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Abstract
Boolean functions are characterized by the unique structure of their solution space. Some properties
of the solution space, such as the possible existence of a solution, are well sought after but difficult to
obtain. To better reason about such properties, we define transformations as functions that change
one Boolean function to another while maintaining some properties of the solution space. We explore
transformations of Boolean functions, compactly described as Boolean formulas, where the property
is to maintain is the number of solutions in the solution spaces. We first discuss general characteristics
of such transformations. Next, we reason about the computational complexity of transforming one
Boolean formula to another. Finally, we demonstrate the versatility of transformations by extensively
discussing transformations of Boolean formulas to “blocks,” which are solution spaces in which the
set of solutions makes a prefix of the solution space under a lexicographic order of the variables.
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1 Introduction

Boolean functions play an integral part in many areas in computer science, electrical engin-
eering and more [22, 11]. For example by abstracting properties of a system as a true/false
dichotomy, one can model such properties as a Boolean function where a positive (true)
output of that formula means that the property appears in the system. Typically every
Boolean function can be uniquely characterized by its solution space, also called a truth
table, which is a table that assigns the true/false output of the function for every possible
assignment to the Boolean inputs. Since the size of such a table can be very large, in
particular exponential in the number of variables, more compact representations of Boolean
functions are used, such as Boolean formulas, Karnaugh maps [15], and Boolean Decision
Diagrams (BDDs) [8]. Such compact representations, however, come at a cost since reasoning
about properties of the Boolean function such as whether a solution exists, or counting the
number of solutions, becomes a challenging problem. A question to ask, therefore, is whether
one can better reason about properties of a Boolean function by “transforming” the function
to a different Boolean function while still preserving some of the original properties.
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39:2 Transformations of Boolean Functions

In this work, we lay foundations for thematic exploration of such transformations of
Boolean functions. In our setting we use Boolean formulas to describe Boolean functions,
and the property of the solution space that we maintain is the number of solutions in the
solution space. In general, counting the number of solutions is a problem of great importance
[12, 5, 16], which is known to be a #P-hard problem [21] and there are numerous works,
both theoretical [20, 13] and applied [19, 17] that address this problem. In all this, the
structure of the solution space can play an important role in the attempts for obtaining
efficient counting [9, 7, 2].

In our formulation, transformations are quantified Boolean formulas that describe bijec-
tions between the output columns of solution spaces with the same number of variables.
Thus the result of applying such a transformation T to a Boolean formula ϕ is a Boolean
formula ψ with the same number of variables and same number of solutions as ϕ has.

This paper can be separated into three parts. In the first part we define transformations
and discuss properties of transformations such as closure under composition and the inverse
operation. We ask whether every pair of Boolean formulas with the same number of variables
always has an expressible, polynomially-sized transformation between them. We discuss this
in the second part and give an affirmative answer if the number of alternating quantifiers
is not limited. Moreover, we show that if the number of alternations is bounded then the
question is equivalent to the collapse of the polynomial hierarchy.

In the third part of the paper we present various transformations and combination of
transformations that demonstrate the versatility of our framework. For that, we focus on a
specific solution space structure called a “block,” in which the set of solutions form a prefix
of the solution space, under a lexicographic order of the variables. Boolean formulas with
such a block-type solution space– for example, chain formulas [9]– have efficient counting.
We describe several techniques to construct transformations that merge solutions together in
order to transform a solution space to a block. Specifically, we describe a method to, for
an arbitrary given Boolean formula ϕ, construct a transformation (possibly of exponential
size) that can transform ϕ to a block. We then present classes of transformations that
can transform certain specialized types of solution spaces into blocks. The transformations
in this part are “parameterized,” in the sense that there are certain parameters for the
transformations that are adjusted according to the given Boolean formula.

Finally, a divide-and-conquer approach for a solution is a general technique also used
in studies of Boolean functions [14, 10]. We show a transformation that can efficiently
transform specific Boolean formulas to a block by first finding transformations to blocks for
each sub-formula in a divide-and-conquer manner.

2 Preliminaries

A Boolean function f : {0, 1}n → {0, 1} is a function that assigns n input Boolean variables
{x1, · · · , xn} to a Boolean output 0 (false) or 1 (true). The solution space, also called a
truth table, of f is the explicit description of f as a table of a size 2n. A solution however is
an assignment ~σ for which f(σ) = 1. Thus the solution space of f contains solutions and
non-solutions.

Throughout this work, we generally assume that n is fixed and use ~x to denote a
sequence of n variables xn, · · · , x1. Moreover, we fix the order of the sequence of variables,
thus have a lexicographic order ≤lex on the truth assignments to ~x, where xn is the most
significant bit (msb) and x1 the least significant bit (lsb). We also define a function
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bin : {0, · · · , 2n − 1} → {0, 1}n that maps the integers 0 ≤ c ≤ 2n − 1 to their natural
encoding as a corresponding assignment to n variables (e.g. for n = 4, bin(3) = 0011), and
the corresponding inverse function | · | : {0, 1}n → {0, · · · , 2n − 1} (then |0011| = 3).

