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Abstract
Watermarking is a way of embedding information in digital documents. Much research has been
done on techniques for watermarking relational databases and XML documents, where the process
of embedding information shouldn’t distort query outputs too much. Recently, techniques have been
proposed to watermark some classes of relational structures preserving first-order and monadic second
order queries. For relational structures whose Gaifman graphs have bounded degree, watermarking
can be done preserving first-order queries.

We extend this line of work and study watermarking schemes for other classes of structures. We
prove that for relational structures whose Gaifman graphs belong to a class of graphs that have
locally bounded tree-width and is closed under minors, watermarking schemes exist that preserve
first-order queries. We use previously known properties of logical formulas and graphs, and build on
them with some technical work to make them work in our context. This constitutes a part of the
first steps to understand the extent to which techniques from algorithm design and computational
learning theory can be adapted for watermarking.
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1 Introduction

Watermarking of digital content can be used to check intellectual property violations. The
idea is to embed some information, such as a binary string, in the digital content in such a
way that it is not easily apparent to the end user. If the legitimate owner of the digital content
suspects a copy to be stolen, they should be able to retrieve the embedded information, even
with limited access to the stolen copy, even if it has been tampered to remove the embedded
information. Here there are two opposing goals. One is to be able to embed large amount of
information. The other is to ensure that the embedding doesn’t distort the content too much.
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Table 1 EmployeeTable of Ex. 1.

(a) The original EmployeeTable.

FirstName City Salary

John Chennai 10,000
Arjun Coimbatore 20,000
Pooja Chennai 15,000
Neha Vellore 30,000
Padma Coimbatore 20,000

(b) A distorted EmployeeTable.

FirstName City Salary

John Chennai 10,001
Arjun Coimbatore 19,999
Pooja Chennai 14,999
Neha Vellore 30,000
Padma Coimbatore 20,001

There can be many ways to measure how much distortion is acceptable. In [1], embedding
is performed by flipping bits in numerical attributes while preserving the mean and variance
of all numerical attributes. There are other works that focus on the specific use of the digital
content: in [14], the digital content consists of graphs whose vertices represent locations and
weighted edges represent distance between locations. It is shown that information can be
embedded in such a way that the shortest distance between any two locations is not distorted
too much.

We study embedding information in relational databases such that the distortion on
query outputs is bounded.

I Example 1. The table EmployeeTable shown in Table 1(a) is an example of a database
instance of an organization’s record of employees.

Consider the following query parameterized by the variable x.

ψ(x) ≡ select FirstName,Salary from EmployeeTable where City=x

If we substitute the variable x with a particular city c, the above query lists the salaries of
individuals working in that city. Let total(c) be the sum of all salaries listed by the query
ψ(c). We want to hide data in EmployeeTable by distorting the Salary field. Let total′(c)
be the sum of all salaries listed by the query ψ(c) run on the distorted database. We say
that the distortion preserves the query ψ(x) if there is a constant B such that for any city c,
the absolute value of the difference between total(c) and total′(c) is bounded by B.

Assuming that we can distort each employee’s salary by at most 1 unit and we wish to
maintain the bound B to be 0, our options are the following: increase the salary of John
by 1 and decrease the salary of Pooja by 1 or vice-versa. Similarly for Arjun and Padma.
This gives us four different ways distort the data base. These distortions are designed to
preserve only the query ψ(x). If a different query is run on the same distorted databases, the
results may vary widely. Suppose the organization distributes the four distorted databases
among it’s branches. If a stolen copy of the database is found, the organization can run the
query ψ(x) on the stolen copy. By observing the salaries of John, Pooja, Arjun and Padma
and comparing them with the values from the original database, one can narrow down on
the branches where the leakage happened. The organization only needs to run the query
ψ(x) on the suspected stolen copy, just like any normal consumer of the database. This is
important since the entity possessing the stolen copy may not allow full access to its copy of
the database. We say a watermarking scheme is scalable if for larger databases, there are
larger number of ways to distort the database, while still preserving queries of interest.

