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Gardnerella vaginalis is abundant in bacterial vaginosis (BV), a
condition associated with adverse reproductive health. Sialidase
activity is a diagnostic feature of BV and is produced by a subset of
G. vaginalis strains. Although its genetic basis has not been for-
mally identified, sialidase activity is presumed to derive from the
sialidase A gene, named here nanH1. In this study, BLAST
searches predicted two additional G. vaginalis sialidases, NanH2
and NanH3. When expressed in Escherichia coli, NanH2 and
NanH3 both displayed broad abilities to cleave sialic acids from
�2-3- and �2-6-linked N- and O-linked sialoglycans, including rel-
evant mucosal substrates. In contrast, recombinant NanH1 had
limited activity against synthetic and mucosal substrates under the
conditions tested. Recombinant NanH2 was much more effective
than NanH3 in cleaving sialic acids bearing a 9-O-acetyl ester. Sim-
ilarly, G. vaginalis strains encoding NanH2 cleaved and foraged
significantly more Neu5,9Ac2 than strains encoding only NanH3.
Among a collection of 34 G. vaginalis isolates, nanH2, nanH3, or
both were present in all 15 sialidase-positive strains but absent
from all 19 sialidase-negative isolates, including 16 strains that
were nanH1-positive. We conclude that NanH2 and NanH3 are the
primary sources of sialidase activity in G. vaginalis and that these
two enzymes can account for the previously described substrate
breadth cleaved by sialidases in human vaginal specimens of
women with BV. Finally, PCRs of nanH2 or nanH3 from human
vaginal specimens had 81% sensitivity and 78% specificity in distin-
guishing between Lactobacillus dominance and BV, as determined
by Nugent scoring.

Bacterial vaginosis (BV)2 is a common condition in which the
vagina contains few “healthy” lactobacilli and is overpopulated
by diverse anaerobes (1, 2). BV has been associated with a wide
array of adverse health outcomes, including increased risks of
sexually transmitted infections, placental and amniotic fluid
infections, and preterm birth (3–6). Several bacterial enzymes
have been proposed to be virulence factors in BV, including
phospholipases, cytolysins, proteases, and sialidases (7–10).
In particular, sialidase (also referred to as neuraminidase,
E.C.3.2.1.18) activity in vaginal fluids is considered a hallmark
of BV (10 –12). Sialidases act on glycan chains capped with
sialic acid residues (13), which are abundant at mucosal sur-
faces, including the reproductive tract. Sialidase activity has
been used as a diagnostic marker for BV (14, 15) and has been
independently associated with adverse pregnancy outcomes,
including ascending intrauterine infection and preterm birth
(16 –18). Sialidase production by isolates of BV-associated bac-
teria suggests that the enzyme activity in vaginal fluids is bac-
terial in origin (10, 19). It is widely believed that mucus degra-
dation by BV bacteria contributes to the characteristically
“thin” consistency of vaginal fluid in BV (9, 20) and has been
postulated to contribute to the increased risks of sexually trans-
mitted and ascending infections in women with BV (10, 16, 19,
21, 22).

Gardnerella vaginalis is one of the most common bacterial
species to overgrow in BV (2, 23–25). Consistent with the
notion that G. vaginalis is a pathogen, this bacterium has been
isolated from invasive perinatal infections (26, 27) and, in one
study, was found in 26% of infected placentas from cases of
preterm birth (28). The pathogenic potential of G. vaginalis iso-
lates has also been demonstrated in vitro (e.g. cell adhesion and
invasion, cytolytic toxin production/pore formation, and bio-
film formation) (29 –32). We have shown that a G. vaginalis
strain isolated from a woman with BV is sufficient to elicit sev-
eral features of BV (or health complications that have been
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associated with BV) in mouse models of vaginal infection (33–
35). These features include vaginal sialidase activity, evidence of
mucus degradation, absence of overt histological inflammation,
epithelial exfoliation, and the presence of “clue-like” epithelial
cells with attached bacteria in vaginal washes (33, 34). Health
complications that can be reproduced in murine models by
administering G. vaginalis include ascending uterine infection
with G. vaginalis and other potential pathogens as well as
recurrent urinary tract infection caused by Escherichia coli (33,
35).

Although many strains of G. vaginalis do not produce siali-
dase activity under laboratory conditions, others express siali-
dase activity that is both surface-bound as well as secreted (34).
These strains are able to liberate sialic acids from glycoproteins
in culture medium and then deplete the resulting free mono-
saccharide. In contrast, sialidase-negative strains cannot liber-
ate or consume sialic acids provided in the bound form. For
years, it has been assumed that the sialidase activity in G. vagi-
nalis is encoded by the gene originally annotated in strain
ATCC 14019 as “sialidase A” (34, 36 – 40). In support of this
idea, a recent report demonstrated activity of recombinant
sialidase A protein against a synthetic substrate in vitro (41).
However, the lack of genetic tools in Gardnerella has prevented
the construction of sialidase mutants to formally test the extent
to which sialidase A contributes to the sialidase activity
observed in cultured strains. Although sialidase A appears to be
found in all sialidase-positive strains of G. vaginalis, the intact
ORF is also present in many sialidase-negative isolates. This
inconsistency has prompted multiple research groups to ques-
tion whether sialidase A accounts for the enzyme activity
observed in G. vaginalis cultures (37, 39, 42). Here we describe
two previously unappreciated sialidases in G. vaginalis, NanH2
and NanH3, and show that these enzymes exhibit a broad range
of activity not only against synthetic substrates but also against
mucosal glycoproteins relevant to the human vaginal environ-
ment. Moreover, we show that the presence of nanH2 or nanH3
in the genomes of G. vaginalis strains perfectly reflects their
ability to produce sialidase activity in culture. Thus, we con-
clude that NanH2 and NanH3 are the main sources of sialidase
activity in G. vaginalis.

Results

Here we set out to identify the genetic basis for sialidase
activity in G. vaginalis. Given that sialidase A is present in many
strains that do not produce sialidase activity in culture, we sus-
pected that genes other than sialidase A might encode the
activity produced by sialidase-positive isolates. Therefore, we
performed BLASTp searches of the predicted G. vaginalis pro-
teome to identify additional sialidase homologs. To our knowl-
edge, Bifidobacterium longum is the species most closely
related to G. vaginalis in which a sialidase has been functionally
characterized. The NanH2 sialidase of B. longum subsp. infan-
tis strain ATCC15697 cleaves sialic acids in both �2-3 and �2-6
linkages and is active against milk oligosaccharides (43). Using
B. longum ATCC15697 NanH2 as a query sequence, a BLASTp
search of the proteome of G. vaginalis JCP8151B (34), a siali-
dase-positive strain, revealed two sialidase homologs in
addition to sialidase A. The first result (accession number

WP_016798291) was 65% identical over 349 residues to
B. longum NanH2 and was subsequently designated NanH2.
The second result (accession number WP_016792322) was 60%
identical to B. longum NanH2 over 372 residues and was desig-
nated NanH3. Aligning the three NanH homologs revealed that
the regions of high identity centered around the sialidase
domain of each protein (Fig. S1). Within JCP8151B, NanH2 and
NanH3 displayed 49% identity over 572 residues, whereas siali-
dase A was only 29% identical over 251 residues to NanH2
and 24% identical over 292 residues to NanH3. B. longum
ATCC15697 encodes another sialidase, NanH1, which can also
cleave sialic acids in �2-3 and �2-6 linkages but is more than
100-fold less active than NanH2 (43). A BLASTp search of the
JCP8151B proteome with the ATCC15697 NanH1 sequence
identified sialidase A as the first result, with 43% identity
between them. Thus, we propose renaming G. vaginalis siali-
dase A NanH1 and will refer to it as such from this point
forward.