One compact description of a Boolean function f is by a Boolean formula ϕf (x1, · · ·xn)
that is satisfied exactly when f is 1. When f is obvious or irrelevant, we omit f from the
notation of ϕf . Every Boolean formula ϕ over n variables describes a unique solution space
of size 2n. The number of solutions to ϕ, i.e. the number of assignments that set ϕ to true
is denoted by #ϕ. The size of ϕ is defined as the length of ϕ and is denoted by |ϕ|. Two
Boolean formulas ϕ,ψ that describe the same Boolean function are called logically equivalent,
denoted ϕ ≡ ψ, and by definition such formulas have identical solution spaces.

In our settings, we also reason about partial solution spaces (also called subspaces). For
a solution space S, the partial solution S[σn, · · · , σi+1] of size 2i is obtained by assigning
σj ∈ {0, 1} to the variable xj for each j such that i+ 1 ≤ j ≤ n. We denote by

S[xn, · · · , xi+1] = {S[σn, · · · , σi+1] | (σn, · · ·σi+1) ∈ {0, 1}n−i}

the set of all solution spaces of size 2i obtained by fixing xn, · · ·xi+1 to every assignment.
When ~σ is a complete assignment for the variables xn · · ·x1, then S[~σ] denotes the value of
the assignment ~σ in S (i.e. true or false ). A null solution space is a solution space in which
all its assignments are valued to 0.

A block is a solution space whose set of solutions make a prefix under the fixed lexicographic
order ≤lex. That is, a (possibly partial) solution space S of size 2i is a block if, for every
pair of assignments ~σ, ~σ′ ∈ {0, 1}i where S[~σ] = 1 and ~σ′ ≤lex ~σ, it holds that S[~σ′] = 1. We
can also describe a block S by its output column as 1k02i−k for some positive integer k. In
this case, k is exactly the number of solutions in S. Finally for every 0 ≤ c ≤ 2n, we define
blockc to be the formula over n variables whose solution space is the block with c solutions.
That is, blockc(~x) ≡ (~x ≤lex bin(c)) ∧ (~x 6= bin(c)). Note that blockc can be written as a
Boolean formula (in particular, as a chain formula [9]). When obvious from the context we
sometimes refer to the formula blockc as a block with c solutions.

3 Definitions and properties

Given a function g : {0, 1}n → {0, 1}m for some integers n,m, we say that a quantified
Boolean formula F (~x, ~y) describes g if ~x (called the domain variables) is of size n, ~y (called
the range variables) is of size m, and for every assignments ~a,~b for ~x, ~y respectively we have
F (~a,~b) = true iff g(~a) = ~b.

We now define transformations as follows:

I Definition 1. A transformation T (~x, ~y) is a quantified Boolean formula over 2n free
variables that describes a bijection from {0, 1}n to {0, 1}n.

We assume without loss of generality that all transformations are described in a prenex
normal form. The size of a transformation T is the number of symbols in the underlying
QBF formula, denoted |T |. Although we allow arbitrary alternation of quantifiers in trans-
formations, one might consider restricting to transformations in ΣP

k (for some fixed k) in
order to limit the number of quantifier alternations and hence ease reasoning. In particular,
restricting to transformations in ΣP

1 (i.e. using only existential quantifiers), allows reasoning
on such transformations by using SAT solvers, while still maintaining some expressiveness,
e.g. by using “carry” bits as we see in Section 5.1. Unless mentioned otherwise, for the
rest of the paper we assume that all the Boolean formulas have n free variables and all
transformations have 2n free variables.

FSTTCS 2019
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x1 ∨ x3

0
1
0
1
1
1
1
1

XOR0,1,1

XOR0,1,1(x1 ∨ x3)
1
0
1
0
1
1
1
1

Figure 1 The truth tables of the formula x1∨x3 and of the result after applying the transformation
XOR0,1,1. Each truth table is given in lexicographic order from top (where x3 = x2 = x1 = 0) to
bottom (where x3 = x2 = x1 = 1).

We now define how to apply a transformation to a Boolean formula. Given a transforma-
tion T (~x, ~y) that describes a bijection g : {0, 1}n → {0, 1}n and a Boolean formula ϕ(~z) over
n free variables, we apply T to ϕ by constructing a new Boolean formula ApplyT,ϕ over n
free variables in which we identify the domain variables of T with the variables of ϕ:

ApplyT,ϕ(~y) ≡ ∃~x (T (~x, ~y) ∧ ϕ(~x)).

For convenience, we denote ApplyT,ϕ by T (ϕ). If ψ is a Boolean formula over n variables
and ψ ≡ T (ϕ), we say that T transforms ϕ into ψ. Note that we can also think of a
transformation as a function from Boolean formulas to Boolean formulas. Also notice that
T (ϕ) is a Boolean formula with n free variables whose solution space is resulted by applying
g (i.e., the bijection described by T ) to the solution space of ϕ. That is, ~a is a solution of ϕ if
and only if g(~a) is a solution of T (ϕ). Since g is a bijection, it follows that ϕ and T (ϕ) indeed
have the same number of solutions. Although transformations are defined over formulas,
to ease the reading we sometimes say that we apply transformations to a solution space,
in which case we mean that we apply the transformation to a formula with the mentioned
solution space.