In [13], meta theorems are proved regarding the existence of watermarking schemes for
classes of databases preserving queries written in classes of query languages. The Gaifman
graph of a database is a graph whose set of vertices is the set of elements in the universe
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of the database. There is an edge between two elements if the two elements participate in
some tuple in the database. For databases with unrestricted structures, even simple queries
can’t be preserved; see [13, Theorem 3.6] and [12, Example 3]. Preserving queries written
in powerful query languages and handling databases with minimum restrictions on their
structure are conflicting goals. For databases whose Gaifman graphs have bounded degree,
first-order queries can be preserved [13]. It is also shown that for databases whose Gaifman
graphs are similar to trees, MSO queries can be preserved. The similarity of a graph to a tree
is measured by tree-width. For example, XML documents are trees and have tree-width 1.

Contributions. We prove that watermarking schemes exist for databases whose Gaifman
graphs belong to a class of graphs that have locally bounded tree-width and is closed under
minors, preserving unary first-order queries. Classes of graphs with bounded degree are
contained in this class. A graph G has locally bounded tree-width if it satisfies the following
property: there exists a function f such that for any vertex v and any number r, the sphere
of radius r around v induces a subgraph on G whose tree-width is at most f(r).

Why first-order logic? The pivotal Codd’s theorem [3] states that first-order logic is
expressively equivalent to relational algebra, and relational algebra is the basis of standard
relational database query languages.

Why locally bounded treewidth? Classes of graphs with locally bounded treewidth are
good starting points to start using techniques from algorithm design and computational
learning theory in other areas. Seese [18] proved that first-order properties can be decided in
linear time for graphs of bounded degree. Baker [2] showed efficient approximation algorithms
for some specific hard problems, when restricted to planar graphs. Eppstein [7] showed
that Baker’s technique continues to work in a bigger class of graphs: it suffices for the class
of graphs to have locally bounded tree-width and additionally, the class should be closed
under minors. Frick and Grohe [9] showed that on any class of graphs with locally bounded
tree-width, any problem definable in first-order logic can be decided efficiently1. For problems
definable in first-order logic, the classes of graphs for which efficient algorithms exist was
then extended to bigger and bigger classes: excluded minors [8], locally excluded minors
[5], bounded expansion, locally bounded expansion [6] and nowhere dense [11]. It is now
known that nowhere dense graphs are the biggest class of graphs for which there are efficient
algorithms for first-order definable problems [6, 15, 11], provided some complexity theoretic
assumption are true. Results related to computational learning theory have been proved in
[12] for classes of graphs with locally bounded treewidth. Recently, similar results have been
proven for nowhere dense classes of graphs [17].

Why unary queries? Some of the techniques we have used are difficult to extend to non-
unary queries. Some technical details about this are discussed in the conclusion.

Related Works. The fundamental definitions of what it means for a watermarking scheme
to be scalable and preserving a query was given in [14]. It was shown in [14] that on weighted
graphs, scalable watermarking schemes exist preserving shortest distance between vertices.
The adversarial model was also introduced in [14], where the person possessing the stolen

1 Here, efficiency means fixed parameter tractability; see [9] for details.
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copy can introduce additional distortion to evade detection. It is shown in [14] that a
watermarking scheme for the non-adversarial model can be transformed to work for the
adversarial model, under some assumption about the quantity of distortion introduced by
the person trying to evade detection, and the amount of knowledge the person possesses.
Gross-Amblard [13] adapted these definitions for relational structures of any vocabulary and
any query written in Monadic Second Order (MSO) logic, and showed results about classes
of structures of bounded degree and tree-width. Gross-Amblard [13] also provided the insight
that existence of scalable watermarking schemes preserving queries from a certain language
is closely related to learnability of queries in the same language. We make use of this insight
in our work. Grohe and Turán [12] proved that MSO-definable families of sets in graphs of
bounded tree-width have bounded Vapnik-Chervonenkis (VC) dimension, which has well
known connections in computational learnability theory. It is also shown in [12] that on
classes of graphs with locally bounded tree-width, first-order definable families of sets have
bounded VC dimension.