To test whether G. vaginalis nanH1, nanH2, or nanH3
encode active sialidases, the genes were cloned from JCP8151B
and expressed as His6-tagged proteins in E. coli. Kinetic assays
on IPTG-induced cultures demonstrated that both NanH2 and
NanH3 were able to cleave the fluorogenic substrate 4-MU-N-
acetylneuraminic acid (N-acetylneuraminic acid or Neu5Ac is
the most common type of sialic acid found in nature). In con-
trast, NanH1 activity was undetectable under these conditions
(Fig. 1A). The absence of NanH1 activity could not be attrib-
uted to a lack of protein expression or stability because Western
blot analysis with anti-His6 monoclonal antibodies revealed a
prominent band at the expected molecular mass of 100 kDa
(Fig. S2).

Bacterial sialidase domains typically contain an N-terminal
RIP (Arg-Ile/Leu-Pro) motif, four or five aspartate box repeats
(Ser/Thr-X-Asp-X-Gly-X-Thr-Trp/Phe), and seven conserved
active site residues (44). These features are present in the amino
acid sequences of all three G. vaginalis JCP8151B NanH pro-
teins, with the exception of NanH3, which lacks the C-terminal
auxiliary glutamate residue (Fig. 1B). NanH1 has an N-terminal
concanavalin A–like lectin domain and a C-terminal sialidase
domain but lacks predicted secretion signals, transmembrane
regions, or cell wall anchoring motifs. In contrast, the 96-kDa
NanH2 protein displays a predicted 51-residue N-terminal Sec-
dependent signal peptide, a region with homology to Sec-inde-
pendent translocases, and a C-terminal transmembrane �-he-
lix, suggesting that NanH2 may be secreted but remain tethered
to the bacterial surface (Fig. 1B). Homology modeling of NanH2
based on the sialidase crystal structure from Micromonospora
viridifaciens (PDB code 1WCQ) (45), which also belongs to the
Actinobacteria, revealed a � propeller fold characteristic of
sialidases. The model positioned amino acid side chains to cre-
ate a predicted active site consisting of conserved catalytic res-
idues, including Glu-407 and Tyr-515, in addition to positively
charged arginine residues (Arg-206, Arg-423, and Arg-487),
likely responsible for binding negatively charged sialic acid (Fig.
1C). Corresponding putative active-site residues were also
found in NanH3. Sequence analysis of the 80-kDa JCP8151B
NanH3 protein revealed a predicted C-terminal membrane
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helix but failed to identify an N-terminal signal peptide or other
secretion signals.

Bacterial sialidase genes are often found near genes encoding
proteins involved in sialic acid uptake and catabolism (46, 47).
In JCP8151B, nanH1 is found adjacent to such a gene cluster
encoding putative enzyme activities involved in sialic acid for-
aging, including GlcNAc-6-phosphate deacetylase (nagA), a
glucosamine-6-phosphate deaminase (nagB), three ABC trans-
porter subunits, and an N-acetylneuraminate lyase (nanA). In
contrast, the genes flanking nanH2 and nanH3 appear to
encode functions unrelated to glycan degradation or sialic acid
catabolism (Fig. S3).

NanH2 and NanH3 act on sialoglycans relevant to the vaginal
mucosa

Given the high sialidase activity of NanH2 and NanH3
against 4-MU-Neu5Ac in E. coli cultures, we next investigated
the substrate specificity of these two proteins. Previous analyses
of the sialidase activity in vaginal specimens from women with
BV demonstrated a broad capacity for cleaving sialic acids in

many different contexts, including �2-3– and �2-6 –linked
sialic acids present within both N-linked and O-linked glycan
substrates (48). To determine whether NanH2 and NanH3
could account for this broad range of activity, we incubated
preparations of the recombinant sialidases with several differ-
ent substrates and measured the resulting free sialic acids by
fluorescent derivatization and HPLC. To ensure similar
amounts of activity between NanH2 and NanH3, dilutions of
the two enzymes were normalized in 4-MU-Neu5Ac assays
before each experiment. NanH2 and NanH3 both cleaved 3�-
and 6�-sialyllactose, and neither enzyme exhibited a marked
preference for one linkage over the other (Fig. 2). Both siali-
dases also cleaved sialic acid from secretory IgA (SIgA, Fig. 3A),
which contains mostly N-linked sialoglycans, as well as mucin
from bovine submaxillary gland (BSM), which contains mostly
O-linked sialoglycans (Fig. 3B). In addition to removing
Neu5Ac from these substrates, NanH2 and NanH3 were also
effective in liberating N-glycolylneuraminic acid from BSM
(Fig. 3C). We also assessed the ability of NanH2 and NanH3 to
cleave �2-3–linked sialic acids on the capsular polysaccharide

Figure 1. Sialidase activity and domain structure of G. vaginalis NanH1, NanH2, and NanH3. A, 4-MU-Neu5Ac assay of whole E. coli cultures
expressing recombinant JCP8151B NanH1, NanH2, NanH3, or empty vector control. B, predicted domain structure of JCP8151B NanH1, NanH2, and
NanH3. Putative catalytic residues are indicated above each protein. ConA, concanavalin A. C, JCP8151B NanH2 sialidase structural model showing
conserved active-site residues, produced with Swissmodel and Deepview Swiss PDB viewer based on the sialidase crystal structure from M. viridifaciens
(PDB code 1WCQ) (45).
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of the vaginal bacterium group B Streptococcus (GBS). GBS is an
important potential pathogen during pregnancy (49) and is
often found colonizing the vagina in women with high Nugent
scores (50), a method of laboratory diagnosis for BV (23). As
with the other sialoglycan substrates, both NanH2 and NanH3
cleaved Neu5Ac from the GBS capsule (Fig. 3D). Based on these
experiments, we conclude that G. vaginalis NanH2 and NanH3
can cleave sialic acids from several substrates relevant to the
vaginal mucosa.

NanH2 is more effective than NanH3 at cleaving
9-O-acetylated sialic acid

Sialic acids on mucosal sialoglycans may be modified with
O-acetyl esters at carbon positions 7, 8, and 9. O-acetylated
sialic acids are known to resist the action of many sialidases,
with the extent of the inhibition depending on the position of
the modification (51–53). To determine whether NanH2 or
NanH3 could cleave O-acetylated sialic acids, we incubated
each sialidase with BSM or intact GBS cells, both of which con-
tain sialoglycan chains modified with 7-O- and 9-O-acetyl
esters. For these experiments, we used a GBS strain with high
levels of O-acetylation resulting from an active site mutation in
the neuA esterase gene (54). In time course assays, NanH2 and
NanH3 released similar quantities of the 7-O-acetylated sialic
acid N-acetyl-7-O-acetylneuraminic acid (Neu5,7Ac2) from
both substrates (Fig. 4, A and B). However, NanH2 was far more
effective than NanH3 in releasing the 9-O-acetylated sialic acid
N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) from both
BSM and GBS cells (Fig. 4, C and D).

Activity of purified NanH1

In a study characterizing the NanH1 and NanH2 sialidases of
B. longum subsp. infantis, Sela et al. (43) reported that NanH1
was much less active than NanH2 against �2-3 and �2-6

sialyllactosyl 4-methylumbelliferol and against a library of
p-nitrophenol–tagged sialylgalactosides. However, when used
at a 80- to 160-fold higher concentration than NanH2, purified
B. longum NanH1 exhibited detectable activity against these
substrates. Therefore, in a final attempt to examine possible
sialidase activity of G. vaginalis NanH1, we used nickel purifi-
cation to isolate large quantities of His6-tagged JCP8151B
NanH1. When used at 10 �g/ml in 4-MU-Neu5Ac assays,
NanH1 was able to cleave the fluorescent substrate at low levels
in vitro (Fig. 5A).