I Example 2. The simplest transformation is the identity transformation id(~x, ~y) ≡
∧

i xi ↔
yi. For all Boolean formulas ϕ, id(ϕ) ≡ ϕ.

I Example 3. The transformation T1(x1, x2, y1, y2) ≡ (x1 ↔ y2) ∧ (x2 ↔ y1) is a transform-
ation over 4 free variables. When applied to a Boolean formula ϕ(x1, x2), T1 syntactically
switches between x1 and x2. That is, T1(ϕ(x1, x2)) ≡ ϕ(x2, x1).

I Example 4. For a given vector ~a ∈ {0, 1}n, the bijection that maps every ~b ∈ {0, 1}n to
~b⊕ ~a is represented by the XOR transformation:

XOR~a(~x, ~y) ≡
∧

i

(yi ↔ (xi ⊕ ai)).

Figure 1 describes an example of the XOR transformation.

3.1 Properties of transformations
We consider transformations as combinatorial objects that can be used to construct other,
more complicated transformations. For that, we describe a few simple algebraic properties of
transformations and then define the composition of two transformations.
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We begin by listing a few simple properties of transformations, which follow directly from
the fact that transformations describe bijections:

B Claim 5. Let T be a transformation and let ϕ and ψ be Boolean formulas. Then:
1. T (ϕ ∨ ψ) ≡ T (ϕ) ∨ T (ψ)
2. T (ϕ ∧ ψ) ≡ T (ϕ) ∧ T (ψ)
3. T (¬ϕ) ≡ ¬(T (ϕ))

We next consider compositions of transformations. Let T1 and T2 be transformations
that describe bijections g1 and g2. We define the composition of T1 and T2, denoted T2 ◦ T1,
to be a transformation that describes the composition of g1 and g2 (which is the bijection
g2 ◦ g1 that maps each ~a ∈ {0, 1}n to g2(g1(~a))). Note that composition can be described by
a simple syntactic construction of T2 ◦ T1 from T1 and T2 as the following claim shows.

B Claim 6. (T2 ◦ T1)(~x, ~y) ≡ ∃~z (T1(~x, ~z) ∧ T2(~z, ~y))

Naturally, we also have that for an arbitrary Boolean formula ϕ, applying T2 ◦ T1 to ϕ is
logically equivalent to applying T1 to ϕ followed by applying T2:

B Claim 7. (T2 ◦ T1(ϕ)) is logically equivalent to T2(T1(ϕ)).

Proof. We have that:

T2(T1(ϕ))(~z) ≡ ∃~y (T2(~y, ~z) ∧ T1(ϕ)(~y))
≡ ∃~y (T2(~y, ~z) ∧ ∃~x (T1(~x, ~y) ∧ ϕ(~x)))
≡ ∃~x (∃~y (T1(~x, ~y) ∧ T2(~y, ~z)) ∧ ϕ(~x)) ≡ (T2 ◦ T1)(ϕ)(~z) C

Notice that if T1 and T2 are both in ΣP
k for some k, then Claim 6 proves that their

composition T2 ◦ T1 is in ΣP
k as well. We will specifically use this fact for the merge-rotation

transformations described in Section 5.2 which are in ΣP
1 . A transformation constructed by

composition of many ΣP
1 transformations is also in ΣP

1 and so can still be reasoned about
with a SAT solver.

Along the same lines, we define the inverse transformation of a transformation T (that
describes a bijection g) to be a transformation T−1 that describes the inverse bijection g−1.
As with composition, there is a simple syntactic construction of T−1 from T by swapping
the domain and range variables:

B Claim 8. T−1(~x, ~y) ≡ T (~y, ~x)

Proof. Let g be the bijection described by T . Notice that for every assignment ~a and ~b to
~x and ~y we have that T (~b,~a) = true if and only if g(~b) = ~a, which occurs if and only if
g−1(~a) = ~b. Hence T (~y, ~x) indeed describes g−1. C

As a direct result from Claim 8, we get that the inverse transformation is indeed an
inverse under the composition operator as follows.

I Corollary 9. Let T be a transformation and ϕ be a Boolean formula. Then (T ◦T−1)(ϕ) ≡
(T−1 ◦ T )(ϕ) ≡ ϕ.

FSTTCS 2019
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4 Transformations and the polynomial hierarchy

In this work the transformations that we define do not affect the number of solutions of a
formula. In particular, if a transformation transforms a Boolean formula ϕ1 into ϕ2 then
the number of solutions of ϕ1 and ϕ2 must be the same. Perhaps surprisingly, the converse
is also true: if two Boolean formulas ϕ1 and ϕ2 over the same number of variables n have
the same number of solutions then there must be a transformation of size polynomial in
max{n, |ϕ1|, |ϕ2|} that transforms ϕ1 into ϕ2. We give this result as the following theorem.

I Theorem 10. There is a polynomial p : N3 → N such that, if ϕ1 and ϕ2 are two
Boolean formulas with n variables each and the same number of solutions, then there is a
transformation T of size no more than p(n, |ϕ1|, |ϕ2|) such that T (ϕ1) ≡ ϕ2.

