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SUMMARY

Autophagy plays a critical role in the maintenance of
immunological memory. However, the molecular
mechanisms involved in autophagy-regulated
effector memory formation in CD8+ T cells remain un-
clear. Here we show that deficiency in NIX-depen-
dent mitophagy leads to metabolic defects in
effector memory T cells. Deletion of NIX caused
HIF1a accumulation and altered cellular metabolism
from long-chain fatty acid to short/branched-chain
fatty acid oxidation, thereby compromising ATP syn-
thesis during effector memory formation. Preventing
HIF1a accumulation restored long-chain fatty acid
metabolism and effector memory formation in anti-
gen-specific CD8+ T cells. Our study suggests that
NIX-mediated mitophagy is critical for effector mem-
ory formation in T cells.

INTRODUCTION

Exposure to pathogens leads to activation of naive CD8+ T cells,

which then undergo clonal expansion. After clearance of

infections, most of the antigen-specific CD8+ T cells undergo

apoptosis during contraction (effector-to-memory transition)

phase (Kaech and Cui, 2012; Porter and Harty, 2006; Weant

et al., 2008). However, some antigen-specific CD8+ T cells sur-

vive and differentiate into memory CD8+ T cells, which are meta-

bolically quiescent. Memory CD8+ T cells, which include both

effector memory and central memory T cells, are formed in the

secondary lymphoid organs such as spleen and lymph nodes

(Kaech and Ahmed, 2001). Upon re-activation, effector memory

CD8+ T cells can rapidly expand into effector CD8+ T cells and

mount potent cytotoxic functions (Sallusto et al., 1999; Maso-

pust et al., 2001). However, the processes that specifically regu-

late differentiation of effector memory CD8+ T cells remain

unclear.

Whereas activated effector CD8+ T cells depend on glycolysis

for their metabolic needs (Beckermann et al., 2017), memory

CD8+ T cells use long-chain fatty acid oxidation to generate en-

ergy (O’Sullivan et al., 2014). Fatty acid metabolism takes place

in mitochondria, where they undergo b-oxidation to generate en-

ergy in the form of ATP. However, the molecules that regulate

long-chain fatty acid oxidation in memory CD8+ T cells have

not been identified.

We and others have shown that deletion of NIX, a Bcl-2-

family protein on the mitochondrial outer membrane (Mat-

sushima et al., 1998), impairs the ability of autophagosomes

to degrade mitochondria in reticulocytes via mitophagy (San-

doval et al., 2008; Schweers et al., 2007). Failure to clear

dysfunctional mitochondria in the absence of NIX leads to

accumulation of mitochondrial superoxide in natural killer

(NK) memory cells (O’Sullivan et al., 2015). We have previously

shown that mitochondrial superoxide is detrimental to

immunological memory in B cells (Chen et al., 2014). The

extent of superoxide production depends on mitochondrial

quality regulated by mitophagy, wherein dysfunctional mito-

chondria are degraded via the autophagolysosomal pathway.

Degraded mitochondria are later replaced by new functional

mitochondria through mitochondrial biogenesis, which is

regulated by mitochondrial transcription factor A (TFAM)

(Araujo et al., 2018; Jornayvaz and Shulman, 2010; van der

Windt et al., 2012). Although we and others have previously

shown that autophagy is critical for formation and survival of

memory B and T cells in mice (Chen et al., 2014, 2015; Murera

et al., 2018; Puleston et al., 2014; Xu et al., 2014), the molec-

ular mechanisms regulating formation of effector memory in

CD8+ T cells remain unknown.

In this study, using a T cell-specific NIX-deficient mouse

model, we show that NIX-dependent mitophagy plays a protec-

tive role in differentiation of virus-specific effector memory CD8+

T cells by modulating long-chain and short/branched-chain fatty

acid oxidation.

RESULTS

NIX Is Critical for Formation of Effector Memory in Ova-
Specific CD8+ T Cells
To explore the role of NIX in effector memory CD8+ T cell differ-

entiation, we quantified Nix expression in CD8+ T cells after
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immunization of wild-type (WT) mice with vesicular stomatitis vi-

rus co-expressing ovalbumin (VSV-Ova). While Nixwas downre-

gulated in Ova-specific CD8+ T cells during primary response on

day 6 post-immunization (p.i.), it was upregulated from day 10

p.i. (Figure 1A), the onset of contraction phase (effector-to-mem-

ory transition phase) in CD8+ T cells (Xu et al., 2014). The expres-

sion of Nix continued to further increase during the course of

immunological memory formation in Ova-specific CD8+ T cells

Figure 1. NIX Is Critical for Formation of Effector Memory in Ova-Specific CD8+ T Cells

Spleens from OT-I mice (A–D) or wild-type (WT) and T/NIX–/– mice (E–K) were collected at designated time points.

(A) Kinetics of Nix expression in Ova-specific CD8+ T cells (Ova-CD8+) after VSV-Ova immunization.

(B) Gene expression of Nix in Ova-CD8+ 24 h after addition of IL-15. CD8+ T cells from naive OT-I mice were activated with anti-CD3 and anti-CD28 for 72 h,

followed by IL-15 addition.

(C) Kinetics of Nix expression in Ova-CD8+ after CD3-stimulation, followed by IL-15 addition.

(D) Kinetics of Il15ra expression in Ova-CD8+ after VSV-Ova immunization. Ova-CD8+ frommicewithin the same experimental group in (A)–(D) were pooled before

analysis.

(E) Representative dot plot showing percentage of Ova-EM in WT or T/NIX–/– spleens on day 30 p.i. with 104 plaque-forming units (PFU) of VSV-Ova.

(F) Mean frequencies of Ova-EM from (E).

(G) Experimental model for adoptive transfer experiment performed in (H).

(H) Left: representative plot showing percentages of CD45.1+ WT and CD45.2+ T/NIX–/– Ova-EM in CD45.2+ T/NIX–/– mice 30 days after VSV-Ova immunization.

Right: mean frequencies of CD45.1+ WT and CD45.2+ T/NIX–/– Ova-EM from experiment performed in the left panel.

(I) Kinetics of effector memory formation in Ova-CD8+ in vivo in WT or T/NIX–/– mice after VSV-Ova immunization.

(J) Gene expression of Nix in day 0 naive, day 6 Ova-activated, day 10 Ova-CD8+ MPECs, day 30 Ova-EM, and day 30 Ova-CM in WT mice after VSV-Ova

immunization.

(K and L) Gene expression of Foxo1 (left panel) and Tcf7 (right panel) in day 10 Ova-CD8+ MPECs (K) or day 30 Ova-EM (L) harvested fromWT or T/NIX–/– spleens

after VSV-Ova immunization.

(M) In vitro differentiation of Ova-EM. Left: representative plot for percentage of WT or T/NIX–/– Ova-EM on day 8. Right: mean frequency of Ova-EM from left

panel.

In (E) and (M), CD8+Ova_tetramer+ population (Ova-EM) was gated on CD3+CD8+CD43�CD62L�CD44+ population. Data are representative of two or more

independent experiments (n = 3–10). Data were analyzed using one-way ANOVA with Bonferroni’s posttest (mean ± SEM) in (A)–(D); two-tailed Student’s t test

(mean ± SEM) in (F), (H, right), (J)–(L), and (M, right); and two-way ANOVA with Bonferroni’s posttests (mean ± SEM) in (I). *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001. See also Figures S1 and S2.
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(Figure 1A), suggesting that NIX potentially plays a role in CD8+

T cell memory formation.

IL-15 plays a critical role in immunological memory formation

(Sato et al., 2007; Xu et al., 2016), but its mechanism is unclear.

We found that Nix expression was upregulated in Ova-specific

CD8+ T cells within 24 h of IL-15 addition (Figure 1B). We further

examined whether the initial downregulation in Nix expression

during primary response (Figure 1A) was mediated through

TCR signaling. Upon CD3 stimulation, Ova-specific CD8+

T cells downregulatedNix; however,Nix expression was upregu-

lated after subsequent addition of IL-15 (Figure 1C). Consistent

with increased Nix expression during the contraction phase (Fig-

ure 1A), we observed concomitant increase in IL-15 receptor ⍺

(Il15ra) expression in Ova-specific CD8+ T cells during the

contraction phase in VSV-Ova-immunized WT mice (Figure 1D).

These data suggest that TCR signaling downregulates Nix

expression during the primary response, while IL-15 signaling

might contribute to the upregulation of Nix expression during

memory formation in antigen-specific CD8+ T cells.

To investigate the role of NIX in immunological memory forma-

tion, we generated mice with T cell-specific deletion of Nix

(Lckcre3Nixf/f mice, denoted T/NIX–/–). The development of dou-

ble-negative (DN; CD44�CD25�) or double-positive (DP;

CD44+CD25+) T cell populations were similar between WT and

T/NIX–/– mice (Figures S1A and S1B). Within the DN population,

DN1 (CD44+CD25�), DN2 (CD44+CD25+), DN3 (CD44�CD25+),
and DN4 (CD44�CD25�) cells were also similar between WT

and T/NIX–/– mice (Figures S1C and S1D). Frequency of mature

CD4+ and CD8+ T cells, naive, central memory and effector

CD8+ T cells were also comparable between the WT and T/

NIX–/– mice (Figures S1E–S1H). These data suggest that NIX

deficiency in T cells did not alter T cell development and migra-

tion to periphery.

CD43 (1B11) is expressed on activated but not memory

CD8+ T cells (Harrington et al., 2000; Hikono et al., 2007; Olson

et al., 2013). Therefore, we used CD3+CD8+CD62L�

CD44+CD43�Ova_tetramer+ cells as Ova-specific effector

memory CD8+ T cells (Ova-EM), CD3+CD8+CD62L+CD44+

CD43�Ova_tetramer+ cells as Ova-specific central memory

CD8+ T cells (Ova-CM), and CD3+CD8+CD62L�CD44+

CD43+Ova_tetramer+ cells as Ova-specific activated CD8+

T cells (Ova-activated) in our experiments. In addition, we used

CD3+CD8+CD62L�CD44+CD127+Ova_tetramer+ cells on day

10 p.i. as Ova-specific CD8+ memory precursor effector cells

(Ova-CD8+ MPECs); which exhibited no significant alteration in

their expression of KLRG1, a marker of terminal differentiation

(Joshi et al., 2007; Voehringer et al., 2002; Yuzefpolskiy et al.,

2015), between WT and T/NIX–/– mice (Figure S2A).

We next immunized WT and T/NIX–/– mice with VSV-Ova,

which was cleared by both the hosts before the contraction

phase (Figure S2B), and measured the frequency of Ova-EM

and Ova-CM 30 days p.i. Interestingly, we observed significantly

reduced frequency of Ova-EM in T/NIX–/– mice (Figures 1E and

1F) but not Ova-CM (Figure S2C). When additional T cell memory

phenotypic markers, KLRG1 and CD127 (Bengsch et al., 2007;

Joshi et al., 2007), were included, CD127+KLRG1� Ova-EM

was also impaired in T/NIX–/– mice (Figures S2D and S2E).

Some studies suggest that T cell memory is promoted by

CXCR5 and TCF7 but inhibited by TIM3 (Avery et al., 2018; Bill-

ingsley et al., 2015; Leong et al., 2016; Sabins et al., 2017; Yu and

Ye, 2018). We found that CXCR5+TIM3�TCF7+ Ova-EM cells

were significantly impaired in T/NIX–/– mice 30 days p.i. (Figures

S2F and S2G). To test if this impairment was CD8+ T cell intrinsic,

we adoptively transferred CD8+ T cells using the experimental

setup as described (Figure 1G). We found that the formation of

effector memory was defective in host CD45.2+ T/NIX–/– CD8+

T cells compared with donor CD45.1+ WT CD8+ T cells (Fig-

ure 1H), suggesting that the impairment in CD8+ T cell effector

memory formation due to NIX ablation was intrinsic in nature.

Moreover, frequency of Ova-activated CD8+ T cells did not

change in T/NIX–/– mice during the peak primary response

(D’Souza and Hedrick, 2006; Figure S2H), and CD8+ T cells

from naive WT and T/NIX–/– mice proliferated to the same extent

upon CD3/CD28 stimulation (Figure S2I), suggesting that

reduced Ova-EM frequency was not due to altered primary

response. Furthermore, BNIP3, a NIX homolog, was not required

for effector memory formation in Ova-specific CD8+ T cells (Fig-

ures S2J and S2K), although there was an overall reduction in

Bnip3 expression in Ova-specific CD8+ T cells during VSV-Ova

infection (Figure S2L), likely due to Bnip3 downregulation during

central memory formation (Figure S2M). Pink1 and Parkin

(Park2), which also control mitophagy in mammalian cells (Gki-

kas et al., 2018; Jin and Youle, 2012), were not significantly up-

regulated during T cell memory formation either (Figure S2N).

These data suggest a unique role for NIX in CD8+ T cell effector

memory formation.

