg1Q(x-na) 1
2 

::; a-kB'. 
n 

PROOF. We take as Q the cube Ron which lgl is bounded above and 

below. We may assume without loss of generality that R is 

centered at the origin because if not we can replace g with an 

appropriate shift of g such that the correspondingly shifted R is 

centered at the origin. By Lemma 3.2.2, the shifted g will 

generate a set of atoms if and only if g does for the same values 

of a and b. 
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The result follows immediately from Lemma 3.2.3 because for 

LEMMA 3.2.5. (Lemma 2.3.1). Given g and Ras in Theorem 3.2.1, 

there exist constants a.a and b0 > 0 such that there exist 

constant s C1 , C2 > 0 depending only on g and k such that for all 0 

< a :S ao, 

PROOF. We choose a.a as in Lemma 3.2.3, and b0 so that the side 

length of R is at most 1/b0 • Hence we have the estimates required 

for Lemma 2.3. 1 and the result follows identically. ■ 

LEMMA 3.2.6 (Lemma 2.3.2). Let g and R be as in the hypotheses of 

Theorem 3.2. 1. Define the operator, S, by 

Sf= LL <f,EmbTnaCg1R)> EmbTnaCg10). 
n m 

Then there is a number a 0 > 0 such that given any cube, Q, 

containing R there is a b0 > 0 such that for all O <a~ ao, 0 < b 

~ b0 , and f€L:(Rk), Sf converges strongly in L:(Rk) to 

f(x) b-k L g1R(x-na)g1
0

(x-na). 
n 

Mor eover, Sis a bijective homeomorphism of L:(Rk) onto itself and 

2 k for all f€Lw(R ) , 

f = L L <S-
1
f, EmbTnaCg1R)> EmbTnaCg1Q) • 

n m 

PROOF. Choose a.a as in Lemma 3.2.3, and b0 so small that the side 

length of Q is at most 1/b0 • Thus the hypotheses of Lemma 2.3.2 
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are satisfied for all O <a~ a.a and O < b ~ b 0 and so the result 

follows identically. ■ 

COROLLARY 3.2.7 (Corollary 2.3.3). Let g and R be as in the 

hypotheses of Theorem 3.2.1. There is a number a 0 >Osuch that 

for any cube Q containing R, there is a number b0 > 0 such that 

for all O <a~ a.a and O < b ~ b0 there exists a collection of 

linear functionals, 
2 k 

Ccn,m) such that for all f~LwC~ ), 

f = L Cn,m(f) EmbTnaCg1Q) 
n 

and there exist constants C1, C2 > 0 depending only on g and k 

such that 

C1\\flltw ~ a-kb-k L L \cn,mCf) 1
2 

w(n;a) ~ C21\flltw• 
n m 

PROOF. Choose a 0 as in Lemma 3.2.3, and b0 so small that the side 

length of Q is at most 1/b0 . The conclusion follows exactly as in 

Corollary 2.3.3 with 

and 

Sf = L L <f, EmbTnaCg1R)> EmbTnaCg1Q). ■ 
n m 

PROOF OF THEOREM 3.2.1. Let a 0 be as in Lemma 3.2.3. Now given c 

> 0 there is a cube Q containing R such that \\g1Q-gl\ 0 , 1 < c. We 

will choose an appropriate c and Q later but in the meantime, for 

any cube Q and numbers a, b define the operator U by 

Uf = L C n' m ( f ) Emb T nag 
n 
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where the functionals Cn,m are as defined in Corollary 3.2.7. We 

then have that 

l\f-Ufll2,w = II L L Cn,m(f) EmbTnaCg1Q-g) 11 2 ,w 
n m 

-k/2 -k/2 [ \ \ 2 ] l/
2 

~ Cllg1Q-gl\c,,1 a b LL lc 0 ,m(f)I w(n;a) 
n m 

where C = C1(ldJ+2)kB(l)B(dk)[B(dk)3kdk]
1
/ 2

, C1 = B(IQ I), a= 
(X 

max{l,d}, and 0 < d ~ 1/b. Note that C is independent of a and b. 

It follows from Lemma 3.2.7 that for all sufficiently small b 

there is a constant C2 depending only on g and k such that, 

Now, let c 1 > 0 be so small that CC2c 1 = ~ < 1, and let Q be 

a cube containing R such that l\g1Q-gl\ 0 , 1 < c 1 and let b0 be so 

small that the conclusion of Lemma 3.2.7 holds and the side length 

of Q is at most 1/b0 . The result now follows exactly as in 

Theorem 2.3.9. ■ 

EXAMPLE 3.2.8. There is a function g on~ such that for almost 

every XE~, 

L lg(x-n) 1
2 = 1 

n.:z 

but for which condition (1) of Theorem 3.2. 1 fails. Let a> 0 and 

let E0 c [0, 1] be a Cantor set of measure a. Then we can write 
00 

[ 0 , 1 ] '\Eo = U I 1 , 1 

i=l 

where the 11 , 1 are open, pairwise disjoint intervals. For each i, 

let E 1 , 1 c I 1 , 1 be a Cantor set of measure al 1 1 , 11 > 0, and let E1 

00 

= U E 1 , 1 . By the construction of E1, it is clear that 
i=l 

93 



[O, 1]~(E0 uE1) can be written as a disjoint union of open 

intervals, i.e. that 
00 

[O, 1h(E0uE1) == U 11,2-
i==l 

Now for each i, let E1,2 c 11, 2 be a Cantor set of measure o:11 1,21 
00 

> 0, let E2 == U E1,2• 
i == 1 

We can continue this process and obtain a countable 

collection of disjoint sets {En} . 
N-l nc Z 

l[O,lh LJ Enl == 
n==O 

It is easy to see that 

I. u I l ,NI 
1==1 

and that 

I . U I 1 , N I == ( 1-a) N. 
1 == 1 

00 

This implies that U En== 1. 
n==O 

Now, let 

g(x) == L 1E (x). 
nc Z n+n 

00 

Then for every interval I c ~. ess inflg(x)I == 0 but since U En 
xc I n==O 

has full measure, we see that for almost every x~~. 

L I g ( x-n) I 2 = 1. ■ 
nc Z 
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CHAPTER 4 

CONTINUITY OF THE FRAME OPERATOR 

To every set of atoms in a Banach space B can be associated a 

Banach frame for B, called the dual frame, which gives one a 

Fourier series-like expansion of any element of Bin terms of the 

set of atoms. Specifically, if {g1 } is a set of atoms for Band 

{e 1 } the corresponding dual frame, we have that for each f~B, f = 

-1 Whenever it makes sense, we can take e 1 = S g 1 where the 
.. 

operator Sis given by Sf= E<f,g1>g1 • For example, if 8 is a 

Hilbert space, the dual frame must be given by the above formula 

(cf. Theorem 5. 1.6). We have also seen that t his is the case when 

B = L!C~k) with w a moderate weight and the functions 81 are W-H 

wave l ets generat ed by an appropriate vector g€L~(~k) for certa in 

parameter values (cf. Theorem 2 . 6.2). 

In this chapter, we investigate the properties of the dual 

frame when the corresponding set of atoms is a collection of W-H 

wavelets. In this case, it is well known that the dual frame is 

also a col lection of W-H wavel e ts generated from a single vector. 

- 1 In Section 4. 1, we show that the vector S g reflects many of 

- 1 the decay properties of g by showing that the operators Sand S 

preserve many of these same properties. In Section 4.2, we do the 

same with certain s moothness properties of g, that is, properties 

de fined by the decay of the Fourier transform. Also, in this 
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section, we obtain formulas for derivatives of Sg for a given g, 

and show that S maps the space ~(~k) continuously into itself. In 

-1 Section 4.3, we give a formula for computing S g for any g, and 

in Section 4.4, we give a generalization of a result of Benedetto 

([B)) concerning the invertibility of the continuous frame 

operator. 

Section 4.1. Preservation of decay by the frame operator. 

The results in this and the following section can be thought 

of as stability results because they show that, for the cases we 

examine, if a function f can be written 

f = L L <f, EmbTna'P>EmbTnal/J 
n m 

then the function <pis forced to be a slightly perturbed version 

of 1/J. That is, <p has most of the decay and smoothness properties 

of 1/J. 

DEFINITION 4.1.1. 
k Given functions <p and 1/J on~, we define 

formally the $-operator corresponding to <p and 1/J or simply the 

$-operator by 

Sf = L L <f' EmbTna'P> EmbTnal/J• 
n m 

When we wish to make the auxilliary functions <p and 1/J explicit, we 

write S(rp,1/J) for S, and if we wish to make the values of a and b 

in the definition explicit, we write Sa,b(<p,1/J) or Sa,b• 
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LEMMA 4. 1.2. Let O < a Sc, let g and h be any two functions, and 

many submultiplicative function. Then 

L m(jc)/39 ,h(jc) S 2kllgmll.,,1,allh-mlL.,1,c 
J 

where 

/39 ,h(s) = essxsupl L g(x-na)h(x-s-na) j. 
PROOF. 

L m( jc )/39 ,h( jc) 
J 

n 

= L m(jc)essxsupl L g(x-na)h_(jc-x+na) I 
J n 

S L essxsupl L g(x-na)m(x-na)h_(jc-x+na)m(jc-x+na) I 
J n 

s \ \ ess suplg(x-na)m(x-na) I ess supjh_(jc-x+na)m(jc-x+na) I L L x<Oa x<Oc 
J n 

since the sum over n above actually is an a-periodic function so 

that we need only take the essential supremum over Oa- Now, 

\ \ ess suplg(x-na)m(x-na) I ess sup j h_(jc-x+na)m(jc-x+na) I 
L L x<Oa x<Oc 
J n 

= Less sup i g(x-na)m(x-na) I 
n x< Oa 

k 
s 2 llgmll.,,1,allh-mll.,,1,c 

by Corollary 2.2.7. ■ 

\ ess sup I h_ ( jc- x+na) m ( j c-x+na) I L x<Oc 
J 

LEMMA 4.1.3. Let m be a submultiplicative function and let g and 

h be functions such that gm and h_m are in W(L
00

,L
1
). Then 

lim ) m(j/b)/39 ,h(j/b) = 0 
b~ J7i'o 

where /3g,h is defined as in Lemma 4.1.2. 
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PROOF. Let c > 0. There exists a cube Q such that Q = -Q, 

l\gm- gm1
0

11.,,1 < c, ll(h_m-h_m10 Lll.,,1 < c, l\gm-gm1Q\l.,, 1,a < c, and 

ll(h_m-h_m1
0

)_\l.,,1,a < c with a> 0 as in the definition of /3g,h· 

Now, letting 80 = g10, 81 = g-g10, ho= h1Q and h 1 = h-h1
0

,we have 

that for each j, 

/39 ,h(jlb) ::5 f3g h (jlb)+f3g h (jlb)+/39 h (jlb)+/39 h (jib) . 
O' 0 0' 1 1' 0 1' 1 

Observe that for all b small enough, (390 , 90 (jlb) = 0 for j~O, and 

that if b ~ 1 then ll·ll.,,1,11b ::5 2k\l·\l.,,1 (cf. Corollary 2.2.8). 

