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Introduction
Aberrant accumulation of the β-amyloid (Aβ) peptide in the 
brain parenchyma is widely hypothesized to initiate a patho-
genic cascade leading to neuronal dysfunction and subsequent 
cognitive decline in Alzheimer’s disease (AD; Hardy and 
Selkoe, 2002). The factors that underlie Aβ accumulation in 
sporadic AD are poorly understood. However, evidence indi-
cates that impaired clearance is mainly responsible (Bateman 
et al., 2006; Roberts et al., 2014). Clearance of soluble Aβ is 
achieved by several mechanisms, including blood–brain bar-
rier (BBB)–mediated transport, interstitial fluid (ISF) bulk 
flow, and cellular uptake and degradation. Disturbances in any 
of these pathways are likely to contribute to the develop-
ment of Aβ accumulation. Removal of Aβ deposits is, in part, 
mediated through phagocytic cells in concert with immune 
recognition molecules (Lucin and Wyss-Coray, 2009; Czirr 

and Wyss-Coray, 2012). Indeed, microglia are now widely 
recognized to have important roles in neurodegeneration 
and in AD (Saijo and Glass, 2011). This notion has received 
genetic support from genome-wide association studies that 
have identified several single nucleotide polymorphisms in 
immune-related genes that increase the risk of developing 
late onset AD (Lambert et al., 2009; Jun et al., 2010; Naj et al., 
2011; Guerreiro et al., 2013; Jonsson et al., 2013). In the brain, 
most of these genes are exclusively expressed in microglia, 
highlighting their importance in AD. Complement recep-
tor 3 (CR3; CR3, CD11b/CD18, and Mac-1) is one of the 
major phagocytic receptors expressed on microglia (Ehlers, 
2000) and is a dimeric receptor comprised of CD18 and its 
unique subunit CD11b (Ivashkiv, 2009; Linnartz and Neu-
mann, 2013). The receptor is able to mediate Aβ phagocytosis 
(Fu et al., 2012), as well as the removal of synapses during 
development (Stevens et al., 2007; Schafer et al., 2012), in 
a model of neurodegeneration (Stevens et al., 2007) and in 
amyloid precursor protein (APP)–transgenic mice (Hong et 
al., 2016). Interestingly, levels of natural CR3 ligands, such as 
complement fragments, ICAM-1, and fibrin, are increased in 
AD patients (Shen et al., 2001; van Oijen et al., 2005; Ray et 
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al., 2007; Xu et al., 2008; Ryu and McLarnon, 2009; Daborg 
et al., 2012; Bardehle et al., 2015).

Here, we identify a novel role for microglia and 
CR3 in the maintenance of Aβ homeostasis independent 
of phagocytosis. In the absence of CR3, Aβ deposition is 
reduced, and extracellular Aβ degradation is increased. 
Furthermore, modulating CR3 with the small molecule 
Leukadherin 1 (LA-1) increases Aβ degradation in vitro 
while reducing ISF Aβ levels and half-life in vivo. Together, 
these findings suggest that CR3 and microglia play an im-
portant role in Aβ homeostasis and identify a potential new 
therapeutic target in AD.

Results
Genetic ablation of CR3 in APP-transgenic mice leads 
to reduced Aβ deposition
Human AD brains show an increase in complement pro-
teins associated with plaques (Afagh et al., 1996; Yasojima 

et al., 1999). Complement proteins are important for re-
moval of Aβ deposits, and interference with the central 
component C3 results in increased plaque deposition 
(Wyss-Coray et al., 2002; Maier et al., 2008). Microglial 
CR3 can target these deposits, and we initially hypothe-
sized that lack of CR3 would result in higher Aβ plaque 
load because of reduced phagocytic activity. To test this 
hypothesis, we crossed mice deficient in its unique com-
ponent CD11b (CR3−/−; Soriano et al., 1999) with APP 
transgenic mice harboring two familial AD-associated 
APP mutations (Rockenstein et al., 2001). Surprisingly, 
the amount of Aβ deposition was decreased in 12-mo-old 
APP mice lacking CR3 (Fig. 1, A and B). Quantification 
of the percent Aβ-positive area showed a statistically sig-
nificant decrease in plaque deposition in the hippocampus 
(Fig. 1 D) and a trend in the same direction in the cortex 
(Fig. 1 C), whereas expression of APP and its processing 
were unaffected (Fig. 1, E–H).

Figure 1. L ack of CR3 results in reduced 
plaque deposition in APP transgenic mice 
while leaving APP expression and process-
ing unaffected. (A–D) Aβ staining in cortex 
(A) and hippocampus (B) of APP and APP/
CR3−/− mice and quantification of Aβ immu-
noreactivity in cortex (C) and hippocampus (D). 
12-mo-old mice were used. n = 8–9 mice per 
group and 6 sections per mouse. *, P < 0.05. 
Bars, 200 µm. (E and G) Western blots of cor-
tical (E) and hippocampal (G) lysates show-
ing full-length APP (flAPP) and C99 and C83 
cleavage products, as well as β-actin and neu-
ron-specific enolase (NSE) loading controls.  
(F and H) Quantification of Western blots in 
cortex (F) and hippocampus (H). (E–H) 3-mo-
old male and female mice were used. n = 5 
mice per group. Unpaired Student’s t test was 
used. All values are mean ± SEM.
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Microglia lacking CR3 are more efficient  
in degrading extracellular Aβ
In the brain, CR3 is exclusively expressed on microglia, al-
lowing us to interpret changes in Aβ deposition in the con-
text of microglia-dependent mechanisms. To study these 
mechanisms in a myeloid cell model system, we generated 
a stable CR3 knockdown BV2 cell line (CR3kd) and con-
firmed knockdown efficiency by Western blotting and flow 
cytometric analysis of CD11b expression (Fig. 2, A and B). 
First, we assessed the possibility that changes in phagocytosis 
are responsible for the decrease in plaque accumulation by 
measuring phagocytic activity of CR3kd cells. In agreement 
with published data (Fu et al., 2012), we found a significant 
decrease in baseline phagocytosis (Fig. 2 C) and phagocytic 
efficiency (Fig. 2 D) in CR3-deficient cells.