We next wanted to compare the activity of purified recom-
binant NanH1 with that of purified NanH2 and NanH3. How-
ever, in our initial experiments, recombinant NanH2 was local-
ized to the supernatant of E. coli cultures, whereas NanH3 was
found in the cytoplasm, and neither protein could be isolated in
significant quantities using nickel affinity resin. We surmised
that the soluble fraction of each protein had lost its C-terminal
transmembrane region and His6 tag, whereas proteins retaining
the tag were likely insoluble because of the hydrophobic trans-
membrane regions of both NanH2 and NanH3. Thus, we gen-
erated additional nanH2 and nanH3 constructs lacking the

Figure 2. NanH2 and NanH3 cleave 3�- and 6�-sialyllactose. A and B, prep-
arations of NanH2 (A) or NanH3 (B) were mixed with 20 �M 3�-sialyllactose (3�
SL) or 6�-sialyllactose (6� SL) and incubated at 37 °C for 3 h. At each time point,
aliquots of the reaction mixtures were removed and analyzed by DMB-HPLC
for free Neu5Ac.

Figure 3. NanH2 and NanH3 act on N-linked and O-linked sialoglycan
substrates relevant to the host mucosa. A–D, sialoglycans included SIgA
from human colostrum (A), BSM (B and C), and GBS whole cells (D). Prepara-
tions of NanH2 or NanH3 were mixed with each substrate and incubated at
37 °C for 4 h. AUS was used as a positive control. At each time point, aliquots
of the reaction mixtures were removed and analyzed for Neu5Ac or N-glyco-
lylneuraminic acid (Neu5Gc) by DMB-HPLC.
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transmembrane regions but retaining the C-terminal His6 tags.
The putative signal sequence of NanH2 was also removed,
allowing all three proteins to be isolated from the E. coli cyto-
plasm using the same method. The truncated versions of
NanH2 and NanH3 were expressed in E. coli, and protein was
enriched by nickel purification similar to NanH1. SDS-PAGE
followed by staining with Coomassie Blue revealed expected
bands of �100 kDa for NanH1 and NanH2 and 77 kDa for
NanH3 (Fig. 5B). Next we incubated the three sialidases with
4-MU-Neu5Ac, BSM, colostrum IgA, or sialyllactose and mea-
sured the liberation of free sialic acids by DMB-HPLC.
Although the amount of each enzyme was roughly equivalent,
as determined by Coomassie staining and BCA assays, only
NanH2 and NanH3 released large quantities of sialic acid from
these substrates (Fig. 5C). NanH1 released little Neu5Ac from
4-MU-Neu5Ac, BSM, or colostrum IgA and was completely
inactive against BSM Neu5,7Ac2, BSM Neu5,9Ac2, or sialyllac-
tose under the conditions tested. Because some sialidases
require divalent cations for full activity, we also performed sialic
acid release assays on 4-MU-Neu5Ac and colostrum IgA in the
presence of 1 mM CaCl2 or MgCl2, but NanH1 showed no
increase in activity in the presence of divalent cations (Fig. S4).
Additional experiments ruled out the possibility that NanH1
preparations were contaminated with N-acetylneuraminate
lyase activity (present in all E. coli strains), which could theo-

retically degrade liberated Neu5Ac and mask sialidase activity
in NanH1-treated samples analyzed by HPLC.3

Release of Neu5,9Ac2 by G. vaginalis strains suggests NanH2
expression

Given the in vitro data showing that NanH2 was better than
NanH3 at cleaving 9-O–acetylated sialic acids, we hypothesized
that if nanH2 is expressed in G. vaginalis, then NanH2-encod-
ing strains might be better able to liberate 9-O–acetylated sialic
acids than strains encoding only NanH3. To test this hypothe-
sis, we used NCBI sequence data to identify G. vaginalis
strains encoding NanH2 (JCP8151A, JCP8151B, JCP8522,
and GED7760B; designated “nanH2�”) and strains encoding
NanH3 but not NanH2 (JCP7276, JCP8017, JCP8066, and
JCP8070; designated “nanH3 only”). A nanH3 gene is also
present in three of the four nanH2� strains (JCP8151A,
JCP8151B, and JCP8522), whereas GED7760B is nanH3-neg-
ative. G. vaginalis isolates were grown overnight in NYCIII
medium supplemented with BSM as a source of O-acetylated
sialic acids. Supernatants from spent cultures were then ana-
lyzed by DMB-HPLC to determine how much of each sialic
acid species was liberated. A separate portion of each sample
was treated with Arthrobacter ureafaciens sialidase (AUS) to
release and measure sialic acids that remained bound to gly-

3 L. S. Robinson, unpublished data.

Figure 4. NanH2 and NanH3 release O-acetylated sialic acids. A–D, prep-
arations of NanH2, NanH3, or AUS were incubated with BSM or GBS whole
cells and incubated at 37 °C for 4 h. Release of BSM Neu5,7Ac2 (A), GBS
Neu5,7Ac2 (B), BSM Neu5,9Ac2 (C) or GBS Neu5,9Ac2 (D) was determined by
DMB-HPLC.

Figure 5. Sialidase activity of isolated recombinant NanH proteins. A,
4-MU-Neu5Ac assay on JCP8151B NanH1 isolated from E. coli lysates. B, nor-
malization of recombinant NanH1, NanH2, and NanH3 by SDS-PAGE and Coo-
massie staining. MW, molecular weight. C, end point assay showing release of
sialic acids from 4-MU-Neu5Ac, BSM, colostrum SIgA, and sialyllactose in the
presence of NanH1, NanH2, or NanH3. Samples were incubated at 37 °C for
2 h, and free sialic acids were measured by DMB-HPLC.
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can substrates following overnight growth while preserving
their acetylation patterns (55). As expected, all eight G. vagi-
nalis strains were able to release and consume Neu5Ac and
N-glycolylneuraminic acid from the medium (Fig. S5). The
nanH3-only strains released and consumed significantly
more Neu5,7Ac2 than the nanH2� strains (Fig. 6, A and C).
In contrast, and consistent with the in vitro enzyme data,
nanH2� strains released and consumed more Neu5,9Ac2
than the nanH3-only strains (Fig. 6, B and D), supporting the
interpretation that NanH2 was expressed and secreted
under these conditions.

The presence of nanH2 or nanH3 accounts for sialidase
activity in G. vaginalis cultures

In light of our findings that recombinant NanH1 had only
weak sialidase activity in vitro, we investigated the possibility
that nanH2 and nanH3 may better account for culture sialidase
activity among the 34 G. vaginalis isolates in our strain reposi-
tory (Table 1). Many of these strains have been tested previ-
ously for sialidase activity (34). Additional strains were
tested for activity against 4-MU-Neu5Ac in kinetic assays. In
total, 19 strains were sialidase-negative, and 15 were siali-
dase-positive (Fig. S6A). Next we used NCBI sequence data
to identify nanH1, nanH2, and nanH3 in the genomes of
published isolates. PCR with primers specific for each nanH
gene was used to determine their presence or absence in

strains that had not been sequenced previously as well as in
sequenced strains whose genomes are not closed (Fig. S6B).
In each case where PCR and genome sequences were avail-
able, we found that both strategies gave complimentary
results. None of the 19 sialidase–negative strains encoded
either NanH2 or NanH3, although most of them possessed
nanH1 (Table 2). Conversely, all 15 sialidase–positive strains
encoded NanH2, NanH3, or both. We therefore conclude
that nanH2 and nanH3 account for the sialidase activity
observed in cultured G. vaginalis.