) m(jlb)/39,h(jlb) 
/;ro 

::5 ~ m ( J0 lb) {39 h ( j lb) + ~ m ( jib) (39 h ( jib) + 
O' 1 1' 0 

J O J 0 

+ ) m(jlb)(391 ,h
1 
(jib) 

l~o 
2k 

::5 2 ( II gom\l.,, 1, a II h1-m\l.,, 1 + II g1ml\.,, 1, a II ho-mil.,, 1 

+ \lg1m\l.,,1,allh1-m\l.,,1) 

Since c > 0 was arbitrary, we are done. ■ 

THEOREM 4. 1. 4. 
2 k oo 1 

Let f, hEL (~) and suppose that~. ~EW(L ,L ). 

Then 

(1) the sums Sf and Sh converge strongly in L2 (~k), 

(2) <Sf,h> = b-kLJf(x-jlb)h(x) L~(x-na)ip(x-na-jlb), and 
J n 

(3) Sf = b-k L f(x-jlb) L ~(x-na)ip(x-na-jlb). 
J n 

PROOF. Let fEL
2

(~k). By the argument in Theorem 5.2.1, Lemma 

Cl) 1 
4.1.2, and the fact that ~.~EW(L ,L ), we have that for all 
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L L l<f,EmbTna'P>l
2 

!> Bllfll~ 
n m 

and 

L L l<f,EmbTnat/1> 1
2 

!> Bllfll~ 
n m 

for some B > 0. Thus, by a very familiar argument, we can show 

that the sum defining Sf converges in L
2(~k). Specifically, we 

2 can show that for any sequence (an,m) with L L I an,m l < oo, 

t~G m~.an,mEmbTnat/lt !> B [n~G m~r I an,m l 
2r/2 

for any finite subsets F, G of Zk (cf. [HW]). Thus, (1) holds. 

k Now suppose that f, h~Cc(~ ). Then 

<Sf, h> = < L L <f, EmbTna'P> EmbTnat/1, h> 
n m 

n m 

~ ~ ~ [Jf(x),P(x-na)e-zttt<mb,x> dx) [Jh(t)i;;(t- na)e-zttt<mb,x> dt) 

<J:>b-k LI L f(x-j/b)q)(x-na-j/b) L h(x-1/b)tj,(x-na-l/b) dx 
n Ql/b j 1 

= b-k L Jh(x)tj,(x-na) L f(x-j/b)q)(x-na-j/b) dx 
n J 

( 1 1 l -kJ \ - \ -= b Lf(x-j/b)h(x) Ltj,(x-na)rp(x-na-j/b) dx. 
J n 

The equality (i) can be justified as follows. First, observe 

that the numbers 

bk/2Jf ( )-( ) -27r1 <mb, x> d x <p x-na e x, 

and 
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bk/2 r h( t) ~( t-na) e -2m <mb, t> dt 

are the Fourier coefficients of the lib-periodic functions 

L f ( x- jib) cp( x-na- jib), and 
j 

L h(x-l/b)ii,(x-na-1/b) 
l 

respectively. If we can show that each is in L 2(Q1/b) for each n, 

the equality (i) will follow from Parseval's formula. It will be 

enough to show that each is bounded. 

bounded, we have that, 

[fl ~ f ( x- jib) <p ( x-na - jib) l 
2 

dx 
)

l/2 

~ L [f \f(x-jlb) 1
2

\ip(x-na-j/b) \
2 

j Ot/b 

Now, since f and hare 

dx ) 

1/ 2 

~ llfll., (' ess sup lip(x-na-1/b) \2]
1
/
2
b-k/2 

L x<Ot / b 
j 

-k/2 
~ llfll.,IITna(/)ll.,,1b < co. 

Similarly, 

(fl ~h(x-l/b)~(x-na-l/b)l2 dxr/2 ~ llhll.,IITnaiJlll(D , 1b-k/ 2 < 00 . 

The equality (ii) is justified since by Lemma 4. 1 . 3 and t he 

fact that f EL2 (Rk) and hEL2 (Rk), the iterated sums and integral 

k 
following equality (ii) converge absolutely at each xER so that 

any interchange of summation and integration is justified. 

Since Cc(Rk) is dense in L2(Rk), (2) follows . (3) follows 

immediately from (2). ■ 

THEOREM 4. 1. 5. Let B be a Banach space of tempered distributions 

on Rk satisfying the following conditions . 
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(2) Bis a Banach module over L
00

(~k), i.e., for every 

(We can define hf for arbitrary f€B by letting fn ~fin B, with 

fn€L2 (~k) 0 B. Then {hfn} is Cauchy in B. Define hf as the limit 

of this sequence.) 

(3) k 
For each a€~ , Ta acts boundedly on B, and I\Tal\ is 

B➔B 

denoted by m(a). 

00 1 
If~ and~ are such that~ and~ are in W(L ,L) 0 B, and ~-m 

and ~mare in W(L
00

,L
1
), then for any a, b > 0, the S-operator can 

be extended uniquely to a continuous operator on B. 

PROOF. By Theorem 4.1.4, Sis defined on L2
(~k) 0 B where the sum 

is taken to mean L
2

(~k) convergence of the partial sums. 

Moreover, 

Sf = b-k L f(x-j/b) L ~(x-na)q>(x-na-j/b) 
J n 

for such f. Define the operators. on B by 

where 

s.f = b-k L f(x-j/b)GJ(x) 
J 

GJ(x) = L ~(x-na)q>(x-na-j/b) 
n 

and where the sum over j converges strongly in B. In fact, the 

partial sums defining s. converge in operator norm to s •. 

To see this, observe that by the assumptions on~ and~. and 

by Lemma 4. 1. 2, 

L m(j/b) I\GJ II., < oo. 

J 
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Thus, given c > 0, there is a finite set F c lk such that for 

k 
every finite set G c l , 

L m ( jib) II G J II., < c. 
JC G '\F 

Therefore, 

II L f ( x- jib) G J ( X) II B :s; L II f ( x- jib) G J ( X) II B 
Jc G '\F Jc G '\F 

:s; L IITJ/bfllallGJII., :s; llflla L m(j/b)IIGJII., < cllflls, 
JcG'\F JCG'\F 

It follows that the sequence of partial sums defining s. is Cauchy 

in operator norm and hence converges to some bounded operator on 

B. It is also clear that 

IIS•flla :s; b-kllflla L m(j/b)IIGJII., . 
J 

Hence, s. is a continuous operator on B which agrees with S 

on L
2

(Rk) n Band so is an extension of S. Since there is only 

one continuous extension of S to B, S• is unique. ■ 

THEOREM 4.1.6. Let B, ~and~ be as in Theorem 4.1.5 and suppose 

k 
further that for some constant A> 0, and almost every X€R, 

A :$ I L ~(x-na)q,(x-na) 1 · 
n 

Then there exists b0 > 0 such that for all O < b < b0 , the 

S-operator is a topological isomorphism from B onto 8. 

PROOF. Let b0 be so small that for all O < b < b0 , 

A-
1

) m(j/b) IIGJ\I., = ;\ < 1. 
l~o 

Such a ho exists by the assumptions on~ and~. and Lemma 4.1 . 2 . 

Then we have that 
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bkG0 (x)-1Sf(x) = f(x)+bkG0 (x)-1
) f(x-j/b)GJ(x). 

{?j:'o 

Thus, 

llf-bkG~
1
Sflls :<;; A-

1
\\) f(x-j/b)GJ(x)\ls 

J ';;;:o 

:<;; llfllsA-
1

) m(j/b) IIGJII, ::; Allflls
J';;;:o 

k -1 
Thus the inverse of the operator b G0 Scan be computed by means 

of an absolutely convergent power series. 
k -1 

Thus b G0 S is a 

topological isomorphism on 8. Since multiplication by bkG~
1 

is 

obviously a topological isomorphism as well, the theorem is 

proved. ■ 

The space L:(~k), w moderate, does not satisfy the hypotheses 

of Theorems 4. 1.5 and 4.1.6 because compactly supported functions 

are not dense in L:(~k). The following two theorems give 

interpretations of Sas an operator on the space L:(~k). 

THEOERM 4. 1.7. Let ~-w2 
and ~w2 

be in W(L
00

,L
1

) and suppose that 

oo k k 
fe: Lw ( ~ ) . Then for each nEl , 

L <f, EmbTna~>EmbTna~ = b-k L f ( x-j/b)~( x-na)<p(x-na-j/b) 
m j 

where the sum on the left converges in L~(~k) and that on the 

right converges absolutely and uniformly. Also, 

b-k L L f(x-j/b)~(x-na)<p(x-na-j/b) 
n j 

converges absolutely and uniformly on compact sets. Thus, Sf 

converges as an iterated sum, the inner sum converging in L~(~k) 
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and the outer sum uniformly on compact sets, and 

Sf = b-k [ f(x-j/b) [ 1/J(x-na)<p(x-na-j/b). 
J n 

S interpreted in this way is a continuous operator on L:(~k). 

PROOF. 
k We know that the sequence of numbers {b <f,EmbTna~>} are 

the Fourier coefficients of the lib-periodic function 

L f(x-jlb)<p(x-na-j/b). 
j 

I claim that the above function is bounded and hence is in 

2 L (Q1/b) . First, the essential supremum of a lib-periodic 

function is equal to the essential supremum of the function over 

Q1/b • Hence, since w(O) ~ w(x)w
2
(-x) for all XE~k. 

\\ L f(x-j/b)<p(x-na-j/b)\\
00 

= es~i'.~~p\ L f(x-jlb)<p(x-na-j/b) \ 
J . J 

:S ess sup [ lf(x-jlb) lw(x-j/b) ITna'P-(jlb-x) lw2 (j/b-x) 
01/b J 

:S w(0)-1llfwll Less sup1Tna~-;,;_i2(j/b-x) I 
"' J 01/b 

= w(0)-1llfwll.,11Tna~-w
2

ll.,,1,1/b < oo. 