Proof. For a given Boolean formula ϕ of n variables and an assignment {0, 1}n, let H1
ϕ(~a)

be the set of solutions strictly smaller, under ≤lex than ~a. That is H1
ϕ(~a) = {~c | ~c <lex

~a ∧ ϕ(~c) = 1}. Similarly, let H0
ϕ(~a) = {~c | ~c <lex ~a ∧ ϕ(~c) = 0} be the set of non-solutions

strictly smaller than ~a.
Now let L ⊆ {0, 1}n × {0, 1}n be the set of (~a,~b) ∈ {0, 1}n × {0, 1}n such that either:

(i) ϕ1(~a) = ϕ2(~b) = 1, and |H1
ϕ1

(~a)| = |H1
ϕ2

(~b)|, or; (ii) ϕ1(~a) = ϕ2(~b) = 0, and |H0
ϕ1

(~a)| =
|H0

ϕ2
(~b)|.

Since for an arbitrary ~a ∈ {0, 1}n and an arbitrary Boolean formula ϕ, both |H1
ϕ(~a)| and

|H0
ϕ(~a)| can be computed by using a single #P query, L belongs to P#P and consequently

to PSPACE. Therefore there is a polynomially-sized QBF formula T with 2n free variables
whose solution space is L.

Finally, recall that ϕ1 and ϕ2 have the same number of solutions. For every ~a ∈ {0, 1}n,
there is therefore exactly one ~b ∈ {0, 1}n such that (~a,~b) ∈ L. Thus T describes a bijection
and so T is indeed a transformation. Together with the fact that, by definition ϕ1(~a) = ϕ2(~b)
for every (~a,~b) ∈ L, we have that that T (ϕ1) ≡ ϕ2. J

The transformation T obtained by Theorem 10 may have arbitrarily nested quantifiers. A
natural question to ask is whether it is possible to generalize Theorem 10 while limiting the
number of alternating quantifiers. This leads us to the following conjecture, which restricts
the number of quantifier alternations to some k ≥ 1.

I Conjecture 1 (Transformation Conjecture at k). There is an integer k ≥ 1 and a polynomial
p : N3 → N such that, if ϕ1 and ϕ2 are two Boolean formulas with n variables each and
the same number of solutions, then there is a transformation T ∈ ΣP

k of size no more than
p(n, |ϕ1|, |ϕ2|) such that T (ϕ1) ≡ ϕ2.

As we next show via the following two lemmas, our conjecture is equivalent to open
unsolved questions in computational complexity.

We first generalize our proof of Theorem 10 to the restricted setting of the conjecture. In
order to obtain ΣP

k transformations, our proof requires the stronger, open assumption that
the polynomial hierarchy collapses at or before ΣP

k (in place of the fact used in Theorem 10
that P#P ⊆ PSPACE). We state this result as the following lemma.

I Lemma 11. For all k ≥ 1, if P#P ⊆ ΣP
k then the Transformation Conjecture at k holds.

Proof. Let Boolean formulas ϕ1 and ϕ2 be Boolean formulas over n variables each, with the
same number of solutions. Consider the language L ⊆ {0, 1}n × {0, 1}n defined in the proof
of Theorem 10. In particular, if P#P ⊆ ΣP

k then L belongs to ΣP
k . It follows that there is a

polynomially-sized ΣP
k formula T with 2n free variables whose solution space is L. Hence, as

in the proof of Theorem 10, T is a transformation and T (ϕ1) ≡ ϕ2. J
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We next show in Lemma 12 that on the other hand the Transformation Conjecture implies
that the polynomial hierarchy collapses at or before the level ΣP

k+4. Tightening the result to
prove the exact converse of Lemma 11, which would be that the Transformation Conjecture
implies the collapse of the polynomial hierarchy at or before ΣP

k , remains for future work.

I Lemma 12. For all k ≥ 1, if the Transformation Conjecture at k holds then P#P ⊆ ΣP
k+4.

Proof. Let p : N3 → N be the polynomial from the conjecture. It suffices to prove that,
given a Boolean formula ϕ over n variables and an index 1 ≤ i ≤ n+ 1, we can construct (in
polynomial time) a ΣP

k+4 Turing Machine M that takes ϕ and i as input and accepts if and
only if the i-th bit of #ϕ is 1. This decision problem is complete for P#P .

Our Turing Machine M first guesses a formula T ∈ ΣP
k (in prenex normal form) over 2n

variables and an integer 0 ≤ c ≤ 2n and makes a sequence of ΠP
k+3 queries to verify that: (1)

T is a transformation, (2) T transforms ϕ into a block with c solutions, and (3) the i-th bit
of c is 1. M accepts if and only if these three conditions hold for some guess T and c, where
T has size no more than p(n, |ϕ|, |blockc|) and 0 ≤ c ≤ 2n.

Intuitively, c is our verified guess of the number of solutions for ϕ, so that M can check if
the i-th bit of #ϕ is 1 just by consulting c. The transformation T is used to verify c.

The first property (that T is a transformation) can be verified by making a ΠP
k+3 query

followed by a ΠP
k+1 query:

α(T ) ≡ ∀~x ∃~y ∀~z (T (~x, ~z)↔ (~y = ~z))
β(T ) ≡ ∀~y ∃~x (T (~x, ~y)).