2 Preliminaries

Relational databases. A signature (or database schema) τ is a finite set of relation symbols
{R1, . . . , Rt}. We denote by ri the arity of Ri for every i ∈ {1, . . . , t}. A τ -structure
G = (V,RG1 , . . . RGt ) (or database instance) consists of a set V called the universe, and an
interpretation RGi ⊆ V ri for every relation symbol Ri. For a fixed s ∈ N, a weighted structure
(G,W ) is a finite structure G together with a weight function W , which is a partial function
from V s to N, that maps a s-tuple b to its weight W (b).

First Order and Monadic Second Order Queries. An atomic formula is a formula of the
form x = y or R(x1, . . . xr), where x, y, x1 . . . xr are variables and R is an r-ary relational
symbol in τ . First-order (FO) formulas are formulas built from atomic formulas using the
usual boolean connectives and existential and universal quantification over the elements of
the universe of a structure.

Monadic Second Order (MSO) logic extends first-order logic by allowing existential
and universal quantifications over subsets of the universe. Formally, there are two types
of variables. Individual variables, which are interpreted by elements of the universe of a
structure, and set variables, which are interpreted by subsets of the universe of a structure. In
addition to the atomic formulas of first-order logic mentioned in the previous paragraph, MSO
has atomic formulas of the form X(x), saying that the element interpreting the individual
variable x is in the set interpreting the set variable X. Furthermore, MSO has quantification
over both individual and set variables.

The quantifier rank, denoted qr(ψ) of a formula ψ is the maximum number of nested
quantifiers in ψ. A free variable of a formula ψ is a variable x that does not occur in
the scope of a quantifier. The set of free variables of a formula ψ is denoted by free(ψ).
A sentence is a formula without free variables. We write ψ(x1, . . . , xr) to indicate that
free(ψ) ⊆ {x1, . . . , xr}. We denote the size of ψ by ||ψ||. We only work with formulas that
have free individual variables, but not free set variables. Given a vector x = 〈x1, . . . , xs〉 of
variables, a formula ψ(x) and a structure G, we denote by ψ(G) = {a ∈ V s | G |= ψ(a)} the
set of tuples of elements from the universe V of G that can be assigned to the variables x to
satisfy ψ(x).

Suppose ψ(x, y) is a formula with two distinguished vectors of free variables x of length
r and y of length s. We call ψ(x, y) a s-ary query with r parameters. Given a structure
G, we call ψ(a,G) = {b ∈ V s | G |= ψ(a, b)} the output of the query ψ(x, y) with parameter
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a. We refer to r (resp. s), the length of x (resp. y), as the input length (resp. the output
length) of ψ(x, y). Given a weighted structure (G,W ), a parametric query ψ(x, y) and a
parameter a, we extend the weight function W to weights of query outputs by defining
W (ψ(a,G)) = Σb∈ψ(a,G)W (b). For a given structure G and a query ψ(x, y), we define
U =

⋃
a∈V r ψ(a,G) to be the set of active tuples.

Watermarking schemes. Suppose c, d ∈ N. A weighted structure (G,W ′) is a c-local
distortion of another weighted structure (G,W ) if for all b ∈ V s, |W ′(b)−W (b)| ≤ c. The
weighted structure (G,W ′) is a d-global distortion of (G,W ) with respect to a query ψ(x, y)
if and only if, for all a ∈ V r, |W ′(ψ(a,G))−W (ψ(a,G))| ≤ d.