Next, we found that CD8+ T cell effector memory formation

was impaired between days 10 and 20 p.i. in T/NIX–/– mice (Fig-

ures 1I and S2O), suggesting that NIX deficiency during the

contraction phase was the causative factor. Caspase-3

(Casp3) can mediate apoptosis in virus-specific effector T cells

during the contraction phase (Garrod et al., 2012; Kapoor

et al., 2014; Sabbagh et al., 2004; Secinaro et al., 2018). We

found that Casp3 expression was increased in T/NIX–/– Ova-

CD8+ MPECs but not in fully formed T/NIX–/– Ova-EM (Fig-

ure S2P). Moreover, apoptosis during the contraction phase

was increased in T/NIX–/– Ova-CD8+ MPECs but not Ova-EM,

as indicated by annexin V staining (Figures S2Q and S2R). These

data suggest that the defective CD8+ T cell effector memory for-

mation in T/NIX–/– mice was caused by a loss of Ova-CD8+

MPECs but not due to an increased apoptosis in newly formed

Ova-EM. This critical requirement of NIX during the contraction

phasewas consistent withNix upregulation in Ova-CD8+MPECs

on day 10 p.i., followed by a significant upregulation in Ova-EM

by day 30 p.i. in WT mice (Figure 1J). In contrast to Ova-EM, NIX

expression did not change in Ova-CM, consistent with no

change in Ova-CM differentiation despite absence of NIX (Fig-

ure S2C). We also quantified expression of Foxo1 and Tcf7, tran-

scription factors critical for CD8+ T cell memory formation (Lin

et al., 2016; Zhou and Xue, 2012; Hess Michelini et al., 2013),

in Ova-CD8+ MPECs (Danilo et al., 2018; Kim et al., 2013). Their

expression was significantly reduced in T/NIX–/– Ova-CD8+

MPECs (Figure 1K). In addition, expression of Blimp-1, a tran-

scription factor inhibiting CD8+ T cell memory formation (Rutish-

auser et al., 2009), was upregulated in T/NIX–/– Ova-CD8+

MPECs (Figure S2S). Likewise, Foxo1 and Tcf7were significantly
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reduced (Figure 1L) and Blimp-1was upregulated (Figure S2T) in

T/NIX–/– Ova-EM 30 days p.i. We also studied formation of Ova-

EM in vitro in the presence of IL-15 (Buck et al., 2016; O’Sullivan

et al., 2014; van der Windt et al., 2012, 2013), with effector-to-

memory transition phase falling between day 3 and day 7 post-

activation (Figure S2U), and confirmed that the absence of NIX

significantly impaired Ova-EM formation (Figure 1M). Together,

our data suggest that NIX is critical for optimal generation of

effector memory in antigen-specific CD8+ T cells during the

contraction phase.

Impaired Effector Memory Formation in Antigen-
Specific CD8+ T Cells Leads to a Defective Recall
Response
We next transferred equal numbers of CD45.2+ Ova-EM (from

WT or T/NIX–/– mice) into naive CD45.1+ hosts, which were sub-

sequently challenged with VSV-Ova. Forty-eight hours later,

memory recall response of CD45.2+ Ova-EM was studied

(Chen et al., 2006; D’Souza and Hedrick, 2006). Upon re-activa-

tion of Ova-EM by VSV-Ova, Nix expression was downregulated

in CD45.2+ WT CD8+ T cells (Figure S3A), consistent with our

earlier data (Figures 1A, 1C, and 1J) demonstrating that CD8+

T cell activation downregulates Nix expression. We then investi-

gated if limited effector memory formation in T/NIX–/– CD8+

T cells would cause a defective memory recall response. Recip-

ients of in vivo generated T/NIX–/– Ova-EM showed a reduced

recall response (Figure 2A), which was verified by ELISA (Fig-

ure 2B) and intracellular staining (Figures 2C, 2D, and S3B) for

IFN-g and IL-2. In addition, T/NIX–/– Ova-EM proliferated signifi-

cantly lesser than their WT counterparts upon VSV-Ova re-chal-

lenge (Figure 2E). Consistent with defective memory recall

response in Ova-EM developed in vivo, we also observed an

impairedmemory recall response by T/NIX–/– Ova-EM generated

in vitro (Figures 2F–2I and S3C). Proliferation upon secondary

challenge has been shown to depend on mitochondrial spare

respiratory capacity (SRC) in memory T cells (van der Windt

et al., 2013). Hence, we performed extracellular flux analysis

(Seahorse assay) to measure mitochondrial SRC and found

that T/NIX–/– Ova-EM had significantly lesser SRC (Figures S3D

and S3E). These data indicate that defective effector memory

formation in antigen-specific T/NIX–/– CD8+ T cells resulted in a

defective recall response, likely through impairment inmitochon-

drial SRC.

Absence of NIX Causes Mitochondrial Accumulation
during Effector Memory Formation in Antigen-Specific
CD8+ T Cells
We next examined the molecular mechanism behind impaired

CD8+ T cell effector memory formation in T/NIX–/– mice. Because

NIX is involved inmitochondrial clearance in red blood cells (San-

doval et al., 2008; Schweers et al., 2007), we quantified total

mitochondria in Ova-EM formed in vivo after VSV-Ova immuniza-

tion. T/NIX–/– Ova-EM showed significantly more mitochondria

than WT controls on day 30 p.i. (Figure 3A), which we verified

via immunostaining of mitochondrial COX IV (Figures 3B and

3C). Mitochondrial levels in naive CD8+ T cells were comparable

between WT and T/NIX–/– mice (Figures S4A–S4D), suggesting

that mitochondrial accumulation due to deletion of NIX occurred

during effector memory formation, rather than naive CD8+ T cell

stage.

To determine if mitochondrial accumulation in T/NIX–/– Ova-

EM occurred because of impaired mitophagy, we performed

co-localization analysis of stained mitochondria and autophago-

somes in Ova-EM generated in vivo on day 30 p.i. Mitophagy in

Ova-EMwas significantly decreased in T/NIX–/– mice (Figures 3D

and S4E), but not because of altered basal autophagy, as shown

by similar levels of LC3 and autophagic vacuoles in WT and

T/NIX–/– Ova-EM (Figures S4F and S4G), suggesting that

reduced mitophagy in T/NIX–/– Ova-EM stemmed from an

inability of available autophagosomes to degrade mitochondria.

Interestingly, there were no significant changes in the level of

mitochondria (Figures S4A–S4D) and mitophagy (Figure S4E) in

Ova-CM in absence of NIX.We also observed significantly higher

levels of mitophagy in WT Ova-EM compared with WT naive

CD8+ T cells, which reversed upon deletion of NIX (Figure S4E).

These data suggest that NIX regulates mitophagy during CD8+

T cell effector memory formation, but not at naive CD8+ T cell

stage. As expected, deletion of NIX did not alter basal autophagy

in naive CD8+ T cells or Ova-EM, although Ova-EM showed

significantly more basal autophagy than naive CD8+ T cells (Fig-

ures S4F and S4G).

Mitochondrial accumulation in T/NIX–/– Ova-EM could also be

due to increasedmitochondrial biogenesis, which is regulated by

TFAM (Araujo et al., 2018; Jornayvaz and Shulman, 2010; van

der Windt et al., 2012) in mammalian cells. We found no signifi-

cant difference in Tfam gene expression (Figure 3E) or TFAMpro-

tein level (Figure 3F) between WT and T/NIX–/– mice, indicating

that mitochondrial biogenesis did not play a role in mitochondrial

accumulation in T/NIX–/– Ova-EM.

Deletion of NIX Results in Elevation of Mitochondrial
Superoxide, Thereby Impairing CD8+ T Cell Effector
Memory Formation during Contraction Phase
Accumulation ofmitochondria in immunecells hasbeenshown to

elevate mitochondrial superoxide (Chen et al., 2014; O’Sullivan

et al., 2015). Hence, we stained Ova-specific CD8+ T cells with

MitoSOX Red during the contraction phase and found signifi-

cantly higher mitochondrial superoxide in T/NIX–/– mice (Figures

4A, 4B, S5A, and S5B). Because mitochondrial superoxide in-

ducesmitophagy of dysfunctional mitochondria so as tomitigate

mitochondrial stress (Bordi et al., 2017; Je�zek et al., 2018; Shefa

et al., 2019), we hypothesized that elevation of mitochondrial

superoxide in absence of NIX-mediated mitophagy would exac-

erbate mitochondrial stress in antigen-specific CD8+ T cells.

Indeed, we found that mitochondrial stress in T/NIX–/– Ova-spe-

cific CD8+ T cells was significantly higher during the contraction

phase, as indicated by increased mitochondrial membrane de-

polarization (Chirichigno et al., 2002; Herst et al., 2017; Witte

and Horke, 2011; Figures 4C and 4D) and mtDNA damage (Herst

et al., 2017; Kang and Hamasaki, 2003; Figure S5C). This sug-

gests that deletion of NIX caused an elevation of superoxide in

the accumulatedmitochondria of virus-specific CD8+ T cells dur-

ing contraction phase, and this likely increased mitochondrial

stress during effector-to-memory transition.

We next asked whether this increase in mitochondrial super-

oxide during contraction phase was responsible for defective

Cell Reports 29, 1862–1877, November 12, 2019 1865



Figure 2. Deletion of NIX Leads to an Impaired Memory Recall in Ova-Specific Effector Memory CD8+ T Cells

Ova-EM formed in vivo (A–E) or in vitro (F–I) from CD45.2+ WT or T/NIX–/– mice were adoptively transferred into naive CD45.1+ mice. CD45.1+ hosts were

challenged with 104 PFU of VSV-Ova 24 h later. Forty-eight hours later, spleen and serum were harvested for analyses.

(A) CD45.2+ Ova-CD8+ in CD45.1+ recipients receiving in vivo generated CD45.2+ WT or T/NIX–/– Ova-EM.

(B) Serum IFN-g (left) and IL-2 (right) in CD45.1+ recipients from (A).

(C) Plot showing IFN- g and IL-2 producing CD45.2+ Ova-CD8+ in CD45.1+ recipients receiving in vivo generated CD45.2+ WT or T/NIX–/– Ova-EM.

(D) Intracellular IFN-g and IL-2 in CD45.2+ Ova-CD8+ in CD45.1+ recipients receiving CD45.2+WT or T/NIX–/– Ova-EM. Geometric mean fluorescence index (MFI)

values for IFN-g were 2,292 ± 130.1 (WT) and 1,831 ± 143.6 (T/NIX–/–). Geometric MFIs for IL-2 were 1,126 ± 88.91 (WT) and 920.7 ± 166.3 (T/NIX–/–).

(E) In vivo proliferation of re-activated WT or T/NIX–/– Ova-EM measured by CFSE staining. Peaks corresponding to G1, G2, G3, G4, and G5 represent the

generations of cells after successive cell division cycles. Proliferation index: 1.611 ± 0.023 (WT) and 1.454 ± 0.026 (T/NIX–/–) (p < 0.001).

(F) CD45.2+ Ova-CD8+ in CD45.1+ recipients receiving in vitro generated CD45.2+ WT or T/NIX–/– Ova-EM.

(G) Serum IFN-g and IL-2 in CD45.1+ recipients from (F).

(H) Plot showing frequencies of IFN-g- and IL-2-producing CD45.2+Ova-CD8+ in CD45.1+ recipients receiving in vitro generatedCD45.2+WT or T/NIX–/– Ova-EM.

(I) Intracellular IFN-g and IL-2 in CD45.2+ Ova-CD8+ in CD45.1+ recipients receiving in vitro generated CD45.2+WT or T/NIX–/– Ova-EM. Geometric MFIs for IFN-g

were 7,120 ± 503.1 (WT) and 5,363 ± 551.3 (T/NIX–/–). Geometric MFIs for IL-2 were 5,154 ± 394.6 (WT) and 2,668 ± 489.4 (T/NIX–/–).

Data in (A), (B), and (E)–(G) are representative of two or more independent experiments (n = 3–9), and data in (C), (D), (H), and (I) are representative of three or four

biological replicates per group. Data were analyzed using two-tailed Student’s t test (mean ± SEM). *p < 0.05, **p < 0.01, and ***p < 0.001. See also Figure S3.
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CD8+ T cell effector memory formation in the absence of NIX.

Because we observed that both impairment in effector memory

formation and accumulation of mitochondrial superoxide

occurred during contraction phase (days 10–20 p.i.), we chose

day 13 p.i. as the time point for injecting N-acetyl cysteine

(NAC), a scavenger of mitochondrial superoxide (Chen et al.,

2014; O’Sullivan et al., 2015), into WT and T/NIX–/– mice. Admin-

istration of NAC restored effector memory formation in T/NIX–/–

Ova-CD8+ T cells both in vivo (Figures 4E and 4F) and in vitro

(Figures 4G and 4H). Treatment of WT groups in vivo and

in vitro with NAC did not significantly alter CD8+ T cell effector

memory formation, suggesting that over-accumulation of mito-

chondrial superoxide during contraction phase in T/NIX–/– mice

contributed to impaired CD8+ T cell effector memory formation.

Furthermore, treatment with NAC rescued defective proliferation

of T/NIX–/– Ova-EM during memory recall response (Figure S5D).

Mitochondrial Superoxide Elevates HIF1⍺ during
Contraction Phase in T/NIX–/– Mice
Mitochondrial superoxide increases expression of hypoxia-

inducible factor 1 (HIF1a) in mammalian cells (Chandel et al.,

1998, 2000), which is required for metabolism in activated

CD8+ T cells (Lee and Simon, 2012; Pollizzi and Powell,

2014; Menk et al., 2018). We therefore performed intracellular

staining for HIF1⍺ protein in Ova-EM generated in vivo

30 days after VSV-Ova immunization and found significantly

elevated HIF1⍺ in T/NIX–/– Ova-EM (Figures 5A, 5B, S5E,

and S5F). Although WT Ova-CD8+ downregulated HIF1⍺ pro-

tein during transition from peak primary response (day 6 p.i.)

to contraction phase (day 13 p.i.), HIF1⍺ protein continued

to stay elevated in T/NIX–/– Ova-CD8+ even during the

contraction phase (Figures 5C and 5D), suggesting that

mitochondrial superoxide likely upregulated HIF1⍺ during

Figure 3. Deletion of NIX Leads to Mitochondrial Accumulation in Ova-Specific Effector Memory CD8+ T Cells

Spleens from WT or T/NIX–/– mice were collected 30 days p.i. with VSV-Ova for analyses.

(A) Top: MitoTracker Green staining in Ova-EM. Bottom: geometric mean fluorescence index (MFI) of MitoTracker Green staining from top panel.

(B) Representative image of WT or T/NIX–/– Ova-EM stained with COX IV (mitochondria) and LC3 (autophagosomes) obtained by immunocytochemistry.

