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SUMMARY

The size of dendrite arbors shapes their function and
differs vastly between neuron types. The signals that
control dendritic arbor size remain obscure. Here, we
find that in the retina, starburst amacrine cells (SACs)
and rod bipolar cells (RBCs) express the homophilic
cell-surface protein AMIGO2. In Amigo2 knockout
(KO) mice, SAC and RBC dendrites expand while
arbors of other retinal neurons remain stable. SAC
dendrites are divided into a central input region
and a peripheral output region that provides asym-
metric inhibition to direction-selective ganglion cells
(DSGCs). Input and output compartments scale pre-
cisely with increased arbor size in Amigo2 KO mice,
and SACdendritesmaintain asymmetric connectivity
with DSGCs. Increased coverage of SAC dendrites is
accompanied by increased direction selectivity of
DSGCs without changes to other ganglion cells.
Our results identify AMIGO2 as a cell-type-specific
dendritic scaling factor and link dendrite size and
coverage to visual feature detection.

INTRODUCTION

Throughout the nervous system, dendritic arbor size is critical for

neuronal function (Lefebvre et al., 2015;Wong andGhosh, 2002).

In the retina, dendrites prescribe the region from which photore-

ceptor signals are collected and shape receptive fields (Brown

et al., 2000; Field et al., 2010; Schwartz et al., 2012). The den-

drites of each neuron type cover the retina evenly to represent

visual space homogeneously. Dendrite size and overlap (i.e.,

coverage) vary widely between retinal neurons, and differences

in coverage determine the ratios in which circuit components

are combined (Keeley et al., 2014; Lefebvre et al., 2015).Whether

dendrite size is controlled independent of other morphological

features, what molecular mechanisms determine the overlap of

low- and high-coverage neurons, and how dendrite coverage

shapes specific retinal computations is unknown.

Rod bipolar cells (RBCs) are conserved from rodents to pri-

mates (Gr€unert and Martin, 1991; Peng et al., 2019), receive input

from rod photoreceptors, and mediate vision near the threshold

(Field et al., 2005). The dendrites of RBCs have low coverage

(�2) (Tsukamoto and Omi, 2013). Their arbor size varies inversely

with RBC density across mouse strains (Keeley et al., 2014) and

increases when neighbors are removed during development

(Johnson et al., 2017), indicating that homotypic signals constrain

RBCdendrite growth. The cell-adhesionmoleculeDSCAML1me-

diates repulsive interactions between RBCs, and their dendrites

fasciculate inDscaml1-null mutants (Fuerst et al., 2009). However,

RBC arbor size is reduced, rather than increased, in these mu-

tants (Fuerst et al., 2009). The homotypic signals that limit RBC

dendrite growth, therefore, remain to be identified.

Starburst amacrine cells (SACs) are conserved from rodents to

primates (Peng et al., 2019; Yonehara et al., 2016) and have the

highest coverage (>40) of all cells in the retina (Keeley et al.,

2007; MacNeil and Masland, 1998). The cell bodies of ON and

OFF SACs are distributed regularly (i.e., mosaics) in the ganglion

cell and inner nuclear layer, respectively (Keeley et al., 2007;

Rockhill et al., 2000). Soma mosaics facilitate even dendrite

coverage of the retina. Cell death initiated by purinergic signaling

(Resta et al., 2005) and repulsive signals from two cell-surface

proteins (MEGF10 and MEGF11) (Kay et al., 2012) organize

SAC mosaics. However, SAC arbor size is reduced, rather than

increased, by deletion of Megf10, and dendrite territories do

not vary with SAC density from the center to the periphery of

the retina or across different mouse strains (Keeley et al., 2007;

Ray et al., 2018). Thus, unknown signals control SAC dendrite

size independent of cell body mosaics.

The dendrites ofONandOFFSACs stratify in two narrowbands

in the innerplexiform layer (IPL).Withineachband,SACselaborate

radially symmetric arbors with central input and peripheral output

regions (Briggman et al., 2011; Ding et al., 2016; Famiglietti, 1991;

Greene et al., 2016; Kim et al., 2014). The four to six primary den-

dritesofSACarborswith their daughterbranches functionas inde-

pendent motion sensors, each preferring motion away from the

soma (Euler et al., 2002; Morrie and Feller, 2018; Poleg-Polsky

et al., 2018). Centrifugal motion preference is shaped by the distri-

bution of input and output regions in the SAC arbor (Ding et al.,

2016; Greene et al., 2016; Kim et al., 2014; Vlasits et al., 2016)

and translated intodirection-selective inhibitionofdirection-selec-

tive ganglion cells (DSGCs) through asymmetric connectivity

(Briggmanetal., 2011;Friedet al., 2002;Wei etal., 2011;Yonehara

et al., 2011). Thus, as for many neurons, the circuit function of

SACs relies on dendrite stratification, branching, subcellular

compartmentalization, and synaptic specificity in addition toarbor
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size. Signals that control arbor size independent of other features

of dendritic morphology and connectivity have not yet been iden-

tified. In addition, howdendrite arbor size and coverage shape the

detection of specific visual features is unknown.

Here, we discover that RBCs and SACs express the homo-

philic cell-surface protein AMIGO2. We show that AMIGO2

selectively controls RBC and SAC dendrite size and coverage

and shapes the encoding of motion direction in the retina.

RESULTS

Expression of Amigo2 in the Retina
Cell-surface proteins with extracellular leucine-rich repeat (LRR)

domains guide many processes in neural development (de Wit

and Ghosh, 2014). In an in situ hybridization screen, we found

that theLRR-containingcell-surfaceproteinAMIGO2 isexpressed

bycells oneither sideof the IPLand inabandofcells near theouter

marginof the inner nuclear layer (Figures1A–1C). Transcriptswere

abundant bypostnatal day 10 (P10), when retinal circuits are form-

ing, and persisted in mature neurons (P20) (Hoon et al., 2014). In

combined in situ hybridization and immunohistochemistry exper-

iments, we found that Amigo2-positive cells on either side of the

IPL stained for choline acetyltransferase (ChAT), identifying these

neurons as SACs (Figure 1D). Similarly, combined Amigo2 in situ

hybridization and protein kinase Cɑ (PKCɑ) immunohistochem-

istry identified the Amigo2-positive band of cells at the outer

margin of the inner nuclear layer as RBCs (Figure 1E). Analysis of

single-cell RNA-sequencing (scRNA-seq) data profiling amacrine

cells (Macosko et al., 2015) confirmed strong expression of

Amigo2 in SACs as well as a small population of Slc35d3-positive

cells (Figure S1). A separate analysis of scRNA-seq data profiling

bipolar cells (Shekhar et al., 2016) confirmed strong expression in

Prkca-positive RBCs (Figure S1).

Our efforts to raise specific antibodies against AMIGO2 failed

and commercially available antibodies indistinguishably labeled

wild-type and Amigo2 knockout (KO) retinas (data not shown).

To evaluate the subcellular distribution of AMIGO2, we used a

gene gun (i.e., biolistics) to deliver a DDK-tagged construct to

SACs (STAR Methods). This technique cannot label RBCs (Mor-

gan and Kerschensteiner, 2011). AMIGO2-DDK was distributed

in puncta across SAC arbors (Figure 1F). Thus, Amigo2 is ex-

pressed in SACs and RBCs in the developing and mature retina,

with the protein covering dendrite arbors of the former.

Cell Density andNeurite Stratification of SACs andRBCs
in Amigo2 KO Mice
To study the function of AMIGO2 in development, we generated

Amigo2 KO mice with transcription activator-like effector nucle-

ases (TALENs; STAR Methods). ON and OFF SACs form inde-

pendent mosaics in the ganglion cell and inner nuclear layer,

respectively (Keeley et al., 2007; Rockhill et al., 2000). The den-

sity of ON SACs and their distribution in the ganglion cell layer

measured by density recovery profiles (Rodieck, 1991) were un-

changed inAmigo2KOcompared to wild-typemice (Figures 2A–

2C). OFF SACs were more abundant than ON SACs, but their

density and distributions in the inner nuclear layer were indistin-

guishable between wild-type and Amigo2 KO littermates (Fig-

ures 2D–2F). RBCs are the most numerous bipolar cell type

and are packed near the outer margin of the inner nuclear layer

(Keeley et al., 2014; Wässle et al., 2009). The density of RBCs

was not significantly different between wild-type and Amigo2

KO mice (Figure 2G–2I). In addition, the overall area of the retina

was the same in Amigo2 KO and wild-type mice (Figure S2).