The presence of nanH2 or nanH3 in vaginal specimens from
women with and without bacterial vaginosis

In a final set of experiments, we wanted to find out whether
the presence of nanH2 or nanH3 in vaginal samples might also
have diagnostic applications. To test this, we used genomic
DNA isolated from a subset of a previously described cohort of
women (56) as a template for PCR as described under “Experi-
mental procedures.” We evaluated a total of 67 specimens from
women with BV (Nugent 7–10, n � 21), “no BV” (Nugent 0 –3,
n � 23), and intermediate phenotypes (Nugent 4 – 6, n � 24).
We performed two distinct PCR assays for nanH2 and nanH3
with appropriate controls, including no template or genomic
DNA from G. vaginalis isolates with neither nanH2 nor nanH3
(JCP8108), nanH2 only (GED7760B), or nanH3 only (JCP8066).
We then categorized each sample in a blinded fashion by the

Figure 6. Release and consumption of acetylated sialic acids by nanH3-only or nanH2� strains of G. vaginalis. Following overnight growth of
G. vaginalis clinical isolates in NYCIII medium supplemented with BSM, supernatants were analyzed by DMB-HPLC for free and total acetylated sialic
acids. Released Neu5,7Ac2 (A) and Neu5,9Ac2 (B) were calculated by subtracting the concentration of bound sialic acid in the spent culture supernatants
from that of the uninoculated medium control. Consumed Neu5,7Ac2 (C) and Neu5,9Ac2 (D) were calculated by subtracting the concentration of total
sialic acid in each culture supernatant from the total sialic acid in the uninoculated medium control. ****, p � 0.0001; **, p � 0.008 in two-tailed
Mann–Whitney tests.
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presence or absence of nanH2 or nanH3 bands in at least two
independent PCR experiments. Women were then classified as
being positive for either nanH2 or nanH3 or as having neither
nanH2 nor nanH3. Comparison of these results in relation to
Nugent categories (0 –3, 4 – 6, and 7–10) revealed a striking

pattern. Although 17 of 21 women with BV were positive for
nanH2 or nanH3, only 5 of 23 Lactobacillus-dominant samples
showed the presence of nanH2 or nanH3. Interestingly, among
the intermediate samples, 13 of 24 were positive for nanH2 or
nanH3 (�2 p � 0.0004). Considering women with BV or no BV,

Table 1
Strains, plasmids, and primers used in this study

Name Description or sequence
Source or
reference

Strains
G. vaginalis JCP7275 Clinical isolate 34, 88
G. vaginalis JCP7276 Clinical isolate 34, 88
G. vaginalis JCP7659 Clinical isolate 34, 88
G. vaginalis JCP7672 Clinical isolate 34, 88
G. vaginalis JCP7719 Clinical isolate 34, 88
G. vaginalis JCP8017 Clinical isolate 34, 88
G. vaginalis JCP8066 Clinical isolate 34, 88
G. vaginalis JCP8070 Clinical isolate 34, 88
G. vaginalis JCP8108 Clinical isolate 34, 88
G. vaginalis JCP8151A Clinical isolate 34, 88
G. vaginalis JCP8151B Clinical isolate 34, 88
G. vaginalis JCP8481 Clinical isolate 34, 88
G. vaginalis JCP8522 Clinical isolate 34, 88
G. vaginalis GED7275B Clinical isolate 89
G. vaginalis GED7760B Clinical isolate 89
G. vaginalis ATCC 14019 Type strain ATCC
G. vaginalis ATCC 49145 Type strain ATCC
G. vaginalis NML 060420 Clinical isolate 90
G. vaginalis UMB0105 Clinical isolate 91
G. vaginalis UMB0233 Clinical isolate 91
G. vaginalis 007/03D MASH Clinical isolate 92
G. vaginalis 1500E Clinical isolate 92
G. vaginalis 61/19V5 Clinical isolate 92
G. vaginalis 64/20B Clinical isolate 92
G. vaginalis 64/20LIT Clinical isolate 92
G. vaginalis 505v3 Clinical isolate This study
G. vaginalis 508v2 Clinical isolate This study
G. vaginalis 514v5 Clinical isolate This study
G. vaginalis 525v8 Clinical isolate This study
G. vaginalis 530v3 Clinical isolate This study
G. vaginalis 533v3 Clinical isolate This study
G. vaginalis 589v6 Clinical isolate This study
G. vaginalis 600v6 Clinical isolate This study
G. vaginalis 667v6 Clinical isolate This study
E. coli Top10 Cloning strain Invitrogen
E. coli BL21(DE3) Expression strain Scott Hultgren
E. coli LSR4 MG1655 �nanA 75

Plasmids
pET101/D-Topo E. coli expression vector Invitrogen
pGvagSia ATCC14019 nanH1 in pET101/D-Topo This study
pTrc99A E. coli expression vector Scott Hultgren
pLR34 JCP8151B nanH2 his in pTrc This study
pLR35 JCP8151B nanH3 his in pTrc This study
pLR37 JCP8151B nanH1 his in pTrc This study
pLR43 JCP8151B nanH2 his truncate in pTrc This study
pLR44 JCP8151B nanH3 his truncate in pTrc This study

Primers
G. vag tuf F1 ATGGCAAAGGAAAAGTACGAGCG This study
G. vag tuf R1 TCAAGCCCTCTTCCATTGCG This study
G. vag sia f CACCATGGAACGTCGTTCAACG This study
G. vag sia R AATGTCTCTTCCATGTTGGC This study
8151B nanH1 F Nco TTTTCCATGGCAGAACGTCGTTCAACGAAGACG This study
8151B nanH1 his R Bam TTTTGGATCCTTAGTGGTGGTGGTGGTG GTGAATGTCTCTTCCATTTTGGCTCC This study
8151B nanH2 F Nco CCATGGCAATTTTTACAATGCTGTGGAATTCATGT This study
8151B nanH2 his R Bgl2 TTTTAGATCTTAGTGGTGGTGGTGGTGGTGTGCAATCTTATTGCGCATTGC This study
8151B nanH3 F Nco AAAACCATGGCAACTGTTTGGCCAACTAAAAGTAATCTCAC This study
8151B nanH3 his R Pst TTTCTGCAGTTAGTGGTGGTGGTGGTGGTGATATTTCATATTTTTTAATTTCATTAATGCTGTAGAGATAGC This study
8151B nanH2 A51F Nco TTTTCCATGGCTACTTCAGAAAAATCCAGTAAACC This study
8151B nanH2 S908 his R Bgl2 TTTTAGATCTTAGTGGTGGTGGTGGTGGTGTGAACTTCCCGTTGAAACTTTAC This study
8151B nanH3 T702 his R Pst TTTCTGCAGTTAGTGGTGGTGGTGGTGGTGAGTTGTGTTGATTCCAGTTTTTTGC This study
G. vag sia universal F3 CGAGGCAAAATGATTAACGAAGG This study
G. vag sia universal R1 TTGGCTCCTTTCAGTTCGC This study
G. vag nanH2 qPCR F AGGAGTGCGTATGCGTAGAAG This study
G. vag nanH2 qPCR R CCGCACTGCTGAGTTTCAC This study
G. vag nanH3 qPCR F CAGTTCCAATGGAAGTGTGC This study
G. vag nanH3 qPCR R AGCATCTGGGAATGCTCTTG This study
G. vag nanH2 MP F1 CAGCGTTGATCAGTTGGATAAATC This study
G. vag nanH2 MP R1 AAGCATTACAACCGCAAGAAC This study
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this PCR test had 80.95% sensitivity (95% confidence interval,
60 –92.33) and 78.26% specificity (95% confidence interval,
58.1–90.34) compared with the Nugent score for BV diagnosis.
Thus, molecular testing of nanH2 and nanH3 may have diag-
nostic potential.

Discussion

Sialidase activity is consistently observed in the vaginal fluid
of women with BV, and the enzyme could benefit vaginal
microorganisms in several ways. First, sialidases provide a car-
bon source to Gardnerella by liberating terminal sialic acid res-
idues from vaginal glycoproteins, thus allowing their uptake
and catabolism (34). Second, sialidase activity in the vagina may
reveal cryptic receptors for adhesins and toxins by uncapping
underlying sugars, such as galactose residues, as they do for

bacteria in the mouth and airway (57–59). Third, vaginal siali-
dases could alter the physical properties of mucus, allowing
more intimate association with the epithelium, as occurs with
viral sialidases (60). Finally, sialidase activity could have immu-
nomodulatory consequences for receptors on mammalian cells.
Sialic acids serve as ligands for receptors called Siglecs
expressed on innate immune cells, and removal of sialic acids
changes the inflammatory potential of these immune cells (61,
62). One or more of these mechanisms could promote the
growth or colonization of sialidase-expressing vaginal bacteria,
including Prevotella and Bacteroides as well as G. vaginalis (9,
10, 19). In addition to influencing interactions between siali-
dase producers and the host, such functions could predispose
the vaginal microbiome toward dysbiosis by shifting the physi-
cal and/or immunological milieu to favor BV-associated
bacteria.