In particular, α(T ) evaluates to true if and only if T describes some function g, and β(T )
then evaluates to true if and only if g is invertible. Thus α(T ) and β(T ) together hold if and
only if T describes a bijection g, i.e. if and only if T is a transformation.

The second property (that T transforms ϕ into a block with c solutions) can be verified
by a single ΠP

k+1 query:

γ(T, c) ≡ ∀~x ∃~y (T (~x, ~y) ∧ (ϕ(~x)↔ blockc(~y)))

Recall from Section 2 that, for 0 ≤ c ≤ 2n, blockc(~x) ≡ (~x ≤ bin(c)) ∧ (~x 6= bin(c)) is the
Boolean formula whose solution space is a block with c solutions.

Finally, the third property (that the i-th bit of c is 1) can be verified simply by reading
the bits of c.

Since M makes a single polynomially-sized guess (of T and c) followed by three ΠP
k

queries, M is indeed a ΣP
k+4 Turing Machine. Since transformations preserve the number

of solutions and #blockc = c, then if M accepts it means that ϕ must have c solutions.
Moreover, if M accepts then the i-th bit of c is 1. Thus the i-th bit of #ϕ is indeed 1.
Conversely, consider the case where the i-th bit of #ϕ is 1. By the Transformation Conjecture
there exists a polynomially-sized transformation T ′ ∈ ΣP

k that transforms ϕ into block#ϕ.
Thus M will accept with T = T ′ and c = #ϕ. J

5 Transformations to blocks

In this section we give examples of how to use the transformations definitions and properties
defined in Section 3 to construct and combine various transformations in order to manipulate
the solution space to a specific structure. For that, we choose the structure of a block solution
space and we focus on a specific type of transformations that transform a given formula into
a block.

FSTTCS 2019



39:8 Transformations of Boolean Functions

In general, Boolean formulas with a block solution space, such as blockc or chain formulas
[9] have efficient counting by a simple binary-search method. To see this, assume that ϕ is a
formula with n variables and a block solution space. Then for every assignment ~σ to the
variables of ϕ, we have that ϕ(~σ) = 1 if and only if #ϕ ≥ |~σ|. Therefore #ϕ can be found
by at most n such queries. Thus we have that a hypothetical efficient transformation of a
given formula to a block can lead to efficient counting.

Moreover, in the setting of transformations, the following claim, which follows directly from
the transformation properties discussed in Section 3, shows that by exploring transformations
to blocks we can also get a better understanding on transformations between every two
formulas.

B Claim 13. Let ϕ1, ϕ2 be Boolean formulas with the same number of solutions, and with
transformations T1, T2 respectively to blocks . Then T−1

2 ◦ T1(ϕ1) ≡ ϕ2.

Proof. Assume that #ϕ1 = #ϕ2 = c. Then the transformations T1, T2 transform ϕ1 and ϕ2
respectively to a block of c solutions. Then T1(ϕ1) ≡ T2(ϕ2) ≡ blockc(~x). Then from the
transformation properties we have that T−1

2 (blockc(~x)) ≡ ϕ2, thus T−1
2 ◦ T1(ϕ1) ≡ ϕ2. C

We first describe a type of transformations, possibly of exponential size to the size of the
input, that can block any Boolean formula. These transformations are based on merging the
solutions in the solution space together. We then explore a different technique, more efficient
size-wise, of transformations, called merge-rotate that merges subspaces, that are already
blocks, into a single block. We show how by iterating the merge-rotate transformations we
can transform more sophisticated solution spaces to a block. Finally we demonstrate the
use of the iterative approach to efficiently transform a specific type of formulas that are
conjunction of two variable-disjoint sub-formulas, once their transformations to blocks are
found. The transformations that we describe here are “parameterized” in the sense that the
transformations use additional parameters that are depended on the given input formula.
Exploring so called “oblivious” transformations that do not have such parameters is left for
future work.

5.1 Transforming general formulas to blocks
A general description of a solution space S for every Boolean formula ϕ is as a sequence of
alternating intervals of all solutions and all non-solutions. That is, S = (1k10k2 · · · 1k`−10k`)
where 0 ≤ ki ≤ 2n for every i ≤ ` for some even `, and

∑
i ki = 2n. In this section, we show

a general ΣP
1 transformation, of size polynomial in max{`, n}, that blocks S.

For that, we first describe addition as a way to ”shift” whole intervals in a solution space.
Let ψ+,i(~y,~a,~b) be the following ΣP

1 formula:

∃z1 · · · ∃zi

¬z1 ∧
i∧

j=1
(yj ↔ aj ⊕ bj ⊕ zj) ∧

i−1∧
j=1

(zj+1 ↔ ((zj ∧ aj) ∨ (zj ∧ bj) ∨ (aj ∧ bj)))


The ~z variables represent the carry in the addition of the ~a and ~b variables. Recall

from Section 2 that | · | : {0, 1}n → {0, 1, · · · , 2n − 1} produces the n-bit positive integer
corresponding to an assignment. Then we have the following.