(C and D) Mitochondrial median fluorescence index (MFI) (C) and (D) co-localization analysis of mitochondria and autophagosomes in Ova-EM from (B). For each

independent experiment in (B)–(D), Ova-EMwere pooled frommicewithin the same experimental group, and 150 cells/group were imaged. Each point represents

one Ova-EM.

(E) Gene expression of Tfam in Ova-EM. Ova-EM from mice within the same experimental group were pooled before analysis.

(F) Intracellular staining of TFAM in Ova-EM.

Data are representative of two or more independent experiments (n = 5–7). Data were analyzed using two-tailed Student’s t test (mean ± SEM). **p < 0.01,

***p < 0.001, and ****p < 0.0001. ns, non-significant. See also Figure S4.

Cell Reports 29, 1862–1877, November 12, 2019 1867



effector-to-memory transition phase. Because HIF1a is upre-

gulated in activated T cells (McNamee et al., 2013) expressing

KLRG1 (Robbins et al., 2003; Tata and Brossay, 2018), it was

also possible that elevation of HIF1a in T/NIX–/– antigen-spe-

cific CD8+ T cells was a result of altered KLRG1 differentiation

during contraction phase. However, we found that the upregu-

lation of HIF1a occurred regardless of KLRG1 differentiation

during effector memory formation in T/NIX–/– Ova-CD8+

T cells (Figures S5G and S5H). We next measured intracellular

HIF1⍺ protein level in Ova-EM isolated from T/NIX–/– mice,

which were treated with NAC during the contraction phase.

Removal of mitochondrial superoxide by NAC treatment

reversed HIF1⍺ accumulation in T/NIX–/– Ova-EM (Figures 5E

and 5F), supporting that HIF1⍺ accumulation is a downstream

effect of mitochondrial superoxide. These data suggest that

increased mitochondrial superoxide during the contraction

phase increased HIF1⍺ level during CD8+ T cell effector mem-

ory formation in T/NIX–/– mice.

Elevated HIF1⍺ Alters Mitochondrial Fatty Acid
Metabolism during CD8+ T Cell Effector Memory
Formation in T/NIX–/– Mice, Leading to Impairment in
ATP Synthesis
We next investigated the mechanism through which HIF1⍺ acts

during effector memory formation in antigen-specific CD8+

T cells. Chronic HIF1⍺ expression in mammalian cells inhibits

expression of fatty acid synthase (Fasn) (Qu et al., 2011). FASN

participates in the synthesis of long-chain fatty acids, which

memory CD8+ T cells depend upon for their metabolism (O’Sul-

livan et al., 2014; Sugiura and Rathmell, 2018). In T/NIX–/– mice,

we saw significantly decreased Fasn expression in Ova-EM (Fig-

ure 6A), indicating that T/NIX–/– Ova-CD8+ likely funnel their bio-

energetic activities through an alternative metabolic pathway

during effector memory formation. Hence, we performed PCR

array for T cell metabolic pathways (Almeida et al., 2016; Gane-

shan and Chawla, 2014) and found significant upregulation

in the expression of short/branched-chain specific acyl-CoA

Figure 4. Deletion of NIX Results in Elevation ofMitochondrial Superoxide, Thereby Impairing CD8+ T Cell Effector Memory Formation during
Contraction Phase

Spleens from WT and T/NIX–/– mice were harvested on designated time points after immunization with 104 PFU VSV-Ova.

(A) MitoSOX Red staining in Ova-CD8+ from WT and T/NIX–/– mice 20 days p.i.

(B) Geometric MFI for mitochondrial superoxide in Ova-CD8+ from (A).

(C) Mitochondrial membrane depolarization (JC-1 monomer fluorescence) in Ova-CD8+ from WT and T/NIX–/– mice 20 days p.i.

(D) Geometric MFI for JC-1 fluorescence in Ova-CD8+ from (C).

(E) Representative plot showing percentage of Ova-EM 30 days p.i. in WT and T/NIX–/– mice that were treated with NAC or vehicle control (PBS) on days 13, 20,

and 27 p.i.

(F) Mean frequencies of Ova-EM from (E).

(G) Representative plot showing percentage of WT and T/NIX–/– Ova-EM formed in vitro, after NAC or PBS treatment.

(H) Mean frequencies of Ova-EM from (G).

Data are representative of two or more independent experiments (n = 6–10). Data were analyzed using two-tailed Student’s t test (mean ± SEM). *p < 0.05, **p <

0.01, and ****p < 0.0001. ns, non-significant. See also Figure S5.
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dehydrogenase (Acadsb) in T/NIX–/– Ova-EM (Figure 6B).

ACADSB contributes to oxidation of short/branched-chain fatty

acids (Alfardan et al., 2010; Jiang et al., 2018; Luı́s et al., 2011;

Vockley et al., 2000); thus, T/NIX–/– Ova-CD8+ T cells likely ex-

hibited a shift in fatty acid metabolism during effector memory

formation. Consistent with reduced long-chain fatty acid synthe-

sis, we observed a decrease in gene expression of long-chain

acyl-CoA dehydrogenase (Acadl) (Figure 6B), as this enzyme

carries out b-oxidation of long-chain fatty acids synthesized by

FASN (Kurtz et al., 1998). Moreover, we noted no significant

alteration in glycolysis, glutaminolysis, short/medium/very long

chain fatty acid oxidation, or peroxisomal fatty acid oxidation

(Figure 6B). A shift to short/branched-chain fatty acid oxidation

was further verified in T/NIX–/– Ova-EM by decreased expression

of branched-chain-a-keto acid dehydrogenase kinase (Bckdk)

(Figure 6C), an enzyme that restricts synthesis of short/

branched-chain fatty acids from branched-chain amino acids

(BCAAs) (Harris et al., 1986; Shimomura et al., 2006). Consis-

tently, upregulated short/branched-chain fatty acid metabolism

resulted in an increased synthesis of 2-methylbutyrate, isobuty-

rate and isovalerate, the short/branched-chain fatty acids regu-

lated by BCKDK (Cole, 2015) during effector memory formation

in T/NIX–/– Ova-CD8+ T cells, as measured by liquid chromatog-

raphy-mass spectrometry (LC-MS) (Figures S6A and S6B).

These data suggest a shift from long-chain fatty acid oxidation

to short/branched fatty acid oxidation during effector memory

formation in T/NIX–/– Ova-specific CD8+ T cells.

We next induced effector memory formation in Ova-specific

CD8+ T cells in vitro in the presence of CAY10585, an inhibitor

of HIF1⍺ accumulation (Lee et al., 2007), and observed complete

restoration of Fasn (Figure 6D) and Bckdk (Figure 6D) expression

in T/NIX–/– CD8+ T cells. Likewise, treatment with NAC during the

contraction phase also restored expression of both Fasn (Fig-

ure S6C) and Bckdk (Figure S6D) during effector memory

formation in T/NIX–/– mice. We next measured mitochondrial

respiration in Ova-EM by extracellular flux analysis, which quan-

tifies oxygen consumption rate (OCR) in real time. Decreased

OCR after addition of etomoxir, an inhibitor of long-chain fatty

Figure 5. Mitochondrial Superoxide Elevates HIF1⍺ during Contraction Phase in T/NIX–/– Mice

Spleens from WT or T/NIX–/– mice were collected at designated time points after immunization with 104 PFU VSV-Ova.

(A) Intracellular HIF1⍺ protein level in Ova-EM 30 days p.i. in WT and T/NIX–/– mice.

(B) Geometric MFI of HIF1⍺ protein staining from (A).

(C) Intracellular HIF1⍺ protein level in Ova-specific effector CD8+ T cells during peak primary response (day 6 p.i.) and contraction phase (day 13 p.i.) in WT and

T/NIX–/– mice.

(D) Geometric MFI of HIF1⍺ protein staining from (C).

(E) Intracellular HIF1⍺ protein level in Ova-CD8+ in NAC or PBS treated WT and T/NIX–/– mice.

(F) Geometric MFI of HIF1⍺ protein staining from (E).

Data are representative of two or more independent experiments (n = 3–12). Data were analyzed using two-tailed Student’s t test (mean ± SEM) in (B) and (F) and

two-way ANOVA with Bonferroni’s posttest (mean ± SEM) in (D). **p < 0.01, ***p < 0.001, and ****p < 0.0001. ns, non-significant. See also Figure S5.
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acid oxidation (Pike et al., 2011), represented the extent to which

Ova-EM carried out long-chain fatty acid oxidation. Long-chain

fatty acid metabolism was significantly impaired in T/NIX–/–

Ova-EM but was restored upon HIF1⍺ inhibition by CAY10585

during effector memory formation (Figure 6E). We also verified

upregulation of short/branched-chain fatty acid metabolism

during effector memory formation in T/NIX–/– CD8+ T cells via

extracellular flux analysis. We measured any change in OCR

upon addition of BCAAs to Ova-EM that were cultured in

BCAA-free media during the measurement. Consistent with

Figure 6. Elevated HIF1⍺ Alters Mitochondrial Fatty Acid Metabolism during CD8+ T Cell Effector Memory Formation in T/NIX–/– Mice,
Leading to Impairment in ATP Synthesis

(A) Gene expression of Fasn in Ova-EM 30 days after immunization with 104 VSV-Ova.

(B and C) Gene expression of T cell metabolic genes (B) and Bckdk (C) in Ova-EM 30 days after VSV-Ova immunization in WT and T/NIX–/– mice.

(D) Gene expression of Fasn (left panel) and Bckdk (right panel) in Ova-EM formed in vitro (vehicle or CAY10585 treatment on day 4).

(E) Left: representativeOCR inOva-EM in vitro (vehicle or CAY10585 treatedOT-IWT andOT-I T/NIX–/– cells). Right: fold change in long-chain fatty acid oxidation-

linked OCR from left panel.

(F) Fold change in short/branched-chain fatty acid oxidation linked OCR in Ova-EM formed in vitro (vehicle or CAY10585 treated OT-I WT and OT-I T/NIX–/– cells).

(G) Effect of loss of ACADSB on effector memory formation in OT-I WT and OT-I T/NIX–/– cells transduced with LentiCRISPRv2 expressing sgRNA-control or

sgRNA-ACADSB.

(H) Intracellular ATP level in Ova-EM 30 days p.i. in WT and T/NIX–/– mice.

(I) Intracellular ATP in Ova-EM formed in vitro (vehicle or CAY10585 treated WT or T/NIX–/– cells).

(J) Intracellular ATP in Ova-EM formed in vitro (sgRNA-control or sgRNA-HIF1⍺ transduced OT-I WT or OT-I T/NIX–/– cells).

Ova-EM from all mice within the same experimental group in (A)–(F) and (H)–(J) were pooled for analysis. Each point represents an individual independent

experiment. Data are representative of two or more independent experiments (n = 4–9). Data were analyzed using two-tailed Student’s t test (mean ± SEM).

*p < 0.05, **p < 0.01, and ***p < 0.001. ns, non-significant. See also Figures S6 and S7.
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reduced BCKDK (Figure 6C) and increased ACADSB (Figure 6B),

OCR in T/NIX–/– Ova-EM increased upon addition of BCAAs,

which was reversed after treatment with CAY10585 (Figure 6F).

Additionally, we found that short/branched-chain fatty acid

oxidation played a critical role in partially rescuing the formation

of effector memory in T/NIX–/– CD8+ T cells because knocking

out ACADSB (Figures S7A and S7B) reduced effector memory

formation even further (Figure 6G). Interestingly, short/

branched-chain fatty acid oxidation was found to be critical for

effectormemory formation inWTCD8+ T cells aswell (Figure 6G),

suggesting that short/branched-chain fatty acid oxidation might

be a critical metabolic pathway in addition to long-chain fatty

acid oxidation during CD8+ T cell effector memory formation.

These data indicate that elevated HIF1⍺ ‘‘sHIFted’’ the meta-

bolism from long-chain fatty acid oxidation to short/branched-

chain fatty acid oxidation during CD8+ T cell effector memory

formation in T/NIX–/– mice. Additionally, treatment of ACADSB–/–

CD8+ T cells with rapamycin modestly improved effector

memory formation only in WT, but not T/NIX–/– CD8+ T cells,

and was unable to achieve a complete restoration (Figure S7C).

Because the length of metabolized fatty acids dictates the

amount of ATP generated (Carracedo et al., 2013), increased

dependence on short/branched fatty acid metabolism in

T/NIX–/– mice could potentially compromise ATP generation dur-

ing CD8+ T cell effector memory formation. We observed a sig-

nificant reduction in ATP synthesis in T/NIX–/– Ova-EM

compared with WT Ova-EM (Figure 6H) that was restored upon

removing mitochondrial superoxide during contraction phase

in T/NIX–/– mice (Figure S7D). Furthermore, ATP synthesis was

restored in T/NIX–/– Ova-specific CD8+ T cells during effector

memory formation in the presence of CAY10585 (Figure 6I).

We also used LentiCRISPRv2-mediated CRISPR-Cas9 genome

editing (sgRNA-HIF1⍺) to knockout HIF1⍺ (Figures S7E and S7F)

in CD8+ T cells during effector memory formation. Because de-

leting HIF1⍺ early during the activation of CD8+ T cells prevented

their survival (Figure S7G), we performed LentiCRISPRv2-medi-

ated HIF1⍺ deletion on day 3 post-activation in CD8+ T cells and

achieved a selective transduction in post-activated CD8+ T cells

(91.65% ± 2.17% for sgRNA-HIF1⍺ and 72.45% ± 1.318% for

sgRNA-HIF1⍺2nd) (Figures S7H and S7I). Upon ablation of

HIF1⍺ from post-activated T/NIX–/– Ova-CD8+, ATP synthesis

was restored during effector memory formation (Figure 6J).

These data suggest that elevated HIF1⍺ during effector memory

formation in T/NIX–/– antigen-specific CD8+ T cells switched

metabolism from long-chain fatty acid oxidation to short/

branched-chain fatty acid oxidation, resulting in decreased

ATP synthesis.