Here we report three lines of evidence that NanH2 and
NanH3 (and not sialidase A, which we renamed NanH1) are the
major contributors to sialidase activity in G. vaginalis cultures.
First, NanH2 and NanH3 were much more similar in sequence
to the enzymatically active B. longum sialidase NanH2 than was
NanH1, whereas G. vaginalis NanH1 was more similar to the
relatively inactive (43) B. longum NanH1. Second, although
G. vaginalis NanH1 had minimal activity against numerous
sialic acid substrates even at high concentrations, NanH2 and
NanH3 were able to cleave sialic acids in many different molec-
ular contexts, such as �2-3– and �2-6 –linked sialic acids as
well as N- and O-linked sialoglycans found on SIgA and mucin.
Thus, both NanH2 and NanH3 have a sufficient range of sub-
strate specificity to account for the full breadth of sialidase
activities observed previously in BV specimens (48). Finally,
among 34 G. vaginalis clinical isolates, the ability to cleave sialic
acids corresponded with the presence of nanH2 or nanH3 in
100% of cases, whereas the presence of nanH1 in the genome
was observed in many sialidase-negative strains.

We also demonstrate that a preliminary PCR assay targeting
nanH2/nanH3 in human vaginal specimens performs reason-
ably well in BV diagnosis based on the gold standard method of
laboratory diagnosis (based on the Nugent method). Our data
show that PCR detection of nanH2/nanH3 in human vaginal
specimens has �80% sensitivity and specificity to predict BV
diagnosis. Nugent scoring is widely used for laboratory BV
diagnosis, and it has brought the field forward in several impor-
tant ways. However, it is a crude metric that many in the field
are trying to replace with more objective and quantitative
molecular methods (24, 63, 64). Because the PCR assays pre-
sented here focus on genes that likely encode virulence func-
tions, they may have advantages over Nugent scoring in the
potential prediction of adverse gynecological and obstetric out-
comes. Previous studies have shown that vaginal sialidase activ-
ity is associated with greater risks of pregnancy loss, preterm
birth, and placental infection (16 –18).

NanH2 and NanH3 are similar to each other and other func-
tionally characterized sialidases in many ways, but the two pro-
teins also have some important differences. For example, most
bacterial sialidases are either freely secreted into the extracel-
lular environment or secreted and retained at the cell surface,
where they can access host sialoglycans (65). Sialidases typically

Table 2
The presence of nanH2 or nanH3 corresponds with culture sialidase
activity in G. vaginalis clinical isolates
The ability of each strain to produce sialidase activity is shown, as is the presence or
absence of the three nanH genes. There are five (boxed) genotype–phenotype rela-
tionships.
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have an N-terminal signal peptide (66) that directs secretion
through the Sec translocase (67). All four G. vaginalis NanH2
proteins in the NCBI database have a 51-amino acid signal pep-
tide, as predicted by SignalP, a program that identifies putative
signal sequences and distinguishes them from likely transmem-
brane regions (68), and are thus likely to be extracellular. Con-
sistent with this prediction, when full-length JCP8151B NanH2
was expressed in E. coli, the majority of the sialidase activity was
found in the culture supernatant. The NanH2 amino acid
sequence also contains a 78-residue PRK00708 domain down-
stream of the sialidase domain. PRK00708 domains are associ-
ated with Sec-independent translocases (69), suggesting that
NanH2 secretion may involve additional mechanisms besides
that provided by the Sec machinery. In contrast, the JCP8151B
NanH3 protein does not have a predicted signal peptide, nor do
the NanH3 proteins in the other nanH2�, nanH3� strains,
JCP8151A and JCP8522. However, the NanH3 proteins in most
G. vaginalis strains lacking nanH2 have longer N termini that
include signal peptides according to SignalP, suggesting that
NanH3 may be secreted in some G. vaginalis strains and intra-
cellular or unexpressed in others.

Both NanH2 and NanH3 have predicted transmembrane
�-helices at their C termini. Our initial attempts to purify
recombinant NanH2 and NanH3 from E. coli involved full-
length, C-terminal His-tagged versions of the two proteins.
However, we were unable to isolate significant quantities of
either enzyme from the soluble fraction of E. coli lysates or
supernatants using Ni2� affinity resin despite the presence of
sialidase activity in these fractions (and its absence from frac-
tions derived from E. coli with vector alone). We suspect that
the full-length polypeptides were insoluble because of the
C-terminal hydrophobic �-helices but that some percentage of
molecules was proteolytically cleaved upstream of the trans-
membrane domain, separating them from the His6 tag and
releasing them into solution. Indeed, plasmids encoding His-
tagged NanH2 or NanH3 lacking the C-terminal transmem-
brane regions yielded soluble protein that readily bound to
nickel affinity resin. These findings suggest that, following
secretion, some portion of membrane-bound NanH2 and
NanH3 may be released into the environment because of pro-
teolytic sensitivity upstream of their putative transmembrane
�-helices. This is consistent with our previous observation that
a significant fraction of G. vaginalis sialidase activity is found in
culture supernatants (34). Similarly, the membrane-bound
NanA sialidase of Streptococcus pneumoniae can be proteolyti-
cally cleaved upstream of its LPXTG cell-anchoring motif with-
out appreciable loss of activity (70).

The one significant functional difference we noted between
NanH2 and NanH3 was that NanH2 was much more effective
than NanH3 at cleaving 9-O–acetylated sialic acids on BSM and
GBS whole cells. This in vitro difference was also evident in
vivo, as G. vaginalis strains encoding NanH2 were better able to
release and consume 9-O–acetylated sialic acids than strains
encoding NanH3 only. Although GBS is a common vaginal
commensal and often has high levels of O-acetylated sialic
acids, elutions from human vaginal swabs had little, if any, 9-O–

acetylated sialic acid.4 However, the ability to liberate 9-O–
acetylated sialic acids may help nanH2� G. vaginalis strains to
colonize niches outside of the vagina. For example, in men,
women, and children, G. vaginalis has been reported to be an
inhabitant of the distal gastrointestinal tract (anal swabs) (71–
73), where 9-O acetylation of sialic acid reaches high levels
(colon, rectum, and anus) (52, 53). Given that 9-O acetylation
impedes the activity of many bacterial sialidases (74, 75),
NanH2-expressing strains of G. vaginalis may have a competi-
tive advantage in the rectum because of an expanded capacity to
forage on 9-O–acetylated sialic acids.

NanH3 may be the protein reported by von Nicolai et al. (76),
who described a G. vaginalis membrane-bound sialidase that
was released into the soluble fraction of bacterial suspensions
by sonication and was active against a broad range of substrates,
including sialyllactose, fetuin, and BSM. Gel chromatography
revealed a molecular mass of around 75 kDa, which is only
slightly smaller than full-length G. vaginalis JCP8151B NanH3
(80 kDa) and almost identical in size to NanH3 lacking its puta-
tive transmembrane helix (77 kDa, Fig. 5B). To our knowledge,
the G. vaginalis strain used in this previous study has not been
sequenced, precluding efforts to confirm the presence of
nanH3 in its genome, but the similarities in molecular mass,
cellular localization, and enzymatic activity suggest that the
purified protein was indeed NanH3.