Matching cell densities, therefore, reflect preservation of total

SAC and RBC numbers.

Bipolar cell axons and amacrine cell dendrites target particular

depths of the retina’s IPL to form specific circuits (Masland,

2001). Neurite stratification is regulated by cell-adhesion mole-

cules (Duan et al., 2018; Peng et al., 2017; Yamagata and Sanes,

2008). However, vibratome sections stained for ChAT and PKCɑ
revealed that stratification patterns of SACs and RBCs in the IPL

were unaffected by Amigo2 deletion (Figures 2J–2O). Thus,

SACs and RBCs are generated and survive in appropriate

numbers, are evenly distributed in the right layers, and target

their neurites correctly independent of AMIGO2.

Precisely Scaled Expansion of ON SACArbors inAmigo2

KO Mice
To analyze the effects of AMIGO2 on individual neurons, we

biolistically labeled ON SACs with a cytosolic fluorophore

Figure 1. Amigo2 Expression in the Retina

(A–C) In situ hybridization for Amigo2 in postnatal day 5 (P5; A), P10 (B), and P20 (C) retinas.

(D and E) Combined in situ hybridization for Amigo2 (green) with immunohistochemistry for ChAT (D; magenta) and PKCɑ (E; magenta) in sections of P20 retinas.

(F) Representative SAC biolistically labeled with AMIGO2-DDK in a flat-mounted P20 retina. The cell was digitally isolated in Amira for visual clarity

See also Figure S1.
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(tdTomato) and PSD95-YFP, a marker of excitatory input

synapses (Kerschensteiner et al., 2009; Morgan et al., 2008;

Figures 3A–3D). We manually traced neurites and automati-

cally identified synapses (Kerschensteiner et al., 2009; Mor-

gan et al., 2008; Figures 3E and 3F). The dendrite size of

many neurons, although not ON SACs (Keeley et al., 2007),

varies with retinal eccentricity (Wässle and Boycott, 1991).

We therefore restricted our analysis throughout this study to

neurons at mid-eccentricity (i.e., between one-third and two-

thirds of the distance from the optic nerve head to the edge

of the retina) in P20–P35 mice. In Amigo2 KO mice, ON

SACs had longer dendrites that occupied larger territories

than in wild-type mice (Figures 3G and 3H). SAC branching

is sparse in the central input region of the arbor and increases

toward the arbor periphery where neurotransmitters are

released (Briggman et al., 2011; Ding et al., 2016; Famiglietti,

1991; Greene et al., 2016; Kim et al., 2014). Branches of indi-

vidual SACs avoid each other to establish space-filling arbors

(i.e., dendritic self-avoidance). The numbers of ON SAC self-

crossings were not significantly different between Amigo2

KO and wild-type mice (Amigo2 KO: 6.8 ± 0.4 cell�1, n = 29;

wild-type: 7 ± 0.6 cell�1, n = 22; p = 0.85 by Mann-Whitney

U test). Branch distributions were shifted away from the

soma in Amigo2 KO compared to wild-type ON SACs (Fig-

ure 3I), but, when arbor expansion was taken into account,

branch distributions of Amigo2 KO and wild-type ON SACs

were indistinguishable (Figure 3J). Similarly, the distribution

of input synapses was right-shifted in Amigo2 KO ON SACs

for absolute radial distances (Figure 3K) but matched wild-

type ON SAC distributions exactly when this distance was

normalized to the maximal arbor extent (Figure 3L). Thus,

the dendrites of Amigo2 KO ON SACs are precisely scaled

Figure 2. Soma and Neurite Distributions of

SACs and RBCs in Wild-Type and Amigo2

KO Mice

(A and B) Images of the ganglion cell layer in retinal

flat mounts from wild-type (A) and Amigo2 KO (B)

retinas stained for ChAT.

(C) Density recovery profiles (mean ± SEM) of

SACs in the ganglion cell layer of wild-type

(n = 7 retinas) and Amigo2 KO (n = 12 retinas)

mice; p = 0.74 by bootstrapping. The overall

density of SACs in the ganglion cell layer was

not significantly different between wild-type

(1,143 ± 70 cells mm�2) and Amigo2 KO ret-

inas (1,108 ± 38 cells mm�2; p = 0.89 by

Mann-Whitney U test.

(D and E) Images of the inner nuclear layer in

retinal flat mounts from wild-type (D) and Amigo2

KO (E) retinas stained for ChAT.

(F) Density recovery profiles (mean ± SEM) of SAC

cell bodies in the inner nuclear layer of wild-type

(n = 8 retinas) and Amigo2 KO (n = 11 retinas)

mice; p = 0.98 by bootstrapping. The overall

density of SACs in the nuclear layer was not

significantly different between wild-type (1,472 ±

108 cells mm�2) and Amigo2 KO retinas (1,453 ±

79 cells mm�2; p = 0.97 by Mann-Whitney U test.

(G and H) Images of the inner nuclear layer in

retinal flat mounts from wild-type (G) and Amigo2

KO (H) retinas stained for PKCɑ.
(I) Density (mean ± SEM) of RBCs in wild-type

(18,738 ± 435 cells mm�2, n = 4 retinas) and

Amigo2 KO (18,629 ± 1,036 cells mm�2, n = 5

retinas) mice; p = 0.91 by Mann-Whitney U test.

(J and K) Sections of P20 wild-type (J) and Amigo2

KO (K) retinas stained for ChAT.

(L) Lines (shaded areas) indicate the mean (±

SEM) ChAT lamination patterns in the inner

plexiform layer (IPL) in wild-type (n = 4 retinas)

and Amigo2 KO (n = 8 retinas) mice; p = 0.43

by bootstrapping.

(M and N) Sections of P20 wild-type (M) and

Amigo2 KO (N) retinas stained for PKCɑ.
(O) Lines (shaded areas) indicate the mean (± SEM) PKCɑ lamination patterns in the IPL in wild-type (n = 8 retinas) and Amigo2 KO (n = 9 retinas) mice; p = 0.40 by

bootstrapping.

Throughout the figure, ns indicates no significant differences for statistical comparisons.

See also Figure S2.
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versions of their wild-type counterparts with intact self-avoid-

ance and accurately preserved input and output divisions.

Precisely Scaled Expansion of OFF SAC Arbors in
Amigo2 KO Mice
OFF SACs in the inner nuclear layer are inaccessible to biolistic

labeling (Morgan and Kerschensteiner, 2011). To test the influ-

ence of AMIGO2 on OFF SAC dendrites, we labeled these cells

by injecting adeno-associated viruses expressing varying ra-

tios of fluorescent proteins (i.e., AAV-Brainbow; Cai et al.,

2013) into the vitreous of ChAT-Cre mice on an Amigo2 KO or

wild-type background (Figures 4A and 4B). The dendrites of

OFF SACs inAmigo2KO retinas were longer and covered larger

territories than in wild-type retinas (Figures 4C and 4D). As for

ON SACs, branch distributions were right-shifted for absolute

radial distances in Amigo2 KO compared to wild-type OFF

SACs (Figure 4E) but overlapped precisely when branching

was analyzed relative to the maximal arbor extent (Figure 4F).

Thus, AMIGO2 controls ON and OFF SAC arbor size without

affecting the branching patterns or compartmentalization of

dendrites.

Asymmetric Connectivity of SACs with DSGCs in
Amigo2 KO Mice
Different dendrites of SACs synapse onto different DSGCs

(Briggman et al., 2011; Fried et al., 2002; Wei et al., 2011; Yone-

hara et al., 2011). SAC dendrites pointing toward the temporal

retina provide GABAergic input selectively to DSGCs that prefer

motion in the nasal direction (nDSGCs). Combined with the cen-

trifugal motion preference of SAC dendrites, asymmetric con-

nectivity results in direction-selective inhibition of DSGCs

(Mauss et al., 2017). To probe whether AMIGO2 regulates

the connectivity of SACs with DSGCs, we performed paired

patch-clamp recordings in ChAT-Cre Ai9 DRD4-EGFP mice on

wild-type or Amigo2 KO backgrounds. In these mice, all SACs

express tdTomato and nDSGCs express EGFP (Huberman

et al., 2009; Kay et al., 2011; Pei et al., 2015). We targeted

nDSGCs and SACs on their nasal (null) or temporal (preferred)

side under two-photon guidance (Figures 5A and 5E). We iso-

lated inhibitory signals pharmacologically (30 mM D-AP5,

40 mM NBQX, and 5 mM DHbE) and clamped the voltage of

nDSGCs to the reversal potential of excitatory conductances

(�0 mV). Consistent with previous observations (Brombas

Figure 3. ON SAC Arbors Expand but Maintain Branching Patterns and Subcellular Compartmentalization in Amigo2 KO Mice

(A and B) ON SACs biolistically labeled with cytosolic tdTomato (magenta) and PSD95-YFP (green), a marker of excitatory synapses, in flat-mounted P20 wild-

type (A) and Amigo2 KO (B) retinas. Cells were digitally isolated in Amira for visual clarity.