I Definition 2 ([14, 13]). Given a class of weighted structures K and a query ψ(x, y), a
watermarking scheme preserving ψ(x, y) is a pair of algorithmsM (called the marker) and
D (called the detector) along with a function f : N→ N and a constant d ∈ N such that:

The markerM takes as input a weighted structure (G,W ) ∈ K and a mark µ, which is
a bit string of length f(|U |), where U is the set of active tuples. It outputs a weighted
structure (G,Wµ) ∈ K such that (G,Wµ) is a 1-local and d-global distortion of (G,W )
for the query ψ(x, y).
The detector D is given (G,W ), the original structure as input and has access to an
oracle that runs queries of the form ψ(x, y) on (G,Wµ). The output of D is the hidden
mark µ.

Intuitively, the marker takes a bit string and hides it in the database by distorting weights.
The detector detects the hidden mark by observing the weights and comparing it with the
original weights. The term f(|U |) denotes the length of the bit string that is hidden in the
database by the marker. We call a watermarking scheme scalable if the function f grows at
least as fast as some fractional power asymptotically. For example, the scheme is scalable if
f(n) =

√
n for all n, but not scalable if f(n) = logn for all n. We will mention later why

scalability is important in situations where adversaries try to erase watermarks. Note that
the algorithm D interacts with the marked database (G,Wµ) only through ψ(x, y) queries.
Hence, it is not worthwhile distorting the weights of tuples that are not active.

Continuing Example 1, the query ψ(x) given there can be written in First-order as
(ψ(〈city〉, 〈name, salary〉) = EmployeeTable(name, city, salary). The set of active tuples
is U = {〈John, 10000〉, 〈Arjun, 20000〉, 〈Pooja, 15000〉, 〈Neha, 30000〉, 〈Padma,20000〉}. We
can increase the salary of John by 1 and decrease the salary of Pooja by 1 or vice-versa.
Similarly for Arjun and Padma. This gives 4 different distortions that are 1-local and 0-global.
The marker algorithm can take a mark, which is a bit string of length 2, so there are 4 possible
marks. The marker can assign these 4 marks to the 4 possible distortions. The detector can
observe the changes to the salaries by querying the distorted copy and comparing the results
with the original database. The detector can compute the hidden mark by accessing the
assignment of the 4 marks to the 4 possible distortions given by the marker. For any instance
database of this signature, we can pair off an employee of a city with another employee in
the same city and use one such pair to encode one bit of a watermark to be hidden. If there
are n active tuples, we can encode n

2 bits, assuming that there are at least two employees in
each city. For this watermarking scheme, the function f is defined as f(n) = n

2 and this is a
scalable scheme.

Watermarking schemes can also be put in a context where there are adversaries who
know that there is some hidden mark and try to prevent the detector algorithm from working
properly, by distorting the database further. Instead of the oracle running queries on (G,Wµ),
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the queries are run on (G,W ′µ), which is a distortion of (G,Wµ). The detector has to still
detect the hidden mark µ correctly. Under some assumptions about the quantity of distortion
between (G,Wµ) and (G,W ′µ), watermarking schemes that work in non-adversarial models
can be transformed to work in adversarial models; we refer the interested readers to [14, 13].
The correctness of such transformations depend on probabilistic arguments, where scalability
helps. With bigger watermarks that are hidden to begin with, there is more room to play
around with the distortions introduced by the adversaries.

3 Watermarking schemes

In this section, we prove that scalable watermarking schemes exist for some type of structures.
First we prove that if the Gaifman graphs belong to a class of graphs with bounded tree-width,
then scalable water marking schemes exist preserving unary MSO queries. Then we prove
that if the Gaifman graphs belong to a class of graphs that is closed under minors and that
has locally bounded tree-width, then scalable water marking schemes exist preserving unary
FO queries.

3.1 MSO Queries on Structures with Bounded Tree-width

3.1.1 Trees, Tree Automata and Clique-width

We begin by reviewing some concepts and known results that are needed.
A binary tree is a {S1, S2,�}-structure, where S1, S2 and � are binary relation symbols.