Our data strongly suggest that NanH1 is not responsible for
the sialidase activity observed in G. vaginalis. At least three
other research groups have also found that the presence of
nanH1 does not predict culture sialidase activity in many
G. vaginalis strains (37, 39, 42). In particular, one study
reported that fewer than half of 77 nanH1� strains produced
detectable sialidase activity (42). Nevertheless, to our knowl-
edge, nanH1 is present in all sialidase-positive strains of
G. vaginalis examined to date. A recent investigation specu-
lated that the lack of sialidase activity observed in many
nanH1� strains could be due to transcriptional regulation of
nanH1 (41). Although not an unreasonable hypothesis, we were
unable to find a published analysis of transcription or upstream
sequence differences to support this idea.

Interestingly, the apparent deficit in NanH1 sialidase activity
is not easily explained by its amino acid sequence alone. The
protein contains five aspartate boxes and all seven catalytic res-
idues typical of bacterial sialidases as well as the conserved RIP
motif at the N terminus of the sialidase domain. Furthermore,
the persistence of an intact nanH1 ORF in at least 20 distinct
G. vaginalis isolates points toward an important function for
this gene. NanH1 lacks a predicted N-terminal signal sequence,
implying intracellular localization. In mammals, intracellular
sialidases function in metabolism and regulation of inflamma-
tory states (61). In some bacteria (e.g. Bifidobacterium), these
sialidases are thought play a purely metabolic role, such as
cleavage of oligosaccharides after they are transported into the
cytoplasm (43). Alternatively, intracellular sialidases some-
times escape into the extracellular environment through cell
lysis. For example, the Clostridium perfringens NanH sialidase

4 A. L. Lewis, unpublished data.
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lacks a predicted signal sequence and accumulates intracellu-
larly in log phase cultures (77) but can be found in the superna-
tant of death phase cultures. This mechanism is especially plau-
sible in the case of G. vaginalis because of its thin cell wall (78).

The NanH1 sialidase of B. longum may provide insight into
the function of G. vaginalis NanH1. The two proteins are 44%
identical, and both have an N-terminal concanavalin A–like
domain while lacking discernable secretion sequences and
membrane-anchoring regions (43). Concanavalin A is a lectin,
and therefore the N-terminal domain is likely involved in sub-
strate binding. Also, both nanH1 open reading frames are
found adjacent to a predicted catabolic gene cluster. Consistent
with our finding that G. vaginalis NanH1 is a relatively inactive
sialidase, B. longum NanH1 was shown to have a 175-fold lower
kcat than B. longum NanH2 in the presence of �2-6 –linked sia-
lyllactosyl 4-MU and a 140-fold lower kcat in the presence of
�2-3–linked sialyllactosyl 4-MU (43). However, sialidases con-
taining lectin domains can exhibit a Km for polyvalent sub-
strates that is 100-fold lower than their Km for monovalent
derivatives (79). Although JCP8151B NanH1 failed to release
significant quantities of sialic acid from the two polyvalent sub-
strates used in this study (colostrum IgA and BSM), it may be
more active against a different polyvalent sialoside that is rec-
ognized by NanH1’s putative lectin domain.

Several other Gram-positive bacteria encode multiple siali-
dases their genomes. S. pneumoniae has three sialidases, NanA,
NanB, and NanC, all of which are secreted and have N-terminal
lectin domains (80 –83). C. perfringens also encodes three siali-
dases, NanH, NanI, and NanJ (84), and Tannerella forsythia
encodes at least two sialidases, SiaHI and NanH (85). In each of
these species, one sialidase accounts for the majority of the
observed sialidase activity, and one sialidase is relatively inac-
tive under the conditions tested (86, 87). Thus, G. vaginalis is
not unique in having a sialidase homolog of unknown function.
Future work should focus on defining the specific roles of the
three G. vaginalis sialidases. Such work would be greatly aided
by the development of effective genetic tools for this organism.

Experimental procedures

Sequence analyses

Conserved domains and active-site residues in protein
sequences were predicted using RPS-BLAST (NCBI). Sequence
alignments were performed with Clustal Omega (EMBL-EBI).
SignalP and Phobius (EMBL-EBI) were used to identify putative
signal peptides and transmembrane regions.

Strains and culture conditions

Strains, plasmids, and primers used in this study are shown in
Table 1. Published strains of G. vaginalis were isolated as
described previously (34). Unpublished strains were isolated
from vaginal samples collected under University of Alabama
IRB Protocol F140410006 (initial approval date, June 27, 2014).
Briefly, samples were collected using BD BBLTM Liquid Amies
Copan CultureSwabTM swabs and transported to the labora-
tory for processing the same day. Samples were streaked onto
Gardnerella Selective Agar plates (Hardy Diagnostics) and
incubated at 35 °C for 24 – 48 h in an atmosphere containing 5%
CO2. G. vaginalis colonies demonstrated yellowing of the

medium surrounding the colonies. Three colonies per Gard-
nerella Selective Agar plate were used to inoculate BD HBT
(Human Blood TweenTM) bilayer plates and incubated at 35 °C
in a 5% CO2-enriched atmosphere for 24 – 48 h. Small white
colonies surrounded by a �-hemolytic zone with a diffuse edge
were selected for further purification and testing. BD BBL oxi-
dase reagent droppers were used to perform an oxidase test on
small, translucent, �-hemolytic colonies. These colonies were
also subjected to a catalase test using anaerobic catalase reagent
15% hydrogen peroxide. Oxidase- and catalase-negative speci-
mens were Gram-stained and examined at high power (�100)
under a microscope. Gram-negative to Gram-variable pleo-
morphic coccobacilli were selected for cryopreservation. Fol-
lowing isolation, G. vaginalis strains were grown in a vinyl
anaerobic chamber (Coy Products) at 37 °C in NYCIII medium
(per liter: 15 g of proteose peptone no. 3, 3.75 g of yeast extract,
5 g of NaCl, 5 g of glucose, 17 ml of 1 M HEPES, 100 ml of
heat-inactivate horse serum) or on HBT agar plates (Fisher Sci-
entific). Both with our own freezer stocks as well as those from
multiple other investigators, we occasionally found that strains
thought to be completely isolated had multiple colony types
when streaked on solid medium. This was especially true when
the stock was grown under different conditions or on a different
medium type than the original isolation employed. To ensure
the purity of G. vaginalis strains, they were streaked from
	80 °C stocks onto NYCIII or HBT bilayer plates and assessed
visually for consistent colony size, color, and morphology. Col-
onies that varied by these criteria were picked and restreaked
on fresh plates until uniformity was established. Then species
identity was confirmed by colony PCR using the G. vaginalis–
specific primers G. vag tuf F1 and G. vag tuf R1.

E. coli was grown while shaking in lysogeny broth (LB) at
37 °C or as indicated, with antibiotic selection where required.
E. coli Top10 was used for cloning putative sialidase-encoding
genes into pET101/D-Topo or pTrc99A as described below.
E. coli BL21(DE3) or LSR4 (MG1655 nanA (75)) were used for
protein expression. For plasmid maintenance in E. coli, ampi-
cillin was used at 100 �g/ml (pTrc99A- and pET101/D-Topo-
based plasmids). GBS was grown standing aerobically at 37 °C
in Todd Hewitt broth with 5 �g/ml erythromycin to maintain
the pDCerm plasmid.

DNA manipulations

PCR products for cloning were generated with Phusion poly-
merase (New England Biolabs) and a purified genomic DNA
template. Restriction enzymes were also from New England
Biolabs. The full-length sialidase A/nanH1 (accession number
ATJH01000171), nanH2 (accession number ATJH01000056),
and nanH3 (accession number ATJH01000033) genes from
G. vaginalis JCP8151B were amplified with the primer pairs
8151B nanH1 F Nco/8151B nanH1 his R Bam, 8151B nanH2 F
Nco/8151B nanH2 his R Bgl2, and 8151B nanH3 F Nco/8151B
nanH3 his R Pst, respectively. For sialidase purification, trun-
cated nanH2 and nanH3 genes lacking the predicted C-termi-
nal transmembrane segment (both genes) and N-terminal sig-
nal peptide (nanH2 only) were amplified with the primer pairs
8151B nanH2 A51 F Nco/8151B S908 his R Bgl2 and 8151B
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nanH3 F Nco/8151B nanH3 T702 his R Pst. The resulting
amplicons were cloned into the pTrc99A expression vector.