Inhibiting HIF1⍺ Accumulation Restores Effector
Memory Formation in Antigen-Specific T/NIX–/– CD8+

T Cells
Finally, we explored if restoring mitochondrial fatty acid meta-

bolism and ATP synthesis by inhibiting HIF1⍺ would also restore

effector memory formation in T/NIX–/– CD8+ T cells. We found

that impaired effector memory formation in these cells was

rescued upon treatment with CAY10585 (Figures 7A and 7B)

and CRISPR-Cas9-mediated deletion of HIF1⍺ (Figures 7C and

S7J).

We next investigated whether the impairment in effector mem-

ory formation in T/NIX–/–CD8+ T cellswas a result of defective ATP

synthesis. We induced CD8+ T cell effector memory formation

in vitro in the presence of both CAY10585 and oligomycin, an in-

hibitor ofmitochondrial ATP synthesis. Treatment with oligomycin

abolished the restoration of effector memory formation in

T/NIX–/–CD8+ T cells that was otherwise achieved by CAY10585

treatment (Figure7D), suggesting that thedefectiveeffectormem-

ory formation due to HIF1⍺ accumulation in T/NIX–/–CD8+ T cells

was ultimately caused by insufficient ATP generation. In addition,

treatment with oligomycin impaired effector memory formation in

WTCD8+ T cells to a level comparable with that in vehicle-treated

T/NIX–/–CD8+ T cells (Figure 7D), further supporting that inade-

quate mitochondrial ATP synthesis was the cause of impaired

effector memory formation in T/NIX–/–CD8+ T cells. These data

suggest that HIF1⍺-mediated suppression of ATP generation

was responsible for the impaired effectormemory formation in an-

tigen-specific T/NIX–/– CD8+ T cells.

We further observed that in VSV-Ova-infected mice that were

pre-injected with WT or T/NIX–/– Ova-EM, T/NIX–/– Ova-EM-

recipient mice had significantly reduced concentration of IFN-g

after infection (Figure 7E). In contrast, CAY10585-treated T/

NIX–/– Ova-EM-recipient mice had restored IFN-g production

(Figure 7E). IFN-g plays a pivotal role in the protective immunity

against intracellular viral infections (Lauvau and Soudja, 2015).

Consistently, mice that received vehicle-treated T/NIX–/– Ova-

EM had higher viral load, and this defect was rescued in mice

that received CAY10585-treated T/NIX–/– Ova-EM (Figure 7F).

These data highlight a pivotal role of HIF1⍺ in impairing effector

memory formation in T/NIX–/– antigen-specific CD8+ T cells,

leading to a compromised immunity against cytopathic viral

infection.

DISCUSSION

We show that deficiency in NIX-dependent mitophagy leads to

increased apoptosis in CD8+ MPECs and defective differentia-

tion of effector memory CD8+ T cells. Moreover, impaired

mitophagy resulted in the accumulation of mitochondrial super-

oxide and HIF1a in virus-specific CD8+ T cells during contraction

phase. This promoted short/branched-chain fatty acid oxidation

at the expense of long-chain fatty acid oxidation, thereby

decreasing ATP synthesis, negatively affecting CD8+ T cell

effector memory formation and compromising recall response

against cytopathic viral infection.

Our study also demonstrates that TCR signaling during pri-

mary response downregulates NIX expression in virus-specific

activated CD8+ T cells. Downregulation of NIX could allow accu-

mulation of depolarized mitochondria, which is required to

mediate optimal T cell activation (Baixauli et al., 2011) via mito-

chondrial superoxide (Desdin-Mico et al., 2018). However,

upon entering contraction phase, these antigen-specific CD8+

T cells upregulate their NIX expression to clear off superoxide-

generating depolarized mitochondria to form optimal effector

memory against the virus. We further found that IL-15 signaling

upregulated Nix expression in vitro. However, whether IL-15

signaling is required to upregulate NIX expression in vivo remains

to be determined.
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Loss of NIX led to mitochondrial accumulation in effector

memory, but not naive or central memory, CD8+ T cells, suggest-

ing that NIX-mediated mitophagy plays a selective role in CD8+

T cell effector memory formation. It is intriguing how NIX plays

a tissue-specific role during T cell effector memory formation

but not central memory formation. It could be related to chro-

matin remodeling unique to effector memory development. In

fact, chromatin remodeling unique to the development of tis-

sue-resident memory T cells has been reported to predispose

RUNX3 to selectively favor differentiation of tissue-resident

memory T cells over central or effector memory T cells (Milner

et al., 2017). These unique chromatin landscapes favoring the

formation of different subsets of memory T cells could in turn

be regulated by unique DNA methylation patterns determining

the fate of memory in virus-specific T cells (Akondy et al.,

2017; Youngblood et al., 2017). Alternatively, other molecules

might play a more pivotal role in mediating mitophagy in central

memory population. FUNDC1 and BCL2L13, which are also

outer mitochondrial membrane proteins, have also been re-

ported to mediate mitophagy in mammalian cells (Liu et al.,

2012; Murakawa et al., 2015; Rodger et al., 2018). Hence, it is

possible that these molecules might regulate mitophagy during

T cell central memory formation. These possibilities, however,

need to be experimentally verified through future studies.

Impaired mitophagy during effector memory formation in

T/NIX–/– CD8+ T cells further led to excessive mitochondrial

superoxide during contraction phase. Although mitochondrial

superoxide is necessary for CD8+ T cell primary response (Ka-

minski et al., 2010; Murphy and Siegel, 2013), our data suggest

that its continued presence during contraction phase blocks

effector memory formation. Mitochondrial superoxide caused

HIF1a accumulation during the contraction phase of effector

Figure 7. Inhibiting HIF1⍺ Accumulation Restores Effector Memory Formation in Antigen-Specific T/NIX–/– CD8+ T cells

(A) Representative plot showing percentage of Ova-EM formed in vitro from WT and T/NIX–/– splenocytes (treated with vehicle or CAY10585 on day 4).

(B) Mean frequency of Ova-EM from (A).

(C) Effect of loss of HIF1⍺ on effector memory formation. OT-I WT or OT-I T/NIX–/– cells were transduced with LentiCRISPRv2 expressing sgRNA-HIF1⍺ or

sgRNA-control. Ova-EM from all mice within the same experimental group were combined. Each point represents an individual independent experiment.

(D) Mean frequency of Ova-EM formed in vitro from WT and T/NIX–/– splenocytes (treated with CAY10585 or CAY10585 and oligomycin).

(E and F) IFN-Y concentration in the spleen (E) and (F) viral titer in the brains of mice 48 h after infection with 106 PFU of VSV-Ova. Naive C57/BL6J mice were

injected with vehicle or CAY10585-treated WT or T/NIX–/– cells, generated as in (A), followed by infection with VSV-Ova.

Data in (A)–(D) are representative of two or more independent experiments (n = 5–8), and data in (E) and (F) are representative of four or five biological replicates

per group. Data were analyzed by two-tailed Student’s t test (mean ± SEM). *p < 0.05, **p < 0.01, and ***p < 0.001. ns, non-significant. See also Figure S7.
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memory formation in T/NIX–/– mice. Scavenging mitochondrial

superoxide significantly reduced HIF1a protein accumulation.

We also found that blocking HIF1a expression early during

T cell activation reduced frequency of activated CD8+ T cells,

suggesting that HIF1a is necessary for activation of these cells,

likely because of its role in upregulating glycolysis (Lee and

Simon, 2012; Pollizzi and Powell, 2014; Menk et al., 2018; van

der Windt et al., 2012). However, continued presence of HIF1a

during contraction phase was detrimental to CD8+ T cell effector

memory formation in T/NIX–/– mice.

We also found that accumulation of HIF1a during effector-to-

memory transition in T/NIX–/– CD8+ T cells ‘‘sHIFted’’ their meta-

bolism to short/branched-chain fatty acid oxidation, which was

unexpected because this pathway is less efficient in generating

ATP compared with alternative pathways, especially very long

chain fatty acid oxidation, which did not alter in the absence of

NIX. One explanation for choosing short/branched-chain fatty

acids over very long chain fatty acids by T/NIX–/– CD8+ T cells

might be that the former can readily diffuse into themitochondrial

matrix (den Besten et al., 2013) as opposed to very long chain

fatty acids, which require ATP-dependent active transporters

(Jia et al., 2007; Watkins et al., 1998). Hence, catabolizing

short/branched-chain fatty acids was probably bioenergetically

more favorable during effector memory formation in T/NIX–/–

CD8+ T cells, which were already deficient in ATP during

contraction phase. Short-chain fatty acids did not play a signifi-

cant role during effector memory formation either, possibly

because of mammalian cells’ inability to synthesize short-chain

fatty acids de novo, which they obtain from gut bacteria (den

Besten et al., 2013); thus, absence of NIX in CD8+ T cells would

not likely alter the supply of short-chain fatty acids. Medium-

chain fatty acids would be expected to be less efficient than

short/branched-chain fatty acids in diffusing into mitochondria,

because of sterically bulkier carbon chain. All these reasons

probably left short/branched-chain fatty acid oxidation as the

best alternative during effector memory formation in T/NIX–/–

CD8+ T cells. It is also interesting that short/branched-chain fatty

acid oxidation played a critical role at an early stage during CD8+

T cell effector memory formation, and deletion of NIX likely pro-

moted this pathway to compensate for the impaired long-chain

fatty acid metabolism during effector memory formation.

Because enhancing long-chain fatty acid oxidation has been

shown to improve T cell memory formation (van der Windt

et al., 2012), it is possible that overexpression of FASN in

ACADSB–/– CD8+ T cells could improve effector memory forma-

tion as well. However, this needs to be further tested.

NK cells are dependent on BNIP3 but only partially reliant on

NIX for their survival through the contraction phase (O’Sullivan

et al., 2015). Interestingly, we found that NIX is required for

optimal generation of CD8+ effector memory, whereas BNIP3

is dispensable. This suggests that NIX and BNIP3, two homolo-

gous proteins, may play tissue-specific roles in different cell

types. We further found that PINK1 and PARK2, another set of

mitophagy molecules, were not significantly upregulated during

memory formation. Consistently, reduced frequency of CD8+

T cells was not detected on day 13 p.i. in PINK1–/– mice either

(Matheoud et al., 2019). In addition, deletion of Pink1 did not alter

mitochondrial stress and long-chain fatty acid metabolism in

T cells (Ellis et al., 2013). Together, these data suggest a non-crit-

ical role of PINK1 during CD8+ T cell memory formation. PARK2,

which is activated by PINK1 (Gladkova et al., 2018), was tempo-

rally downregulated during memory formation, consistent with

no reduction in T cell frequency in absence of PARK2 during viral

infection, as reported elsewhere (Li et al., 2019). Although the

exact mechanism of Park2 downregulation during T cell memory

formation needs to be further elucidated, one possible mecha-

nism could be related to midnolin (Midn) expression, which me-

diates gene expression of Park2 (Obara and Ishii, 2018) and has

also been reported to be expressed in T cells (Hashimoto et al.,

2013). However, whether Park2 downregulation during T cell

memory formation is regulated by midnolin is a subject for future

studies. Taken together, these data suggest that despite their

roles in regulating mitophagy, PINK1 and PARK2 likely do not

play a critical role as NIX does in T cell memory formation.

To date, the development of successful vaccines against

several viral pathogens has been challenged by the inability of

vaccines to elicit a robust CD8+ T cell effector memory formation

(van Duikeren et al., 2012; Sallusto et al., 2010). Efficacy of

experimental cancer vaccines has also been found to depend

on the strength of immunological memory formation in tumor-

specific T cells (Beckhove et al., 2004; Hu and Wang, 2017). In

addition, T cell effector memory formation against auto-antigens

has been shown to exacerbate the symptoms associated with

auto-immune disorders, and inhibition of auto-antigen-specific

effector memory T cells could alleviate those symptoms (Bhar-

gava and Calabresi, 2015; Beeton et al., 2005; Beeton et al.,

2006; Chee et al., 2014; Matheu et al., 2008). Our findings have

implications for advancing the fields of vaccine, cancer immuno-

therapy, and auto-immunity research by targeting NIX, HIF1a,

and metabolism of long-chain as well as short/branched-chain

fatty acids.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC anti-mouse CD3 antibody Biolegend RRID: AB_2561456; Cat#100236

APC anti-mouse CD8a antibody Biolegend RRID: AB_312751; Cat#100712

Pacific Blue anti-mouse CD8a antibody Biolegend RRID: AB_493425; Cat#100725

APC/Fire 750 anti-mouse CD8a antibody Biolegend RRID: AB_2572113; Cat#100766

FITC anti-mouse/human CD44 antibody Biolegend RRID: AB_312957; Cat#103006

APC anti-mouse/human CD44 antibody Biolegend RRID: AB_312963; Cat#103012

APC/Fire 750 anti-mouse/human CD44 antibody Biolegend RRID: AB_2616727; Cat#103062

PE/Cy7 anti-mouse CD62L antibody Biolegend RRID: AB_313103; Cat#104418

APC/Fire 750 anti-mouse CD62L antibody Biolegend RRID: AB_2629772; Cat#104450

PerCP/Cy5.5 anti-mouse CD43 Activation-Associated

Glycoform antibody

Biolegend RRID: AB_2286556; Cat#121224

PE anti-mouse CD127 (IL-7Ra) Antibody Biolegend RRID: AB_1937251; Cat#135010

Anti-mouse CD127 PE-Cy5 50 ug antibody Thermo Fisher Scientific RRID: AB_468792; Cat#15-1271-81

FITC Mouse Anti-Mouse CD45.2 BD PharMingen RRID: AB_395041; Cat#553772

PE/Cy7 anti-mouse CD366 (Tim-3) Antibody Biolegend RRID: AB_2632733; Cat#134009

Mouse TCF7/TCF1 Alexa Fluor� 647-conjugated Antibody R&D Systems Cat#FAB8224R

PE/Cy7 anti-mouse/human KLRG1 (MAFA) antibody Biolegend RRID: AB_2561736; Cat#138416