(C and D) Higher magnification view of the insets in (A) (shown in C) and (B) (shown in D).

(E and F) Dendrite tracings (magenta) and output of synapse identification (green) for the ON SACs in (A) (shown in E) and in (B) (shown in F).

(G) Cumulative distributions of ON SAC dendrite territories in wild-type (37,259 ± 1,361 mm2, n = 34 cells, n = 12 retinas) and Amigo2 KO (47,584 ± 1,712 mm2,

n = 53 cells, n = 16 retinas) mice; p = 5.5 3 10�5 by Mann-Whitney U test.

(H) Cumulative distributions of ONSACdendrite lengths inwild-type (3,028 ± 86 mm, n = 25 cells, n = 12 retinas) andAmigo2KO (3,422 ± 85 mm, n = 36 cells, n = 16

retinas) retinas; p = 0.0021 by Mann-Whitney U test.

(I and J) Summary data of Sholl analyses for ON SAC branching patterns in wild-type (n = 16 cells, n = 10 retinas) and Amigo2 KO (n = 18 cells, n = 10 retinas)

retinas. Distributions of branches as a function of absolute distance from the soma; p = 0.0056 by bootstrapping (I). (J) Distributions of branches as a function of

normalized radial distance; p = 0.21 by bootstrapping (J).

(K and L) Summary data of the radial distribution of excitatory synapses in ON SAC dendrites in wild-type (n = 16 cells, n = 10 retinas) andAmigo2KO (n = 16 cells,

n = 9 retinas) retinas. Distributions of synapses as a function of absolute distance from the soma; p = 0.012 by bootstrapping (K). Distributions of synapses as a

function of normalized radial distance; p = 0.79 by bootstrapping (L).

Throughout the figure, ***p < 0.001, **p < 0.01, and ns indicates no significant differences for statistical comparisons.
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et al., 2017; Fried et al., 2002; Lee et al., 2010; Wei et al., 2011;

Yonehara et al., 2011), we found that on a wild-type background,

depolarization of null-side SACs elicited robust inhibitory post-

synaptic currents in nDSGCs, whereas depolarization of equidis-

tant preferred-side SACs elicited weak or no input (Figures 5B–

5D). Asymmetric inhibitory connectivity of null- and preferred-

side SACs with nDSGCs was preserved in the Amigo2 KO back-

ground (Figures 5F–5H). Thus, AMIGO2 regulates neither the

subcellular compartmentalization of SACs’ input synapses (Fig-

ure 3) nor the asymmetric target preferences of their output

connections.

Enhanced Selectivity of DSGCs in Amigo2 KO Mice
Because SAC density remains constant as arbors expand,

dendrite coverage is higher in Amigo2 KO than wild-type mice.

SAC arbor size increases in Amigo2 KO retinas without other

changes inmorphology or connectivity, allowing us to test the in-

fluence of dendrite coverage on circuit function. We recorded

large ensembles of retinal ganglion cells onmultielectrode arrays

and identified DSGCs by their responses to square-wave grat-

ings drifting in eight different directions (Figures 6A and

Figure 4. OFF SAC Arbors Expand but

Maintain Branching Patterns in Amigo2 KO

Mice

(A and B) OFF SACs labeled by AAV-Brainbow

injections into the vitreous of ChAT-Cre mice on a

wild-type (A) or Amigo2 KO (B) background.

(C) Cumulative distributions of OFF SAC dendrite

territories in wild-type (46,283 ± 2,003 mm2, n = 9

cells, n = 3 retinas) and Amigo2 KO (70,070 ±

3,972 mm2, n = 8 cells, n = 3 retinas) mice; p = 8.23

10�5 by Mann-Whitney U test.

(D) Cumulative distributions of OFF SAC dendrite

lengths in wild-type (3,696 ± 139 mm, n = 6 cells,

n = 3 retinas) and Amigo2 KO (4,733 ± 193 mm,

n = 5 cells, n = 3 retinas) mice; p = 0.0087 byMann-

Whitney U test.

(E and F) Summary data of Sholl analyses for OFF

SAC branching patterns in wild-type (n = 6 cells,

n = 3 retinas) and Amigo2 KO (n = 5 cells, n = 3

retinas) mice. Distributions of branches as a

function of absolute distance from the soma;

p = 0.0051 by bootstrapping (E). Distributions of

branches as a function of normalized radial dis-

tance; p = 0.32 by bootstrapping (F).

Throughout the figure, ***p < 0.001, **p < 0.01, and

ns indicates no significant differences for statisti-

cal comparisons.

6B; STAR Methods). We presented drift-

ing grating stimuli at a range of temporal

and spatial frequencies. SACs sup-

press null-direction firing of DSGCs by

GABAergic inhibition (Fried et al., 2002;

Taylor and Vaney, 2002; Vlasits et al.,

2014; Yoshida et al., 2001) and enhance

preferred-direction firing of DSGCs via

cholinergic volume transmission (Brom-

bas et al., 2017; Chen et al., 2016; Lee

et al., 2010; Sethuramanujam et al., 2016; Yonehara et al.,

2011). In Amigo2 KO mice, null-direction firing rates of DSGCs

tended to be lower (Figure 6C) and preferred-direction firing

rates higher (Figure 6D) than in their wild-type littermates, but

neither trend alone reached statistical significance. However,

when responses to all stimulus directions were taken into ac-

count, the direction selectivity of DSGCs was enhanced robustly

across temporal and spatial stimulus frequencies in Amigo2 KO

compared to wild-type retinas (Figure 6E).

In the same recordings, we analyzed the responses of non-

DSGCs to spatiotemporal white noise stimuli with a linear-

nonlinear cascade model (Chichilnisky, 2001; Pearson and

Kerschensteiner, 2015; Figures 6F and 6G). Spatiotemporal

receptive fields were not significantly different in their time to

peak sensitivity (Figures 6F and 6G) or size (Figure S3) for ON

and OFF ganglion cells in Amigo2 KO compared to wild-type

retinas. Equally, the peak firing rates of ON and OFF ganglion

cells in response to white noise stimuli were unchanged in

Amigo2 KO compared to wild-type retinas (Figures 6F and 6G).

Thus, increased dendrite coverage of SACs in Amigo2 KO ret-

inas enhances the feature selectivity of DSGCs across a wide

1572 Cell Reports 29, 1568–1578, November 5, 2019



range of spatial and temporal stimulus frequencies without

affecting the responses of other ganglion cell types.

Selective Expansion of RBC Dendrites in Amigo2 KO
Mice
To probe whether the function of AMIGO2 is conserved be-

tween SACs and RBCs, we sparsely labeled the latter by intra-

vitreal injection of AAV-Grm6-YFP (Johnson et al., 2017). In

retinal flat mounts stained for GPR179, a component of the

postsynaptic receptor complex (Orlandi et al., 2013; Ray

et al., 2014; Sarria et al., 2016), we found that RBC dendrites

expanded and formed more synapses in Amigo2 KO than

wild-type mice (Figures 7A–7F). Similar to SACs, the distribu-

tion of input synapses on RBC dendrites was shifted to the right

when measured as a function of absolute distance from their

territory centers (Figure 7G), but when arbor expansion was

taken into account, the radial distributions of RBC input syn-

apse densities in Amigo2 KO and wild-type mice were brought

into register (Figure 7H).

Unlike SACs, RBCs have separate axon arbors. The territories

of RBC axons were indistinguishable between Amigo2 KO and

wild-type mice (Figure S4), indicating that AMIGO2 controls

dendrite size selectively. RBC dendrites contact rod photore-

ceptors together with horizontal cells (Hoon et al., 2014), which

do not express AMIGO2. We sparsely labeled horizontal cells

by intravitreal injection of AAV-CAG-YFP (Soto et al., 2018).

Neither horizontal cell axons, which contact rods, nor horizontal

cell dendrites, which contact cones, differed in size between

Amigo2 KO and wild-type mice (Figure S5). Thus, the influence

of AMIGO2 on arbor size is conserved between SACs and

RBCs, selective for dendrites versus axons, and restricted to

neurons expressing AMIGO2.