Sialidase activity assays on bacterial isolates

Most G. vaginalis strains were grown in NYCIII broth as
described above. Strains that could not be cultivated in NYCIII
were grown on HBT agar plates. For strains grown in broth,
stationary phase cultures were used. Strains grown on plates
were scraped off the agar, suspended in 100 mM sodium acetate
buffer (pH 5.5), and adjusted to an A600 of 2.0. 20 �l of each
sample was mixed with 100 �l of 100 mM sodium acetate buffer
(pH 5.5) containing 300 �M 2-(4-methylumbelliferyl)-N-acetyl-
neuraminic acid (4-MU-Neu5Ac, Gold Bio) in a black polypro-
pylene assay plate (Eppendorf). Fluorescence was measured at
an excitation of 365 nm (bandwidth, 9 nm) and an emission of
440 nm (bandwidth, 20 nm) every 60 s for 2 h in a Tecan Infinite
M200 plate reader at 37 °C. For the experiment presented in
Fig. S6, enzyme activity was calculated from the linear portion
of each curve and expressed as the change in relative fluores-
cence units. E. coli BL21(DE3) expressing JCP8151B nanH1,
nanH2, or nanH3 was inoculated into 2 ml of LB containing 200
�M IPTG (Gold Biotechnology) and grown while shaking over-
night at room temperature. The next day, cultures were tested
for activity as above, except that 20 mM sodium acetate buffer
was used. To confirm NanH1-His6 expression, bacteria were
lysed and analyzed by Western blotting and detection with an
anti-His6 mAb (Covance).

Crude recombinant NanH2 protein preparation

In cultures of E. coli BL21(DE3) expressing full-length
NanH2 from pLR34, high sialidase activity (4-MU-Neu5Ac hy-
drolysis) was detected in the culture supernatant, whereas cul-
ture supernatants from BL21(DE3) containing the empty vec-
tor had no such activity. Thus, for crude NanH2 protein
preparations, E. coli was grown while shaking in LB overnight at
room temperature, and cell-free supernatants were prepared by
centrifuging cultures at 12,000 � g for 10 min and passing the
supernatant through a 0.22-�m filter.

Crude recombinant NanH3 protein preparation

Full-length NanH3 was primarily intracellular when ex-
pressed in E. coli, so clarified whole-cell lysates were used as a
source of recombinant NanH3. Although E. coli does not
encode its own sialidase, it does encode an intracellular sialate
lyase (NanA) that hydrolyzes free sialic acid to N-acetylman-
nosamine. In many experiments, we measured the generation
of free sialic acid to detect sialidase activity. To prevent break-
down of free sialic acid when liberated by NanH3-containing
E. coli lysates, the nanH3 expression plasmid pLR35 (and a par-
allel empty vector control) was transformed into an E. coli
strain lacking the nanA gene (LSR4) (75). Briefly, clarified
E. coli whole-cell lysates were prepared as follows. Bacteria
were grown while shaking in 200 ml LB broth at 37 °C to an A600
of 1.0. After addition of 200 �M IPTG, bacteria were incubated
while shaking overnight at room temperature. Then cells were
pelleted, washed in 30 ml PBS, resuspended in 10 ml of lysis
buffer (50 mM NaH2PO4 (pH 7.4), 300 mM NaCl, and 10 mM

imidazole), and sonicated five times for 10 s each in a Sonic

Dismembrator (Fisher Scientific) at 35% amplitude on ice. The
cell lysate was clarified by centrifuging three times (with trans-
fer of the supernatant to fresh tubes) at 15,000 � g for 10 min.

Enzyme purification

For expression of NanH1, BL21(DE3) cells carrying
JCP8151B nanH1-His6 in pTrc99A were grown while shaking
in 800 ml of LB at 37 °C to an OD of 0.5 and then induced with
1 mM IPTG for 4 h at 37 °C. Truncated NanH2 and NanH3
(lacking the transmembrane segments of both proteins and
the signal sequence of NanH2) were expressed similarly in
BL21(DE3), except cultures were induced with 0.2 mM IPTG
and shaken overnight at room temperature. Following induc-
tion, cells were pelleted at 12,000 � g, washed in 120 ml of PBS,
resuspended in 7.5 ml of lysis buffer, and sonicated and centri-
fuged as above. The clarified lysate was transferred to a 15-ml
Falcon tube containing 600 �l of His-Select nickel affinity gel
(Sigma), rotated for 1 h at 4 °C, applied to a 5-ml disposable
polypropylene column (Thermo Scientific), and washed with
20 ml of lysis buffer. Bound proteins were eluted in 110-�l frac-
tions of imidazole elution buffer. Fractions were evaluated for
purity by SDS-PAGE, followed by staining with Coomassie
G-250 or Western blotting with anti-His6 antibody. Both meth-
ods revealed a prominent band at the expected molecular mass
of 100 kDa in a subset of fractions. These fractions contained
sialidase activity, as determined by 4-MU-Neu5Ac hydrolysis,
and were used in substrate specificity assays. Protein concen-
tration was measured using a Micro BCA Protein Assay Kit
(Thermo Scientific). The absence of N-acetylneuraminate lyase
activity, which might destroy liberated sialic acid, was con-
firmed by diluting each sialidase preparation 40-fold into a
solution of 20 mM sodium acetate (pH 5.5) and 20 �M Neu5Ac.
After a 3-h incubation at 37 °C, DBM-HPLC revealed negligible
Neu5Ac degradation.

Normalization of sialidase activity

In substrate specificity assays with recombinant NanH2,
NanH3, and AUS (Figs. 2– 4), similar amounts of enzyme
activity were used to investigate their ability to cleave sialic
acids from different substrates. To estimate activity, 0.5 �l of
each sialidase preparation was used in a 4-MU-Neu5Ac assay
as described above. After 20 min, slopes were calculated
from the linear portions of the curves. Preparations with
higher slopes were used in proportionally smaller quantities
to ensure similar amounts of overall activity in assays testing
each substrate.

Sialidase activity assays using recombinant enzymes

Assays on recombinant sialidases were carried out in 20 mM

sodium acetate buffer (pH 5.5) at 37 °C. For the experiments
presented in Figs. 2– 4, 25 �M 3�-sialyllactose, 25 �M 6�-sia-
lyllactose (both from Carbosynth), 1 mg/ml human colostrum
IgA (Sigma product no. I1010), and 1 mg/ml bovine submaxil-
lary mucin (BSM, Sigma product no. M3895) were used. In
these experiments, NanH2 and NanH3 were used at the follow-
ing approximate specific activities based on comparison with
AUS using 4-MU-Neu5Ac as substrate: sialyllactose, 15 milli-
units/ml; colostrum IgA, 10 milliunits/ml; BSM, 40 milliunits/
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ml; GBS with Neu5,7Ac2 (unmigrated), 15 milliunits/ml; GBS
with Neu5,9Ac2 (migrated), 8 milliunits/ml. In time course
assays, reactions were stopped by transferring tubes to dry ice
for 5 min; samples were subsequently stored at 	80 °C until
derivatization for HPLC. To test the effect of divalent cations
on NanH1 activity, sialidase assays with 4-MU-Neu5Ac and
colostrum IgA were also performed in the presence of 1 mM

CaCl2 or MgCl2. For assays with GBS, strain COH1 �neuA
expressing NeuA N301A from a plasmid was used because it
accumulates high levels of sialic acid O-acetylation that origi-
nates at the C-7 position but migrates to C-9 under slightly
alkaline conditions (54). GBS was grown to an OD of 0.4 in 800
ml of Todd–Hewitt broth with 5 �g/ml erythromycin. Cells
were pelleted at 12,000 � g for 10 min, washed three times in
ice-cold 100 mM sodium acetate buffer (pH 5.5), and stored dry
at 	80 °C. Before each experiment, cells were resuspended in
20 mM sodium acetate buffer (pH 5.5), to an OD of 30. For
experiments monitoring release of 9-O-acetylated sialic acids,
GBS cells were first resuspended in 100 mM Tris (pH 9.0) and
incubated at 37 °C for 30 min to migrate O-acetyl groups from
the 7-carbon to the 9-carbon position (74, 75). The bacteria
were then washed once in 100 mM sodium acetate buffer (pH
5.5) and resuspended in 20 mM sodium acetate buffer (pH 5.5).
For the end point experiment presented in Fig. 6C, recombi-

nant NanH1, NanH2, and NanH3 were used at �5 �g/ml.
Human colostrum IgA and bovine submaxillary mucin were
both used at 1 mg/ml, and 4-MU-Neu5Ac, 3�-sialyllactose, and
6�-sialyllactose were used at 1 mM.