Brilliant Violet 605 anti-mouse CD185 (CXCR5) Antibody Biolegend RRID: AB_2562208; Cat#145513

PE/APC anti-mouse H-2K(b) SIINFEKL antibody (Ova_tetramer) Baylor College of Medicine MHC

Tetramer Production Core

Cat#16114

FITC Annexin V BD PharMingen Cat#51-65874X

CD3e antibody BD Biosciences RRID: AB_394591; Cat#553058

Ultra-LEAF Purified anti-mouse CD3 antibody Biolegend RRID: AB_2616673; Cat#100359

CD28 antibody BD Biosciences RRID: AB_394763; Cat#553294

Anti-mouse HIF-1 alpha Antibody Novus Biologicals RRID: AB_10001045; Cat#NB100-449

Anti-mouse TFAM antibody Santa Cruz Biotechnology RRID: AB_10610743; Cat#sc-166965

Anti-mouse ACADSB antibody Novus Biologicals Cat#NBP1-97833

Chemicals, Peptides, and Recombinant Proteins

CAY10585 Cayman Chemical Cat#934593-90-5

Ovalbumin Sigma-Aldrich Cat#A7641

N-Acetyl-L-Cysteine (NAC) Sigma-Aldrich Cat#A7250

Hexadimethrine Bromide (polybrene) Sigma-Aldrich Cat#H9268

Etomoxir Sigma-Aldrich Cat#E1905

FCCP Sigma-Aldrich Cat#C2920

Mouse IL-15 Biolegend Cat#566304

Critical Commercial Assays

ATP Determination kit Molecular Probes Cat#A22066

Mouse IL-2 ELISA MAX Standard Biolegend Cat#431002

Mouse IFNg ELISA MAX Standard Biolegend Cat#430802

Mouse TNF ELISA Set BD Biosciences Cat#555268

MitoSOX Red mitochondrial superoxide indicator Invitrogen Cat#M36008

Mitotracker Green FM Invitrogen Cat#M7514

JC-1 dye Invitrogen Cat#T3168
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Seahorse Xfe96 Flux assay kit Agilent Technologies Cat#101085-004

Mouse DNA Damage Analysis Kit Detroit R&D Cat#DD2M

Experimental Models: Cell Lines

NIH 3T3 CLS CVCL_0594

293T ATCC CVCL_0063

BHK-21 CLS CVCL_1915

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory IMSR_JAX:000664

Mouse: NIXf/f Diwan et al., 2007 N/A

Mouse: B6.Cg-Tg(Lck-cre)548Jxm/J The Jackson Laboratory IMSR_JAX:003802

Mouse: C57BL/6-Tg(TcraTcrb)1100Mjb/J The Jackson Laboratory IMSR_JAX:003831

Mouse: B6.SJL-Ptprca Pep3b/BoyJ, Pep Boy, B6 Cd45.1 The Jackson Laboratory IMSR_JAX:002014

Oligonucleotides

Primers for 18S, see Table S1 This paper N/A

Primers for Nix, see Table S1 This paper N/A

Primers for Bnip3, see Table S1 This paper N/A

Primers for Il-15ra, see Table S1 This paper N/A

Primers for Foxo1, see Table S1 This paper N/A

Primers for Tcf7, see Table S1 This paper N/A

Primers for Blimp-1, see Table S1 This paper N/A

Primers for Tfam, see Table S1 This paper N/A

Primers for Fasn, see Table S1 This paper N/A

Primers for Bckdk, see Table S1 This paper N/A

Primers for Acadl, see Table S1 This paper N/A

Primers for Acadsb, see Table S1 This paper N/A

Primers for Acadm, see Table S1 This paper N/A

Primers for Acads, see Table S1 This paper N/A

Primers for Acad11, see Table S1 This paper N/A

Primers for Atp5b, see Table S1 This paper N/A

Primers for Atp5f1, see Table S1 This paper N/A

Primers for Ehhadh, see Table S1 This paper N/A

Primers for Gls, see Table S1 This paper N/A

Primers for Glut1, see Table S1 This paper N/A

Primers for Prkaa1, see Table S1 This paper N/A

Primers for Pdha1, see Table S1 This paper N/A

Primers for Pink1, see Table S1 This paper N/A

Primers for Parkin, see Table S1 Bian et al., 2012 N/A

Primers for Caspase-3, see Table S1 This paper N/A

Primers for Hif1a, see Table S1 This paper N/A

Primers for Hif1a2nd, see Table S1 This paper N/A

Primers for Acadsb, see Table S1 This paper N/A

Software and Algorithms

FlowJo FlowJo, LLC SCR_008520

Prism GraphPad Software SCR_002798

SoftWorx Applied Precision N/A

Seahorse Wave Agilent Technologies SCR_014526

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Min Chen

(minc@bcm.edu). All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials

Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All mice used in the study were bred at Baylor College of Medicine in agreement with the guidelines of the Institutional Animal Care

and Use Committee. For the generation of T/NIX–/– mice, B6.Cg-Tg(Lck-cre)548Jxm/J mice (LCKCre mice; The Jackson Laboratory)

were cross-bred with NIXf/f mice (Diwan et al., 2007). In T/NIX–/– mice, NIX was flanked with LoxP sequences and expression of Cre

was regulated under Lymphocyte protein tyrosine kinase (Lck) promoter. Other strains of mice used in the study were: C57BL/6J (WT

or CD45.2+ mice), B6.SJL-Ptprca Pep3b/BoyJ (CD45.1+ mice) and C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I mice) mice, all of which

were purchased from The Jackson Laboratory. OT-I T/NIX–/– mice were generated by cross-breeding OT-I and T/NIX–/– mice, and

OT-I LckCre mice were generated by cross-breeding OT-I and LckCre mice. Experiments were conducted with age-matched (mice

aged 6 to 16 week old were used) and gender-matched (both male and female mice were used) mice. In all experiments, WT or

OT-I or OT-I LckCre mice were used as controls.

Cell lines and primary cell cultures
Splenocytes harvested from the mice were cultured in T cell media [RPMI 1640 (Corning)+10% FBS (GIBCO)+1X antibiotic-antimy-

cotic (GIBCO)]. BHK-21, 293T and 3T3 cells were maintained in DMEM/High-glucose (HyClone)+10% FBS (GIBCO)+1X antibiotic-

antimycotic (GIBCO).

METHOD DETAILS

Virus, immunization and infection
Vesicular Stomatitis Virus co-expressing Ovalbumin (VSV-Ova) was propagated in BHK-21 cells at anMOI of 0.01, and concentrated

at 15,000 rpm in an SW28 (Beckman) rotor for 5 hours. Viral titer was determined using plaque assay on BHK-21 cells. Gender- and

age-matched mice were immunized with 104 PFU of VSV-Ova via tail vein injection. For infection experiments, mice were injected

with 106 PFU of VSV-Ova via tail-vein injection. In all injections, VSV-Ova was suspended in sterile 1X DPBS (GIBCO).

Flow cytometry
Ova-specific effector memory CD8+ T cells and Ova-specific activated CD8+ T cells were pre-treated with FcRgII/III (Fc blocker)

and IgG2b anti-mouse CD16/CD32 antibodies, then stained with the following anti-mouse fluorescent-conjugated

antibodies: CD3 (Biolegend#100236), CD8 (Biolegend #100712/#100725), CD44 (Biolegend#103006/#103012/#103062), CD62L

(Biolegend#104418), CD43 (Biolegend #121224), CD127 (Thermo Fisher Scientific#15-1271-81/Biolegend#135010), KLRG1

(Biolegend#138416), CD45.2 (BD PharMingen#553772), CXCR5 (Biolegend#145513), TIM3 (Biolegend#134009), TCF7 (R&D Sys-

tems # FAB8224R) and SIINFEKL peptide-specific Ova_tetramer (Baylor College of Medicine’s MHC tetramer production facility

#16114) and finally analyzed on BD FACSCantoII (BD Biosciences) or BD LSRII (BD Biosciences). For MitoTracker Green staining,

Ova-specific effector memory CD8+ T cells were stained with 100nM MitoTracker Green FM (Invitrogen) and analyzed on BD

FACSCantoII. For MitoSOX Red staining, Ova-specific CD8+ T cells were stained with 5uM MitoSOX Red (Molecular Probes) and

analyzed on BDFACSCantoII. For CytoID staining, Ova-specific effectormemory CD8+ T cells or naive CD8+ T cells were pre-treated

with 10uM chloroquine for 2 hours to inhibit autophagosomal degradation, followed by detection of autophagy flux using Cyto-ID

autophagy detection kit (Enzo) according tomanufacturer’s instructions. For experiments involving CFSE staining, cells were labeled

with 5uM of CFSE prior to stimulation with 1ug/mL anti-mouse CD3 (BD Biosciences#553058) and 1ug/mL anti-mouse CD28

(BD Biosciences#553294) antibodies or stained with 5uM of CFSE prior to the adoptive transfer. Cells not stained with CFSE served

as unstained control; and CFSE stained cells which were either not stimulated with CD3/CD28- amtibodies or not adoptively trans-

ferred into the recipients served as non-activated control. All analyses were done using FlowJo software.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

psPAX Didier Trono Lab Addgene_12260

pMD2.G Didier Trono Lab Addgene_12259

LentiCRISPRv2 plasmid Walter et al., 2017 Addgene_82416
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CD8+ population enrichment and cell sorting
For enrichment with CD8+ population, cells were labeled with CD8a microbeads (Miltenyi) and magnetically sorted using autoMACS

(Miltenyi). CD8+ population was then pre-treated with FcRgII/III (Fc blocker) and IgG2b anti-mouse CD16/CD32 antibodies, and

stained with fluorescent-conjugated antibodies against mouse- CD8 (Biolegend#100712/#100725/#100766), CD44 (Biolegend

#103006/Biolegend #103012/Biolegend #103062), CD62L (Biolegend # 104418/#104450), CD43 (Biolegend#121224),

CD127 (Thermo Fisher#15-1271-81/Biolegend #135010), KLRG1 (Biolegend#138416), CXCR5 (Biolegend#145513), TIM3

(Biolegend#134009), TCF7 (R&D Systems#FAB8224R) and Ova_tetramer (Baylor College of Medicine’s MHC tetramer production

facility#16114 or #19020) for Ova-EM, Ova-CM, naive CD8+ and Ova- CD8+ MPEC. In addition, Ghost Dye Violet 510 (Tonbo #13-

0870) or NucBlue DAPI (Invitrogen #R37606) were also used to selectively sort live cells. In those cases, Ghost Dye Violet 510- or

NucBlue DAPI- populations were further sub-gated into Ova-EM, Ova-CM, naive CD8+ and Ova-CD8+ MPEC. Stained cells were

sorted on BD FACSAriaII (BD Biosciences). Typical purity after cell sorting was > 95%.

Effector memory formation in CD8+ T cells in vitro

Splenocytes were pulsed with Ovalbumin and cultured in T cell media, 55uM of 2-Mercaptoethanol (GIBCO) and 100units/mL IL-2 for

3 days, after which the cells were washed with 1X PBS (containing 2% adult serum) and cultured in T cell media and 20ng/mLmouse

IL-15 (Biosource/Biolegend) for five additional days. For effector memory formation in case of extracellular flux analysis and CRISPR/

Cas9-mediated gene knockout experiments, splenocytes from OT-I (OT-I WT) or OT-I x LCKCre (OT-I WT) or OT-I x NIXf/f (OT-I WT)

and OT-I x LCKCre x NIXf/f (OT-I T/NIX–/–) mice were used.

For experiments where gene expression of NIX was measured, CD8+ T cells from naive OT-I mice were stimulated with either

1ug/mL each of anti-CD3 or anti-CD3/CD28 antibodies for 3 days. CD8+ T cells were then washed and 20ng/mL of fresh IL-15 was

added.

Adoptive transfer
For memory recall experiments (flow cytometry and ELISA for IFN-g and IL-2), equal number of sorted Ova-specific effector memory

CD8+ T cells (CD45.2+), that were formed either in vivo or in vitro, were resuspended in sterile 1X DPBS and injected into naive

CD45.1+ mice via tail vein injection. In case of experiments, where protection against VSV-Ova infection was assessed (viral titer

and ELISA for IFN-g), equal number of cells on day 8 of in vitro formation of effector memory were injected into naive CD45.1+

mice via tail vein injection. Recipient naive CD45.1+ mice were challenged with 104 PFU (memory recall experiments) or 106 PFU

(infection experiments) of VSV-Ova via tail vein injection 24 hours later. 48 hours after VSV-Ova challenge/infection, mice were sacri-

ficed and their peripheral organs or blood were harvested for further analysis. For CFSE proliferation assay, Ova-specific effector

memory CD8+ T cells were labeled with 5uM CFSE before adoptive transfer.