It follows then that 

L <f, EmbTna~>Emb = L f(x-j l b)<p(x-na-j/b) 
m J 

2 in L (Q1/b). It remains to show that 

Tnal/J(x) L <f, EmbTna~>Emb(x) 
m 

1/J(x-na) [ f(x-j/b)<p(x-na-j/b). 
J 

Let c > 0 and let F c lk be a finite set with the property that if 

G c lk is any other finite set, then 
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II 
\ II -1/2 2 -1 L <f,EmbTna'P>Emb L2(Q ) < ew(O) \ITnal/JW IL.,1,1/b· 

m<: G\.F l/b 

2 k 
Then we have that, since w(x) :5 w(O)w (x) for all XEIR, 

2 

l!Tnal/J L <f,EmbTna<p>Embll 2 ,w 
m<: G \. F 

= JII/J(x-na) 1
2

1 L <f,EmbTna<p>Emb(x) \\(x) dx 
m<: G \. F 

= LI ITnal/J(x) 1
2

1 L <f, EmbTna'P>Emb(x) i\(x) dx 
1 Ql/b+l/b m<:G\.F 

:5 w(O) L esg/~~p1Tnal/Jw
2
(x-l/b) 1

2
J I L <f,EmbTna<p>Emb(x) \

2 

dx 
1 Ql/b m<:G\.F 

2 

:5 w(O)l1Tnal/JW
2

\l!,1,1/bll L <f,EmbTna1P>EmbllL2(Q ) < e
2

. 
m<: G/F 1/b 

H th . . C h d · L2
w ( IRk) . ence, e series 1s auc y an so converges 1n 

We now consider the convergence of the sum over n of the 

above functions. I claim that this sum converges uniformly on 

compact sets. Let e > 0 and let Kc IRk be a compact set. There 

is a cube Q c IRk such that III/J1Qcw
2

\l.,, 1,a < e. Now, there is a 

finite set F c Ik such that if nEFc then I/J1Q(x-na) = 0 for all 

XEK, that is, pick F so that nEFc implies that (K-na) n Q = 0. 

k 
Now let G c I be any finite set, let 1/1 1 = I/J1Q and 1/12 = "11oc• and 

let m = inf w(x) > 0. Then since 
x<: K 

w(x) ::; w(x-j/b)w2(j/b) 

::; w(x-j/b)w2(x-na)w
2
(j/b+na-x), 

we obtain 

es~.:~upl L 1/J(x-na) L f(x-j/b)q;(x-na-j/b) I 
n<: G\.F j 

::; es~.:~up\ L I/J1 (x-na) L f(x-j/b)q;(x-na-j/b) I 
n<: G\.F j 
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+ es~c~upl L 1p2(x-na) L f(x-j/b)q)(x-na-j/b) I 
nc G '\F J 

$ 0 + m-1ess sup\ II/J2'-•i2(x-na) I \ lfw(x-j/b) I lcp_ti12(j/b+na-x) I 
xcK L L 

n J 

$ m-
1

1\ L 11/12Q
2

(x-na) I L lfw(x-j/b) I lcp-Q
2
(x-na-j/b) 111

00 
n J 

-1 2 k 2 -1 k 2 
$ m l\fwll.,III/J2t;;/ ll.,,1,a2 llcp_CJ \1.,,1,1/b < em 2 l\fwll.,l\cp_ti1 \l .,,1,1/b• 

Thus, since e > 0 was arbitrary, the sum in question is uniformly 

Cauchy on compact sets and so converges uniformly on compact sets. 

Also, 

Sf = b-k L f(x-j/b) L 1/J(x-na)q)(x-na-j/b) . 
J n 

2 Since ll(Taf)wll., ~ ti1 (a)llfwll.,, the argument of Theorem 4 . 1.5 

shows that Sis continuous on L:(~k). ■ 

THEOREM 4. 1.8. Let cp and 1/J be as in Theorem 4.1.7 and suppose 

that for some a> 0, there exists a constant A> Osuch that for 

k almost every x~~, 

A ~ l L 1/J(x-na)q)(x-na) J. 
n 

Then there exists b0 > 0 such that for all O < b < b0 , S 

interpreted as in Theorem 4.1.7 is a bijective homeomorphism of 

PROOF. The proof is exactly the same as Theorem 4.1.6 . ■ 

REMARK 4. 1 . 9. Examples of spaces B satisfying the hypotheses of 

Theorem 4 . 1.5 include the following. 

( 1) 

(2) 

L~(~k) for w moderate and 1 ~ p < oo. 

00 1 W(L ,Lw), for w moderate. 
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(3) W(LP(~k),L~(~k)) where w is moderate and 1 ~ p, q < ro (cf. 

[Fl] for details on these spaces). To see why this is true, 

observe the following facts. 

Certainly, W(LP,L~) is a Banach space with respect to the 

norm 

llfll = lf(x) IPlk(x-y) IP dx w(y) dy 
[J[J 

]
q/p ]1/q 

Since w is moderate, W(LP,L~) is translation invariant. 

II hf II ::; II h II ., II fil . 

fEW(LP,L~), let c > 0 and suppose that supp(k) c Q, for some 

compact set Q. 
k 

Let Kc~ be a compact set so large that 

JKC+Q[Jlf(x) lplk(x-y) Ip dxr/pw(x) dx < cq/2 

and let gECc(~k) with supp(g) c K be such that 

[JKlf(x)-g(x)lp dxr/p < cq12[1K+Qlllkll; x~~row(x)r
1 

Such a g exists because if fEW(LP,L~) then f is locally in LP(~k). 

Now, 
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Thus, l!f-gll < c. 

(4) Note that the space Co(~k) does not satisfy the hypotheses of 

Theorem 4. 1.5 because it is not a Banach module over L00 (~k). 

However, the conclusion of the theorem still holds if we assume 

that <p and~ are continuous and in W(L
00

,L1), i.e., that <p and~ 

are in 
1 W(C0 ,L) (cf. [Fl]). 

To see this, observe that given any bounded, continuous 

k k 
function hand fEC 0 (~ ), hfECorn) and l!hfll.. ~ l!hll.,llfll.,. I claim 

that for each a> 0 and fixed jElk, the sum 

L ~(x-na)ip°(x-na-j/b) 
n 

converges uniformly on compact sets. To see this, let Kc ~k be a 

compact set and let c > 0. There is a cube Q such that 

11~1Qcll.,,1,a < c and IITJ/b(/)1Qcll.,,1,a < c. Let F c lk be a finite 

set of indices such that if n is not in F then Q n (Q+n) = 0. 