Sialic acid measurements by DMB-HPLC

Sialic acids were derivatized and quantified by HPLC as
described previously (48, 74, 75). Samples were derivatized by
mixing with an equal volume of 2� DMB (1,2-diamino 4,5-
methylenedioxybenzene) reagent (14 mM DMB, 44 mM sodium
hydrosulfite, 1.5 M 2-mercaptoethanol, and 2.8 M acetic acid)
and incubating for 2 h at 50 °C. Immediately after derivatiza-
tion, samples were loaded into the temperature-controlled
autoinjector of a Waters HPLC (set to keep samples at 4 °C)
equipped with a reverse-phase C18 column (Tosoh Bioscience)
and a Waters fluorescence detector set to excite at 373 nm and
detect emission at 448 nm. The area under each peak was used
to quantitate sialic acid concentrations by referring to a stan-
dard curve of Neu5Ac (Sigma) derivatized in parallel. Relative
HPLC retention times using this system have been well-estab-
lished by our group and others for the sialic acid species present
in BSM and GBS (54, 74, 75), both of which contain Neu5Ac
and O-acetylated species at each site of the sialic acid side chain
(carbon positions 7, 8, and 9).

Figure 7. Amplification of nanH2 and nanH3 in vaginal specimens. A and B, PCR of nanH2 (A) and nanH3 (B) was performed on genomic DNA isolated
from 67 human vaginal specimens as described under “Experimental procedures.” C and D, categorical analyses was carried out to test whether the
presence of nanH2 or nanH3 was related to bacterial vaginosis status as determined by Nugent score. C, a bar graph illustrates the relationship of
nanH2/nanH3 status across the three Nugent score categories. D, categorical analysis of the nanH2/nanH3 PCR data versus the Nugent
score.
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Release and consumption of O-acetylated sialic acids

Growth medium containing bound O-acetylated sialic acids
was prepared by adding sterile filtered BSM to NYCIII broth to
a final concentration of 1.5 mg/ml. G. vaginalis strains were
grown overnight in standard NYCIII medium and then diluted
100-fold into fresh NYCIII supplemented with BSM. The fol-
lowing day, saturated cultures were centrifuged, and the
supernatants were collected for DMB-HPLC analysis. Mild
acetic acid is often used to release bound sialic acids for
measurement with DMB, but such treatment can also cause
the migration of acetyl groups on sialic acids. Therefore, a
portion of each supernatant was diluted 5-fold into 100 mM

sodium acetate buffer (pH 5.5) and mixed with an excess of
AUS (100 milliunits/ml) for 2 h to liberate bound sialic acids
before DMB derivatization. Bound sialic acid concentrations
were calculated by subtracting the free from total sialic acid
concentration in each sample. Sialic acid release was calcu-
lated by subtracting the concentration of bound sialic acid in
culture supernatants from that of the uninoculated medium
control. Sialic acid consumption was calculated by subtract-
ing the concentration of total sialic acid in each culture
supernatant from that of the uninoculated medium control.

Detection of nanH genes in G. vaginalis clinical isolates

Although many of the strains in our collection have draft
genome sequences available, these sequences are often com-
prised of many contigs and thus remain incomplete. Therefore,
PCR was used as a more stringent test of the presence or
absence of a gene rather than relying on potentially incomplete
draft genome sequences. In our analysis, we only included
G. vaginalis strains that were available for culture, sialidase
activity assay, and PCR confirmation of nanH1, nanH2, and
nanH3. G. vaginalis strains were grown anaerobically on
NYCIII or HBT agar until colonies reached �1 mm in diameter
(generally 36 to 48 h). Agar plates were then removed from the
anaerobic chamber, and colony PCR was performed with Ex
Taq polymerase (Clontech) and the following primer pairs
(Table 1): G. vag sia universal F3/G. vag sia universal R1
for nanH1, G. vag nanH2 qPCR F/G. vag nanH2 qPCR R for
nanH2, and G. vag nanH3 qPCR F/G. vag nanH3 qPCR R for
nanH3. Annealing temperatures were 54 °C for nanH2 reac-
tions and 51 °C for nanH1 and nanH3 reactions. Extension time
was 30 s for all three PCR assays. Expected amplicon sizes were
636 bp for nanH1, 348 bp for nanH2, and 322 bp for nanH3.

PCR amplification of nanH2 and nanH3 in human vaginal
specimens

This study used samples from the Contraceptive CHOICE pro-
ject at Washington University. CHOICE received IRB approval at
the Washington University School of Medicine, and all partici-
pants gave their written informed consent at enrollment and their
permission to use vaginal specimens for future studies. This sub-
project was also IRB-approved (ID 201108155). Both the CHOICE
study and this substudy were conducted according to the princi-
ples expressed in the Declaration of Helsinki. The human vaginal
specimens used in this study were from a previously published
subset of CHOICE participants for whom Nugent scores were

published previously and additional vaginal material was available
(56).

Genomic DNA was isolated from vaginal swabs eluted in 0.1
M sodium acetate (pH 5.5). Insoluble material was pelleted by
centrifugation and processed using the Wizard Genomic DNA
Purification Kit (Promega). Amplification of nanH2 and nanH3
was performed in 96-well PCR plates (Phenix Research) with
Intact Genomics Taq polymerase (catalog no. 3249) and the
primer pairs G. vag nanH2 MP F1/G. vag nanH2 MP R1 or G.
vag nanH3 qPCR F/G. vag nanH3 qPCR R. Genomic DNA was
diluted 10-fold into a PCR plate. 2 �l of each diluted DNA
sample was then transferred to a fresh PCR plate on ice, and 18
�l of ice-cold PCR master mix was added to each well. All prim-
ers were used at a final concentration of 200 nM. Genomic DNA
isolated from GED7760B (nanH2 only) or JCP8066 (nanH3
only) served as positive controls. The annealing temperature
was 51 °C for both primer sets, and the extension time was 30 s.
Amplification was performed for 35 cycles. The expected
amplicon sizes were 460 bp for nanH2 and 322 bp for nanH3.

PCR products were separated on 1% agarose gels and visualized
under UV light with ethidium bromide staining. Bands at the
expected sizes were categorized by an observer blinded to the
Nugent status of the samples. Very faint bands were categorized as
negative because in all cases we observed, the replicate reaction did
not yield a visible band. After all nanH2 and nanH3 reactions were
separately categorized as positive or negative, we created two sum-
mary categories: either nanH2 or nanH3 and neither nanH2 nor
nanH3. We then performed the analyses described in Fig. 7. The
Wilson–Brown method was used to compute confidence inter-
vals. One sample gave discordant results between the two replicate
reactions performed and could not be categorized based on the
above summary variables; this (Nugent intermediate) sample was
excluded from the final analysis.
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