Quantitative PCR and PCR array of metabolic genes
To assess the expression of genes, Ova-specific effector memory CD8+ T cells (Ova-EM) or Ova-specific central memory CD8+

T cells (Ova-CM) or Ova-specific memory precursor effector cells (Ova-CD8+ MPECs) or Ova-specific reactivated Ova-EM were

sorted and total RNA was extracted using Direct-zol RNA microprep kit (Zymo Research). Extracted RNA was then reverse-tran-

scribed into cDNA using SuperScript IV VILO Master Mix with ezDNase Enzyme kit (Invitrogen). Quantitative PCR was performed

using iTaq Universal Probes Supermix (Bio-Rad) with primers targeting mouse 18S (Forward: 50-ATTGACGGAAGGGCACCAC-30;
Reverse: 50-TCTAAGAAGTTGGGGGACGC-30), Nix (Forward: 50- GAGCCGGATACTGTCGTCCT �30; Reverse: 50- CAATATAGATG

CCGAGCCCCA �30), Bnip3 (Forward: 50- AACAGCACTCTGTCTGAGGAA �30; Reverse: 50- TGTCAGACGCCTTCCAATGT �30),
IL-15Ra (Forward: 50- ACATCGGTCCTCTTGGTTGG �30; Reverse: 50- CGTGTGGTTAGGCTCCTGTG �30), Foxo1 (Forward: 50-CAC
ACATCTGCCATGAACCG-30; Reverse: 50-GGTGGAGGACACCCATCCTA-30), Tcf7 (Forward: 50-CGGAAAGAAGAAGAGGCGGT-30;
Reverse: 50-CTGTCATCGGAAGGAACGGG-30), Blimp-1 (Forward: 50- GGACTGGGTGGACATGAGAG �30; Reverse: 50- TTCACGTA

GCGCATCCAGTT �30), Tfam (Forward: 50- TAGGCACCGTATTGCGTGAG �30; Reverse: 50- GACAAGACTGATAGACGAGGGG-30),
Fasn (Forward: 50-TTGACGGCTCACACACCTAC-30; Reverse: 50-TTGTGGTAGAAGGACACGGC-30),Bckdk (Forward: 50-TTCCCCTT
CATTCCCATGCC-30; Reverse: 50-CCGTAGGTAGACATCCGTGC-30), Pink1 (Forward: 50- GTGGGACTCAGATGGCTGTC-30;
Reverse: 50- GCACATTTGCAGCTAAGCGT-30), Parkin (Forward: 50- CCAAACCGGATGAGTGGTGAGTGC-30; Reverse: 50- ACACGG

CAGGGAGTAGCCAAGTTG-30) and Caspase-3 (Forward: 50- AGCTGGACTGTGGCATTGAG-30; Reverse: 50- CCACGACCCGTCC

TTTGAAT-30).
For PCR array of metabolic genes, primers targeting mouse Acadl (Forward: 50- GTGTATCGGTGCCATAGCCA-30; Reverse:

50-AGGCAGAAATCGCCAACTCA-30), Acadsb (Forward: 50–3’; Reverse: 50–3’), Acadm (Forward: 50-TTCGAAGACGTCAGA

GTGCC-30; Reverse: 50-GCTCCACTAGCAGCTTTCCA-30), Acads (Forward: 50-TTGCCGAGAAGGAGTTGGTC-30; Reverse: 50-AGG

TAATCCAAGCCTGCACC-30), Acad11 (Forward: 50-CGCCTTGGACCTGGAAGAAT-30; Reverse: 50-TTCAAGGTCAGCAAGCGG

AT-30), Atp5b (Forward: 50-GTTGGTCCTGAGACCTTGGG-30; Reverse: 50-TCCGATTTTCCCACCCTTGG-30), Atp5f1 (Forward:

50-TCCAGGGGTATTACAGGCAAC-30; Reverse: 50-CAGCCCAAGACGCACTTTTC-30), Ehhadh (Forward: 50-CGGTCAATGCCAT

CAGTCCA-30; Reverse: 50-AGCACCTGCACAGAAGTTGT-30), Gls (Forward: 50-CCGCGGGCGACAATAAAATAA-30; Reverse:
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50-GCATGACACCATCTGACGTT-30), Glut1 (Forward: 50-ATAGTTACAGCGCGTCCGTT-30; Reverse: 50-AGAGACCAAAGCGTG

GTGAG-30), Prkaa1 (Forward: 50-GTGAAGATCGGCCACTACATCC-30; Reverse: 50-GGCTTTCCTTTTCGTCCAACC-30), Pdha1

(Forward: 50-GCCACCCTGAACCTGAGAAA-30; Reverse: 50-GCGATACATCATTACATCCACG-30) were used

Quality control on all the primerswas performed in-house to ensure band specificity, accuracy and reliability. Data were normalized

to that for 18S and expressed as relative abundance via 2-DDCTmethod, where CT is the threshold cycle. Unless specified in the figure

legends, final results were represented relative to Day 0 time point (in case of NIX expression) or WT or WT (+DMSO) (in case of

expression all other genes), as indicated in respective figures.

Measurement of apoptosis in Ova-CD8+ MPECs and Ova-EM
Splenocytes were harvested from WT and T/NIX–/– mice 20 days after immunization with 104 PFU of VSV-Ova, pre-treated with

FcRgII/III (Fc blocker) and IgG2b anti-mouse CD16/CD32 antibodies, and stained with the following anti-mouse fluorescent-conju-

gated antibodies: CD8 (Biolegend#100725), CD44 (Biolegend#103062), CD62L (Biolegend#104418), CD43 (Biolegend#121224),

CD127 (Biolegend#135010) and SIINFEKL peptide-specific Ova_tetramer (Baylor College of Medicine’s MHC tetramer production

facility#16114). Next, surface stained splenocytes were washed with 1X PBS, incubated in Annexin V (BD PharMingen #51-

65874X) at room temperature (away from light) for 20 mins and analyzed on BD FACSCantoII within 1 hour. Percentage of

Annexin V+ population in Ova-CD8+ MPECs and Ova-EM represented cells undergoing apoptosis.

Immunocytochemistry
Ova-specific effector memory CD8+ T cells, Ova-specific central memory CD8+ T cells or naive CD8+ T cells formed in vivo in WT and

T/NIX–/– mice were sorted 30 days after VSV-Ova immunization, treated with 10uM chloroquine for 2 hours to inhibit autophagosomal

degradation, and applied to slides by cytospin. The cells were then fixed, permeabilized and incubated with mouse anti-COX IV

(Invitrogen#459600) and rabbit anti-LC3 (Abgent#AP1801a) to stain mitochondria and autophagosomes respectively. This was fol-

lowed by staining with Alexa Fluor conjugated secondary antibodies (Molecular Probes) and examination of slides under 100X objec-

tive (U PlanS-Apo/1.4, oil immersion) of deconvolutionmicroscope (GEHealthcare Deltavision LIVEHigh Resolution) using SoftWoRx

acquisition software. The Pearson coefficiency of correlation for LC3 and COX IV co-localization was determined using SoftWoRx

software (Applied Precision).

Measurement of mitochondrial membrane depolarization
Splenocytes were harvested from WT and T/NIX–/– mice 20 days after immunization with 104 PFU of VSV-Ova, pre-treated with

FcRgII/III (Fc blocker) and IgG2b anti-mouse CD16/CD32 antibodies, and stained with the following anti-mouse fluorescent-conju-

gated antibodies: CD8 (Biolegend#100725) and SIINFEKL peptide-specific Ova_tetramer (Baylor College of Medicine’s MHC

tetramer production facility#16114). Next, surface stained splenocytes were washed and incubated in 2.5ug/mL of JC-1 in 37C

for 30 mins. Splenocytes were then washed and analyzed on BD LSRII (BD Biosciences). Mitochondrial membrane depolarization

was indicated by geometric MFI of green fluorescence corresponding to JC-1 monomers in Ova-specific CD8+ T cells.

Mitochondrial DNA damage assay
Mitochondrial DNA damage was assessed usingmouse DNADamage Analysis Kit (Detroit R&D#DD2M) according tomanufacturer’s

instructions. Briefly, 100,000 sortedOva-specific CD8+ T cells fromday 20 p.i. micewere lysed in lysis buffer (5M sodiumchloride, 1M

tris, 0.5M EDTA, 10% SDS and 0.3mg/mL proteinase K) at 56C overnight, followed by heat inactivation of proteinase K at 95C for

10 mins. Cell lysates were then diluted 10X in nuclease-free water before using further. Samples (�5ng/uL DNA) were subjected

to PCR reaction, after which 10X diluted PCR reaction product was subjected to real-time PCR. Final concentrations of damaged

mitochondrial DNA were calculated from the 8.2kb standard curve plotted using 8.2kb real-time standard supplied with the kit.

Drug treatments
In experiments where CD8+ effector memory was formed in vivo, NAC (1mg/mouse) was dissolved in sterile 1X DPBS and injected

intraperitoneally (i.p.) once on days 13, 20 and 27 after immunization with VSV-Ova. In experiments, where CD8+ effector memory

was formed in vitro, 100uM of NAC (dissolved in sterile 1X DPBS) (Sigma Aldrich#A7250) or 3uM of CAY10585 (dissolved in

DMSO) (Cayman Chemical#934593-90-5) or 10nM Oligomycin (dissolved in DMSO) or 100nM rapamycin (dissolved in DMSO)

was added once on day 4 of culture.

Intracellular staining
Surface stained Ova-specific effector memory CD8+ T cells were fixed and permeabilized with Cytofix/Cytoperm kit (BD Biosci-

ences), followed by staining with rabbit anti-mouse HIF1a antibody (Novus Biologicals#nb100-449) or mouse anti-mouse TFAM

(Santa Cruz Biotechnology#sc-166965) at 4�C for 1 hour. This was followed by staining with Alexa Fluor conjugated secondary an-

tibodies (Molecular Probes) at 4�C for 1 hour. In case of intracellular staining of IL-2 and IFN-g, splenocytes harvested from CD45.1+

mice were pre-treated with FcRgII/III (Fc blocker) and IgG2b anti-mouse CD16/CD32 antibodies, then stained with anti-mouse CD8

(Biolegend#100725), anti-mouse CD45.2 (BD PharMingen#561096) and anti-mouse Ova_tetramer before intracellular staining. Sur-

face stained splenocytes were then fixed and permeabilized with Cytofix/Cytoperm kit (BD Biosciences#554714), followed by
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staining with anti-mouse IL-2 (BD PharMingen#554428) or anti-mouse IFN-g (Biolegend# 505806). In case of intranuclear staining for

TCF7, surface stained cells were fixed and permeabilized using Foxp3/Transcription factor staining buffer set (eBioscience#00-

5523-00), followed by staining with anti-mouse TCF7/TCF1 antibody (R&D systems#FAB8224R). Stained cells were analyzed on

BD FACSCantoII or BD LSRII.

CRISPR/Cas9-mediated deletion of Hif1a and Acadsb genes
For generation of single guide RNA specific to Hif1a and Acadsb genes (sgRNA-HIF1a, sgRNA-HIF1a2nd and sgRNA-ACADSB), the

20-nucleotide target sequence was selected to precede 50-NGG protospacer-adjacent motif (PAM) sequence using CRISPR/Cas9

design tool (Stemmer et al., 2015). Oligonucleotides were annealed and cloned into BsmBI-BsmBI sites in LentiCRISPRv2 plasmid

(Addgene plasmid #82416). Unmodified LentiCRISPRv2 plasmid served as sgRNA-control in the study. The sgRNA sequences used

in this study were: sgRNA-HIF1a (forward: 50-CACCGAGCCCTAGATGGCTTTGTGA-30 and reverse:50-AAACTCACAAAGCCATC

TAGGGCTC-30), sgRNA-HIF1a2nd (forward: 50- CACCGAAGCATCCTGTACTGTCCTG-30 and reverse:50- AAACCAGGACAGTACAG

GATGCTTC-30) and sgRNA-ACADSB (forward: 50- CACCGATGGATGAGAACTCAAAAA-30 and reverse: 50- AAACTTTTTGAGTTCT

CATCCATC-30).
To generate lentiviral particles, 8x106 293T cells were plated on a 10 cm dish, followed by co-transfection with 3ug LentiCRISPR

plasmid (sgRNA- HIF1a, sgRNA-HIF1a2nd, sgRNA-ACADSB or sgRNA-control), 1.33ug psPAX (Addgene plasmid #12260) and 0.6ug

pMD2.G (Addgene plasmid #12259) by Lipofectamine 2000 transfection method (Invitrogen). The viral supernatant was collected af-

ter 48 and 72 hours, passed through 0.2um PES filter, pooled and frozen in �80C until further use.

In order to knock outHIF1a andAcadsb gene fromCD8+ T cells, splenocytes fromOT-I (OT-IWT) or OT-I x LCKCre (OT-IWT) or OT-

I x NIXf/f (OT-I WT) and OT-I x LCKCre x NIXf/f (OT-I T/NIX–/–) mice were cultured in 24-well or 48-well plate pre-coated with 1ug/mL of

anti-mouse CD3 antibody (Biolegend #100359) and anti-mouse CD28 antibody (BD Biosciences #553294) for 3 days. On day 3, cells

were washed and 500,000 cells/well were plated in a flat-bottom 48-well plate in presence of 1mL of viral supernatant: sgRNA-HIF1a,

sgRNA-HIF1a2nd, sgRNA-ACADSB or sgRNA-control (unmodified LentiCRISPRv2 plasmid) and 10ug/ml polybrene (Sigma-Aldrich).

The plated cells were then centrifuged at 1000 g for 90min in 32C, followed by incubation in 37C incubator for additional 2 hours. The

viral supernatant was finally replaced by T cell media containing 20ng/mL IL-15 and cultured for 5 additional days for CD8+ T cell

effector memory formation.

Western blotting
For western blot studies to validate deletion of Hif1a via CRISPR-Cas9, cells were treated with 100uM of cobalt chloride for 6 hours

prior to preparation of cell lysate. Cell lysate was prepared by incubating the cells in cell lysis buffer (50 mM HEPES, pH 7.4, 150 mM

NaCl, 1 mM EDTA, 1% Triton X-100, and 1x protease inhibitor cocktail from Roche) for 60 mins on ice. Cell lysates were then heat

denatured at 95�C for 6 minutes, quantified for total protein content by Bio-Rad Protein assay (Hercules, CA), electrophoretically

resolved on SDS-PAGE, transferred onto PVDF membrane, and probed with primary antibodies (Novus Biologicals#NB100-449

for HIF1a, Novus Biologicals#NBP1-97833 for ACADSB and Santa Cruz Biotechnology#sc-47778 for b-actin) and horseradish

peroxidase-conjugated secondary antibodies (Southern Biotechnology/Amersham). The blots were finally developed using Super-

signal West Dura Extended Duration substrate (Thermo Scientific).