B Claim 14. For all integers 0 < i ≤ n and assignments ~y,~a,~b ∈ {0, 1}n, ψ+,i(~y,~a,~b) = true

if and only if |~y| = |~a|+ |~b| (mod 2i).
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Now let interval(c,d)(ϕ(x)) ≡ (bin(c) ≤lex ~x <lex bin(d)) be the formula that is true for
every assignment ~σ over the n variables for which |~σ| ∈ [c, d). Denote by k′i =

∑
h≤i kh the

last index of the i’th interval and set k′0 = 0. Then let Merge(k1,···k`)(~x, ~y) be the following
transformation:

Merge(k1,···k`)(~x, ~y) =
`/2−1∧
j=0

(
interval(k′2j

,k′2j+1)(~x)→ ψ+,n(~y, ~x, 2n −
∑

1≤h≤j

k2h)∧

interval(k′2j+1,k′2j+2)(~x)→ ψ+,n(~y, ~x,
∑

j<h<`/2

k2h+1)
)

Note that Merge(k1,···k`)(~x, ~y) is of size polynomial in max{`, n}.

B Claim 15. Let ϕ be a Boolean formula with a solution space described as S =
(1k10k2 · · · 1k`−10k`) where 0 ≤ ki ≤ 2n for all 0 ≤ i ≤ ` and

∑
i ki = 2n. Let k =∑`/2−1

i=0 k2i+1. Then Merge(k1,···k`) is a ΣP
1 transformation that transforms ϕ to the block

(1k02n−k).

Proof. The transformation Merge(k1,···k`) simply shifts the j-th odd interval (which are all 1)
to be the j-th interval in the lexicographic order by shifting the interval past all earlier
0 blocks, and the j-th even interval (which are all 0) to be the `/2 + j-th interval in the
lexicographic order by shifting the interval past all later 1 blocks. Thus all 0 blocks occur
lexicographically after all 1 blocks following the transformation. C

When ` is exponential in n, the size of Merge(k1,···k`) is exponential in n as well. In
Sections 5.2 and 5.3 we explore ways to maintain efficient size transformations for certain
solution spaces with an exponential number of intervals.

5.2 The merge-rotate transformation
We next turn our attention to a different technique of transformations to blocks called the
merge-rotate transformation. For merge-rotate we assume that a given solution subspace
B is “halved” into an “upper” subspace B0 and a “lower” subspace B1 that are already in
block forms. The transformation merge-rotate (as its name implies) rotates B0 in order to
merge its solutions with B1, then rotates the entire subspace B to turn B to a block. We
describe the merge-rotate technique, then see how to extend merge-rotate to an iterative
process that can handle more complicated solution spaces.

We start from the ψ+ formula, defined in Section 5.1, upon which we define the following
rotc transformation for a given integer 0 ≤ c < 2n.

I Definition 16. For given 0 ≤ c < 2n and 0 < i ≤ n, let rotc,i(~x, ~y) = ψ+,i(~y, ~x, bin(~c)) ∧∧n
j=i+1(xj ↔ yj).

By applying rotc,i to a Boolean formula ϕ we ”rotate” each subspace in S[xn, · · · , xi+1]
of size 2i of ϕ by c steps (mod 2i).

Next let σn, · · ·σi+1 be an assignment to xn, · · · , xi+1 and assume that the subspaces
B0 = S[σn, · · ·σi+1, 0] and B1 = S[σn, · · ·σi+1, 1] are already in block forms, with number
of solutions k and k′ respectively. The overall subspace B = S[σn, · · ·σi+1] has the form
(1k02i−1−k1k′02i−1−k′). We show how to use the rotation transformation on these blocks, to
transform the subspace B a block of the form (1k+k′02i−(k+k′)). For that, we need to restrict
the rotation only to B0 in order to merge the solutions of B0 and B1. We then use rotation
on the entire subspace B to rotate B to a block form.
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Figure 2 The transformation to blocks MergeRotate is a composition of two rot transformations.
Each solution subspace of the form B = (1k02i−1−k1k′02i−1−k′) is transformed on B0 by rot2i−1−k,i−1

and on B1 by the identity transformation to (02i−1−k1k+k′02i−1−k′) and then by rot2i−1−k,i to
(1k+k′02i−1−(k+k′)).

This results in the following transformation which we call MergeRotate, also depicted in
Figure 2. Note that id is the identity transformation as defined in Section 3.

I Definition 17. Let k, i ≤ n be given. The transformation MergeRotate is defined as:

MergeRotate(k, i) ≡ rot2i−1+k,i ◦ ((rot2i−1−k,i−1 ∧ ¬xi) ∨ (id ∧ xi))

Then we have the following claim, whose proof follows from the definition ofMergeRotate.

B Claim 18. Let B0 = S[σn, · · ·σi+1, 0] and B1 = S[σn, · · ·σi+1, 1] for some index i ≤ n and
(σn, · · ·σi+1) ∈ {0, 1}n−i. Assume that B0 and B1 are blocks of size k and k′ respectively.
Then the transformation MergeRotate(k, i) transforms B = S[σn, · · ·σi+1] to a block of
k + k′ solutions.

Note that k′, the number of solutions in B1, is not required for MergeRotate. Also note
that MergeRotate is in NP and in size polynomial to n.

We next give a technical lemma, which we make use of in Section 5.3, that shows that
when using MergeRotate we do not always need to have the rotation as the exact size of
the block of B0, as long as B1 is a null solution space.