A tree T = (T, ST1 , ST2 ,�T ) has a set of nodes T , a left child relation ST1 and a right child
relation ST2 . Relation �T stands for the transitive closure of ST1 ∪ST2 , the tree-order relation.
Given a finite alphabet Σ, let τ(Σ) = {S1, S2,�} ∪ {Pa|a ∈ Σ} where for all a ∈ Σ, Pa is a
unary symbol. A Σ-tree is a structure T = (T, ST1 , ST2 ,�T , (P Ta )a∈Σ), where the restriction
(T, ST1 , ST2 ,�T ) is a binary tree and for each v ∈ T there exists exactly one a ∈ Σ such that
v ∈ P Ta . We denote this unique a by σT (v). Intuitively, this represents the labelling of nodes
by letters from Σ where σT (v) is the label for the node v. We consider trees with a finite
number of pebbles placed on nodes. The pebbles are considered to be distinct: pebble 1
on node v1 and pebble 2 on node v2 is not the same as pebble 1 on node v2 and pebble 2
on node v1. For some k ≥ 1, let Σk = Σ × {0, 1}k. This extended alphabet denotes the
position of the pebbles in the tree. Suppose T is a Σ-tree and k pebbles are placed on the
nodes v = 〈v1, . . . , vk〉. Then Tv is the Σk-tree with the same underlying tree as T and
σTv (u) = (σT (u), α1, . . . , αk) where αi = 1 if and only if u = vi.

A Σ-tree automaton is a tuple A = (Q, δ, F ) where Q is a set of states and F ⊆ Q are the
accepting states. The function δ : ((Q ∪ {∗})2 × Σ)→ Q is the transition function, where ∗
is a special symbol not in Q. A run ρ : T → Q of A on a Σ-tree T is a function satisfying
the following conditions.

If v is a leaf then ρ(v) = δ(∗, ∗, σT (v)).
If v has two children u1 and u2, then ρ(v) = δ(ρ(u1), ρ(u2), σT (v)).
If v has only a left child u then ρ(v) = δ(ρ(u), ∗, σT (v)).
Similarly if v has only a right child.

If v is the root of T , a run ρ of A on T is an accepting run if ρ(v) ∈ F . A Σ(r+s) tree
automaton defines a s-ary query with r parameters. We denote by A(a, T ) = {b ∈ T s |
A has an accepting run on Tab} the output of the query A on T with parameter a. It is well
known that MSO queries and tree automata have the same expressive power.
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Clique-width. A well-known notion of measuring the similarity of a graph to a tree is its
tree-width. Many nice properties of trees carry over to classes of structures of bounded
tree-width. For our purposes, we use clique-width, a related notion. It is well known that a
structure of tree-width at most k has clique-width at most 2k [4].

A k-colored structure is a pair (G, γ) consisting of a structure G and a mapping γ : V →
{1, . . . , k}. A basic k-colored structure is a k-colored structure (G, γ) where |V | = 1 and
RG = ∅ for all R. We let Γk be the smallest class of structures that contain all basic k-colored
structures and is closed under the following operations:

Union: take two k-colored structures on disjoint universes and form their union.
(i → j) recoloring, for 1 ≤ i, j ≤ k: take a k-colored structure and recolor all vertices
colored i to j.
(R, i1, . . . ir)-connecting, for every r ≥ 1, every r-ary relation symbol R and every
1 ≤ i1, . . . ir ≤ k: take a k-colored structure (G, γ) and add all tuples 〈v1, . . . vr〉 ∈ V r
with γ(vj) = ij for 1 ≤ j ≤ r to RG.

The clique-width of a structure G, denoted by cw(G), is the minimum k such that there
exists a k-coloring γ : V → {1, . . . k} such that (G, γ) ∈ Γk.