k Thus, for any other finite set of indices G c I, we have that 

~~~ I L ~( x-na)Tyb/P( x-na) I 
nc G\.F 

~ ~~f L 1~10 (x-na) I ITJ/h<p10 (x-na) I 
nc G \.F 

+ ~~f L 1~10 Cx-na)IITJ/b<p1Qc(x-na)I 
nc G\.F 

+ ~~f L 1~10c(x-na) I ITJ/b<p1Q(x-na) I 
nc G \.F 
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+ ~~~ L I !/11Qc ( x-na) I IT J/b'P1Qc ( x-na) I 
nc G '\ F 

~ 0 + 111/111.,\\ L 1Tl/b'P1Qc(x-na) I lie,/ 21lrpii.,\\ L l!/11Qc(x-na) 1 \\
00 

n n 

< dlll/Jll.,+2llrpll.,). 

Since e > 0 was arbitrary, we are done. 

This implies that the functions GJ(x) are continuous and 

bounded. Note also that since rp and 1/J are continuous, the 

hypothesis of Theorem 4.1.6 is satisfied for sufficiently small a 

> 0. Therefore, the arguments in Theorem 4.1.5 and 4.1.6 go 

through unchanged in this case. This says that if f is a 

continuous function vanishing at infinity, and if rp, 1/1, a, and b 

satisfy appropriate hypotheses, then Sf as well as S-1f are 

continuous functions. 

(5) k Suppose that f€Cb(~ ), and rp and 1/J satisfy the same 

conditions as in (4) above. If the sum Sf is given the same 

interpretation as in Theorem 4.1.7, then by the arguments in 

-1 
Theorem 4.1.7 and Theorem 4.1.8, Sand S are continuous 

bijections of the space Cb(~k) for sufficiently small a and b. 

109 



Section 4.2. Preservation of smoothness by the frame operator 

DEFINITION 4.2. 1. Let 8 be as in Theorem 4.1.6. We define the 

space :JB by 

with norm given by llfll~8 = llflls-

THEOREM 4.2.2. 2 k Let f, h€L (~) and suppose that~ and~ are such 

that~. ~€W(L
00

,L1
) and also~. i€W(L

00
,L1

). Then 

(1) the sequence of partial sums defining (Sf)A converges 

strongly in L2
(~k), 

( 2 ) < ( Sf ) A , h> 

= a-k L Jrcr-j/a)~(r) L icr-mb)~(r-mb-j/a) ctr, and 
j m 

(3) (Sf)A = a-k L f(r-j/a) L icr-mb)~(r-mb-j/a). 
j m 

PROOF. Since~ and~ are in W(L
00

,L1
), we know that the sum 

defining Sf converges strongly in L2
(~k) whenever f€L2 (~k). Thus 

it follows that if f€L2
(~k) then Sf will be strongly convergent in 

L2(~k). By Parseval's formula, we have that 

(Sf)A = [ L A A A <f, (EmbTna~) >(EmbTna~) 
n m 

= [ L <f, T mbLna~> T mbLnai 
n m 

= [ L A A <f, EnaTmb~> EnaTmbi. 
m n 
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From this formula, all the conclusions follow as in Theorem 

4.1.4. ■ 

THEOREM 4.2.3. 
A 

Let 8 be as in Theorem 4. 1.5 and suppose that~ 

/}_ • 001 A /) 001 
and 'I' are rn W(L , L ) (l 8 and that ~-m and 'I'm are in W(L , L ) . 

Then Scan be extended uniquely to a continuous operator on 18. 

PROOF. Follows from Theorem 4. 1.5, Theorem 4.2.2 and the fact 

that the collection of functions f such that f~L 2 (Rk) n 8 is dense 

in ,8. ■ 

THEOREM 4.2.4. Let 8, ~and~ be as in Theorem 4.2.3 and suppos e 

~k 
further that for some constant A> 0 and almost every r~R, 

A =:; I L ~(r-mb)~(r-mb) I· 
m 

Then there exists a0 > 0 such that for all O <a< a0 , the 

S-operator is a topological isomorphism from ,8 onto 18. 

PROOF. Follows as in Theorem 4. 1.6. ■ 

REMARK 4.2.5. Examples of spaces ,8 include the following. 

( 1 ) 

(2) 

k A(R ), the space of absolutely convergent Fouri er transforms. 

,L~(Rk), with w moderate and 1 =:; p < oo. 

The following results show directly that the S-operator 

preserves smoothness properties of functions. Specifically, we 

show that S maps 1(Rk) continuously into 1(Rk) provided that the 

auxilliary functions~ and~ are in 1(Rk). 
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I' 

LEMMA 4.2.6. Leth be a continuous function on ~k such that for 

all <p€C~(~k) with J<p(x)dx = 0, Jh(x)<p(x)dx = 0. Then his 

identically constant. 

PROOF. Suppose not. Then we could find a pair of disjoint cubes 

of the same size, I 1 and I 2 such that h(x) > 0 (say) on I 1 and I2, 

co k Let <p1 ~ 0 be in Cc(~) and be 

supported in ! 1. Define <p(x) = 'P1(x) if X€l 1, -<p1(x-a) if X€l2, 

and O elsewhere. Then <p€C~(~k), and J<p(x)dx = 0. 

Now, 

Jh(x)<p(x)dx = J
11

h(x)<p1(x)dx-J
12

h(x)<p1(x-a)dx 

= J
11

[h(x)-h(x+a)]<p1(x)dx > cJ<p1(x)dx > 0. 

As this is a contradiction, h must be identically constant. ■ 

LEMMA 4.2.7. Let M ~ 1 be given and suppose that {fn} is a 

sequence of continuous functions on ~k possessing continuous 

derivatives up to M
th order which converges distributionally to a 

continuous function f. Suppose that for each multi-index a with 

a la.I SM, we have that {D fn} converges distributionally to a 

continuous function g. Then f€CM(~k) and Daf = g for each lal S 
a a 

M. 

PROOF. We prove this by induction on M. Suppose firs t tha t M = 

1, and let lal = 1. Specifically, let a= (0, ... ,0,1,0, ... ,0) 

h th "1" . th "th ·t· w ere e is 1n e 1 pos1 10n. Let <p be a test function on 
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IRk. Then 

JDafn(x)~(x) dx = -Jfn(x)Da~(x) dx----:) -Jf(x)Da~(x) dx. 

But 

JDafn(x)~(x) dx-----'; Jga(x)~(x) dx = -JGa(x)Da~(x) dx 

where G is such that 
a 

a D G = g. Specifically, we take 
a a 

G (x) = r: 1

g (x' ,t) dt a a 
a 

where we write XE:IRk as x = (x',t) = (x1, ... ,x1_1,t,x1+1,---,xk). 

Now, since ~E:Cc(IR ), D ~E:Cc(IR) and D ~(x)dx = 0. • oo k a oo k Ja Also, 

every such function can be expressed as the derivative of a test 

function. 
k 

Therefore, by Lemma 4.2.6, we have that for all xE:IR, 

f(x) = G (x)+c for some constant c. Since f and g are continuous 
a a 

functions, we have that Daf(x) = g (x) for all XE:IRk. 
a 

Now suppose the theorem holds for M-1. Let /3 be a multiindex 

with 1/31 = M. Then we can write /3 = f3'+a where 1/3' I = M-1 and lal 

= 1. By hypothesis, 

and 

Da(D/3' f) = D/3f -----') g 
n n /3 

distributionally on IRk. By the argument in the previous 

paragraph, we can conclude that Da(D/3' f) = D/3f = g/3. Since /3 was 

arbitrary, we are done. ■ 
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PROPOSITION 4.2.8. A tempered distribution f is in J'(IRk) if and 

only if for each pair of multiindices a, (3' 

Da(D(3f)''.a:A(~k) ("\ L 1 (~k). 

(~) 
k invariant under PROOF. Suppose f,;:J'(IR ) . Then since J' is 

the Fourier transform and differentiation, we have that for 

multiindices a, (3, 

(=) First observe that if a distribution f satisfies the 

hypotheses then we can take {3=0, take the inverse Fourier 

transform and get that Daf,;:A(IRk) c C0 (1Rk) for all a. Thus, f is 

infinitely differentiable and all of its derivatives are bounded. 

Also, we have that 

(D(3[Daf]A)V(x) = (2ni)lf3lxf3Daf(x),;:A(IRk) ("\ L1 (1Rk) c L00 (1Rk). 

k Thus, f,;:J'(IR ). ■ 

PROPOSITION 4.2.9. Suppose f, ~and~ are in J'(IRk), and let a be 

a multiindex. Then 

Da(S(~.~)f) = L L ~] [~)scof3-o-~.D0~)Da-f3f. 

lf31Slal lo-l~lf31 

PROOF 1. We use the formula from Theorem 4.1.5, 

S(~. ~)f(x) = b-k L f(x-j/b) L ~(x-na)ip(x-na-j/b) 
j n 

where by the assumptions on f, ~and~ and by Theorem 4.1.5, the 

sum over n and j converges uniformly. Now, given finite index 

k sets F, G cl, we have 

b-kna[ L f(x-j/b) L ~(x-na)ip(x-na-j/b)] 
Jo: F no: G 
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::: 

-
b-k [ Da-(3f (x-j/b) [ 011/J(x-na)D(3-r cp(x-na-j/b), 

J< F n< G 

As was noted before, the partial sums defining S(cp,1/J)f 

converge cx-(3 (3 r r uniformly. Since by assumption, D f, D - cp and D 1/1 are 

in J'(IRk) for all a, /3 and r, the ex-derivative of the partial sums 

defining S(cp,•'•)f o/ converge uniformly to 

L L ~] [~]scJ-•f•n•~ir~r. 
lf31:Slcx.l lal:Sif31 

From this a
nd 

Lemma 4.2.7, it follows that Dcx.S(cp,1/J)f exiS
t
S a

nd 
is 

a contl nuous function equal to the above. 

Then, integrating by parts, we have that PROOF 2. 

::: IQIL ~)<f,EmbTnacp>(2rrimb)/3EmbTnaDcx-/3¢ 
,_, ::.la.I 

, I ff l~i Q[ ~) (-1 )ff frr .. ~( xJ (-2nimb)~e _,.,.,_,x, 

::: L [~] Jo/3 ( fT -) ( ) -2rr1 b<m, x> d £ T Dcx-f3,/, 
I /3 I ,_, na'P X e X mb na o/ 

::. I a I 
::: 

::: 
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It follows from this that for finite sets F,G€lk, 

Da.[L L <f,EmbTna'P>EmbTnaVJ] 
n< F m< G 

= L L (;] (:] ~ 
l/3l$la.1 lol$l/31 n r 

We know that in this case, the partial sums defining S(cp,v,)f 

converge in L2
(~k) to S(cp,v,)f which is a continuous function since 

f is continuous, vanishes at infinity, and cp and v, decay rapidly 

(cf. Remark 4. 1.9(4)). Thus the a-derivative of these partial 

sums converge in L2
(~k) to 

[ [ (;] (:Jscn°cp,Da.-f31/J)D/3-0 f 

lf3l$la.1 lol$l/31 

which is also a continuous function since D/3-of is in C0 (~k) and 

D0 cp and Da.-/31/1 decay rapidly (cf . Remark 4.1.9(4)). It follows 

from this and Lemma 4.2.7 that Da.S(cp,1/J)f is a continuous function 

and equals the above. 

It remains to show that the formula above and that given in 

proof 1 are equivalent, that is each can be obtained from the 

other by a change of summation indices. To see that this is so, 

start with the formula 

[ [ (;] (~]scn13- 0cp,D0v,)Da.-/3f. 

l/3l$la.1 lol$l/31 

For fixed /3, let u=/3-o- Then o=/3-u and 10 1$1/31 if and only if 

I u I$ I /3 I. Also, (:] = (~]- Thus the above equals 

[ [ (;] (~]scnucp,D/3-uv,)Da.-/3f. 

lf3l$la.1 lul$l/31 

Now substitute t=a.-/3+u. Then /3=a.-t+u, /3-u=a.-t and a.-/3=t-u. Also, 
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it is easy to see that l/31=la-t+ul:Slal if and only if iul:Sltl and 