I Lemma 19. Let B0 = S[σn, · · ·σi+1, 0] and B1 = S[σn, · · ·σi+1, 1] for some index i ≤ n

and (σn, · · ·σi+1) ∈ {0, 1}n−i. Assume that B0 is a block of size k′ and that B1 is a null
solution space (note that it means that the overall subspace B = (1k′02i−1−k′02i−1) is already
a block of k′ solutions). Then for every k′ ≤ k ≤ 2i−1 the transformation MergeRotate(k, i)
maintains B = S[σn, · · ·σi+1] as a block of k′ solutions.

Proof. Note that when applying MergeRotate, we first rotate only B0 by 2i−1 − k. This
results in a space B′ = (02i−1−k1k′0k−k′02i−1). Now the second rotation rotates B′ by
2i−1 + k which makes B′′ = (1k′0k−k′02i−102i−1−k) = (1k′02i−k′) as required. J
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1 . . . 1

k

0 . . . 0

2i − k

. . . 1 . . . 1

k

0 . . . 0

2i − k
m k-block subspaces

1 . . . 1

km

0 . . . 0

2i − km

0 . . . 0

2i

. . . 0 . . . 0

2i

2n−i −m− 1 null subspaces

Figure 3 The truth table of a k-block i-suffix-null solution space, given in lexicographic order
from left to right as described in Definition 20.

In the next sections we show where MergeRotate can be used iteratively to construct
transformations of polynomial size to blocks for formulas with a specific solution space
structure.

5.3 Iterating the merge-rotate transformations
Having defined the merge-rotate transformation, we would like to see how to use it to transform
more complex solution spaces, with possibly an exponential number of intervals, into blocks.
For that, a natural solution space that can demonstrate the iterative use of merge-rotate is
a solution space S where, for some integer 0 ≤ k ≤ 2i and every (σn, · · ·σi+1) ∈ {0, 1}n−1,
the subspace S[xn, · · ·xi+1] is a block of size k. In fact, we can make a somewhat stronger
statement on a more complicated solution space structure as defined below. This structure
also appears later in Section 5.4.

I Definition 20. For a given i ≤ n, and 0 ≤ k ≤ 2i, a solution space is said to be a k-block
i-suffix-null if there exists an integer 0 ≤ m ≤ 2n−i such that: (i) every solution space
S[σn, · · · , σi+1] where (σn, · · ·σi+1) >lex bin(m) is a null solution space; (ii) every solution
space S[σn, · · · , σi+1] where (σn, · · ·σi+1) <lex bin(m) is a block of size k; (iii) S[bin(m)] is
a block of size 0 ≤ km ≤ k.

Figure 3 depicts a k-block i-suffix-null solution space. Note that m can be 0 which
means that the entire solution space is null, or can be 2n−i in which all that the elements in
S[xn, · · ·xi+1] are k-blocks. Moreover, if i = n then S is a block of size k.

We next show how to construct a transformation composed of n− i merge-rotate trans-
formations in order to block a k-block i-suffix-null solution space. For given i < n and k < 2i,
let ItrMergeRotate(k, i) be the following transformation:

MergeRotate(2n−i−1k, n) ◦ · · · ◦MergeRotate(2j−1k, i+ j) ◦ · · · ◦MergeRotate(k, i+ 1)

We then have the following.

I Theorem 21. For a given i < n and k < 2i, let S be a k-block i-suffix-null solution space.
Then ItrMergeRotate(k, i) transforms S into a block.

Proof. We prove by induction that for every 0 ≤ j ≤ n−i, the solution space S after applying
the transformation MergeRotate(2j−1k, i+ j), is a (2jk)-block (i+ j)-suffix-null. It follows
after applying MergeRotate(2j−1k, i+ j) for j = n− i that S is an `-block n-suffix-null (for
some ` ≤ 2n−ik), i.e. S is a block.

In the base case j = 0 (i.e. before applying the first MergeRotate), S is by hypothesis a
k-block i-suffix-null solution space. Assume by induction that, for some 0 ≤ j ≤ n− i− 1
when applying ItrMergeRotate(k, i) on S, after MergeRotate(2j−1k, i+ j) we have that S
is a (2jk)-block (i + j)-suffix-null solution space. Then by definition, there is some m for
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which the subspace S[σn, . . . , σi+j+1] is a null block for every (σn, . . . , σi+j+1) >lex bin(m),
a block of size 2jk for every (σn, . . . , σi+j+1) <lex bin(m) and S[bin(m)] is a km block for
some km ≤ 2jk.

Now the transformationMergeRotate(2jk, i+j+1) is applied on S, as described in Defin-
ition 17, by merging and rotating the subspaces S[σn, . . . σi+j+2, 0] and S[σn, . . . σi+j+2, 1]
for every (σn, . . . σi+j+2) ∈ {0, 1}n−i−j−1. This makes four cases to consider:
1. (σn, . . . σi+j+2, 1) < bin(m). Then both S[σn, . . . σi+j+2, 0] and S[σn, . . . σn−i+j+2, 1] are

blocks of size 2jk, and therefore by Claim 18, applying MergeRotate(2jk, i + j + 1)
transforms S[σn, . . . σi+j+2] to a block of size 2j+1k.