DISCUSSION

Here, we discover that AMIGO2 controls the size and coverage

of SAC and RBC dendrites and shapes direction-selective sig-

nals from the retina to the brain. AMIGO2 is one of three related

type I transmembrane proteins (AMIGO1–AMIGO3) (Kuja-Panula

et al., 2003). The three AMIGOs contain six conventional and two

cysteine-rich LRR domains followed by an immunoglobulin

domain in their extracellular N terminus and interact homo-

and heterophilically (Kuja-Panula et al., 2003). AMIGO1 pro-

motes axon development in cultured neurons and zebrafish

(Kuja-Panula et al., 2003; Zhao et al., 2014). We show that

AMIGO2 regulates dendrite development in the retina (Figures

3, 4, and7). The function of AMIGO3 remains unknown.

Because AMIGO2 interacts homophilically (Kuja-Panula et al.,

2003), the most parsimonious explanation for the increased

dendrite size in KO mice is that AMIGO2 mediates growth-inhib-

iting signals between neurons of the same type (i.e., homotypic

interactions). The effects of AMIGO2 are conserved between

RBCs and SACs, indicating that the same cue can control the

dendrite size of low-coverage (RBCs) and high-coverage

(SACs) neurons. Homotypic repulsion constrains dendrite

growth of strictly territorial neurons (i.e., coverage = 1) in the

retina and other sensory systems (Grueber and Sagasti, 2010;

Grueber et al., 2003; Lefebvre et al., 2015; Millard et al., 2007).

We propose that, unlike the absolute stop signals of homotypic

repulsion, AMIGO2-mediated interactions limit dendrite growth

Figure 5. Asymmetric Connectivity be-

tween SACs and DSGCs in Wild-Type and

Amigo2 KO Mice

(A) Maximum intensity projection of a two-photon

image stack acquired at the end of a paired

recording from a DSGC and a null-side SAC in a

ChAT-Cre Ai9 DRD4-EGFP mouse on a wild-type

background.

(B) Representative inhibitory postsynaptic cur-

rents (IPSCs) elicited in DSGCs by depolarizing

SACs on the null (top trace) and preferred side

(bottom trace) in a wild-type background.

(C and D) Summary data (mean ± SEM) comparing

the inhibitory conductances activated in DSGCs

by stimulation of SACs on the null versus preferred

side (C; null side: 6.0 ± 1.9 nS, n = 6 pairs, n = 4

retinas; preferred side: 0.47 ± 0.20 nS n = 4 pairs,

n = 4 retinas; p = 0.0095 by Mann-Whitney U test)

and the soma-soma distance of SAC-DSGC pairs

(D, null side: 78 ± 9.2 mm; preferred side: 78 ±

13 mm; p = 0.91 by Mann-Whitney U test) in a wild-

type background.

(E) Maximum intensity projection of a two-photon image stack acquired at the end of a paired recording from a DSGC and a null-side SAC in a ChAT-Cre Ai9

DRD4-EGFP mouse on an Amigo2 KO background.

(F) Representative IPSCs elicited in DSGCs by depolarizing SACs on the null (top trace) and preferred side (bottom trace) in an Amigo2 KO background.

(G and H) Summary data (mean ± SEM) comparing the inhibitory conductances activated in DSGCs by stimulation of SACs on the null versus preferred side (G;

null side: 4.0 ± 1.3 nS, n = 7 pairs, n = 4 retinas; preferred side: 0.26 ± 0.15 nS, n = 6 pairs, n = 4 retinas; p = 0.0012 by Mann-Whitney U test) and the soma-soma

distance of SAC-DSGC pairs (H; null side: 94.7 ± 8.6 mm; preferred side: 90 ± 13 mm; p = 1 by Mann-Whitney U test) in an Amigo2 KO background. Inhibitory

conductances activated by stimulation of individual null-side SACs were not significantly different between wild-type and Amigo2 KO backgrounds (p = 0.37).

Throughout the figure, **p < 0.01 and ns indicates no significant differences for statistical comparisons.
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Figure 6. Response Selectivity of DSGCs Is Enhanced in Amigo2 KO Retinas

(A) Grayscale plots of the DSGC responses in wild-type (left panel) and Amigo2 KO (right panel) mice to drifting grating stimuli. Each row depicts average re-

sponses of one cell to 0.023–0.034 cycles per degree (cpd) gratings drifting at 1–2 cycles s�1 (wild-type: n = 46 cells, n = 6 retinas; Amigo2 KO: n = 40 cells, n = 8

retinas). Responses of each cell were centered on the direction eliciting the maximal response and its highest-response neighbor.

(B) Summary data (mean ± SEM) of DSGC responses in (A) for wild-type (left panel) and Amigo2 KO (right panel) mice.

(C) Responses of DSGCs (mean ± SEM) to null-direction drifting grating stimuli of varying temporal (left panel) and spatial (right panel) frequencies in wild-type

(n = 46 cells, n = 6 retinas) andAmigo2KO (n = 40 cells, n = 8 retinas) mice. Null-direction firing rates tended to be lower inAmigo2KOcompared towild-typemice,

but this trend did not reach statistical significance; p = 0.39 (left panel) and p = 0.52 (right panel) by bootstrapping.

(D) Responses of DSGCs (mean ± SEM) to preferred-direction drifting grating stimuli of varying temporal (left panel) and spatial (right panel) frequencies in wild-

type (n = 46 cells, n = 6 retinas) and Amigo2 KO (n = 40 cells, n = 8 retinas) mice. Preferred-direction firing rates tended to be higher in Amigo2 KO compared to

wild-type mice, but this trend did not reach statistical significance; p = 0.15 (left panel) and p = 0.056 (right panel) by bootstrapping.

(legend continued on next page)
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in a cumulative manner. We speculate that differences in

AMIGO2 expression levels and downstream cascades amplify

and attenuate signals to establish cell-type-specific coverage

of RBC and SAC dendrites.

In many instances, dendrites of a neuron type vary selectively

in size across tissue topography (e.g., retinal eccentricity) and

species (e.g., mouse versus macaque) (Rodieck, 1989; Wässle

and Boycott, 1991). These observations suggest that dendrite

size can be controlled independent of other morphological

features. However, all previously identified molecular cues

co-regulate dendrite size with branching patterns and/or arbor

shapes (Fuerst et al., 2009; McAllister et al., 1995; Shen et al.,

2009; Soto et al., 2013; Sun et al., 2013). Here, we find that

dendrite arbors of ON and OFF SACs and RBCs in Amigo2 KO

mice are precisely scaled versions of their wild-type counter-

parts (Figures 3, 4, and7). This suggests that AMIGO2 selectively

controls dendrite size. We, therefore, propose to categorize

AMIGO2 as a dendritic scaling factor, the first of its kind. We hy-

pothesize that signals mediated by AMIGO2 and other scaling

factors contribute to cell-type-specific, topographic, and spe-

cies-dependent differences in dendrite size.

Some effects of dendrite size on neuronal function are easy

to predict. In the retina, receptive fields are approximately

congruent with dendrites, and receptive field size, therefore,

scales with dendritic arbor size (Bleckert et al., 2014; Brown

et al., 2000; Crook et al., 2008; Schwartz et al., 2012). By contrast,

how dendrite size and coverage shape circuit functions emerging

from complex interactions of multiple components is less obvious

and remains unknown. SACs serve at least two circuit functions.

In developing retina, SACs generate and propagate cholinergic

waves of activity that pattern projections from the retina to the

brain (Kerschensteiner, 2014; Kirkby et al., 2013). In the mature

retina, SACs generate direction-selective responses of DSGCs

by cholinergic volume transmission and asymmetric GABAergic

inhibition (Diamond, 2017; Lee et al., 2010;Mauss et al., 2017; Se-

thuramanujam et al., 2016; Wei, 2018). Cholinergic waves were

indistinguishable between Amigo2 KO mice and wild-type litter-

mates (Figure S6), likely because the expression of AMIGO2 and

its effects on SAC arbors size begin after the respective period

of development (Figure 1). In the mature retina, we found that

the connectivity of individual SACs with DSGCs was unchanged

(Figure 5), but the direction selectivity of DSGC responses was

robustly enhanced (Figure 6). We speculate that this is because

increased SAC coverage and convergence onto DSGCs increase

cholinergic and GABAergic input from the SAC population. A

recent study found that direction selectivity is decreased in

Sema6A KO mice, in which SAC coverage is reduced (Morrie

and Feller, 2018). Together, these studies indicate the feature-

(E) Direction selectivity indices (DSIs; mean ± SEM) of DSGC responses to drifting grating stimuli of varying temporal (left panel) and spatial (right panel) fre-

quencies in wild-type (n = 46 cells, n = 6 retinas) and Amigo2 KO (n = 40 cells, n = 8 retinas) mice. DSIs were consistently higher in Amigo2 KO compared to wild-

type mice; p = 0.0032 (left panel) and p = 0.0085 (right panel) by bootstrapping.