that lul:Sla-t+ul=l/31 if and only if ltl:Slal. Finally, 

(a/3) [/3u) = (~-at+u) [a-ut+u) = a! (a-t+u) ! ... (a-t+u)!(t-u)! (a-t)!u! 

= a! t ! = [at) (tu] . (a-t)!t! (t-u)!u! 

Thus, we have 

L L [;] (~)s(Du<p, D/3-u\fl)Da-/3f 

1/31:Slal lul:Sl/31 

= L L [~] [~]s(Du<p,Da-t\fl)Dt-uf 

ltl:Slal lul:Sltl 

which is what we wanted to prove. ■ 

PROPOSITION 4.2. 10. k Let f, <p and \fl be in~(~), a 1 and a2 be 

multiindices. Then 

= [ I I [ ~:] (~:) (;:] (~:] 
l/32l:Sla2l l021:Sl/32I l/31l:Sla1l la1l:S\/31I 

sb,a(D/31-01(D/32-02<p]A,D01(D02\fl]A)Da1-/31[Da2-/32f]A _ 

PROOF. By Proposition 4 . 2 . 8, we have that 

Da2Sa,b(<p, \fl)f 

= L L (;:][~:]sa,bCDa2<p,D/32-a2\fl)Daz-/32f_ 

l/32l:Sla2l la21:Sl/32l 

By above and Theorem 4.2.2, we have that 

(Da2Sa,bC<p,\fl)f]A 

= L L [;:] (~:]sb,aC(D02<p]A, [D/32-02\fl]A)(Da2-/32f)A_ 

l/32l:Sla2\ la2\:Sl/32l 

Finally, by Proposition 4 . 2 . 9, the conclusion follows . ■ 
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THEOREM 4.2. 11. Suppose that f, ~and~ are in ~(~k). Then 

PROOF. Let a, ~ be multi indices . Then by Proposition 4.2 . 10, 

D~[DaSa,bC~.~)f]A can be written as a finite linear combination of 

"S-operators", with various auxilliary functions, applied to 

derivatives off . Since f, ~and~ are in ~(~k), Theorems 4.1.5 

• ~ O'. A hk 1 hk 
and 4.2.3 imply that D [D Sa,b(~.~)f] E:A(~) n L (~ ). Since a, ~ 

are arbitrary, this implies that Sa,bC~.~)fE:~(~k). ■ 

THEOREM 4 . 2. 12. Suppose f, ~and~ are in ~(~k). Then S(~.~) is 

a continuous operator on ~(~k). 

PROOF. 
k k 

By Theorem 4.2. 11, S(~.~)fE:~(~) whenever fE:~(~ ). 

is, 

a m 
D fn(x)(l+lxl) ~ o 

as n ~ oo uniformly for each multiindex a and integer m ~ 0. 

We wish to show that for each multiindex a and integer m ~ 0, 

as n ~ oo uniformly. Let a and m be fixed. 

By Proposition 4.2 . 9, we know that Da[S(~.~)fnl can be 

written as a finite linear combination of functions of the form 

S(D~~.D0 ~)D
0

fn where~. a, and o are multiindices independent of 

n. Let w(x) = (l+lxl )m. Then w is a Beurling weight so that 

2 m • Q ,y 001 "'2k w (x) ~ (l+lxl) . Now, since D'"~. D"~dHL ,L) and Dvfn.;:L (~ ), 
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where 

b -k [ D0f n(x-j/b)GJ (x) 

J 

Then 

as n 

as n 

Since 

G1(x) = [D01/}(x-na)D/3;p(x-na-j/b). 
l 

D/3 -2 ,,, 2 oo 1 1 3 that ~-w and D0 1/}w are in W(L ,L ), Lemma 4. • says 

[ w2
(j/b) //G11/., < oo . 

J 

' as in Theorem 4. 1. 7, we have that 

/l[S(of3~,Da1/J)Dofnlwl/., 5 1/(Dofn)wl/.,,b-k [w2(j/b)I/G1 li ., ~ O 

J 
~CXl. Thus, it follows that 

~ cxi. ■ 
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Section 4.3. 
The inverse frame operator 

THEOREM 4. 3. 1. 
Let B, ~. and~ be as in Theorem 4.1.6 with the 

actdit i 
onal assumption that L:(~k) n Bis dense in B. (This is 

tr-u e of all 
the examples in Remark 4.1.9). Define formally the 

follow· 
ing functions. 

( 1 ) 
GJ (x) - \' ( - k - L ~ x-na)~(x-na-J/b) for all jE:l, 

n 

(2) 
Gj

0
\x) == { 1 if J=0, 

0 if j;t0, 
(3) G( l) ( 

{ 0 if j=0, J X) :::: 

-1 
(4) c<m> ( 

- Go ( x) G J ( X ) if j;t0, 
J x) = [ Gj~~(x-n/b)G~m-1) (x), and 

n 

(S) 

Sup 
Pose that 

L m( jib) 1/Gj o llco < 1. 

Then th J 
e sums def1"n1·ng G(ml d H absolutely and 

Un· lfor-m1 

and that 

J an m converge 

Y. Moreover, we have that 

L m(J/b)I/Hmllco < 00 

J 

S-
1f(x) = bkGo1 (x) L f(x-mlb)Hm(X) 

"Wher-e th m 
e sum converges strongly in B. 

PBooF. 
Let Sof(x) = bkG01 (x)Sf(x). 

for- any 
integer N ~ 0, we have that 
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( I-so?f(x) = [ f(x-m/b)G~Nl (x). 

To prove m this, first suppose that fE:L~(~k) n Band recall that for 

SUch f 
' 

Sf(x) = b-k [ f(x-m/b)Gm(x) = 
b-kG

0
(x)f(x)+b-k) f(x-m/b)Gm(x). 

m~O 
m 

Thus , 

-L f(x-m/b)G~
1

(x)Gm(x) 

m 

and so 

( 

\ (1) 
I-So)f == L f(x-m/b)Gm (x). 

Thus the 
m 

conclusion holds for N = 1 and fE:L~(~k) n B. 
Now assume 

it hold s for N. Then 

( l-S )N+1 
o f(x) == ( I-So)N[ ( I-So)f J 

:::: ~ ( l~So)f(x-m/b)G~Nl (x) 

:::: r 
m 

:::: ~ ~ f(x-i/b)G~:~(x-m/b)G~Nl (x) 

~ f(x-(j+m)/b)c?> (x-m/b)G~Nl (x) 

(where i = J+m) 

:::: L f ( x- . /b ) \ ( 1) 1 1 L G1-mCx-m/b)G~Nl (x) = 
\ (N+ll 
Lf(x-i/b)G1 (x). 

! 

s· m ince f is compactly supported, there are only finitely many 

non- zero terms in the sum 
over i and so the 1ast interchange of 

summat· ions· is justified. 
In order t oo k it f ' B 1·t 1·s 

0 
pass from fE:Lc(~) n 8 to arb rarY ~ , 

first to observe that by Theorem 4. 1.5, (I-So)N is a necessary 

bounded operator on B for all integers N ~ o. It also will be 

necessary to show that the right hand sum above defines a 
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conti nuous operator on B. 
For this, the following claim is 

sufficient. 

Claim 1. 

Proof: The conclusion is obvious for N = 0 and N = 1. 
Suppose it 

holds f or N. 

~ m(j/b) 11ct+ll IICD = L m( jib) II L G~.:1 (x-i/b)G\Nl (x) llco 

:S\\' J 1 ? ~ m( (j-i )/b) IIG~.:111.,m( i/b) IIG)Nl IICD 

::: ~ m(j/b)IIG~l)IICD L m(i/b)IIG)Nl!ICD 

1 

:S ~ m ( j /b ) II G ~ 1) II CD ( L m (j /b ) II G ~ l ) II CD r 

J 

~ (~m(j/b)IIG~l)IICDr+l 

Thus it holds for N+l and we are done. □ 
Fr (Nl om 

th
is it fol lows that the sum }:1f(x-i / b)G1 (x) converges 

strongly in B for every f~B and that 

II [ f(x-i/b)G\Nl(x)II :5 ll flla [ m(i / b)IIG[Nlll., 
I B i 

so that the sum defines a continuous operator on B. 
Thus, if we 

1-Irn( X) 

(N) 
= [ f(x-i/b)G1 (x) · 

= l~m [ fJ(x-i/b)G\Nl(x) 

1 We (Nl ( ) d 
also see from Claim 1 that the sums defining Gm x an 

1 

converge absolutely and uniformly. 

We know that 
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00 

s;1
f = [0-So)nf 

n=O 
Pr-ovidect that 

the sum on the right conver ges in B. 
B 

oo k 
For fE:Lc(IR) n 

' 'we have 
-1 

So f(x) :::: 
00 

L [ f(x-m/b)G~n) (x) = 
00 

\ \ (n) 

Con 

n=:o m 

== L f(x-m/b)Hm(X) = (*) 

L f(x-m/b) L Gm (x) 
m n=O 

m 

interchange of summation is justified. 

Sequent1 Y, 

< oo. 

and der · 
lnes ab 

the sum(*) converges strongly in B for every f ,;: B 

Since S~ 1 is also a bounded 0 unded operator on B. 

. - 1 
it follows that the formula for So holds for 

From this in immediately follows that 

-1 k 1 \ S f(x) = b c; (x) L f(x-m/b)Hm(x). ■ 
m 
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Section 4.4. The continuous frame operator 

THEOREM 4.4. 1. Let 1 ~ p < oo be fixed and let 1/p+l/q = 1. Let g 

be such that gEL~(~k)nL~-q/p(~k)~{O} and that g_EL~(~k) where for 

k 1 k /\ k 
aE~ , m(a) = IITallL~➔L~- Let pEL rn ) be such that pECcC~ ) , and 

Define Pn by PnCx) = p(x/n) for nE~. 

= nkp(n0 ), and {Cpn)"}:=l is an approximate identity. Then for 

where 

PROOF. 

lim llfn-fll2,w = 0 
n➔oo 

llgll~fn(u) = J~ J J f(t)g(t-a)e-
2
mbtg(u-a)e

2
7rlbupn(b) dt da db 

~k ~k ~k 

= J~kf(t) (J~kpn(b)e-
2
mb(t-ul db) n~kg(t-a)g(u-a) da] dt 

= J~kf(t)pn(t-u) (J~kg((t-u)+a)g(a) da] dt 

" = (f*pnG) (u) 

where G(x) = J g(x+a)g(a) da. 
~k 

To check that the above interchanges in the order of 

integration are justified, note that 

J
~ J (J jf(t)llg(t-a)l dt]!g(u-a)IIPnCb)I da db 
~k ~k ~k 
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s Ilg!! J J q,w-q/pllfllp,w IRk!Tug_(a) lm(a) da ~klpn(b) I db 

s llgll IR 
q,w-q/pllfllp,wl!Pnll1m(u)!lg-ll1,m < 00. 

with llhllq,w-q/p = 1. en Now, let hE:Lqw-q/p(IRk) Th 

l<r•" PnG-f. G( 0) • h> I 

== IJ ccr•" I ~k PnG)(x)-f(x)G(O))h(x) dx 

0 
IJRkJRk[f(x-y)G(y)-f(x)G(OJltnCy) fi(x) dy dxl 

Rk Pn(y)I Rklf(x-y)G(y)-f(x)G(O)I [h(x)I dx] dy sJ 1" [J 
s JRk I tnc y) I [JRk If( x-y )G(y )-f( x)G( o J 1 •w(x) ct,,J'/p dY 

== (*). 

Taking the supremum over all such h, we get that 

N'o\.l . ' since w 
1
·s f t1·on and locally bounded, G(x) is a continuous unc 

unded, in fact, IG(x) I ~ G(O) = !lgllz· rt follows from a so bo 2 is 1 

this that 

Theref ore, 

given c > O, there is a O >Osuch that if lyl 

[J Rk I fC x-y )G(y )-f (x)G(O J 1 •wcx) dx ]'

1

' < C , 
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+ G ( D) II f II p, wJ I Pn ( Y) I m ( Y) dy · 
lyl~o 

s E:l\pl\1 I + G(O) llfllp,w lpn(y) I dy 
lyl~o 

+ G(O)l\fllp,wJ lpn(y)lm(y) dy. 
lyl~o 

Since for n " h large enough, supp(pn) c {lyl<o}, we ave, 

Il-7CO 
s· ince e > 0 was arbitrary, we have 

lim sup llf*pnG-f·G(O)llp,w = o. 

s· ince all of the terms in the sequence are positive, we get 
n-7<Xl 

finally that 

lim llf*~nG-f·G(O)llp,w = 0. 

n-7<Xl 

Fr-om th· lS, the result follows immediately. ■ 
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CHAPTER 5 

SPECIAL RESULTS FOR L 2(Rk) 

g and 
In Theorem 2.3.9, 

we give su£ficient conditions on a function 
a number a 

{f: T > O so that for all suf'Iiciently small b, the set 
lllb nag} I 

orms a set of 2 k atoms ror Lw(~ ). 
One · 

important condition on g is that it and g_ be in the 
\./iener- type 

space W(Loo, L,,,1). _ The reason for this is twofold. F'ir-st . t 
' l g 

uarantees strong convergence of the sum defining the 

Lemma 2 . 3.7, Corollary 2.3. 8) . Second, it 

beloi., r 
th

at the S-operator is defined and bounded above and 

or all sufficiently small b (er. Theorems 4.1.5 and 4. 1.6). 
F'or- th · 

lS s 
econd £act, an examination of the proof reveals that it 

is only 