For every k-colored structure (G, γ) ∈ Γk we can define a binary, labeled parse-tree in a
straightforward way. The leaves of this tree are the elements of G labeled by their color, and
each inner node is labeled by the operation it corresponds to. A parse-tree (also called a
clique decomposition) of a structure G of clique-width k is a parse tree of some (G, γ) ∈ Γk.
For the next lemma, it is important to note that if T is a parse-tree for a structure G, then
V ⊆ T .

I Lemma 3 ([12, Lemma 16]). Let k ≥ 1. For every MSO formula ϕ(x) there is a MSO
formula ϕ̃(x) such that for every structure G of clique-width k and for every parse-tree T of
G we have ϕ(G) = ϕ̃(T ). Furthermore, there are constants c, d (only depending on k and
the signature τ) such that ||ϕ̃|| ≤ c||ϕ|| and qr(ϕ̃) ≤ qr(ϕ) + d.

3.1.2 Watermarking Schemes to Preserve MSO Queries on Structures
With Bounded Tree-width

Now we prove that there are scalable watermarking schemes that work for structures from
classes with bounded tree-width and preserve a given MSO query. At a high level, the idea
is the following: the given MSO query is converted to an equivalent tree automaton. If the
number of active elements is large compared to the number of states in the automaton, we
can select pairs of elements that can’t be distinguished by the automaton. Either both the
elements are in the output of the query or none of them are. Hence, distorting one of them
by a positive amount and the other one by a negative amount will not contribute to the
global distortion.

We begin with the following lemma, which says that if a tree automaton runs on a
large tree, we can find large number of pairs of nodes that are “similar” with respect to the
automaton. Some of the proofs have been skipped here due to space constraints; they can
be found in the full version. A similar result is proved and used in [12] to show that MSO-
definable families of sets in graphs of bounded tree-width have bounded Vapnik-Chervonenkis
(VC) dimension. The similarity of the following result with that of [12] hints at some possible
connections between watermarking schemes and VC dimension.
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I Lemma 4. Let A be a Σr+1 tree automaton with m states. Let T be a Σ tree. Suppose
Y ⊆ T is a set of nodes of T with at least 2mm+2 elements2. Then, there exists n = b |Y |

4mm+4c
pairwise disjoint sets of nodes V1, V2, . . . , Vn ⊆ T and pairs (bi, b′i) ∈ (Vi∩Y )2 of distinct nodes
for all i ∈ {1, . . . , n} satisfying the following property: for every a = 〈a1, a2, . . . , ar〉 ∈ T r
and every i ∈ {1, . . . , n}, if {a1, a2, . . . , ar}∩Vi = ∅ then the runs of A on Tabi

and Tab′
i
label

the tree roots with the same state.

The following result is proved in [13], but the proof in that paper used a variant of
Lemma 4 whose proof has an error. We give a proof with a different constant factor.

I Theorem 5. Suppose K is a class of structures with bounded clique-width. Suppose ψ(x, y)
is a unary MSO query of input length r, where all the free variables are individual variables.
Then, there exists a scalable watermarking scheme preserving ψ(x, y) on structures in K.

Proof. Suppose G is a structure in K, so it has bounded clique-width. From Lemma 3, we
get an MSO formula ψ̃(x, y), which can be interpreted on clique decompositions of G to
get the same effect as interpreting ψ(x, y) on G. We then get an automaton A equivalent
to ψ̃(x, y). Let U be the set of active tuples of G for the query ψ(x, y). Now we apply
Lemma 4, setting T to be a clique decomposition of G and Y to be the set of active
tuples U . We get n pairs (b1, b′1), (b2, b′2), . . . , (bn, b′n), where n is a constant fraction of
|U |. Given a weight function W for G and a mark µ : {0, 1}n, we define the new weight
function W ′ as follows. We set (W ′(bi),W ′(b′i)) = (W (bi) + 1,W (b′i) − 1) if µ(i) = 0 and
(W ′(bi),W ′(b′i)) = (W (bi)− 1,W (b′i) + 1) if µ(i) = 1. For all other elements, W ′ is same as
W . The modified weight function W ′ has local distortion bounded by 1 by construction. The
detector can recover the bits of the mark µ by querying the original and distorted databases
and noting the differences in weights assigned to active tuples by W and W ′. We will show
that it has global distortion bounded by r, the input length of ψ(x, y).