(F and G) Spatiotemporal receptive field maps (left panels) and static nonlinearities (right panels) of representative ON (F) and OFF (G) ganglion cells in wild-type

(top panels) and Amigo2 KO (bottom panels) mice.

(H) Cumulative distributions of time to peak sensitivity (left panel) and peak firing rates (right panel) of ON ganglion cells in wild-type (n = 143 cells, n = 5 retinas) and

Amigo2 KO (n = 156 cells, n = 6 retinas) mice; p = 0.94 for time to peak sensitivity and p = 0.54 for peak firing rates by bootstrapping.

(I) Cumulative distributions of time to peak sensitivity (left panel) and peak firing rates (right panel) of OFF ganglion cells in wild-type (n = 185 cells, n = 5 retinas) and

Amigo2 KO (n = 233 cells, n = 6 retinas) mice; p = 0.67 for time to peak sensitivity and p = 0.59 for peak firing rates by bootstrapping.

Throughout the figure, **p < 0.01 and ns indicates no significant differences for statistical comparisons.

See also Figures S3 and S6.

Figure 7. RBC Dendrites Expand and Form

More Synapses in Amigo2 KO Mice

(A andB)Maximum intensity projections of confocal

image stacks of the outer plexiform layer of wild-

type (A) and Amigo2 KO (B) retinas. RBC dendrites

are labeled by AAV-Grm6-YFP and postsynaptic

specializations are marked by GPR179 clusters.

(C and D) Schematic representation of dendrite

territories (magenta) and synapses (green) of the

RBCs in (A) (shown in C) and (B) (shown in D),

respectively.

(E) Cumulative distributions of RBC dendrite terri-

tories inwild-type (131.4±5.2mm2,n=29cells, n=5

retinas) and Amigo2 KO (149.9 ± 4.5 mm2, n = 28

cells, n = 4 retinas) mice; p = 0.0075 by Mann-

Whitney U test.

(F) Cumulative distributions of RBC dendritic syn-

apses in wild-type (25.2 ± 1.1, n = 22 cells, n = 5

retinas) and Amigo2 KO (39.13 ± 0.89, n = 16 cells, n = 4 retinas) mice; p = 6.13 10�7 by Mann-Whitney U test.

(G) Summary data (mean±SEM)of the distribution of synapsesontoRBCsas a functionof the absolute distance from the center of their dendritic territory inwild-type

(n = 22 cells, n = 5 retinas) and Amigo2 KO (n = 16 cells, n = 4 retinas) mice; p = 1.03 10�5 by bootstrapping.

(H) Summarydata (mean±SEM)of the synapsedensity acrossRBCdendrite territories as a functionof the relativedistance from the center of the territory inwild-type

(n = 22 cells, n = 5 retinas) and Amigo2 KO (n = 16 cells, n = 4 retinas) mice; p = 0.16 by bootstrapping.

Throughout the figure, ***p < 0.001 and ns indicates no significant differences for statistical comparisons.

See also Figures S4 and S5.
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selective signals from the retina to the brain are controlled bidirec-

tionally by the dendrite size and coverage of an interneuron.
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Sjöström, P.J., and van Meyel, D.J. (2014). Neuronal morphometry directly

from bitmap images. Nat. Methods 11, 982–984.

Field, G.D., Sampath, A.P., and Rieke, F. (2005). Retinal processing near abso-

lute threshold: from behavior to mechanism. Annu. Rev. Physiol. 67, 491–514.

Field, G.D., Gauthier, J.L., Sher, A., Greschner, M., Machado, T.A., Jepson,

L.H., Shlens, J., Gunning, D.E., Mathieson, K., Dabrowski, W., et al. (2010).

Functional connectivity in the retina at the resolution of photoreceptors. Nature

467, 673–677.

Fried, S.I., M€unch, T.A., and Werblin, F.S. (2002). Mechanisms and circuitry

underlying directional selectivity in the retina. Nature 420, 411–414.

Fuerst, P.G., Bruce, F., Tian, M., Wei, W., Elstrott, J., Feller, M.B., Erskine, L.,

Singer, J.H., and Burgess, R.W. (2009). DSCAM and DSCAML1 function in

1576 Cell Reports 29, 1568–1578, November 5, 2019

https://doi.org/10.1016/j.celrep.2019.09.085
https://doi.org/10.1016/j.celrep.2019.09.085
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref1
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref1
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref1
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref2
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref2
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref3
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref3
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref3
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref4
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref4
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref5
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref5
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref6
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref6
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref6
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref7
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref7
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref8
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref8
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref9
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref9
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref9
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref9
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref9
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref10
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref10
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref10
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref10
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref10
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref11
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref11
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref11
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref12
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref12
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref13
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref13
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref13
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref14
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref14
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref15
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref15
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref15
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref16
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref16
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref16
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref16
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref17
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref17
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref18
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref18
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref18
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref19
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref19
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref19
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref20
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref20
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref21
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref21
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref21
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref21
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref22
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref22
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref22
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref23
http://refhub.elsevier.com/S2211-1247(19)31289-6/sref23


self-avoidance in multiple cell types in the developing mouse retina. Neuron

64, 484–497.

Greene, M.J., Kim, J.S., and Seung, H.S.; EyeWirers (2016). Analogous

convergence of sustained and transient inputs in parallel on and off pathways

for retinal motion computation. Cell Rep. 14, 1892–1900.

Grueber, W.B., and Sagasti, A. (2010). Self-avoidance and tiling: mechanisms

of dendrite and axon spacing. Cold Spring Harb. Perspect. Biol. 2, a001750.

Grueber, W.B., Ye, B., Moore, A.W., Jan, L.Y., and Jan, Y.N. (2003). Dendrites

of distinct classes of Drosophila sensory neurons show different capacities for

homotypic repulsion. Curr. Biol. 13, 618–626.

Gr€unert, U., and Martin, P.R. (1991). Rod bipolar cells in the macaque monkey

retina: immunoreactivity and connectivity. J. Neurosci. 11, 2742–2758.

Hoon, M., Okawa, H., Della Santina, L., and Wong, R.O.L. (2014). Functional

architecture of the retina: development and disease. Prog. Retin. Eye Res.

42, 44–84.

Huberman, A.D., Wei, W., Elstrott, J., Stafford, B.K., Feller, M.B., and Barres,

B.A. (2009). Genetic identification of an On-Off direction-selective retinal gan-

glion cell subtype reveals a layer-specific subcortical map of posterior motion.

Neuron 62, 327–334.

Johnson, R.E., Tien, N.W., Shen, N., Pearson, J.T., Soto, F., and Kerschen-

steiner, D. (2017). Homeostatic plasticity shapes the visual system’s first syn-

apse. Nat. Commun. 8, 1220.

Kay, J.N., De la Huerta, I., Kim, I.J., Zhang, Y., Yamagata,M., Chu,M.W.,Meis-

ter, M., and Sanes, J.R. (2011). Retinal ganglion cells with distinct directional

preferences differ in molecular identity, structure, and central projections.

J. Neurosci. 31, 7753–7762.

Kay, J.N., Chu, M.W., and Sanes, J.R. (2012). MEGF10 and MEGF11 mediate

homotypic interactions required for mosaic spacing of retinal neurons. Nature

483, 465–469.

Keeley, P.W., Whitney, I.E., Raven, M.A., and Reese, B.E. (2007). Dendritic

spread and functional coverage of starburst amacrine cells. J. Comp. Neurol.

505, 539–546.

Keeley, P.W., Whitney, I.E., Madsen, N.R., St John, A.J., Borhanian, S., Leong,

S.A., Williams, R.W., and Reese, B.E. (2014). Independent genomic control of

neuronal number across retinal cell types. Dev. Cell 30, 103–109.