necessary that g satisfy a "weighted {3- condi tion", i • e . , the 
conc1u . 

S1on or L emma 4. 1.3 with g = h. 
Ir i., == 1 

then thing 
• and we are dealing with the 2 k Hilbert space L (~ ), 

s become 
simpler. Note that Li(~k) is not a Hilbert 

Space '-'1th 
respect t t In L2("'k) • o he ordinary inner product . ~ we ha\re Gr" 

ochenig's 
Lemma (Theorem 5 . 1. 3) which says that rra mes and Sets 

or atoms 
are equivalent. 

Pr-o\re that 
This means that as long as we can 

and 
of the 

expansion sum are automatic. 

We have a frame, strong convergence of the S-oper ator 

is 1 a most 
surficient in this case to guarantee that we have a 

Thus, the "(3-condition" 

Additionally, we r equire only that the sum of the squar es Of the 

translates of g be bounded above and away rrom zero. 

127 



In L2
(~k), then, we do not necessarily require the rapid 

decay of gin order to obtain a frame. 
. 2 k 

For example, 1n L (~) we 

can use the Zak transform to give a sufficient condition that g 

generates a frame which is not purely a decay condition (cf. 

[DGM], [D1], [HW]). . 2 k Thus, even though the weighted L (~) theory 

2 k 
above contains L (~) as a special case, it is still interesting 

to see how far the theory can be pushed when the weight is 1. 

Section 5. 1 is a purely expository section in which we 

present two results, due to Grochenig and Heil, concerning frames 

and sets of atoms in Hilbert spaces. Heil's Theorem is used in 

Section 2.5. In Section 5.2, we examine the ~-condition for 

L2
(~k) functions and show how it extends the reservoir W(L

00
,L

1
). 

We prove an existence theorem for W-H frames in L2
(~k) which is a 

generalization of a theorem of Daubechies (cf. [D1],. We give 

some examples of functions which generate frames for certain 

values of the frame parameters but which do not decay very 

rapidly. Finally, in Section 5.3, we present a phase-space 

localization result of Daubechies with a more tractable condition 

on the mother wavelet g which enables one to obtain explicit 

estimates on the localization parameters t and w. 
8 8 

Section 5.1. Frames and atoms in Hilbert space 

In this section, we present two known results on frames in 

Hilbert space, a result of Grochenig proving the equivalence of 
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fr-ames and 
atoms in Hilbert space, and a result of Heil on the 

Un. 
iqueness o.,. 

~ the dual frame of a Hilbert space frame. 

THE:OR£t,t 5. 1 . 1 . 
(Grochenig) Let H be a Hilbert space and {xn: nE:I} 

a countab1 
e collection of vectors in H indexed by the set I. Then 

(xn} ls a frame 
for H with frame bounds A, B if and only if it is 

a set 
of atoms for H with atomic bounds B-1, A-1 . 

PnooF. 

(~) 

bounds 

(~) From the basic theory of frames we know that we can 

X :: L <x, S-
1Xn>Xn 

n 

Sx = L <x, Xn>Xn, 
n 

8 -
1

1/x/1
2 ~ L l<S-1X,Xn>1 2 ~ A-1

/IXl/
2

• 

n 

Suppose that {xn} ls a set of atoms for H with atomic 

A, B. 

Co:r-:r
esponding 

Observe first that the linear functionals 

to {xn} are each continuous by condition (2) of 
Deflnltion 

O.S. 4. Thus, there exist vectors {en} in H such that 

for- a11 
X<::H and nE: I. 

fo:r- H with bounds A 
' B. 

Also, by (2), the collection {en} is a frame 

Now, we define the operators 

T: H ~ e2 (I) 
x ~ ( <x, en>) 

R: e2
(I) ~ H 

(An) ~ ~AnXn, 
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We have 
immediately the following facts. 

1. RT == I 
dH, 

2
· Tis a bounded linear map with a closed range and Tis 

Continuouslu 
~ invertible on its range. 

the 
no.l"m of y-1 1/2 is A- . 

T · B1/2 d The norm of 1 s an 

a f.l"ame f 
or H. 

This follows from the fact that {en} is 

3. F'o.l" 
any x~H, we have that 

is, 
llxll == /l(RT)x/1 s IIRIIIITxlle2cu s I/RI//IT/11/xl/. 

I/Rll-
2
1ixll $ L l<x,en>l 2 

:S IJTl/ 2 llxll 2
, 

But th· n 
ls imp1 ies 2 -1/2 

that II RII- 2:: A hence that IIRII :S A · 

Since Im(T) th ht f is a closed subspace of H, it can be oug o 
as a H· 1 

l be.l"t space . ·t h 1n 1 sown rig t. 
actJoint 

0 Perators 

Thus we can compute the 

• T : Im(T) ~ H 
• 

No"' 
, 8 iven A~Im(T) 

, y ~H, 

R : H --+ Im(T) . 

• 
<T J\,y> :::: </\., (<y,en>)> = [ .\n <y,en> = < L Anen,Y> 

n n the 
sum converges s trongly since { en} i s a frame. Also, 

:t~Jf and A~Im(T)' 
• 

<R :,,, A> =: <y, L AnXn> = L <y, Xn> An = < ( <y, Xn>)' J\> . 
n n 

• • 
T (An) = [ Anen and R y = ( <y, Xn> ) • 

Al so n 
' "'e kno•• • • 

.. that /IT 11 = IITII and that II R II = I/ RI/ . Finally we 
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have that 

RT:::: • • •• IdH = (IdH) = (RT) =TR. 

llx/1 • • • • • • :::: 

so that 
II (T R )xi/ :$ /IT 111/R x/le2(I) :$ /IT /11/R Ill/xi/, 

• 
[ 2 * 2 2 /IT 11-21/xl/2 ::s; l<x,xn>I :$ /IR II /Ix/I . 

Since • n 
/IT 11 :::: I/Tl/ _ Bl/2 * -1/2 - and 1/R II = I/RI/ S A we are done. ■ 

TfitORE;t,t S. 1.2. 

Set Let H be a Hilbert space and {xn: n€l} a countable 
of atoms 

for H, and let {en} be the associated frame, that is, for 
al 1 X4::H 

' 

x = [ <x, en>Xn. 
Then if the o e n 
fc Prator Tis as defined in Theorem 

I) if and 
5. 1. 1, Im(T) = 

F>RooF'. 

in· 

only if {en} is a basis for H. 

(~) s 
uppose that Tis surjective. • Then T is 

Jective( in 
b fact surjective) from e2 (I) onto H. This is so eca Use • • 

lf TA== 0 
then <A,Ty> = o for all y€H. But since Tis SlJl'Ject· 

1 Ve, th. 2 
and • is means that <A,r> = o for all r€e (I) . Thus A= O 

T is 
0 . injective. 

1ll'lJ:>lies 
(~) 

th
at ~n == 0 for all fl€!. Thus {en} is a basis. 

Suppose 
~A,t> {en} is a basis for H. Let A€l2 (I) be such that 

:::: 0 
o for a11 r€Im(T). This means that for all y€H, <A,Ty> = 

hence that • 
<T A,y> == 0 hence that r•A = O. In other words, if A 

:::: (;\nJ th 

en ~~nen == 0 which implies that ~n = 0 for all fl€! hence 
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that A :: 0. 

be II. • 
Thus Im(T) is a closed dense subset of Hand so must 

Next 
we Present an example which shows that the assumption of 

stl"on 
g convergence f t of the expansion sum in the definition o a se 

Of t a orns is 
necessary in Grochenig's Lemma. We take H to be 

l 2(1R) 
' a

nd 
find a collection {g1} c Hand a collection of linear 

functionals 
{A1} such that f = L Ai(f)g1 in some sense (actually 

Point'-'i 
se alrnost { } · t everywhere) for each f but for which g1 1s no 

E:XAMPtE: 
s. 1. 3. 

conta· 
1ned i 

Let <p be a continuous function with support 

does not 

let b be 

n the interval [O,ao] for some ao > 0. Suppose that <p 

vanish in the interior of [O,ao] and fix O <a< 8<> · Now 

such that a.a< 1/b, and let gin L2(~) be such that g is suh 
t-Pol"ted 

f¾,1/b]. 
in [0,1/b], g = 1 on [O,ao] and g is unbounded on 

Therefore we have the following facts . 
1, Thel"e 

al"e c 
onstants A, B such that 

2· Th el"e al"e 

No'-' 
' consider 

The 
8 urn on the 

0 <As L l<p(x-na)l 2 s B < oo. 
n 

constants A', B' such that 

0 < A' s [ ip(x-na) :$ B' < oo. 

n 

the opel"ator defined by 

Sf(x) = L L <f,EmbTna'P> EmbTna8· 
n m 

l"ight-hand side converges almost everywhere as an 
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iterated sum by the Carleson-Hunt Theorem to the function 

f(x) b-1 
[ g(x-na)qj"(x-na). 
n 

Now, 

b-1 
[ g(x-na)qj"(x-na) = b-1 

[ qj"(x-na) 
n n 

and so is bounded above and below, and hence S defined in this way 

is continuously invertible on L2
(~). Thus, 

and 

f(x) = L L <S-lf, EmbTnag> EmbTnag(x) 
n m 

AB' I/fl/~~ L L /<S-1f,EmbTnag>/ 2 ~ B/A' //fl/~. 
n m 

Thus if the sum defining f converged strongly, then {EmbTnag} 

Would b 2 e a set of atoms for L (~) . By Grochenig's Lemma, this 

Would imply that {EmbTnag} was a frame for L2
(~). But this i s 

impossible since g is not bounded. Thus the sum defining f does 

not converge strongly. 

Thus it is seen that while there may be many ways to writ e 

f = L L an,m(f) EmbTnag 
n m 

Wi th ~~lan,mCf) / 2 equivalent to //fl/~, for a particular g, the 

sum need not converge in the L2 sense. Such convergence f orces 

some good behavior on g. 

Now we pres ent a r esult due to Chris Heil on the uni queness 

of the dual frame . 
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LE:~ S 
. 1. 4. 

{en} b 
Let {xn} be a frame for H with bounds A, B, and let 

for-
ea Collection of vectors dual to { Xn}. Further assume that 

every Y"H >' < 
f ' ~ Y, Xn>en converges 

rame \.I. t 
l h bounds B-1, A-1. 

PRooF. 
Define the operator I to be 

strongly in H. Then {en} is a 

Obviously, 

Let Y"li. 
I is the ·d 1 entity on H. 

* 
Now, we wish to compute I. 

Then 
lit 

q 
Y,x> == <y, L ___ [ 

<x, en>Xn> = [ <y, Xn><x, en> = < <y, Xn>en, x> 

\./her-e by n n n 
. assumption, the last sum converges strongly. Since <xn} 
is a 

fr-ame 
\.lith bounds A B, {en} is a set of atoms with atomic 

bounds A , 
' B. Therefore, by Grochenlg's Lemma, {en} is a frame 

\./i th b 
ounds B-1 -1 

' A . ■ 

Let { Xn}, { en} be as in Lemma 5. 1. 4. Define the 

T', U' as follows. 

T: H ~ l2(I) T': f,2( I) ~H 
X 1----) (<x,xn>) (An) 1----7 r AnXn n 

U: Ji ~ f,2( I) U': g2(I) ~H 
X 1----) (<x,en>) (An) !----7 '[ Anen. n 

;:: Im(U) where R = In(T) = Im(U) . and TU' = UT' = IdR, 

Obser { } ve first that by Lemma 5. 1.4, both {xn} and en are 