BV2 cells secrete several enzymes capable of degrading 
extracellular Aβ (Qiu et al., 1997). We established an in vitro 
Aβ degradation assay (Fig.  2  E) by adding freshly solubi-
lized Aβ42 to serum-free medium on control or CR3kd cells 
and collecting the conditioned medium for ELI​SA mea-
surements at different time points. Aβ was removed more 
rapidly from the supernatant of CR3kd than control cells 
(Fig. 2 F). Interestingly, this effect was also present in a cell-
free system where Aβ42 peptide was added to conditioned 
medium alone (Fig.  2  G). We confirmed these findings 
using cultured primary microglia isolated from adult WT 
and CR3−/− mice. CR3−/− microglia and their supernatant 
showed increased activity in the cell-based and the cell-free 
Aβ degradation assay compared with microglia from WT 
mice (Fig. 2, H and I).

Figure 2. CR 3 deficiency leads to reduced phagocytic activity and increased Aβ degradation in vitro. (A and B) Western blot (A) and flow cytometric 
quantification (B) of CD11b expression in CR3kd and control BV2 cell lines. (B) n = 2 replicates. (C and D) Quantification of baseline phagocytosis activity (C) 
and phagocytosis efficiency (D) in control and CR3kd BV2 cells. (E) Schematic of Aβ degradation assay. (F and G) Cell-based (F) and cell-free (G) Aβ degrada-
tion assays of control and CR3kd cells were quantified. (H and I) Aβ degradation using primary adult microglia. (J and K) Aβ staining in hippocampus of mice 
stereotactically injected with Aβ42 (J) and quantification of residual immunoreactivity (K). 3–4-mo-old male and female mice were used. n = 9 per group. 
Bar, 200 µm. (C, D, and F–I) Representative graphs of three to five independent experiments are shown. Student’s t test (B, C, H, and K), two-way ANO​VA  
and Sidak’s posthoc test (D), or one-way ANO​VA with Tukey’s posthoc test (F, G, and I) were used. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
All values are mean ± SEM.
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To test in vivo whether degradation of exogenously 
added Aβ is enhanced in CR3−/− mice, we injected preaggre-
gated Aβ42 stereotactically into the hippocampus of  WT and 
CR3−/− animals and quantified residual Aβ immunoreactivity 
after 5 d. Aβ was removed more rapidly from the hippocam-
pus of CR3−/− mice than WT mice (Fig. 2, J and K).

Collectively, our findings indicate that CR3-deficient 
microglia and microglia-like cells are more efficient in re-
moving stereotactically injected Aβ in vivo and soluble Aβ 
in vitro, respectively.

CR3 deficiency results in increased secretion 
of Aβ-degrading enzymes
To determine whether proteases mediate the increase in 
Aβ-degrading activity, we added various protease inhibitors 
in the cell-free Aβ degradation assay (Fig. S1, A and B). Then, 
we evaluated how they affected the Aβ degradation ratio be-
tween conditioned supernatants of cultured primary adult 
microglia isolated from WT and CR3−/− mice. A complete 
protease inhibitor cocktail lacking EDTA and captopril, an 
angiotensin-converting enzyme inhibitor, had no effect on 
Aβ degradation (Fig.  3  A). However, several other inhib-
itors lessened the Aβ-degrading activity significantly. The 
neprilysin inhibitor thiorphan reduced the degrading activ-
ity slightly, suggesting some involvement of neprilysin. The 
most potent inhibitors were the complete protease inhibitor 
cocktail containing EDTA, EDTA itself, and PMSF, a serine 
protease inhibitor. EDTA is a strong inhibitor of metallopro-
teinases, and matrix metalloproteinase 2 (MMP2) and MMP9 
have previously been implicated as major Aβ-degrading en-
zymes (Yan et al., 2006; Hernandez-Guillamon et al., 2010). 
MMPs are regulated on the transcriptional and activity level, 
leading us to quantify mRNA expression as well as protease 
activity. We found mRNA expression of MMP2 and 9, as well 
as of MMP8, 12, 13, and 14, unchanged between acutely iso-
lated microglia from APP and APP/CR3−/− mice (Fig. 3 B 
and Fig. S1 G). We also measured MMP activity using assays 
for MMP2 and MMP9 activity, finding that overall MMP 
activity and activity of specific MMPs were not significantly 
changed in conditioned supernatant or cortical lysates from 
CR3−/− mice (Fig. S1, C–F).

The serine protease inhibitor PMSF also showed strong 
inhibition of the Aβ-degrading activity; one serine protease 
that has been implicated in Aβ degradation is tissue plasmino-
gen activator (tPA), which degrades Aβ via plasminogen acti-
vation (Melchor et al., 2003). Mice lacking tPA or plasminogen 
are less efficient at degrading Aβ injected in the hippocampus 
(Melchor et al., 2003), but the function of tPA in microglia 
remains poorly understood (Tsirka et al., 1995; Gravanis and 
Tsirka, 2005). tPA mRNA levels were unchanged between 
acutely isolated primary adult microglia-like cells from APP 
and APP/CR3−/− mice (Fig. 3 C). However, active tPA pro-
tein levels were significantly higher in conditioned medium 
from CR3kd than from control cells (Fig. 3 D). Tissue zymog-
raphy, which measures proteolytic activity ex vivo in tissue 

sections and, in the central nervous system, predominantly 
detects tPA activity (Tsirka et al., 1995), revealed significantly 
higher activity in APP/CR3−/− than in APP mice (Fig. 3, E 
and F). Additionally, targeting tPA expression in CR3kd cells 
by siRNA reduced the Aβ-degrading activity (Fig. 3 G) by 
decreasing tPA mRNA levels (Fig. 3 H).

Together, these data suggest that tPA, as well as an 
EDTA chelation-sensitive protease activity are responsible 
for the enhanced Aβ degradation by CR3-deficient cells 
and may account for the mechanism underlying the de-
creased Aβ deposition in vivo.