Kerschensteiner, D. (2014). Spontaneous network activity and synaptic devel-

opment. Neuroscientist 20, 272–290.

Kerschensteiner, D., Morgan, J.L., Parker, E.D., Lewis, R.M., and Wong,

R.O.L. (2009). Neurotransmission selectively regulates synapse formation in

parallel circuits in vivo. Nature 460, 1016–1020.

Kim, J.S., Greene, M.J., Zlateski, A., Lee, K., Richardson, M., Turaga, S.C.,

Purcaro, M., Balkam, M., Robinson, A., Behabadi, B.F., et al.; EyeWirers

(2014). Space-time wiring specificity supports direction selectivity in the retina.

Nature 509, 331–336.

Kirkby, L.A., Sack, G.S., Firl, A., and Feller, M.B. (2013). A role for correlated

spontaneous activity in the assembly of neural circuits. Neuron 80, 1129–1144.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-ChAT Abcam RRID:AB_2079595

Mouse anti-PKCɑ Sigma RRID:AB_477375

Mouse anti-DDK Origene Technologies RRID:AB_2622345

Rabbit anti-GFP Invitrogen RRID:AB_221569

Mouse anti-GPR179 Millipore RRID:AB_2069582

Donkey anti-rabbit IgG Alexa 488 ThermoFisher RRID:AB_2535792

Donkey anti-rabbit IgG Alexa 568 ThermoFisher RRID:AB_253401

Donkey anti-goat IgG Alexa 488 ThermoFisher RRID:AB_2534104

Donkey anti-goat IgG Alexa 568 ThermoFisher RRID:AB_2534104

Bacterial and Virus Strains

AAV-EF1a-BbTagBY (AAV-Brainbow) Addgene Cat# 45185-AAV9

AAV-EF1a-BbChT (AAV-Brainbow) Addgene Cat# 45186-AAV9

AAV-Grm6-YFP Johnson et al., 2017 N/A

AAV-CAG-YFP Soto et al., 2018 N/A

Chemicals, Peptides, and Recombinant Proteins

DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) ThermoFisher RRID:AB_2629482

DIG-RNA labeling kit Roche Cat# 11277073910

T7 RNA polymerase Promega Cat# P2075

RNasin Promega Cat# N2111

SfaNI NEB Cat# R0172S

Xtremegene HP Roche Cat# 6366244001

T7E1 NEB Cat# E3321

T7 mMessage mMachine Ultra Kit Life Technologies Cat# AM1345

Megaclear Kit Life Technologies Cat# AM1908

Microcarrier gold 1.6 mm BioRad Cat# 1652264

Tissue-Tek OCT compound Sakura Cat# M71484

TSA Cyanine 3 (Cy3) Perkin Elmer Cat# SAT704A001EA

NBT/BCIP Roche Cat# 11681451001

Experimental Models: Organisms/Strains

Wild-type (C57Bl6/J) Jackson Laboratory RRID:IMSR_JAX:000664

B6;Cg-Gt(ROSA)26Sortm9(CAG-tdTomato) Hze/J (Ai9) Jackson Laboratory RRID:IMSR_JAX:007909

B6;129S6-Chattm2(cre)Lowl/J Jackson Laboratory RRID:IMSR_JAX:006410

Tg(Drd4-EGFP)W18Gsat MMRRC Cat# MGI:3839370

Amigo2 KO This study N/A

Recombinant DNA

CMV-tdTomato Clontech 632534

CMV-PSD95-YFP Ann Marie Craig

Mouse Amigo2 Horizon Dharmacon 105827

Software and Algorithms

MATLAB The Mathworks RRID:SCR_001622

Cogent Graphics Toolbox Laboratory of Neurobiology www.vislab.ucl.ac.uk

Fiji Schindelin et al.,. 2012 RRID:SCR_002285

Amira ThermoFisher RRID:SCR_014305

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer Agree-

ment. Information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Daniel

Kerschensteiner (kerschensteinerd@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
We used Transcription Activator-like Effector Nucleases (TALENs) to generate Amigo2 knockout (Amigo2 KO) mice. Genomic DNA

sequences of Amigo2 were obtained from the GenBank Database (NM_178114). TALEN target sequences were: left 50-TCAGG

AATGTGCCCCACTGC-30 and right 50-TTGGTGCAGCTGACAATGTC-30 separated by a 16-bp spacer containing a SfaNI restriction

site. Target specificity of TALENswas validated in N2A cells with Xtremegene HP (Roche), followed by a T7E1 assay (NEB). T7 TALEN

templates for in vitro transcription were EcoRI digested, purified, and in-vitro transcribed with the T7 mMessage mMachine Ultra kit

(Life Technologies). After transcription, both RNAs were purified with the Megaclear kit (Life Technologies). We obtained mouse

zygotes by mating C57Bl6/J DBA2 stud males (Jackson Labs) to super-ovulated C57Bl6/J DBA2 females at a 1:1 ratio. Fertilized

one-cell embryos were injected with 50 ng nL-1 (25 ng nL-1 of each TALEN) into the pronucleus and cytoplasm of each zygote

and transferred into pseudo-pregnant females. With this procedure, we obtained 22 live F0 mice. We extracted genomic DNA

from the tails of F0 mice and amplified a 299-bp PCR product using Amigo2-F1: 50-ATT GGT GGG AGA CTG AGC TGA TGA GAA

GCG-30 and Amigo2-R1: 50-GTC CGA TTC TGT TAT AGC TCA GAT CCA GTC-30 oligonucleotides, Klentaq LA (DNA Polymerase

Technology) and a Biometra PCR machine (94�C for 3 min, then 40 cycles of 94�C for 1 min and 68�C for 2.5 min, followed by a final

extension step at 68�C for 8 min). PCR products were digested with SfaNI (Biolabs) and run on 2% agarose gels. Restriction yielded

101-bp and 198-bp fragments for wild-type animals, whereas PCR fragments of potential Amigo2 KO animals remained uncut (i.e.,

299 bp). Our results revealed that 12 of the 22 F1 mice animals had lost the targeted SfaNI site in one or both Amigo2 alleles. Litters

obtained by crossing the 12 F1 founders with C57Bl6/J mice were used to analyze the corresponding mutations by sequencing with

theAmigo2-F1 oligo. Five deletions at the TALENs target resulted in frameshiftsmutations in theAmigo2 gene. Four lines (2-bp, 8-bp,

22-bp, and 43-bp deletions) were crossed to C57Bl6/J for at least four more generations. After confirming that results from the four

lines were identical, we combined them and present them as Amigo2 KO data throughout this paper.

For paired recordings, we first crossed ChAT-Cre mice (Rossi et al., 2011) to the Ai9 reporter strain (Madisen et al., 2010) to label

SACs with tdTomato. We then paired ChAT-Cre Ai9 mice with DRD4-EGFP mice line, in which nasal-motion-preferring DSGCs

(nDSGCs) express EGFP (Huberman et al., 2009; Rivlin-Etzion et al., 2011). All mouse lines were crossed onto a C57Bl6/J back-

ground for more than five generations. Except for developmental in situ hybridization experiments, we used postnatal day 20 to

35 (P20-35) mice of both sexes throughout our study. All procedures were approved by the Animal Studies Committee ofWashington

University School of Medicine (Protocol # 20170033) and performed in compliance with the National Institutes of HealthGuide for the

Care and Use of Laboratory Animals.

METHOD DETAILS

Adeno-associated viruses
To label OFF SACs, we injected 250 nL ofAAV-Brainbow (Cai et al., 2013) into the vitreous of newborn (postnatal day 0, P0)ChAT-Cre

andChAT-Cre Amigo2 KOmice. To label RBCs and horizontal cells, we injected 250 nL of AAV-Grm6-YFP (Johnson et al., 2017) and

AAV-CAG-YFP (Soto et al., 2018), respectively, into the vitreous of newborn wild-type and Amigo2 KO mice.

Tissue preparation
Mice were euthanized with CO2 followed by decapitation and enucleation. For in situ hybridization, immunohistochemistry, and bio-

listic labeling, eyes were transferred into oxygenatedmouse artificial cerebrospinal fluid (mACSFHEPES) containing (in mM): 119 NaCl,

2.5 KCl, 1 NaH2PO4, 2.5 CaCl2, 1.3 MgCl2, 20 HEPES, and 11 glucose (pH adjusted to 7.37 using NaOH). Retinas were either isolated

and flat-mounted on filter paper (HABG01300, Millipore), or left in the eyecup for 30 min fixation with 4% paraformaldehyde in

mACSFHEPES. For patch-clamp and multielectrode array recordings, mice were dark-adapted for at least 2 hr before their retinas

were isolated under infrared illumination (> 900 nm) in mACSFNaHCO3 containing (in mM) 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4,

2 CaCl2, 20 glucose, 26 NaHCO3 and 0.5 L-glutamine equilibrated with 95% O2 5% CO2. Retinas were then flat mounted on mem-

brane disks (Anodisc13, Whatman).