2. (σn, . . . σi+j+2, 0) > bin(m). Then both S[σn, . . . σi+j+2, 0] and S[σn, . . . σn−i+j+2, 1] are
null, and therefore applying MergeRotate(2jk, i+ j + 1) maintains S[σn, . . . σi+j+2] null
as well.

3. (σn, . . . σi+j+2, 1) = bin(m). Then the subspace S[σn, . . . σi+j+2, 0] is a block of size 2jk,
while the subspace S[σn, . . . σi+j+2, 1] is a block of size km < 2jk. Then again by Claim
18, applying MergeRotate(2jk, i+ j + 1) transforms S[σn, . . . σi+j+2] to a block of size
2jk + km, where 2jk + km ≤ 2j+1k.

4. (σn, . . . σi+j+2, 0) = bin(m). Then the subspace S[σn, . . . σi+j+2, 0] is a block of size km,
while the subspace S[σn, . . . σi+j+2, 1] is a null block. Since km ≤ 2jk this case fits to the
conditions of Lemma 19. Therefore we get that S[σn, · · ·σi+j+2] is (still) a block of size
km ≤ 2j+1k.

That shows that applying MergeRotate(2jk, i + j + 1) on S in the j’th iteration of
ItrMergeRotate(k, i) transforms S to a 2j+1k-block (i+ j + 1)-suffix-null solution space as
required. J

In the next section we see how to make use of Theorem 21 when blocking specific
conjuncted Boolean formulas.

5.4 Transforming conjuncted variable-disjoint formulas
Having defined the iterated merge-rotate method, we finally demonstrate how to combine it
with existing transformations to blocks, in the specific formulation which we now describe.

I Theorem 22. Let ϕ be a Boolean formula such that ϕ = ϕ1 ∧ ϕ2 where ϕ1 and ϕ2 have
disjoint variables. Furthermore, assume that T1 and T2 are ΣP

1 transformations that transform
ϕ1 and ϕ2 respectively to blocks. Then there is a ΣP

1 transformation of size polynomial in
|T1|+ |T2|+ |ItrMergeRotate| that transforms ϕ to a block.

Proof. We denote the ϕ1 variables by xn . . . xi+1 for some i and the ϕ2 variables by xi . . . , x1.
We set an order on xn, . . . x1 where xn is the msb. Denote the number of solutions in ϕ1
by k1 and the number of solutions of ϕ2 by k2 (we can obtain the ki’s by performing the
transformations to blocks on ϕi’s and use binary search.). Note that every solution subspace
S[σn, . . . σi+1] of S[xn, . . . xi+1] is either null (when ϕ1(σn, . . . , σi+1) = 0) or is an identical
copy of the solution space of ϕ2 (when ϕ1(σn, . . . , σi+1) = 1).

We first apply T ′2 = T2 ∧
∧

j>i(xj ↔ yj) on ϕ. This effectively applies T2 to every copy of
the solution space of ϕ2 and so transforms every subspace of S[xn, . . . xi+1] that is not null
to a block of size k2. Next, we apply T ′1 = T1 ∧

∧
j≤i(xj ↔ yj) to T2(ϕ). This transforms

the solution space S to a k2-block i-suffix-null. Finally we make use of Theorem 21 and
apply ItrMergeRotate(k2, i) to transform S to a block. Thus the resulting composition
ItrMergeRotate(k2, i) ◦ T ′1 ◦ T ′2 is a transformation that transforms ϕ to a block. Moreover,
this composition is in ΣP

1 since all components are in ΣP
1 . J
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Theorem 22 shows that there are cases in which a divide-and-conquer approach, in the
sense of a syntactical decomposition of a Boolean formula into separate conjuncts, followed
by pursuing a transformation for each sub formula separately to a block, can lead to an
efficient transformation for the original formula to a block. This approach also follows recent
methods in decomposition of Boolean formulas, see for example [10].

6 Conclusion

The transformations that we explored in this work transform Boolean functions, described by
Boolean formulas, while maintaining the number of solutions. Manipulations of the structure
of the solution space through Boolean formulas were done before on various occasions. One
classical example in the theoretical setting is Sipser’s proof of BPP ⊆ ΣP

2 ∩ ΠP
2 [3] that

makes use of what we call the XOR transformation. In a more applied setting, the SAT
community uses transformations in an ad-hoc manner as preprocessing steps; although some
preprocessing techniques change the number of solutions, many techniques do not [4]. In
addition, in the area of approximate model counting, two very recent works [2, 7] suggest the
use of transformations to create a high degree of separation (in terms of Hamming distance)
between solutions in the solution space in order to improve practical approximate counting.
It would be interesting in future work to see how our work on transformations can be applied
with this goal. Finally, it is also worth mentioning a similar line of work that studies the
Formula Isomorphism Problem, which asks if there exists a bijection between variables such
that two Boolean formulas become equivalent [1, 6, 18].

To the best of our knowledge, this work is the first that formally defines and studies
the general concept of transformations of Boolean functions described as Boolean formulas.
Among the results that we presented here are not only takeaways on the computational com-
plexity limitations of using transformations, but also definitions, properties, and foundational
techniques that express the versatility and the usability in which transformations can be
used to combinatorially manipulate various solution spaces.
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