Targeting CR3 with the small molecule LA-1 results  
in increased Aβ degradation in vitro  
and reduced Aβ levels in vivo
Our data suggest that modulating CR3 could lead to en-
hanced Aβ clearance in the AD brain. Leukadherins are 
small molecule modulators of CR3 function that bind to its 
CD11b subunit, thereby increasing cell adhesion (Maiguel et 
al., 2011). We found that treatment of BV2 cells with LA-1 
resulted in a concentration-dependent increase in Aβ deg-
radation (Fig.  4  A). This effect was absent in CR3kd cells 
(Fig.  4  B), confirming that LA-1 requires the presence of 
CR3. Consistent with these findings, young, preplaque APP 
mice treated for 10 d with daily i.p. injections of LA-1 had 
significantly reduced Aβ levels in the guanidine-extracted 
fractions of the cortex and a trend toward a reduction in the 
hippocampus compared with vehicle-treated mice (Fig. 4 C). 
LA-1 did not change APP expression and processing in a 
cell line, indicating that the drug reduces Aβ through other 
mechanisms (Fig. S2, A–F).

Mass spectrometry analysis of whole-brain lysates from 
mice treated with a single dose of LA-1 showed a spike in 
LA-1 concentration 15 min after injection with detect-
able levels of the drug at the 2-h time point, demonstrating 
BBB penetration (Fig. 4 D). Plasma levels also spiked at 15 
min, but LA-1 was undetectable at 2 h after injection (Fig. 
S2 H). Flow cytometric analysis of acutely isolated microg-
lia and PBMCs revealed no changes in vascular adhesion 
markers (Fig. S2, I and J).

Similar to microglia from CR3−/− mice, we did not 
observe differences in MMP2 or MMP9 mRNA levels in 
microglia from LA-1–treated mice (Fig. 4 F), nor in the ex-
pression of other MMPs (Fig. S2 G). However, we did find a 
significant increase in tPA mRNA (Fig. 4 E), suggesting that 
LA-1 may exert its function through tPA as well.

LA-1 treatment results in decreased ISF Aβ levels  
and decreased ISF Aβ half-life
To directly monitor whether LA-1 treatment increases solu-
ble Aβ clearance, we used in vivo microdialysis, which allows 
measurement of soluble Aβ levels in the mouse ISF. We used 
APP/PS1-ΔExon9–transgenic mice (Jankowsky et al., 2004), 
which are routinely used for in vivo microdialysis (Yan et al., 
2009; Cramer et al., 2012; Kraft et al., 2013) at an age before 
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Aβ deposition. Reverse microdialysis of LA-1 into the hippo-
campus significantly reduced steady-state Aβ levels in the ISF 
(Fig. 5, A and B), consistent with our hypothesis. This effect 
is reversible, as exchanging the drug for standard perfusion 
buffer led to a rapid return to baseline steady-state Aβ levels 
(Fig. 5, D and E). To measure the half-life of Aβ, its production 
was stopped with the γ-secretase inhibitor Compound E, re-
vealing that the rate of concentration decline was significantly 
reduced in LA-1–treated mice (Fig. 5 C). We then repeated 
these experiments using APP and APP/CR3−/− mice and 
found that mice lacking CR3 did not show a reduction in ISF 
Aβ levels below baseline after LA-1 treatment (Fig. 5, F and 
G). These results indicate that CR3 expression is necessary for 
LA-1–mediated enhancement of Aβ clearance. Collectively, 
these data suggest that modulating CR3 with LA-1 reduces 
brain Aβ levels by enhancing Aβ clearance from the ISF.

Discussion
Despite advances in understanding the pathogenesis of AD, 
little is known about the events initiating the accumulation of 
Aβ in the brain and the contributions of the immune system. In 
recent years, several studies have focused on the role of microg-
lia in the pathogenesis of AD. Although microglia are able to 
take up fibrillar Aβ into endosome-like compartments (Frac-
kowiak et al., 1992; Meyer-Luehmann et al., 2008), they seem 
inefficient at degrading and removing Aβ deposits from the AD 
brain (Grathwohl et al., 2009). It has been suggested that the 
proinflammatory environment of the AD brain might make 
them less efficient phagocytes (Bamberger et al., 2003; Koe-
nigsknecht-Talboo and Landreth, 2005). There is also evidence 
that microglia internalize and degrade soluble Aβ in lysosomes 
through fluid-phase macropinocytosis (Mandrekar et al., 2009) 
or through the secretion of various Aβ-degrading activities.