Continued
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In situ hybridization
We followed previously described in situ hybridization methods (Soto et al., 2013; Yamagata et al., 2002). We prepared the DNA

template for riboprobes by PCR from an MGC clone obtained from Horizon/Dharmacon using the following primers: Amigo2-ST3:

50-GCAATTAACCCTCACTAAAGCCCCAGCGCCTCAGGAATGTGC-30 and Amigo2-RT7: 50-TAATACGACTCACTATAGGAGCTGGTG

GGAGTGCCTGGAGTC-30. We synthesized the antisense RNA probes using the DIG RNA labeling kit (Roche) from T7 sites incorpo-

rated by PCR in the DNA template. Fixed eyecups (s. Tissue preparation) were cryoprotected and sliced (thickness: 20 mm) with a cry-

otome (Leica). Retinal sections were pretreated using proteinase K, postfixed, permeabilized using Triton X-100, and prehybridized for

4 hr at 65�C. Hybridization was performed overnight at 65�C using 1-2 mgmL-1 antisense RNA. The hybridized riboprobe was detected

using anti-DIGalkaline phosphatase labeled antibodies andBCIP/NBT (Roche) overnight. For combined in situ hybridization and immu-

nohistochemistry, the in situ signal was detected using anti-DIG peroxidase-conjugated antibodies with Cy3-Tyramide as a substrate

(PerkinElmer), followed by staining with an antibody against ChAT (goat anti-ChAT, EMDMillipore, 1:1000) or PKCa (mouse anti-PKAa,

Sigma, 1:1000) (Kay et al., 2012; Soto et al., 2013).

Immunohistochemistry
Vibratome slices (thickness: 60 mm) were blocked for 2 hr with 5% Normal Donkey Serum in PBS, embedded in 4% agarose (Sigma)

and incubated overnight at 4�C with primary antibodies. Slices were then washed in PBS (3 3 20 min) and incubated in secondary

antibodies for 2 hr. Flat-mount preparations were frozen and thawed three times after cryoprotection (1 hr 10% sucrose in PBS, 1 hr

20% sucrose in PBS, and overnight 30% sucrose in PBS at 4�C), blocked with 5% Normal Donkey Serum in PBS for 2 hr, and then

incubated with primary antibodies for five days at 4�C and washed in PBS (33 1 hr). Subsequently, flat mounts were incubated with

secondary antibodies for one day at 4�C andwashed in PBS (33 1 hr). The following primary antibodies were used in this study: goat

anti-ChAT (1:1000, EMDMillipore), mouse anti-PKAɑ (1:1000, Sigma),mouse anti-DDK (1:1000, Origene), rabbit anti-GFP (1:500, In-

vitrogen), and mouse anti-GPR179 (1:1000, EDM Millipore). Secondary antibodies were Alexa 488- and Alexa 568 conjugates

(1:1000, Invitrogen).

Biolistic labeling
We coated gold particles (diameter: 1.6 mm, Bio-Rad) with plasmids encoding cytosolic tdTomato and postsynaptic density protein

95 (PSD95) fused at its C terminus to YFP (Kerschensteiner et al., 2009), or AMIGO2-DDK (Origene). We used a helium-pressurized

gun (40 psi, Bio-Rad) to deliver particles to a sparse population of cells in the ganglion cell layer and incubated the transfected retinas

inmACSFHEPES in a humid oxygenated chamber at 33�C for 16-18 hr (Morgan and Kerschensteiner, 2011). We identified ONSACs by

their characteristic arbor morphology.

Confocal imaging
We acquired confocal image stacks on an Fv1000 laser-scanning microscope (Olympus) or an LSM 800 microscope (Zeiss) with an

AiryScan detector array. Voxel sizes varied from 0.043-0.1 mm (x/y-z) to 0.309-0.5 mm (x/y-z). We traced neurite arbors of SACs using

Simple Neurite Tracer in Fiji (Schindelin et al., 2012) and performed Sholl analysis on the tracings (Ferreira et al., 2014). SAC and RBC

arbor territories were measured as the smallest convex polygons to encompass the dendrites of a given cell in a 2D-projection.

PSD95-YFP clusters marking excitatory input synapses on SAC dendrites were identified in Fiji. RBC dendrite tips that overlapped

with staining for GPR179 were counted as synapses (Johnson et al., 2017). Radial distributions of neurites and synapses were

calculated using scripts written in MATLAB. The surface area of RBC axons was measured from iso-intensity surfaces in Amira

(FEI) (Johnson et al., 2017). The density of SACs and RBCs changes with retinal eccentricity (Keeley et al., 2007). Therefore, to mini-

mize variation, we restricted our analysis to the middle third of the retina (i.e., >1/3 and <2/3 the distance from the optic nerve head to

the margins of the retina).

Patch-clamp recordings
Dual whole-cell voltage-clamp recordings from SACs and DSGCs were performed in flat-mounted retinas superfused (5-7 mL min-1)

with warm (30-33�C) mACSFNaHCO3 equilibrated with 95% O2 5% CO2. The somata of EGFP-expressing nDSGCs and tdTomato-

expressing SACs were targeted under two-photon guidance in ChAT-Cre Ai9 DRD4-EGFPmice on a wild-type or Amigo2 KO back-

ground, and correct targeting was confirmed bymorphologies revealed by two-photon imaging of Alexa 488 (0.1 mM) included in the

intracellular solution containing (in mM) 120 Cs-gluconate, 1 CaCl2, 1MgCl2, 10 Na-HEPES, 11 EGTA, 10 TEA-Cl, 2 Qx314, ATP-Na2,

and 0.1 GTP-Na (pH adjusted to 7.2 with CsOH). Patch pipettes had resistances of 5-8 MU (borosilicate glass). The preferred direc-

tion of nDSGCs was inferred by the coordinates of retinas. SACs located on the nasal side of the nDSGCs were defined as null-side

SACs, whereas SACs located on the temporal side were defined as preferred-side SACs. Inhibitory postsynaptic currents (IPSCs) of

DSGCsweremeasured at the reversal potential of excitatory conductances (0 mV) in response to depolarization of paired SACs from

�60 to 10 mV, in the presence of D-AP5 (30 mM, Tocris), NBQX (40 mM, Tocris) and DHbE (5 mM, Tocris). Liquid junction potentials

were corrected offline. Signals were amplified with a Multiclamp 700B amplifier (Molecular Devices), filtered at 3 kHz (8-pole Bessel

low-pass), and sampled at 10 kHz (Digidata 1440A, Molecular Devices).
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Multielectrode array recordings
We recorded large ensembles of retinal ganglion cells on planar arrays with 252 electrodes arranged in a 163 16 grid with the corner

positions empty (30 mm electrode size, 100 mm center-center spacing, Multi Channel Systems). During recordings, retinas were

perfused with warm (30-33�C) mACSFNaHCO3 equilibrated with 95% O2 5% CO2 at 5-7 mL min-1. Signals of each electrode were

filtered (300-3,000 Hz) and digitized at 10 kHz. Signal cut-outs from 1 ms before to 2 ms after crossings of negative thresholds

(setmanually for each channel) were recorded to hard disk together with the time of threshold crossing (i.e., the spike time).We sorted

spikes into trains representing the activity of individual neurons by principal component analysis of spike waveforms (Offline Sorter,

Plexon). We used refractory periods to assess the quality of the sorting and retained only spike trains in which < 0.2% of interspike

intervals were < 2 ms. When the activity of a single neuron had been recorded on more than one electrode (identified by cross-

correlation), we used only the train with the most spikes in our subsequent analysis.