fr-am 

es and 
consequently the sums defining T' and U' converge 

Str-ong1y 
for all (An),;:f,2(I). Also, we know that Im(T) and Im(U) 
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are cl d 2 ose subspaces of l (I) and that both T and U are 

cont· inuously invertible on their respect ive ranges. 

Now we show that UT' = IdrmCU}· If A= (i\n)..:Im(U), then 

i\n = <x,en> for some x~H. Now, 

T'(A) = ~<X,en>Xn = X 

by ass umption. Thus 

UT'(A) = Ux = (<x,en>) = (i\n) = A. 

Similarly, we can show that TU' = IdrmCT} • 

Now, I claim that, thought of as a map from Im(U) onto Im(U) , 

the adjoint of UT' is TU' and thought of as a map from Im(T) onto 

Im(T), the adjoint of TU' is UT'· . To see this, let A = (i\n), r = 

(rn) be in l 2 (I). Then 

<r, lJT' (A)> = L omUT' (A)m 
m 

= [ om< L AnXn, em> = < [ rmem, L i\nXn>. 
m n m n 

Also, 

<TU' (f), A> = L TU' (f)mi\m 
m 

= [ < L rnen, Xm>i\m = < L rnen, L i\mXm>. 
m n n m 

Thus, (UT')•= TU' and (TU')•= UT'. Therefore TU' is the 

identity on Im(U) and UT' is the identity on Im(T). Hence, if 

A~Im(U), then TU'(A) = A. But Im(TU') c Im(T). Thus A~Im(T) and 

so Im(U) fa; Im(T) . Similarly, Im(T) fa; Im(U). Thus Im(T) = Im(U) . ■ 

THEOREM 5. 1.6. (Heil) Let {xn} be a frame, . and {en} be as i n 

Lemma 5. 1. 4. Then en = S-1Xn where 

135 



Sx = [ <x, x 0 >xn . 
n 

PROOF. Let T, T', U, U' be as defined in Lemma 5.1.5 . Observe 

that S = T'T. We wish to show that U'U = s-1
• By definition, T'U 

::: IctH and by Lemma 5 . 1. 5, TU' = Idrm(Ul. Thus T' TU' U = T' U = Idtt. 

Thus U'U = s-1
. Note also that by general results on frames, S = 

T'r is self-adjoint. Therefore, for all XEH, 

-1 -1 -1 
<x,e 0 > = Ux = TU'Ux = TS x = <S x,x0 > = <x,S Xn>. 

It therefore follows that e
0 

= S-1x0 for all nEI. ■ 
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Section s. 2. 2 k 
Existence or rrames in L (R) 

In 
th

is section, we extend an existence theorem of Daubechies 
and gives 

ome examples which show that the condition in this 
theorem. 

ls not necessary for existence. 

there 
exist constants A, B > o such that for almost every 

A5 Llg(x-na)l 2
.$B, 

n 

'fhen th 
f3a(s) = ll [g(x-na)g(x-s-na)ll

00
• 

n 
ere e • 

xi st s a number ho> Osuch that if O < b < ho then 
{trnb'f nag} 

is a frame for L2(~k) . 
PRooF. 

be fixed and suppose first that f is 

Then 

== L L I <fTna8, Emb> 1
2 

:::: b-lc [ I n m 2 

n Q I L f(x-1/b)g(x-na-l/b) I dx 
S. 1/b l 

lnce f or each nE;Ek { -k/2 -
co ' b <fTnag, Emb>} is the sequence of Fourier err• 

lcients 
of the 1/b-periodic function 

L f ( x-1/b) g( x-na-1/b). 
l 
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Also, since f is compactly supported, the sum above is finite for 

each x~~k and each n~zk. Thus, we have 

L L / <f, EmbTnag> /
2 

n m 

== L r L L f(x-l/b)f(x-j/b)g(x-na-1/b)g(x-na-J/b) dx 
n JQl/b 1 J 

== rff(x)g(x-na) L f(x-j/b)g(x-na-J/b) dx 
n J 

== rff'(x)fex-j/b) L g(x-na)g(x-na-j/b) dx. 
J n 

The last two equalities involve interchanges of summations and 

integrals which we will now Justify. Certainly, if we can show 

that the last quantity converges absolutely, all previous 

interchanges will be justified. First, observe that since f is 

compactly supported, there are only finitely many non-zero terms 

in the sum over J, and by assumption (1), we have that 

L /g(x-na) I /g(x-na-j/b) I 
n 

[ 
1/2 J 1/2 

:$ ~ I g(x-na) I 
2J [ f I g(x-j/b-na) 1

2 
S B < oo. 

Consequently, we have that 

Lflf(x) I lf(x-J/b) IL /g(x-na) I /g(x-na-J/b) I dx 
J n 

:S L BJ/ f ( x) I I f ( x- j/b) I dx S II f II~ [ B < 00 

JICF JICF 

Where F c zk is some finite set depending on supp(f). 

Now, it follows that if f<L2
(~k) has compact s upport, then 

L LI <f, EmbTnag> 12 
n m 
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Now, given an arbitrary fE:L2
(~k), we choose a sequence {f1} in 

2 k L (~) where f 1 increases to f almost everywhere and each f 1 has 

compact support. Then for each iE:l, 

LL 
n m 

Also, the Dominated Convergence Theorem implies that for each n, 

k mE:l , 

lim <f1,EmbTnag> = <f,EmbTnag>. 
i ➔co 

Now, for any finite subsets, F and G, of lk, we have that for all 

Taking the limit as i ➔co, we have that 

\ \ 2 -k 2 L L l<f,EmbTnag>I S b Bollfll2, 
n< F' m< G 

Taking the supremum over all finite subsets of lk, we have finally 

that 

If we let {f1} be as in the above paragraph, then we know 

that 

LL 
n m 

= b-kJ lfi(x) 1
2 ~ lg(x-na) 1

2 

+b-k) Jf 1 (x)f(x-j/b) L g(x-na)g(x-na-j/b) dx 
/~o n 

- b-kJ lfi(x) 1
2 ~ lg(x-na) 1

2 
+ R(fi) 

where 
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and hence that 

IR(f1)l ~ llf1\l~b-k)f3a(J/b) 
{~o 

Moreover, we can use the arguments of the previous paragraph to 

Final ly, we have that since both sides above are f i n i te , 
1/2 

[ L L I < f, Emb T nag> I 
2
] 

~ [rm L l<f1,EmbTnag> l2]1/2_b-k/2Bol/2\lf1-f112 
n m 

[ 

1/2 
~ A-) f3a(j/b)] \lf1\lrb-k/2Bo1/ 2\lf1-fll2. 

{~o . 
Letting i ➔oo on the right hand side, we have that for all f<L2(~k), 

LL l <f,Embinag>l
2 ~ b-k/

2[A-) f3a(j/b)J11rn~. 
n m J'To 

By hypothesis (2), it follows that for all sufficiently small 

2 k 
b > 0, {EmbTnag} is a frame for L (~ ) . ■ 

REMARK 5.2.2. If a function g satisfies condition (2) in Theorem 

5.2.1, we say that g satisfies the "(3-condition." 
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COROLLARY 5. 2. 3. If goe:W(L co, L
1

), then g satisfies the {3-condi tion. 

PROOF. This follows immediately from Theorem 4.1.3, when w = 1 

and g = h. ■ 

PROPOSITION 5.2.4. There is a function goe:L2(~) such that 

co 1 
g~W( L , L ) , ( 1 ) 

( 2) 

( 3) 

g does not satisfy the {3-condition, and 

2 
(g,a,b) generates a frame for L (~) for all O < a, b ~ 1. 

PROOF . Let g(x) = 
sin(rrx) 

rrx 
/\ Then g(o) 

Claim: essxsupl L g(x-na)g(x-s-na) I 
nc Z 

Proof. L g(x-na)g(x-s-na) 
n<: Z 

= L (gTsg) (x-na) 
nc Z 

= a-1 L (gTsg)/\Jj / a) e2Tt!xJ/a 
Jc Z 

in L
2
[0,a] since L (gTsg)(x-na) is bounded on [O , a] and hence is 

2 in L [O, al, 

= L (~*Esg)(j/a) e2Tt!xj/a 
Jc Z 

= L e 2TtixJ/aJg(o)g(j / a-olEs(j/a-o) do . 
JC Z 

Now, since g is supported on [-1/2,1/2] and since a~ 1, the only 

non-zero term in the sum is the j = 0 term. Thus, 

L ( gT sg) ( x-na) = Je -zm as [ g ( 0 ) l 2 
d 0 

n<: Z 

J

112 
-2Ttlos d sin(rrs) = e o = ----. □ rrs -1 / 2 
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Now, clearly gEW(L
00

,L
1
), and for each NEN, letting b = l/2N, 

we have that 

\ lsin(rrj/b) I = 
L 1l "lb OO 

Jcz,{o} J 

since when j = mN, where mEl, we have that 

lsi:j;~/b)I = 2/rr 1/m. 

Thus, g does not satisfy the ~-condition. It is easy to 

see, however, " 2 that (g,b,a) generates a frame for L (~) for every 0 

< a,b $ 1 which implies that (g,a,b) generates a frame for those 

same values of a and b. ■ 

PROPOSITION 5.2.5. There is a function gEL2
(~) such that 

( 1) 

(2) 

(3) 

(4) 

00 1 
gEW(L , L ) , 

g is non-negative, 

g does not satisfy the ~-condition, and 

2 
(g,a,b) generates a frame for L (~) when a= 1, b = 1/ N, NE~. 

PROOF. Let 
00 

g(x) = L 1[ 2 -n( 2 n_l), 2 -n-1( 2 n+1_ 1 ) )+n(x). 
n=O 

Claim 1: 

L lg(x-n) 1
2 = 1. 

n 

Proof. Let XE~. Then x = m+r for some mEl and rE[O, 1) . Now 

since 
00 

[0,1) = LJ [2-n(2n-1),2-n-l(2n+l_l)) 

n=O 

and since those intervals are disjoint, there exists a unique 
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L lg(x-n) 1
2 = L lg(r-(n-m)) 1

2 = lg(r+j) 1
2 

= l.o 
n n 

Claim 2. ) (3 1 (jr) = 0, if roE:iL'.; = oo, otherwise. 
J~o 

Proof. Suppose that roE:iL'.. Clearly, we have that g(x)g(x-jr) = 0 

unless j = 0. Thus, 

I L g(x-n)g(x-jr-n) I = O 
n 

unless j = 0 . This gives that (31 (jr) = 0 if j ~ 0. 

Suppose that r~i::'. and that r is rational. Then there is a 

sequence {mJ} c iL'. and {qJ} c (0,1) such that jr = mJ+qj for j * 0 . 

Let q 1 = c/d in lowest terms. Then qJ+d = qJ for all j * 0 and 

always, qJ = p/d where p = 0, 1, 2, ... , d-1. Thus, there are 

infinitely many j for which qJoE:[1/2,2-J(2J-1)]. For such j, 

ess sup g(x)g(x-jr) ~ 1 
[ O, 1 I 

which implies that (3 1 (jr) ~ 1 for such j, whence 

) /31 ( jr) = oo. 

/~o 
Suppose that r~i::'. and r is irrational. Then the collection of 

numbers {qj} is dense in (0,1) and also in this case, we have that 

for infinitely many j, qJoE:[1/2,2-J(2J-1)]. Thus, we are done by 

the same argument as above. □ 

Now, clearly, g is non-negative and llgll.,, 1 = oo. Claim 2 

asserts that 

) /31 ( j/b) = 0 
/~o 

whenever b = 1/N, NoE:~. Thus, by the argument of Theorem 5 . 2. 1, 

2 
(g, 1, 1/N) generates a frame for L (~) for all NoE:~. ■ 
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DEFINITION 5 . 2.6. For any function g, each jElk, and c > 0, 

define 

= ess suplg(x-jc)I. 
xc Oc 

THEOREM 5.2.7 . Let gEL
2

(~k) be non-negative and bounded, with 

[33 (s) as defined in Theorem 5.2. 1 for some fixed a> 0. For any c 

?.: a, there is a sequence of open sets {OJ} k with OJ c Q2c+jc, 
Jez 

and a constant d > 0 such that for any sequence {sJ} with SJEOJ, 

L /3a (SJ) ?.: d L A J, c. 
J J 

PROOF . By the definition of AJ,c, there are sets Ej c Oc+jc such 

that lg(x) I ?.: AJ,c/2 for all XEEJ- We may assume without loss of 

generality that Ao,c > 0 for if not we could replace g by an 