Viral titer assays
1x106 cells at the end of day 8 of in vitroCD8+ T cell effector memory formation were resuspended in sterile 1XDPBS and injected into

naive C57BL/6 mice via tail vein injection. 24 hours later, recipient mice were infected with 106 PFU of VSV-Ova via tail vein injection.

48 hours after infection, mice were sacrificed, and their brains were harvested. Brains were mashed in 1.5mL of T cell media, centri-

fuged at 12000 rpm for 3min in 4C and viral supernatant was collected and stored in �80C until further use. In case of viral titer

determination in peripheral blood, bloodwas collected from heart ofmice (immediately after euthanasia), allowed to clot at room tem-

perature for 30 mins and centrifuged at 1000 g for 10 mins at 4�C. Supernatant (serum) was collected and stored in �80C until

further use.

For plaque assay, 1.75 3 106 BHK-21 cells/well (plated a night before in 24-well plate), were incubated with diluted brain super-

natant or 100uL serum for 4 hours in 37C (with intermittent shaking in between). Following this incubation, supernatant was aspirated

and 50uL of plaque assaymedia (DMEM+ 2%FBS+1X antibiotic/antimycotic) was added, followed by addition of 2mL overlaymedia

(0.4%agarose+DMEM+2%FBS+1X antibiotic/antimycotic). The plate was then incubated in room temperature for 10mins to solidify

the overlay media. Following this incubation, cells were incubated in 37C for 24 hours. At the end of 24-hour incubation, the overlay

media was gently removed, and wells were gently washed with 1X PBS once. The monolayer of BHK-21 cells was fixed with 4%

paraformaldehyde solution for 30minutes in room temperature, followed by gentle washingwith sterile water once. This was followed

by staining the monolayer with 0.2%Crystal Violet solution at room temperature for 30 mins. The wells were then gently washed with

sterile water and number of colorless plaques were counted against violet background to get the viral titer.
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Serum isolation and ELISA
After sacrificing the mice, as much blood as possible was collected from the heart. Blood was allowed to clot for 30 mins at room

temperature after which it was centrifuged at 1000 g for 10 mins at 4�C. Supernatant was collected and stored in�80�C until further

use. ELISA for mouse IL-2 and IFN-gwas then performed using ELISA Max kit (Biolegend) according to manufacturer’s instructions.

Measurement of short/branched-chain fatty acids
Short/branched-chain fatty acids were extracted (Putluri et al., 2011a, 2014; Vantaku et al., 2017) by adding 100ul of acetonitrile: wa-

ter (1:1). Cells were homogenized and supernatant was collected. To 40uL of supernatant, 20 ul of 200 mM 12C6-3NPH and 120 mM

EDC.HCl were added and incubated for 30min at 37�C. The resultingmixture was cooled andmade up to 1.91mLwith 10%aqueous

acetonitrile. 10 ul of the solution injected in to LC-MS. Mouse liver pool was used for quality control. ESI negative mode was used for

themeasurement. SRMwas used and gradient Containing 0.1% formic acid in water (mobile phase A) and 0.1% formic acid in aceto-

nitrile (mobile phase B). Separation of metabolites was performed on acquityUPLC HSS T3 1.8 um (2.13 100mM).The binary pump

flow rate was 0.35ml/min with a gradient starting 15%B at 0min, 50%at 10min, 100%at 10.1min,15%at 13.1min, reequilibration till

the end of the gradient 17min. 10 mL of sample was injected and analyzed using a 6490 triple quadrupole mass spectrometer (Agilent

Technologies, Santa Clara, CA) coupled to aHPLC system (Agilent Technologies, Santa Clara, CA) via SRM. Source parameters were

as follows: Gas temperature- 250�C; Gas flow- 14 l/min; Nebulizer - 20psi; Sheath gas temperature - 350�C; Sheath gas flow- 12 l/

min; Capillary - 3000 V positive and 3000 V negative; Nozzle voltage- 1500 V positive and 1500 V negative. Approximately 8–11 data

points were acquired per detectedmetabolite. The data points for eachmetabolite obtainedwere represented as fold change relative

to WT.

Extracellular flux analysis (Seahorse assay)
Equal number of sorted Ova-specific effector memory CD8+ T cells were plated in microplate pre-coated with Cell Tak. Extracellular

flux analysis was performed in Seahorse XFe96 Analyzer (Agilent). For OCRmeasurement related to measuring long-chain fatty acid

oxidation, cells were plated in bicarbonate-free RPMI (Agilent) with 20mM glucose, 1X glutamax and 1X sodium pyruvate. Mitochon-

drial spare respiratory capacity (SRC) was calculated as the mean difference between OCR after FCCP injection and basal OCR

(before Oligomycin injection). Long-chain fatty acid oxidation was calculated as the difference between mean OCR after injection

of FCCP and mean OCR after injection of etomoxir (200uM final concentration). Long-chain fatty acid oxidation was plotted as

fold-change in OCR relative to WT (+DMSO). Oligomycin, FCCP, Rotenone and Antimycin A were injected at final concentrations

of 1uM, 2uM, 100nM and 1uM respectively.

For OCRmeasurement related tomeasuring short/branched-chain fatty acid oxidation, cells were plated in Krebs-Henseleit Buffer

(KHB) with 20mM glucose, 1X glutamax and 1X sodium pyruvate. BCAA (final concentration of 1-1.5 mg/mL leucine, 1-1.5 mg/mL

isoleucine and 0.4-0.6 mg/mL valine) was injected during the measurement of OCR. Short/branched-chain fatty acid oxidation was

calculated as:

Mean OCR after injection of BCAA/ Mean OCR before injection of BCAA.

ATP assay
Sorted Ova-specific effector memory CD8+ T cells were lysed in lysis buffer (150mM sodium chloride, 1mM EDTA, 50mM HEPES

adjusted to pH 7.4, 10% glycerol and 1% NP40) for 1 hour on ice. The cell lysate was then centrifuged at 16000xg for 10 minutes,

and supernatant collected and used for ATP assay. ATP assay was performed using ATP Determination kit (Invitrogen#A22066) ac-

cording to manufacturer’s instructions. Results were represented as values relative to WT or WT (+DMSO), as applicable to relevant

figures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were presented as mean ± SEM and p values were calculated using two-tailed Student’s t test, one-way or two-way ANOVA

with Bonferroni’s posttests as indicated in the figure legends. Statistical analyses were done using GraphPad Prism software,

assuming normal data distribution and equal sample variance. For measurement of fatty acids, the data was log2-transformed

and normalized with internal standard per-sample. Number of mice used in each group in the study was consistent with previously

published studies of similar nature. Any statistical difference < 0.05 was considered as significant and is indicated in figure legends.

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code.

e7 Cell Reports 29, 1862–1877.e1–e7, November 12, 2019
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Figure S1. Deletion of NIX in T Cells Does Not Alter the Development of CD4+ and CD8+ T Cells, Related to Figure 1. (A) Representative dot plot showing 
percentage of populations corresponding to double negative (DN) and double positive (DP) stages of T cell development in Thymus in wild-type and T/NIX–/– mice. (B) 
Mean percentage of double positive (left) and double negative (DN) (right) from the experiment in (A). (C) Representative dot plot showing percentage of DN1 
(CD44+CD25-), DN2 (CD44+CD25+), DN3 (CD44-CD25+) and DN4 (CD44-CD25-) populations in Thymus from wild-type and T/NIX–/– mice. (D) Mean percentage of 
DN1 (top left), DN2 (top right), DN3 (bottom right) and DN4 (bottom left) populations from the corresponding gates in panel (C). (E) Representative dot plot showing 
percentage of CD4+ and CD8+ populations in spleen from wild-type and T/NIX–/– mice. (F) Mean percentage of CD8+ (left) and CD4+ populations (right) from the 
experiment in panel (E). (G) Representative dot plot showing percentage of CD8+ Naive (CD62L+CD44-), CD8+ central memory (CD62L+CD44+) and CD8+ effector 
(CD62L-CD44+) T cells in spleen from wild-type and T/NIX–/– mice. (H) Mean percentages of naïve CD8+ populations (left), total central memory (middle) and total 
effector CD8+ populations (right) from the corresponding gates in panel (G). Data are representative of 2 independent experiments (n=4-8). Data were analyzed by 
two-tailed student’s t-test (mean+SEM). ns= statistically not significant.  
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Figure S2. Characterization of CD8+ T Cell Memory Formation in Wild-type and T/NIX–/–  Mice, Related to Figure 1. (A) Left: Representative contour plot 
showing frequency of CD127+KLRG1- CD8+ Ova-specific memory precursor effector cells (CD127+KLRG1- Ova-CD8+ MPEC) in the spleen of OT-I wild-type or OT-I T/
NIX–/– mice 10 days after VSV-Ova immunization. Right: Mean frequency of CD127+KLRG1- Ova- CD8+ MPEC from the left panel. (B) Serum viral titer in WT or T/
NIX-–/– mice on 0 or 10 days after immunization with 104 PFU of VSV-Ova. (C) Mean frequency of Ova-specific central memory CD8+ T cells (Ova-CM) in spleen of 
wild-type or T/NIX–/– mice 30 days after VSV-Ova immunization. (D) Representative contour plot showing frequency of CD127+KLRG1- Ova-specific effector memory 
CD8+ T cells (CD127+KLRG1- Ova-EM) in the spleen of OT-I wild-type or OT-I T/NIX–/– mice 30 days after VSV-Ova immunization. (E) Mean frequency of 
CD127+KLRG1- Ova-EM from panel (D). (F) Representative FACS plot showing FACS staining for TIM3, CXCR5 and TCF7 in Ova-EM harvested from the spleens of 
OT-I wild-type or OT-I T/NIX–/– mice after VSV-Ova immunization. TIM3-CXCR5+ Ova-EM populations were further sub-gated into TCF7+ population and TIM3-