Figure 3. CR 3-deficient cells and mice display increased tPA 
activity. (A) Ratio of Aβ measured in conditioned medium from 
CR3kd versus control BV2 cells after addition of proteinase inhibitors. 
A representative graph of two independent experiments is shown. PI, 
protease inhibitor; PI w/o, protease inhibitor cocktail lacking EDTA. (B 
and C) qPCR analysis of mRNA from adult primary microglia, normal-
ized to GAP​DH. Microglia were from n = 7 individual mice. IDE, insu-
lin-degrading enzyme; NEP, neprilysin. (D) Active tPA measurement in 
conditioned medium from control and CR3kd cells. n = 2 independent 
experiments. (E and F) Representative image of in situ zymography in 
the hippocampus (E) and quantification of the lysed area (F). n = 5–6 
mice. All mice were 3–4-mo-old males and females. Bar, 500 µm. (G) 
Aβ degradation assay in control and CRkd cells transfected with con-
trol siRNA or tPA siRNA. (H) Knockdown efficiency was quantified by 
qPCR. Data are combined from two independent experiments. One-
way ANO​VA with Dunnett’s posthoc test and significance relative to 
vehicle (A), unpaired Student’s t test (B, C, D, and F), or one-way ANO​
VA with Tukey’s posthoc test (G and H) were used. *, P < 0.05; **, P < 
0.01; ***, P < 0.001. All values are mean ± SEM.
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Aβ degradation in the extracellular space can be accom-
plished by several enzymes, and published studies have mainly 
focused on the proteases neprilysin, insulysin (insulin-degrading  
enzyme), MMP2, MMP9, and tPA/plasmin (Iwata et al., 
2001; Melchor et al., 2003; Song and Hersh, 2005; Eckman 
et al., 2006; Yan et al., 2006; Hernandez-Guillamon et al., 
2010). Our inhibitor screen suggests that neprilysin plays a 
minor role in the increased Aβ degradation in our model, 
and quantitative PCR (qPCR) on mRNA isolated from pri-
mary adult microglia did not show changes in neprilysin or 
insulin-degrading enzyme expression. We did uncover an ac-
tivity sensitive to EDTA chelation that is regulated by CR3, 
but quantification of MMP activity and mRNA of several 
MMPs failed to identify a specific isoform. It is possible that 
our methods were not sensitive enough to measure the spe-
cific MMP activity or that a different, as yet unidentified,  
EDTA-sensitive protease mediates this effect. However, we did 
find increased levels of active tPA in vitro and in vivo under 
CR3-deficient conditions. tPA has previously been described 
as part of an important Aβ degradation pathway (Melchor 
et al., 2003). It can activate both plasminogen and MMPs 
and, therefore, mediate Aβ degradation via different pathways 
(Hahn-Dantona et al., 1999; Ramos-DeSimone et al., 1999). 
Additionally, tPA can bind LRP1 and could mediate efflux of 
Aβ from the mouse brain by facilitating BBB transport (Su et 
al., 2008). The fact that we found increased levels of active tPA 
in vitro and in vivo identifies it as one of the likely mediators 
of enhanced Aβ degradation in APP/CR3−/− mice.

The small molecule LA-1 was originally identified 
through a screen searching for monocyte adhesion enhancers, 
and it has been suggested that it mediates its effects by changing 
the local conformation of the extracellular domain of CD11b 
(Maiguel et al., 2011; Faridi et al., 2013). It has been used to 

anchor CR3-expressing cells in place and prevent infiltration 
of proinflammatory monocytes after injury in peripheral or-
gans (Maiguel et al., 2011; Jagarapu et al., 2015). However, the 
effects of LA-1 on microglia have not been studied. We found 
that LA-1 enhances extracellular Aβ degradation and that it 
can lower Aβ levels in vivo by enhancing clearance from the 
ISF. Furthermore, LA-1 treatment in mice results in increased 
levels of tPA mRNA in acutely isolated microglia.

In summary, both lack of CR3 and treatment with 
LA-1 lead to increased Aβ degradation in vitro, and LA-1 
increases Aβ clearance in vivo. Furthermore, tPA activity was 
increased in conditioned media of CR3kd cells and in APP/
CR3−/− brain tissue, and tPA mRNA levels were increased in 
microglia isolated from LA-1–treated mice, suggesting at least 
in part a similar mechanism. To date, little is known about the 
effects of CR3 deficiency or LA-1 treatment in microglia 
relating to the secretory or expression profiles. There is evi-
dence from studies in human PBMC–derived macrophages, 
human monocyte cell lines (Reed et al., 2013), and in human 
NK cells (Roberts et al., 2016) that LA-1 treatment can affect 
key transcription factors, e.g., MyD88, to modulate secretion 
of cytokines. LA-1 might act as a partial antagonist, reducing 
signaling that inhibits the secretion of Aβ-degrading enzymes, 
although leaving other functions unaffected or even enhanc-
ing them (e.g., adhesion). Thus, LA-1 might mimic CR3 de-
ficiency in some aspects but not in all microglial functions 
and signaling pathways. Future studies will have to dissect 
how LA-1 engages CR3 and how CR3 modulation results 
in the release of an Aβ-degrading activity from microglia. 
Our data indicate a novel function of the phagocytic receptor 
CR3 in the suppression of microglia-mediated clearance of 
soluble Aβ. Furthermore, targeting CR3 with a small mole-
cule can reduce Aβ levels in brains of APP-transgenic mice by 

Figure 4. T he small molecule modulator 
LA-1 enhances Aβ degradation in vitro and 
lowers Aβ levels in vivo. (A and B) Quanti-
fication of cell-based Aβ degradation assay 
with LA-1 treatment in BV2 cells (A) and LA-1 
treatment in control and CR3kd cell lines (B). 
Representative graphs of two to three ex-
periments are shown. (C) Aβ levels in guani-
dine-extracted fraction in APP mice after LA-1 
treatment. n = 8–9 mice, male and female. CX 
cortex, HC hippocampus. (D) Mass spectrome-
try quantification of brain levels of LA-1 after 
single injection. n = 3 per time point, all male 
mice. (E and F) qPCR analysis of mRNA from 
primary microglia. n = 5 individual mice, male 
and female. The dashed line shows the de-
tection limit. (C–F) All mice were 3–4 mo old. 
One-way ANO​VA and Tukey’s posthoc test (A), 
two-way ANO​VA and Bonferroni posthoc test 
(B), or unpaired Student’s t test (C, E, and F) 
was used. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
All values are mean ± SEM.
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enhancing Aβ clearance from the extracellular space. There-
fore, CR3 may be a potential therapeutic target for the treat-
ment or prevention of AD.

Materials and methods
Transgenic mice
T41 APP-transgenic mice (mThy-1-hAPP751V171I,KM670/671NL), 
CR3-deficient mice (Itgamtm1Myd+/−), and APP/PS1+/− 
(mPrP-hAPPKM670/671NL PS1-ΔExon9) mice have been de-
scribed previously (Soriano et al., 1999; Rockenstein et al., 
2001; Savonenko et al., 2005). All lines were maintained on a 
C57BL/6 genetic background. All animal procedures were con-

ducted with approval of the Animal Care and Use Committee 
of the Veterans Administration Palo Alto Health Care System.

Tissue collection and processing
Mice were anesthetized with 400 mg/kg chloral hydrate 
(Sigma-Aldrich) and transcardially perfused with sterile PBS. 
Brains were removed and divided saggitally. One hemibrain 
was postfixed in phosphate-buffered 4% paraformaldehyde, 
pH 7.4, at 4°C for 48 h, cryoprotected in 30% sucrose in PBS, 
and sectioned at 35 µm with a freezing microtome (Leica 
Biosystems). The other hemibrain was snap frozen and stored 
at −80°C for further analysis.