appropriate shift of g . This would not alter the result as ~aCs) 

is unaltered when g is shifted. Now, fix jElk and let 

for tE~k- Then fJ is continuous, non-negative and we have that 

Jr,(t) dt = H1E
0
(x-t)1E,'x) dx dt = j1E,cx) dxJ1E

0
(x-t) dt 

= IEol lEJI > o. 

Thus, fJ(t) > 0 on some open set in ~k. call it OJ. It is clear 

that OJ c Q2c+jc for if tEOJ then certainly we must have (E0 +t)nEJ 

* 0 and moreover that (Oc+t)n(Qc+jc) * 0, or QcnCQc+jc-t) * 0 . 

This means in particular that jc-tEQ2c or that tEQ2c+jc. 

Now, choose SJEOJ for each j. Then 

/3aCsJ) = \\ L lg(x-na) I lg(x-srna) 1\\
00 

n 
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= ess sup\ lg(x-na) I lg(x-sJ-na) I 
x<:Qc L 

n 

~ ess suplg(x)llg(x-sJ)I ~ Ao,c/4 AJ,c 
xc Oc 

since lg(x)llg(x-sJ)I ~ Ao,c/4 AJ,c for all XE:E0 . Thus, 

L f3a ( s J) ~ Ao, cl 4 L ;\. J, c 

j j 

and we are done. ■ 

REMARK 5.2.8. Clearly, if geW(L
0
\L

1
), then Z: AJ,c = co for all c > 

0, so for such a g, Theorem 5.2.7 says that for some sequence of 

points {sj} in IR\ Z: /3a(sJ) = co. Also, it says that the sequence 

{ s J} can be taken to be arbitrarily "spread out" in IR\ that is, 

sJE:Q2c+Jc for any sufficiently large c. If for arbitrarily small 

b > 0, we are somehow able to take sJ = j/b then Theorem 5.2.7 

says that g fails to satisfy Daubechies' /3-condition. In this 

sense, Theorem 5.2.7 is a partial converse to Corollary 5.2.3. 

THEOREM 5.2.9. Let g be as in Theorem 5.2.7. Suppose that for 

some£> 0 and r > 0, we have that lg(x)I ~£for almost every x 

in Qr-. Then 

PROOF. 

/3a(Jr) 

L f3a(jr) ~ £ L AJ,r-· 
j j 

As in the proof of Theorem 5.2.7, we have that 

~ ess suplg(x)I lg(x-jr)I ~ ess suplg(x)I lg(x-jr)I 
k XE:IR XE:Qr-

~ £ ess suplg(x-jr) I = £AJ,r-· 
XE:Qr-

The conclusion now follows easily. ■ 
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REMARK 5.2. 10. Theorem 5.2.9 is a partial converse to Corollary 

5.2.3 for if g~W(L
00

,L
1

), and if g satisfies the conditions of 

Theorem 5.2.9 for each r > 0, then we must have that L ~a(j/b) = oo 

for all sufficiently small b > 0. 

LEMMA 5.2. 11. Let A be a countable index set and let {xn} be a 
n< A 

sequence in ~k such that for some non-negative function hon ~k. 

we have that L h(xnl = ro. 
n 

Let {P1} be a countable collection 
l C I 

of disjoint subsets of ~k with the property that {xn} c U Pi and 

such that there exists a constant M > 0 such that for all iEI, 

Then there is a subsequence {Xn(ll} such that for all i, 
l <: I 

L h( Xn( l)) = ro. 
j C I 

PROOF. Suppose not, that is, suppose that for each subsequence 

{Xn(ll} chosen so that Xn(llEP 1 for each iEl, we have that 

Lh(Xn(l)) < ro. 
j C I 

Then by choosing at most M distinct such subsequences, we could 

exhaust the entire sequence {xn}, that is, we could choose for j = 

1,2, ... ,M, {xn (ll} where for all iEl and each j, Xn.CllEP 1 , such 
Mj J 

that {xn} = U {xn (ll} . Thus we would have 
J=l J l<I 

L h( Xn ( l)) < ro. 
l C I j 

As this contradicts our original assumption, the lemma is proved. ■ 
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, 

THEOREM 5.2. 12. Let g, a, and ~a(s) be as in Theorem 5.2.7. 

Suppose there exists a non-increasing function f on [O,oo) such 

that for some constants c 1 , c 2 > 0, 

for al 1 s EiF/. Then for every r ~ a, there is a constant c > 0 

such that 

PROOF . 

c[t\J,r!> 
j 

For the i th "quadrant" of 

[ ~a(jr). 
j 

~k (including the adjacent 

k 
coordinate axes), define the cube Q1,r by Qi,r = [O,rci) where 

ciE~k is that unique vector in the i th quadrant whose entries are 

either 1 or -1. Then the collection of cubes {Qi ,r+nr : n in the 

i th quadrant} forms a partition of the i thquadrant of ~k-

Now, choose a sequence of points {sJ} c ~k as in Theorem 

5.2.7 so that SJEQr+jr and each SJ sits in the interior of some 

cube Qi, r+nr for some i and n . Since s JE:Qr+ jr, it is clear that 

there is a number M > 0 independent of n and i such that 

#{j<:Zk: SJE:Q1,r+nr} !> M. 

Given n in the i
th 

quadrant, we have that lnrl ~ lx l for all 

Th . 11 . th . th d t en, summing over a n 1n e 1 qua ran gives, 
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/3a ( nr) . 

Finally, we have that 

[ 
quad . 

n 

where the extra factor of 2k-l comes from the fact that an nEJk is 

in 2k-l quadrants when it lies on one of the coordinate axes. 

Thus, by Theorem 5 . 2 . 7, we have that for some constant c, 

L f3a( jr). ■ 
J 

COROLLARY 5.2. 13. Let g be a non-negative function in L
2
(~k) and 

let f be a non-increasing, function on [O,oo) such that 

(1) f3a(s) ~ f(/s/) for all S€~k. and 

(2) for all r > 0, 

[ f ( I nr I ) < oo. · 
n 

00 l Then g<cW(L ,L ). 

PROOF. The proof of Theorem 5.2. 12 shows that 

~ c [ f( /nr/) 
.th d n€ 1 qua . 

for some constant c which implies that 

[ f3a(sJ) ~ c [ f( /nr/) < oo. 
J n 

By the way the points {sJ} were chosen, we have that for some d > 

0, 
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00 l 
whence gEW(L ,L ). ■ 

REMARK 5.2. 14. In the existence theorem for W-H frames for L
2

(~) 

found in [01], Daubechies makes the assumption that for some c > 

0, 

for every sE~ and some C < co. Corollary 5.2.13 says that this 
C 

assumption implies that gEW(L
00

,L
1
). 
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Section 5.3. Phase-space localization 

The following theorem is similar to a theorem in [D1]. The 

conclusion in this theorem is the same as that in [D1], but the 

condition on g required is more transparent and allows the values 

of important constants to be computed easily. The crucial step is 

contained in the following lemma. The proof of the theorem is 

otherwise identical to that in [D1]. 

LEMMA 5. 3. 1. • oo k 1 k Let g€W(L (~ ),L (~ )), let a, b > 0 be given. Then 

for every c > 0 there exists t > 0 such that for every T > 0, and 
C 

t ~ t , we have 
C 

L ess sup L lg(x-na) I lg(x-na-j/b) I < c. 

j I X I ST. I I >T t 
lx-j/blST na - + 

PROOF. Given c 0 > 0, choose M > 0 so large that letting gH; 

g1QK' we have llg-gHll.,,1,a < co, Also, choose L > 0 so large that 

L II L I g( x-na) I I g( x-na-j/b) 1 jj 
00 

< c 0 • 

IJ l>L n 

Such an L exists by Lemma 4.1.2. Note that 

{x: lxlST, lx-j/blST for all l j lSL} c Qr+L/b· 

Now, 

L ess sup 
. lxlST, 
J lx- j/b lST 

L 
lnal~T+t 

lg(x-na)I lg(x-na-j/b) I 

s L essxsup L lg(x-na) I lg(x- na-j/b) I 

n I j I >L 
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= (.). 

+ L ess sup L lg(x-na) I lg(x-na-j/b) I 

I . I L I X I ST' I I >T t 
JS lx-j/blST na - + 

C Now, choose to so large that if t ~ to and if na€(Qr+t), then 

(QM+na) n Or+L/b = 0. For this, it suffices that T+t 0-M > T+L/b 

or that t 0 > M+L/b, independent of T. then if t ~ t 0 , Lemma 4.1.2 

says that 

(.) s co+ L 
I j I SL 

ess sup L lgM(x-na) I lg(x-na-j/b) I 
X€QT+L/b lnal~T+t 

+ L II LI (g-gM) (x-na) I lg(x-na-j/b) 111
00 

J n 

= co+O+ L II L I (g-gM) (x-na) 11 g(x-na-j/b) 111
00 

j n 

Now, k 
given c > 0, choose co> 0 so small that co(1+2 lig-ll<D,1,1/b) 

< C. Lett be the t 0 corresponding to that c0 . ■ 
C 

suppose that (g,a,b) generates a W-H frame for L2
(~k) with bounds 

A, B. Then given c > 0, there exists t, w > 0 such that for all 
C C 

f €L2
('°k), T Q O d t > t d ~ every , > , an every _ can w ~ we, 

II f- L <f, Emb T nag> Emb T naS- l gll 2 
(n, m)" B 

s (BIA) 
112

[ II ( I-P Q)fl12+ll ( I-Or)fll2l+cl1fl12 

where B = B(c,T,Q) = {(n,m)<?lx?l: lnalST+t, lmblSQ+w}, QTf = 
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PROOF. Fix T, n and let 

B(t,w) = {(n,m)E:ZkxZk: 

Then, 

-1 -1 
lnlSa (T+t), lmlSb (n+w)}. 

\\r- L <f, Embinag>EmbinaS-
1
gll2 

(n,m)E:B(t,w) 

= II L <f, EmbTnag>EmbinaS-
1

g\1 2 
(n,m)E:B(t,w)c 

= sup \ L <f,Embinag> <h,EmbinaS-
1
g>I. 

llhll2=l Cn,m)E:B(t,w)c 

Now, 

I L <f, EmbTnag><h, EmbTnaS-
1
g> I 

(n,m)E:B(t,w)c 
\ -1 

S L I <Q.l, EmbTnag> 11 <h, EmbTnaS g> I 

lnalST+t, 
m 

+ 

+ 

+ 

\ -1 L l <(I-O-r)f,EmbTnag>l l<h,EmbinaS g>l 

I nal ST+t, 
m 

\ -1 L I <P nf, Embinag> 11 <h, EmbinaS g> I 

I mbl sn+w, 
n 

[ 
lmblSQ+w, 

n 

Now, by Cauchy-Schwarz, 

N2 S [ L l <CI-O-r)f,Embinag>l
2 

] 

1/2 

I nal ST+t, 
m 

[ \ -1 2] 112 
L I <h, EmbinaS g> I 

lnalST+t, 
m 
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N4 $ ( L l <(I-PQ)f,EmbTnag>l
2r12 

lmbl $Q+w, 
n 

( 
\ -1 2]1/2 L I <h, EmbTnaS g> I 

lmbl$Q+w, 
n 

$ ( Bl A ) 
112

11 ( I - P Q) f II 2 II h II 2, 

2 k 
since if {EmbTnag} is a frame for L (~) with bounds A, B, then 

-1 -1 -1 
{EmbTnaS g} is a frame with bounds 8 , A . 

An application of Cauchy-Schwarz, the argument in the proof 

of Theorem 5.2. 1, the self-adjointness of S, the assumption that 

2 k 
(g,a, b) generates a frame for L (~ ), and the fact that 11Clrfll 2 $ 

II fll 2 gives that 

llfll 2IIS-
1
hll 2b-k Less sup I L g(x-na)g(x-na-j/b) I· 

j I X I $T. I I <T t 
lx-j/bl$T na - + 

Now, since 

and 

and since IIPQfll 2 $ llfl1 2, we have as above that 

By Lemma 5.3.1, for every c > 0, there exist numbers t, w 
C C 

such that for every t ~ t and w ~ w, and every T, Q > 0, 
C C 

sup (N1+N2+N3+N4) $ (B/A)
112

[11(I-C1r)fll2+ll(I-PQ)fll2l+cllfll2 - • 
llhll2=l 
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