CXCR5+TCF7+ population represented TIM3-CXCR5+TCF7+Ova-EM. (G) Mean frequency of TIM3-CXCR5+TCF7+ Ova-EM from panel (F). (H) Left: Representative 
dot plot showing the percentage of Ova-specific activated CD8+ T cells (Ova-activated) in the spleens of wild-type or T/NIX–/–  mice 6 days after VSV-Ova 
immunization. Right: Mean frequencies of Ova-specific activated CD8+ T cells from the left panel. (I) Left: Representative histogram showing proliferation of CD8+ T 
cells (from unimmunized WT or T/NIX–/– spleens) activated in vitro with 1ug/mL of anti-mouse CD3 and CD28 antibodies. Peaks corresponding to G1, G2, G3, G4, G5 
and G6 represent the generations of cells after successive cell division cycles. Right: Proliferation index of CFSE-stained CD8+ T cells from the left panel. CFSE 
staining was measured 3 days after activation. (J) Gene expression of Bnip3 in naïve CD8+ T cells before and in Ova-EM 30 days after VSV-Ova immunization. Ova-
EM from mice within the same experimental group were pooled before analysis. (K) Mean frequencies of Ova-specific effector memory CD8+ T cells (Ova-EM) in 
spleen of wild-type or BNIP3–/– mice 30 days after VSV-Ova immunization. (L) Kinetics of Bnip3 expression in Ova-specific CD8+ T cells in OT-I mice at designated 
time points after immunization with VSV-Ova. (M) Gene expression of Bnip3 in naïve CD8+ T cells before and Ova-CM 30 days after VSV-Ova immunization. Naïve 
and Ova-CM from mice within the same experimental group were pooled before analysis. (N) Kinetics of Pink1 and Park2 expression in Ova-specific CD8+ T cells in 
OT-I mice at designated time points after immunization with VSV-Ova. (O) Time course experiment showing the kinetics of formation of KLRG1– Ova-specific effector 
memory CD8+ T cells in vivo in wild-type or T/NIX–/– mice. (P) Gene expression of Caspase-3 (Casp3) in day 10 Ova-CD8+ MPEC (left) and day 20 Ova-EM (right) 
harvested from WT and T/NIX–/– mice after VSV-Ova immunization. Apoptosis in (Q) day 10 Ova-CD8+ MPEC or day 10 Ova-EM and (R) day 20 Ova-EM in WT or T/
NIX–/– mice after VSV-Ova immunization, as indicated by percentage of annexin V+ populations. Ova-CD8+ MPEC or Ova-EM from WT or T/NIX–/–  mice were further 
sub-gated into Annexin V+ population. Gene expression of Blimp-1 in (S) Ova-CD8+ MPEC and (T) Ova-EM harvested from VSV-Ova immunized WT and T/NIX–/– 
mice. Ova-CD8+ MPEC in (S) and Ova-EM in (T) from mice within the same experimental group were pooled before analysis. (U) Kinetics of in vitro formation of 
effector memory in wild-type CD8+ T cells. Splenocytes from WT mice were activated with 50ug/mL Ovalbumin in presence of 100 units/mL IL-2 for 3 days, after which 
cells were washed and fresh IL-15 added on the same day. Data in (A, C-K, M, O, S-U) are representative of >2 independent experiments (n=5-11) and data in (B, L, 
N, P-R) are representative of 3-10 biological replicates/group. Data in (A), (C), (E), (H), (I), (J), (K), (M), (P), (Q), (R), (S) and (T) were analyzed by two-tailed 
student‘s t-test (mean+SEM), data in (G), (L), (N) and (U) were analyzed by One-way ANOVA with Bonferroni’s posttests (mean+SEM) and data in (O) were analyzed 
by Two-way ANOVA with Bonferroni’s posttests (mean+SEM). **** p<0.0001, *** p<0.001, **p< 0.01, * p<0.05, ns= non-significant.  
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Figure S3. Characterization of memory recall by Wild-type and T/NIX–/–  Ova-Specific Effector Memory CD8+ T cells, Related to Figure 2. Ova-specific effector 
memory CD8+ T cells formed in vivo (A, B) or in vitro (C) from CD45.2+  mice (OT-I wild-type and OT-I T/NIX–/–) were adoptively transferred intravenously into naïve 
CD45.1+ mice. CD45.1+  host were then challenged with 104 PFU of VSV-Ova 24 hours later. 48 hours after VSV-Ova challenge, host CD45.1+ mice were sacrificed 
and Ova-EM were sorted from their splenocytes for further experiments. (A) Gene expression of Nix in WT Ova-EM before and after VSV-Ova rechallenge. Data 
points are represented relative to Nix expression before rechallenege. (B) Mean frequencies of IFN- γ (left) and IL-2 (right) producing CD45.2+ Ova-specific CD8+ T 
cells from figure 2C. (C) Mean frequencies of IFN- γ (left) and IL-2 (right) producing CD45.2+ Ova-specific CD8+ T cells from figure 2H. (D) Representative Oxygen 
Consumption rate (OCR) in Ova-specific effector memory CD8+ T cells formed in vitro (OT-I wild-type or OT-I T/NIX–/– cells). (E) Mitochondrial spare respiratory 
capacity (SRC) from experiment in (D). Data in (A-C) are representative of 3-4 biological replicates/group and data in (D, E) are representative of >2 independent 
experiments (n=7). Data in (A), (B), (C) and (E) were analyzed by two-tailed student‘s t-test (mean+SEM). ** p<0.01, *p<0.05. 
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Figure S4. Characterization of Mitophagy in Naïve, Effector Memory and Central Memory CD8+ T Cells from Wild-type and T/NIX–/– Mice, Related to Figure 
3. (A) Representative histogram showing Mitotracker Green staining in naïve, Ova-specific effector memory (Ova-EM) and Ova-specific central memory (Ova-CM) 
CD8+ T cells from wild-type and T/NIX–/– mice. (B) MFI for total mitochondrial mass from the experiment in panel (A). (C) Representative deconvolution microscopic 
image of naïve, Ova-EM and Ova-CM stained with COX IV (mitochondria) and LC3 (autophagosomes). (D) Mitochondrial median fluorescence index (mitochondrial 
MFI), (E) mitochondrial autophagy and (F) number of autophagosome punctate in naïve, Ova-EM and Ova-CM populations from the experiment in panel (C). (G) Top: 
Representative Cyto-ID staining showing autophagy flux in naïve, Ova-EM and Ova-CM 30 days after VSV-Ova immunization. Bottom: Mean geometric MFI of Cyto-
ID staining from experiment in top panel. For each independent experiment in panels (C-G), spleens were harvested from WT or T/NIX–/– mice and sorted for 
respective populations. Sorted cells were pooled from within the same experimental group before further analysis. For each independent experiment in panels (D-F), 
~100-200 cells/group were quantified. Data are representative of >2 independent experiments (n=4-5). Data were analyzed by two-tailed student‘s t-test (mean
+SEM). **** p<0.0001, *** p<0.001, * p<0.05,  ns= non-significant.  
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Figure S5. Characterization of mitochondrial superoxide, memory recall and HIF1⍺ in Antigen-specific Effector Memory CD8+ T Cells from Wild-type and T/
NIX–/– Mice, Related to Figures 4 and 5. (A) Representative histogram showing MitoSOX Red staining in Ova-specific CD8+ T cells from wild-type and T/NIX–/–  mice 
10 days after immunization. (B) Geometric mean fluorescence index for mitochondrial superoxide in Ova-specific CD8+ T cells from experiments performed in panel 
(A). (C) Level of damaged mitochondrial DNA in Ova-specific CD8+ T cells from OT-I wild-type and OT-I T/NIX–/–  mice 20 days after immunization. (D) In vivo 
proliferation of wild-type or T/NIX–/– Ova-specific effector memory CD8+ T cells (formed in vivo in presence of vehicle or NAC) measured by CFSE staining. Ova-
specific effector memory CD8+ T cells were labelled with CFSE before adoptive transfer into CD45.1+ recipients, with subsequent VSV-Ova re-challenge. Peaks 
corresponding to G1, G2, G3, G4 and G5 represent the generations of cells after successive cell division cycles. Proliferation index for WT (+PBS), T/NIX–/–  (+PBS) 
and T/NIX–/–  (+NAC) are 2.37+0.067, 2.07+0.067 and  3.67+0.37 respectively. Proliferation index was found to be significantly different between WT (+PBS) and T/
NIX–/–  (+PBS) (p<0.05) and between T/NIX–/–  (+PBS) and T/NIX–/–  (+NAC) (p<0.05). (E) Representative histogram showing intracellular HIF1⍺ protein level in 
KLRG1– population of Ova-specific effector memory CD8+ T cells 30 days after VSV-Ova immunization in wild-type and T/NIX–/– mice. (F) MFI of HIF1⍺ protein 
staining in KLRG1– population of Ova-specific effector memory CD8+ T cells from experiment performed in panel (E). MFI of intracellular HIF1⍺ protein level in (G) 
KLRG1– Ova-specific effector CD8+ T cells, and (H) KLRG1+ Ova-specific effector CD8+ T cells on indicated time points after VSV-Ova immunization in wild-type and 
T/NIX–/– mice. Data in (A-C) are representative of 3-5 biological replicates/group and data in (D-H) are representative of 2 independent (n=3-6). Data in (B), (C), (D) 
and (F) were analyzed by two-tailed student‘s t-test (mean+SEM) and data in (G) and (H) were analyzed by two-way ANOVA with Bonferroni’s post-tests (mean
+SEM). *** p<0.001, ** p<0.01, * p<0.05, ns= non-significant. 



Figure S6. Characterization of fatty acid metabolism in Antigen-specific Effector Memory CD8+ T Cells from Wild-type and T/NIX–/– Mice, Related to Figure 
6. For each independent experiment, cells were sorted from WT or T/NIX–/– mice 30 days after VSV-Ova-immunization(104 PFU/mouse) and pooled from within the 
same experimental group before further analysis. Fold change in short/branched-chain fatty acids in (A) Ova-specific CD8+  MPECs, and (B) Ova-specific memory 
CD8+ T cells formed in vivo in OT-I wild-type or OT-I T/NIX–/– mice. Gene expression of (C) Fasn and (D) Bckdk in Ova-specific effector memory CD8+ T cells in wild-
type and T/NIX–/–  mice (vehicle or NAC-treated). Data are representative of 2 independent experiments (n=4-7). Data were analyzed by two-tailed student‘s t-test 
(mean+SEM). *** p<0.001, ** p<0.01, * p<0.05, ns= non-significant. 
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Figure S7. Characterization of Effector Memory Formation in HIF1⍺–/– or ACADSB–/– CD8+ T Cells Using CRISPR/Cas9-mediated Genome Editing, Related 
to Figures 6 and 7. (A) Western blot of ACADSB protein in Ova-specific CD8+ T cells after transduction with LentiCRISPRv2 expressing sgRNA-control or sgRNA-
ACADSB. (B) Representative histogram plot showing percentage GFP expression in Ova-specific CD8+ T cells post-transduction with LentiCRISPRv2 (sgRNA-
ACADSB). Percentage GFP expression represents percent transduction of LentiCRISPRv2. (C) Effect of rapamycin treatment on effector memory formation in 
ACADSB–/– CD8+ T cells. (D) Intracellular ATP in Ova-specific effector memory CD8+ T cells 30 days after VSV-Ova immunization in wild-type and T/NIX–/–  mice 
(treated with vehicle control or NAC). For each independent experiment, Ova-specific effector memory CD8+ T cells were pooled from all the mice within the same 
experimental group and ATP was measured in the cells. Each point represents an individual independent experiment. Western blot of HIF1⍺ protein in Ova-specific 
CD8+ T cells after transduction with (E) LentiCRISPRv2 expressing sgRNA-control or sgRNA-HIF1⍺, and (F) LentiCRISPRv2 expressing sgRNA-control or sgRNA-
HIF1⍺2nd. (G) Mean frequencies of Ova-specific CD8+ T cells transduced with LentiCRISPRv2 (sgRNA-HIF1⍺) at different time points after activation with anti-CD3 
and anti-CD28 antibodies. Representative histogram plot showing percentage GFP expression in Ova-specific CD8+ T cells post-transduction with (H) 
LentiCRISPRv2 (sgRNA-control or sgRNA-HIF1⍺) and (I) LentiCRISPRv2 (sgRNA-HIF1⍺2nd). Percentage GFP expression represents percent transduction of 
LentiCRISPRv2. (J) Effect of loss of HIF1⍺ on effector memory formation. OT-I wild-type or OT-I T/NIX–/–  cells were transduced with LentiCRISPRv2 expressing 
sgRNA-control  or sgRNA-HIF1⍺2nd. Immunoblots in panels A, E and F were cropped to include only the relevant groups. Brightness, contrast, color balance and 
sharpness in panels A, E and F were applied to the entire image corresponding to any immunoblot. Data in (C) are representative of 3-4 biological replicates/group 
and data in (D, J) are representative of >2 independent experiments (n=4-7). Data in (C), (D) and (J) were analyzed by two-tailed student‘s t-test (mean+SEM). *** 
p<0.001, ** p<0.01, * p<0.05, ns= non-significant. 



 

Table S1. Primer and sgRNA sequences, Related to STAR methods. 
 
Primer/sgRNA Sequence 
Primer: 18S forward ATTGACGGAAGGGCACCAC 
Primer: 18S reverse TCTAAGAAGTTGGGGGACGC 
Primer: Nix forward GAGCCGGATACTGTCGTCCT 
Primer: Nix reverse CAATATAGATGCCGAGCCCCA 
Primer: Bnip3 forward AACAGCACTCTGTCTGAGGAA 
Primer: Bnip3 reverse TGTCAGACGCCTTCCAATGT 
Primer: Il-15ra forward ACATCGGTCCTCTTGGTTGG 
Primer: Il-15ra reverse CGTGTGGTTAGGCTCCTGTG 
Primer: Foxo1 forward CACACATCTGCCATGAACCG 
Primer: Foxo1 reverse GGTGGAGGACACCCATCCTA 
Primer: Tcf7 forward CGGAAAGAAGAAGAGGCGGT 
Primer: Tcf7 reverse CTGTCATCGGAAGGAACGGG 
Primer: Blimp-1 forward GGACTGGGTGGACATGAGAG 
Primer: Blimp-1 reverse TTCACGTAGCGCATCCAGTT 
Primer: Tfam forward TAGGCACCGTATTGCGTGAG 
Primer: Tfam reverse GACAAGACTGATAGACGAGG

GG 
Primer: Fasn forward TTGACGGCTCACACACCTAC 
Primer: Fasn reverse TTGTGGTAGAAGGACACGGC 
Primer: Bckdk forward TTCCCCTTCATTCCCATGCC 
Primer: Bckdk reverse CCGTAGGTAGACATCCGTGC 
Primer: Acadl forward GTGTATCGGTGCCATAGCCA 
Primer: Acadl reverse AGGCAGAAATCGCCAACTCA 
Primer: Acadsb forward GAAAAATGCCCGAGGCTCAC 
Primer: Acadsb reverse TGCATCCACCCCTTCCTTTC 
Primer: Acadm forward TTCGAAGACGTCAGAGTGCC 
Primer: Acadm reverse GCTCCACTAGCAGCTTTCCA 
Primer: Acads forward TTGCCGAGAAGGAGTTGGTC 
Primer: Acads reverse AGGTAATCCAAGCCTGCACC 
Primer: Acad11 forward CGCCTTGGACCTGGAAGAAT 
Primer: Acad11 reverse TTCAAGGTCAGCAAGCGGAT 
Primer: Atp5b forward GTTGGTCCTGAGACCTTGGG 
Primer: Atp5b reverse TCCGATTTTCCCACCCTTGG 
Primer: Atp5f1 forward TCCAGGGGTATTACAGGCAAC 
Primer: Atp5f1 reverse CAGCCCAAGACGCACTTTTC 
Primer: Ehhadh forward CGGTCAATGCCATCAGTCCA 
Primer: Ehhadh reverse AGCACCTGCACAGAAGTTGT 
Primer: Gls forward CCGCGGGCGACAATAAAATA

A 
Primer: Gls reverse GCATGACACCATCTGACGTT 
Primer: Glut1 forward ATAGTTACAGCGCGTCCGTT 
Primer: Glut1 reverse AGAGACCAAAGCGTGGTGAG 
Primer: Prkaa1 forward GTGAAGATCGGCCACTACATC

C 
Primer: Prkaa1 reverse GGCTTTCCTTTTCGTCCAACC 



 

Primer: Pdha1 forward GCCACCCTGAACCTGAGAAA 
Primer: Pdha1 reverse GCGATACATCATTACATCCAC

G 
Primer: Pink1 forward GTGGGACTCAGATGGCTGTC 
Primer: Pink1 reverse GCACATTTGCAGCTAAGCGT 
Primer: Parkin forward CCAAACCGGATGAGTGGTGA

GTGC 
Primer: Parkin reverse ACACGGCAGGGAGTAGCCAA

GTTG 
Primer: Caspase-3 forward AGCTGGACTGTGGCATTGAG 
Primer: Caspase-3 reverse CCACGACCCGTCCTTTGAAT 
sgRNA targeting sequence: Hif1a forward CACCGTGATAACGTGAACAAA

TACA 
sgRNA targeting sequence: Hif1a reverse AAACTGTATTTGTTCACGTTA

TCAC 
sgRNA targeting sequence: Hif1a forward2nd CACCGAAGCATCCTGTACTGT

CCTG 
sgRNA targeting sequence: Hif1a reverse2nd AAACCAGGACAGTACAGGAT

GCTTC 
sgRNA targeting sequence: Acadsb forward CACCGATGGATGAGAACTCAA

AAA 
sgRNA targeting sequence: Acadsb reverse AAACTTTTTGAGTTCTCATCC

ATC 
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