Figure 5. L A-1 treatment decreases ISF Aβ concentration by enhancing clearance. (A) Time course of in vivo microdialysis. 8 h of baseline measure-
ments, followed by LA-1 infusion for 16 h, and the last 4 h with additional infusion of Compound E. (B) Quantification of ISF Aβ concentrations after 6 h of 
LA-1 infusion. (C) Quantification of Aβ half-life. (D) Time course of in vivo microdialysis. 8-h baseline measurements, followed by 4-h LA-1 infusion and 12-h 
washout. (E) Quantification of D. (F) Time course of in vivo microdialysis in APP and APP/CR3−/− mice with 8 h of baseline, followed by 12 h of LA-1 infusion. 
(G) Quantification of ISF Aβ concentration after 6 h of LA-1 infusion. n = 5 mice per group, male and female (A–C); n = 2 mice, all male (D and E); or APP, n = 
2 and APP/CR3−/−, n = 5, male and female (F and G). Unpaired Student’s t test was used. *, P < 0.05; **, P < 0.01; ****, P < 0.0001. All values are mean ± SEM.
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Immunohistochemistry and image analysis
Immunohistochemistry was performed on free-floating 
sections according to standard procedures. In brief, fixed 
sections were treated with 0.1% Triton X-100 and 0.6% 
hydrogen peroxide and blocked using an avidin and bio-
tin blocking kit (Vector Laboratories), followed by incuba-
tion with biotinylated 3D6 (Perrigo Company) antibody at 
1:8,000 overnight at 4°C. Primary antibody labeling was 
revealed using an ABC kit (Vector Laboratories) followed 
by diaminobenzedine staining (Sigma-Aldrich). For the 
transgenic animals, six sections separated by 480 µm were 
analyzed per animal. After stereotactic injections, brains 
were sectioned at 35 µm, and all sections surrounding the 
injection site were collected (a minimum of 10 sections 
to either side) and stained. Images were acquired using a 
NanoZoomer slide scanner (Hamamatsu Photonics), and 
immunoreactivity was quantified with ImageJ software 
(National Institutes of Health) in a blinded fashion with a 
fixed threshold for all sections. For the stereotactic injec-
tions, all immunoreactivity was added up and normalized to 
WT levels independently for two experiments.

Drug treatment
LA-1–treated mice were injected for 10 d, daily, i.p. with 
500 µl of 50 µM LA-1 (EMD Millipore) or DMSO vehi-
cle in PBS. For reverse microdialysis, drugs were diluted in 
microdialysis perfusion buffer. Compound E was purchased 
from Sigma-Aldrich. Cells were incubated with LA-1 in vitro 
at the indicated concentrations in serum-free culture medium 
for 3–6 h. For assessment of APP processing in APP-overex-
pressing Chinese hamster ovary cells (Weggen et al., 2003), 
lysates and supernatants were collected after 6 h.

Cell lines
BV2 cells were maintained in DMEM containing 10% FBS. 
CR3 knockdown (CR3kd) cells were generated by trans-
duction with a CD11b-targeting shRNA lentivirus carrying 
a puromycin resistance cassette (OriGene) or empty vec-
tor control virus. Stable lines were selected with 5 µg/ml  
puromycin. In addition to puromycin selection, knockdown 
cell lines were maintained by sorting of CD11blow cells 
from the mixed culture.

For siRNA-mediated transient knockdown, BV2 con-
trol and CR3kd cells were transiently transfected on day 1 
using Viromer Blue reagent (Lipocalyx) and On-Target SMA​
RT-pool siRNA-targeting mouse Plat (tPA; GE Healthcare) 
expression and control siRNA (GE Healthcare) according to 
the manufacturer’s instructions. After 48 h, cells were replated 
and used for the in vitro Aβ degradation assay. siRNA pool 
target sequences for Plat were: 5′-CGG​CCU​CAG​UUU​AGA​
AUUA-3′, 5′-GAA​GCA​GCC​GGG​UGG​AAUA-3′, 5′-GAA​
AGC​UGA​CGU​GGG​AAUA-3′, and 5′-AAA​GUG​GUC​
UUG​GGC​AGAA-3′. Sequences for the control siRNA were 
not provided by the manufacturer.

Isolation of primary adult mouse microglia
Adult microglia were isolated using a neural dissociation kit 
(Miltenyi Biotec) followed by magnetic-activated cell sorting 
with CD45 micro beads (Miltenyi Biotec) according to the 
manufacturer’s instructions. CD45 antibody–coupled beads 
were used as a replacement for CD11b beads, as the receptor is 
lacking in the CR3-deficient animals. In brief, perfused brains 
of 3–4-mo-old mice were dissociated using the neuronal disso-
ciation kit (Miltenyi Biotec), incubated with CD45 microbe-
ads (Miltenyi Biotec), and separated using an LS separation 
column (Miltenyi Biotec). For functional studies, the cells were 
allowed to recover for 3 d in DMEM/F12 with 10% FBS. 
Cells for RNA were immediately frozen at −80°C. Cells used 
for flow cytometry were kept on ice and stained immediately.

In vivo microdialysis and 
quantitative measurement of ISF Aβ
In vivo microdialysis was performed as previously described 
(Cirrito et al., 2003; Castellano et al., 2011). In brief, mi-
crodialysis guide cannula and probes with a 38-kD molec-
ular weight cutoff membrane (BR-2 probes; Bioanalytical 
Systems) were inserted into the left hippocampus at the 
following coordinates: bregma, −3.1 mm; midline, −2.5 
mm; and tip, 3.2 mm below dura at a 12° angle. Perfusion 
buffer (0.15% BSA in artificial cerebrospinal fluid [in mM: 
1.3 CaCl, 1.2 MgSO4, 3 KCl, 0.4 KH2PO4, 25 NaHCO3, 
and 122 NaCl, pH 7.35]) was perfused at a 1-µl/min flow 
rate with a syringe pump (Stoelting Co). Microdialysis 
samples were collected every 60–90 min using a refriger-
ated fraction collector (Univentor). Mice were housed in 
a RaTurn Caging system (Bioanalytical Systems) with ad 
libitum food and water for the duration of the experi-
ment. LA-1 and Compound E (AsisChem) were perfused 
directly into the hippocampus through the microdialysis 
probe (reverse microdialysis) at a concentration of 100 µM 
and 200 nM, respectively.