Visual stimuli were presented on an organic light-emitting display (OLED-XL, eMagin) and focused on the retina through a 20X

0.5 NA water immersion objective (Olympus) covering a �1.7 3 2.3 mm rectangular area. Stimuli were generated in MATLAB using

the Cogent Graphics toolbox extensions developed by John Romaya at the LON at the Wellcome Department of Imaging Neurosci-

ence. The display output was linearized using custom-written scripts. All recordings were from the dorsal retina whereM-opsin dom-

inates (Wang et al., 2011; Wei et al., 2010), and the average intensity of each stimulus was 1000 M-opsin isomerizations per cone per

second (1000 R* cone-1 s-1). To evaluate direction selectivity, we presented four repeats of full-field square-wave gratings of varying

spatial and temporal frequencies (spatial frequency: 0.023-0.17 cycles per degree or cpd, temporal frequency: 0.5-10 cycles s-1)

drifting in eight directions at 45� intervals. Stimuli were shown in pseudorandom orders. Each stimulus repeat lasted 5 s. Direction

selectivity indices (DSIs) were calculated based on the circular variance of the response (Pearson and Kerschensteiner, 2015; Pis-

copo et al., 2013). Cells with DSIR 0.3 at temporal and spatial stimulus frequencies eliciting preferred-direction average firing rates

>4 Hzwere considered direction selective. Tomap spatiotemporal receptive fields, the stimulus display was divided into vertical bars

(width:�50 mm, height:�1.7 mm). The intensity of each bar was randomly chosen from a Gaussian distribution (RMS contrast: 40%)

and updated every 33 ms (refresh rate: 30 Hz) for 30 min. A linear-nonlinear cascade model was used to analyze the responses of

ganglion cells to this stimulus (Chichilnisky, 2001; Pearson and Kerschensteiner, 2015). We mapped linear spatiotemporal receptive

fields by reverse correlation of the spike response with the stimulus (i.e., the spike-triggered stimulus average or STA). In a separate

part of the recording, we then analyzed the dependence of the spike rate on the match between the stimulus and the STA (i.e., the

generator signal) to compute the static nonlinearity.

Cholinergic waves were recorded in P7 retinas for >1 hr in darkness. Waves were detected as peaks in the population activity that

exceeded a threshold of 1.5 times the Loess-filtered (f = 0.67) running average (Demas et al., 2003). Spike time tiling coefficients of

ganglion cell pairs were calculated as defined by Cutts and Eglen (2014).

scRNA-seq Analysis
Count matrices were downloaded from GEO accessions GSE63473 [whole retina/amacrine cell (Macosko et al., 2015)] and

GSE81905 [bipolar cell (Shekhar et al., 2016)]. Data were loaded into R and analyzed using Monocle 3 (version 0.1.3) (Cao et al.,

2019; Qiu et al., 2017a, 2017b; Trapnell et al., 2014). Preliminary steps included removal of dead cells and doublets (cells with

low or high read counts). High variance genes were used as ordering genes for dimension reduction using tSNE (Clark et al.,

2019). Normalized expression values were calculated for each cell and all plotting was done using ggplot2 (version 3.2.1).

Whole retina data were first processed and amacrine cells identified by Pax6 expression. Cells within these clusters were re-

analyzed separately to optimize visualization of discrete subtypes. Genes identified as cell type specific markers (Macosko et al.,

2015) were plotted and co-expression within Amigo2 was determined for both Chat and Slc35d3. Bipolar cells were analyzed in a

similar manner; data were first cleaned for contaminating cells (e.g., rods) and putative bipolar cells (clusters marked by Vsx2 and

Otx2) were re-processed separately to optimize dimension reduction and separation of cell types. Genes identified as cell type spe-

cific markers (Shekhar et al., 2016) were plotted and co-expression with Amigo2 was determined for Prkca.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using scripts written in MATLAB. Summary data are given asmean ±SEM. Non-parametric tests (Mann-Whitney

U, Wilcoxon signed-rank) and bootstrapping were used to compare data from different experimental groups as specified in the figure

legends. Statistical significance was considered when p < 0.05.

DATA AND CODE AVAILABILITY

The code supporting the current study is available at https://github.com/kerschensteinerd/CellRep_2019. The published article in-

cludes all datasets generated or analyzed during this study.
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Figure S1. Expression of Amigo2 in retinal single-cell RNA-Seq datasets (related to Figure 
1) 
(A-C) tSNE dimension reduction of amacrine cell subtypes. All cells are plotted and color scale 
indicates (log10) normalized expression of Amigo2 (A), Chat (B), and Slc35d3 (C). Circles denote 
clusters with strong Amigo2 expression in (A). Gray indicates zero expression. 
(D-E) tSNE dimension reduction of bipolar cell subtypes. All cells are plotted and color scale 
indicates (log10) normalized expression of Amigo2 (D) and Prkca (E). Gray indicates zero 
expression.  



 

 

Figure S2. Retinal area in wild-type and Amigo2 KO mice (related to Figure 2) 
(A and B) Flat mount preparations of wild-type (A) and Amigo2 KO retinas (P30) stained with 
DAPI.  
(C) Cumulative distributions of the total areas of retinal flat mounts from wild-type (16.1 ± 0.8 mm2, 
n = 6 retinas) and Amigo2 KO (16.6 ± 0.6 mm2, n = 9 retinas) mice. P = 0.78 by Mann-Whitney U 
test. 
For the statistical comparison in this figure, ns indicates no significant differences.  



 

 

Figure S3. The receptive field size of ganglion cells in wild-type and Amigo2 KO mice 
(related to Figure 6) 
(A and B) Cumulative distributions of receptive field sizes measured from spike-triggered stimulus 
averages of ON (A) and OFF (B) ganglion cells during white noise stimulation. Receptive field 
sizes of ON (wild-type: n = 143 cells, n = 5 retinas, Amigo2 KO: n = 156 cells, n = 6 retinas, P = 
0.18 by bootstrapping) and OFF ON (wild-type: n = 162 cells, n = 5 retinas, Amigo2 KO: n = 233 
cells, n = 6 retinas, P = 0.19) ganglion cells were not significantly different between Amigo2 KO 
and wild-type retinas. 
Throughout the figure, ns indicates no significant differences for statistical comparisons.  



 

 

Figure S4. RBC axon territories in wild-type and Amigo2 KO mice (related to Figure 7) 
(A and B) Maximum intensity projections of RBC axons labeled by AAV-Grm6-YFP in wild-type 
(A) or Amigo2 KO (B) retinas. 
(C) Cumulative distributions of surface areas of RBC axon arbors in wild-type (168.1 ± 7.9 μm2, n 
= 13 cells, n = 5 retinas) and Amigo2 KO (166.8 ± 7.8 μm2, n = 23 cells, n = 4 retinas) mice. P = 
0.83 by Mann-Whitney U test. 
For the statistical comparison in this figure, ns indicates no significant differences.  



 

 

Figure S5. Horizontal cell dendrites and axons in wild-type and Amigo2 KO mice (related to 
Figure 7) 
(A and B) Maximum intensity projections of dendrites of horizontal cells labeled by AAV-CAG-
YFP in wild-type (A) and Amigo2 KO (B) mice. 
(C) Cumulative distributions of dendrite territories of horizontal cells in wild-type (4,455 ± 478 μm2, 
n = 11 cells, n = 3 retinas) and Amigo2 KO (4,523 ± 441 μm2, n = 13 cells, n = 4 retinas) mice. P 
= 0.91 by Mann-Whitney U test. 
(D and E) Maximum intensity projections of horizontal cell axons labeled by AAV-CAG-YFP in 
wild-type (D) and Amigo2 KO (E) mice. 
(F) Cumulative distributions of axon territories of horizontal cells in wild-type (7,899 ± 571 μm2, n 
= 14 cells, n = 4 retinas) and Amigo2 KO (7,145 ± 302 μm2, n = 23 cells, n = 4 retinas) mice. P = 
0.24 by Mann-Whitney U test. 
Throughout the figure, ns indicates no significant differences for statistical comparisons.  



 

 

Figure S6. Cholinergic waves in wild-type and Amigo2 KO retinas (related to Figure 6) 
(A and B) Representative cholinergic waves recorded in P7 wild-type (A) and Amigo2 KO (B) 
retinas. Each square represents the activity of ganglion cells recorded on a multielectrode array. 
Activity is proportional to the size of the filled circles. 
(C) Cumulative distributions of the interwave intervals in wild-type (n = 152 cells, n = 2 retinas) 
and Amigo2 KO (n = 110 cells, n = 2 retinas) mice. P = 0.44 by bootstrapping. 
(D) Spike time tiling coefficients (STTCs) for cell pairs plotted as a function of cell-cell distances 
were not significantly different between wild-type (n = 32,530 pairs, n = 2 retinas) and Amigo2 KO 
(n = 23,906 pairs, n = 2 retinas) mice. P = 0.54 by bootstrapping. 
Throughout the figure, ns indicates no significant differences for statistical comparisons. 
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