Quantitative measurements of Aβ collected from in vivo 
microdialysis fractions were performed by sandwich ELI​SA, 
as previously described (Cirrito et al., 2011). ELI​SA plates 
were coated with a mouse anti-Aβ40 selective antibody, mHJ2, 
and detected with a biotinylated central domain mouse anti- 
Aβ (amino acids 13–28) antibody, mHJ5.1.

Aβ degradation assay
For the cell-based degradation assay, BV2 cells or primary 
microglia were plated at 250,000 cells per well on 24-well 
plates and allowed to attach overnight. The next morning, the 
medium was exchanged for serum-free DMEM containing 
1 µg/ml freshly solubilized Aβ1-42 peptide (Bachem). For 
treatment with LA-1 or vehicle, serum-free DMEM con-
taining LA-1 or vehicle was added to the cells 30 min be-
fore Aβ1-42 was added at 1 µg/ml. For the cell-free assay, 
serum-free DMEM was conditioned for 16–18  h for BV2 
cells and for 48 h for primary microglia at the same cell den-
sity. The supernatant was centrifuged at 1,000 g for 15 min to 
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remove cells and debris and transferred into a fresh tube. Aβ1-
42 was added at 1 µg/ml to the conditioned supernatants and 
incubated. For both assays, samples were taken at defined time 
points and transferred into a tube containing complete prote-
ase inhibitor cocktail (Roche) to a final concentration of 2×.

Aβ ELI​SA and tissue preparation
ELI​SAs were performed using Meso Scale technology (Meso 
Scale Discovery). Multiarray 96-well plates (Meso Scale Dis-
covery) were coated with capture antibody 21D12 for total 
Aβ (Aβ12-28; Elan Pharmaceuticals). Plates were washed, and 
diluted samples or Aβ1-40 peptide standards were added. Aβ 
was detected using biotinylated 3D6 antibody (Elan Pharma-
ceuticals) and SUL​FO-TAG streptavidin (Meso Scale Discov-
ery). Plates were read on a Sector Imager 2400 (Meso Scale 
Discovery), and samples were normalized to Aβ standards.

Mouse tissue was subjected to serial Aβ extraction using 
PBS, RIPA (50 mM Tris-HCl, pH 7.4, 150 mM sodium chlo-
ride, 1% Nonidet P40, 1 mM EDTA, and 0.25 deoxycholic 
acid), and guanidine buffer (5 M guanidine-HCl in 50 mM 
Tris-HCl), with all buffers containing complete protease in-
hibitor cocktail (Roche) at a concentration of 2×.

Gelatinase and MMP activity assays
Activity of gelatinase and MMPs was measured using the 
EnzCheck Gelatinase/Collagenase Assay kit (Thermo Fisher 
Scientific) and the SensoLyte 520 Generic MMP Assay kit 
and SensoLyte 520 MMP Profiling kit (AnaSpec) according 
to the manufacturers’ instructions. A list of the MMP-specific 
fluorescence resonance energy transfer substrates used in the 
MMP Profiling kit can be found in Table S2. Cell culture 
supernatants for the gelatinase/collagenase assay were con-
ditioned for 24 h in phenol red–free DMEM and stored at 
−80°C until use. The MMP assays were performed with 50 
µg mouse brain lysate per well.

tPA zymography and active tPA measurements
Hippocampal tPA activity was measured by in situ zymogra-
phy with casein substrate, as previously described (Sachs et al., 
2007). In brief, fresh frozen, Tissue-TEK optimal cutting tem-
perature (Sakura)–embedded brains were sections at 12 µm, 
and sections 120 µm apart were used. The sections were over-
laid with substrate, and the area lysed was quantified. tPA ac-
tivity in conditioned cell culture medium was measured using 
the active mouse tPA functional assay ELI​SA kit (Molecular 
Innovations) according to the manufacturer’s instructions.

Phagocytosis assay
BV2 cells were plated on 24-well plates at a density of 50,000 
cells per well in DMEM with 10% FBS. Cells were allowed 
to settle on the plate for 1–2 h in a tissue culture incubator. 
Fluorescent carboxyl microspheres (6 µm, flash red; Bangs 
Laboratories Inc.) were opsonized for 30 min in 50% FBS 
and PBS and then added to the BV2 cells at a concentration 
of 10 beads per cell. Cells and beads were incubated for 1 h 

in the tissue culture incubator and subsequently transferred to 
5 ml polystyrene FACS tubes with the aid of TrypLE Express 
reagent (Thermo Fisher Scientific). Cells were washed twice 
with cold FACS buffer (1% FBS and 0.02% sodium azide in 
PBS) and then analyzed by flow cytometry.

RNA extraction and real-time PCR
RNA was extracted using the RNeasy kit (QIA​GEN) accord-
ing to the manufacturer’s instructions. 100 ng of extracted mi-
croglial mRNA was reverse transcribed using the SuperScript 
III first strand synthesis system (Thermo Fisher Scientific). 
Gene expression was assessed using intron-spanning primers 
(for sequences, see Table S1), and GAP​DH was used as the 
housekeeping gene. 1:20 diluted cDNAs were mixed with 
the probes and 2× LightCycler 480 SYBR Green I Master 
mix (Roche) and amplified using a Roche Light Cycler 480 
(Roche). Results were analyzed using the ΔΔCt method.

Western blotting
Tissue or cells were lysed on ice in RIPA buffer (50 mM Tris-
HCl, pH 7.4, 150 mM sodium chloride, 1% Nonidet P40, 
1 mM EDTA, and 0.25 deoxycholic acid) with complete pro-
tease inhibitor (Roche), and the total protein concentration 
was measured using a bicinchoninic assay kit (Thermo Fisher 
Scientific). Lysates were run on 4–12% Bis-Tris gels (Thermo 
Fisher Scientific) in 1× NuPage MES SDS running buffer 
(Thermo Fisher Scientific). Proteins were transferred over-
night onto nitrocellulose membranes in 20% (vol/vol) meth-
anol in NuPage Transfer buffer (Thermo Fisher Scientific). 
Membranes were blocked and then incubated in primary an-
tibody overnight. Proteins were visualized and quantified on 
an Odyssey infrared imaging system (LI-COR Biosciences). 
The following antibodies were used: CT15 (Sisodia et al., 
1993), β-actin (Sigma-Aldrich), neuron-specific enolase (5E2; 
Thermo Fisher Scientific), and IC16 (Hahn et al., 2011).

Mass spectrometric analysis of LA-1 in brain and plasma
C57BL/6 mice were injected i.p. with 500 µl of 50 µM LA-1. 
At seven time points after injection (5 min, 15 min, 30 min, 
1 h, 2 h, 4 h, and 8 h), mice were anesthetized, and EDTA 
blood was collected by cardiac puncture. After blood collec-
tion, the mice were perfused with sterile PBS, and the brain 
was collected and immediately frozen as hemibrains at −80°C. 
Plasma was isolated from whole blood immediately by spin-
ning at 1,000 g and stored at −80°C. Three animals were used 
per time point. Right hemibrains were homogenized in 2 vol-
umes of deionized water, using one volume of 0.5-mm glass 
beads (Next Advance) in a Bullet Blender (Next Advance). 
Brain homogenates and plasma samples were further diluted 
in 50% and 20% methanol in acetonitrile. Samples were mixed 
and clarified by centrifugation before analysis on a mass spec-
trometer (Qtrap 4000; Sciex). 10 µl of each sample was intro-
duced into the mass spectrometer via a Dionex microcapillary 
column (C18 5 µm 2.1 × 100 mm; Thermo Fisher Scientific). 
Samples were eluted via 300  µl/min isocratic flow of 85%  
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B (mobile phase A: 0.1 mM ammonium acetate in water; mo-
bile phase B: 100% acetonitrile) for 2 min. Quantification 
of LA-1 was performed using multiple reaction monitoring 
transitions m/z 420.103-375.800 and m/z 420.103-230.000. 
Method development, data acquisition, and data processing 
were performed using Analyst 1.6.1 software (Sciex). LA-1 
was quantified using untreated brain homogenates with 
spiked-in LA-1 standards, and standard curves were generated 
using cubic regression. Unknown LA-1 concentrations were 
interpolated from the brain homogenate and plasma standard 
curves using Prism 6 analysis software (GraphPad Software).

Stereotactic injection of Aβ
For stereotactic injection of Aβ, the mice were anesthetized to 
full muscle relaxation with isoflurane (2.5–3.5% with oxygen, to 
effect) and placed in a stereotaxic device. Surgeries were per-
formed on heated pads, and body temperature was monitored 
throughout the procedure. The skull was exposed, and a hole 
was drilled into the skull at the injection site (coordinates 
from bregma: A = −2 mm and L = −1.8 mm; from brain 
surface: H = −2 mm) to target the hippocampus. A microsy-
ringe (25 G) was used to infuse 1 µg of Aβ into the brain over 
2 min. The cannula was left in place for an additional 3 min 
and slowly withdrawn. The incision in the scalp was closed, 
and the animals were allowed to recover. The animals received 
0.05–0.1 µg/ml buprenorphine as directed for pain.

Flow cytometry and FACS
Flow cytometric analysis was performed on a Fortessa or 
FAC​SCalibur FACS machine (BD). Standard staining was 
performed. In brief, cells were washed three times with FACS 
buffer and blocked using Fc-block CD16/32 antibody (Bio-
Legend) for 15 min, followed by incubation with fluores-
cently labeled antibody for 30 min. Analysis was performed 
using FlowJo software (version 9.2; Tree Star). PBMCs were 
isolated by Ficoll centrifugation. The antibodies used were: 
CD11b-PE antibody (BioLegend), CD162–Alexa Fluor 647 
(BD), CD62L-FITC and CD18-PE (eBioscience), and CD54-
APC, CD14-Pe/Cy7, CD49d-FITC, CD11a-PE, CD11b–
eFluor 450 (all BioLegend). Sterile FACS to maintain CD11b 
knockdown in CD11bkd BV2 cell lines was performed after 
staining of CR3kd and control cells with CD11b-PE antibody, 
as described in the previous paragraph. Cells were sorted on 
a FAC​SAriaIII cell sorter (BD) for CD11blow-expressing cells, 
defined by CD11b expression of <80% of control cells. Then, 
cells were cultured as described in the Cell lines section.

Online supplemental material
Fig. S1 shows that MMP activity and expression is not 
changed in CR3-deficient cells or mice. Fig. S2 shows that 
LA-1 does not affect APP processing and does not change 
the expression of vascular adhesion markers on PBMCs or 
microglia. Table S1 contains the qPCR primer sequences, and 
Table S2 shows the sequences of fluorescence resonance en-
ergy transfer substrates used in the MMP activity assays.
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Figure S1.  MMP activity is not changed in CR3-deficient cells or mice. (A) Cell-free Aβ degradation assay in supernatants of adult WT and CR3−/− mi-
croglia with addition of protease inhibitors (PI). PI w/o, protease inhibitor cocktail lacking EDTA. (B) Cell-free assay in supernatants of control and CR3kd BV2 
cells with addition of protease inhibitors. (A and B) Representative graphs of three independent experiments are shown. (C) Quantification of MMP2 and 
MMP9 activity in conditioned medium of control and CR3kd BV2 cells. Combined data of two independent experiments are shown. (D) Quantification of total 
MMP activity in cortical lysates of WT and CR3−/− mice. n = 9–11 individual mice. (E) Quantification of total MMP activity in cortical lysates of APP and APP/
CR3−/− mice. n = 6–7 individual mice. (F) Quantification of MMP profiling assay in cortical lysates of APP and APP/CR3−/− mice. n = 5 individual mice. (G) 
qPCR analysis of MMP expression in mRNA from primary adult microglia. Primary microglia are from n = 7 individual mice. All groups are male and female 
mice. Unpaired Student’s t test was used. *, P < 0.05; **, P < 0.01; ***, P < 0.001. All values are mean ± SEM.
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Figure S2. L A-1 treatment does not change APP processing or expression of vascular adhesion markers on PBMCs or microglia. (A) Represen-
tative Western blot showing APP processing in lysates and sAPPα levels in conditioned supernatants of APP-overexpressing Chinese hamster ovary cells 
after LA-1 treatment. flAPP, full-length APP. (B) Aβ measurements in conditioned supernatants of APP-overexpressing Chinese hamster ovary cells after 
LA-1 treatment. (C–F) Quantification of full-length APP and processing products after LA-1 treatment. (B–F) Data are combined from three independent 
experiments. (G) qPCR analysis of MMP expression in mRNA from primary adult microglia. Primary microglia are from n = 7 individual mice. (H) Plasma 
levels of LA-1 after a single injection quantified by mass spectrometry. n = 3 individual mice per time point, with only male mice. (I and J) Flow cytometric 
quantification of vascular adhesion molecule expression on primary adult microglia (I) and PBMCs (J) isolated after 10 d of LA-1 injections. n = 5 individual 
mice per group. All groups were male and female mice except for H. One-way ANO​VA and Tukey’s posthoc test (B–F) or unpaired Student’s t test (G, I,  
and J) was used. All values are mean ± SEM.
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Table S1.  qPCR primer sequences

Gene Primer sequences (5′-3′)

MMP2 for        CAA​GTT​CCC​CGG​CGA​TGTC
MMP2 rev        TTC​TGG​TCA​AGG​TCA​CCT​GTC
MMP8 for        TCT​TCC​TCC​ACA​CAC​AGC​TTG
MMP8 rev        CTG​CAA​CCA​TCG​TGG​CAT​TC
MMP9 for        GAG​ACG​GGT​ATC​CCT​TCG​AC
MMP9 rev        TGA​CAT​GGG​GCA​CCA​TTT​GAG
MMP12 for        GGG​CTG​CTC​CCA​TGA​ATG​AC
MMP12 rev        CCA​GAG​TTG​AGT​TGT​CCA​GTTG
MMP13 for        CTT​CTT​CTT​GTT​GAG​CTG​GAC​TC
MMP13 rev        CTG​TGG​AGG​TCA​CTG​TAG​ACT
MMP14 for        GCC​TTG​CCT​GTC​ACT​TGT​AAA
MMP14 rev        CAG​TAT​GGC​TAC​CTA​CCT​CCAG
tPA for        AAC​GCA​GAC​AAC​TTA​CCA​ACA
tPA rev        GTT​CGC​TGC​AAC​TTC​GGAC
IDE for        GAA​CGA​TGC​CTG​GAG​ACT​CTT
IDE rev        TTC​CCT​TAC​GTC​GAT​GCC​TTC
GAP​DH for        AGG​TCG​GTG​TGA​ACG​GAT​TTG
GAP​DH rev        TGT​AGA​CCA​TGT​AGT​TGA​GGT​CA

Abbreviations used: for, forward; IDE, insulin-degrading enzyme; rev, reverse.

Table S2.  Sequence of FRET substrates and substrate specificity for the MMP profiling kit

Substrate FRET peptide sequence MMP specificity

SB1              QXL520-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-Lys(5-FAM)-NH2     13
SB2              QXL520-Pro-Leu-Ala-Leu-Trp-Ala-Arg-Lys(5-FAM)-NH2     1,7,8,12,13
SB3              QXL520-Pro-Leu-Gly-Cys(Me)-His-Ala-D-Arg-Lys(5-FAM)-NH2     1,2,8,9,12,13
SB4              5-FAM-Pro-Leu-Ala-Nva-Dap(QXL520)-Ala-Arg-NH2     1,2,7,8,12,13
SB5              5-FAM-Pro-Leu-Gly-Leu-Dap(QXL520)-Ala-Arg-NH2     1,2,7,8,12,13
SB6              QXL520-Pro-Leu-Gly-Met-Trp-Ser-Arg-Lys(5-FAM)-NH2     2,13
SB7              QXL520-Pro-Tyr-Ala-Tyr-Trp-Met-Arg-Lys(5-FAM)-NH2     7,12,13
SB8              QXL520-Arg-Pro-Lys-Pro-Leu-Ala-Nva-Trp-Lys(5-FAM)-NH2     7,12,13
SB9              QXL520-Arg-Pro-Leu-Ala-Leu-Trp-Arg-Lys(5-FAM)-NH2     1,2,7,8,12,13
SB10              QXL520-Pro-Leu-Ala-Tyr-Trp-Ala-Arg-Lys(5-FAM)-NH2     13
SB11              5-FAM-Pro-Cha-Gly-Nva-His-Ala-Dap-(QXL520)-NH2     1,2,8,12,13
SB12              5-FAM-Arg-Pro-Lys-Pro-Tyr-Ala-Nva-Trp-Met-Lys(QXL520)-NH2     1,2,3,12,13
SB13              5-FAM-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys-(QXL520)-NH2     3,12
SB14              QXL520-γ-Abu-Pro-Cha-Abu-Smc-His-Ala-Dab(5-FAM)-Ala-Lys-NH2     1,2,3,7,8,9,12,14
SB15              QXL520-γ-Abu-Pro-Gln-Gly-Leu-Dab-(5-FAM)-Ala-Lys-NH2     1,2,7,8,12,13
SB16              QXL520-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Trp-Lys(5-FAM)-NH2     12,13

Abbreviation used: FRET, fluorescence resonance energy transfer.
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