Suppose a = 〈a1, a2, . . . , ar〉 is used as input parameter to the query ψ(x, y) on G and
(bi, b′i) is a pair selected from a set Vi as in Lemma 4. If {a1, . . . , ar} ∩ Vi = ∅, then the runs
of A on Tabi

and Tab′
i
end in the same state. Hence, bi ∈ ψ(a,G) iff b′i ∈ ψ(a,G). This means

that either both bi and b′i are in ψ(a,G) or both of them are absent. Hence, the distortion on
bi, b

′
i cancel each other, provided {a1, . . . , ar} ∩ Vi = ∅. Hence, a pair (bi, b′i) may contribute

to the global distortion only when {a1, . . . , ar}∩Vi 6= ∅. Since all the Vi are mutually disjoint
and there are at most r elements in {a1, . . . , ar}, the global distortion is at most r. J

Since bounded tree-width implies bounded clique-width, the above result also holds for
classes of structures with bounded tree-width.

3.2 FO Queries on Minor Closed Structures with Locally Bounded
Tree-width

In this section, we consider structures whose Gaifman graphs belong to a class of graphs
that has bounded local tree-width and is closed under minors. We prove that scalable
watermarking schemes exist preserving unary first-order queries. We use concepts and
techniques from [12] where it is proved that in similar classes of graphs, sets definable by
unary first order formulas have bounded VC dimension. It is observed in [12] that this result
extends to non-unary formulas. For this extension, [12] uses a generic result from model

2 A similar result is stated in [13] with 4m elements, but there is an error in the proof; see the full version
for details.



A. Chattopadhyay and M. Praveen 36:9

theory that deals with VC dimension and doesn’t use Gaifman graphs. So far, there are no
such generic results about watermarking schemes yet. We have not yet found ways to extend
our results on watermarking to non-unary queries.

3.2.1 Gaifman’s Locality and Locally Bounded Tree-width
First we review some concepts and known results that we use. Given a structure G =
(V,RG1 , . . . , RGt ), its Gaifman graph is the undirected graph (V,E), where (v1, v2) ∈ E if
there is a relation Ri in G and a tuple v ∈ Ri such that v1 and v2 appear in v. The
distance between two elements, denoted d(., .), in a structure is defined to be the shortest
distance between them in the Gaifman graph. The distance between two tuples of elements
v1, v2 is d(v1, v2) = min{d(v1, v2) | v1 ∈ v1, v2 ∈ v2}. Given v ∈ V , ρ ∈ N, the ρ-sphere
Sρ(v) is the set {v′ | d(v, v′) ≤ ρ}, and for a tuple v, Sρ(v) =

⋃
v∈v Sρ(v). We define the

ρ-neighborhood around a tuple v to be the structure Nρ(v) induced on G by Sρ(a). The
equivalence relation ≈ρ on tuples of elements is defined as a ≈ρ b if Nρ(a) ≈ Nρ(b) (where ≈
denotes isomorphism).

A formula ψ is said to be local if there is a number ρ ∈ N such that for every G and
tuples v1 and v2 of G, Nρ(v1) ≈ Nρ(v2) implies G |= ψ(v1) ⇐⇒ G |= ψ(v2). This value ρ is
then called the locality radius of ψ. Gaifman’s theorem states that every first-order formula
is local. We often annotate a formula ψ with its locality rank r and write it as ψ(r) for the
sake of explicitness. Furthermore, d>r(v1, v2) is a first-order formula enforcing the distance
between v1 and v2 to be at least r + 1.

I Theorem 6 (Gaifman’s locality theorem [10]). Every First Order formula ϕ(x) is equivalent
to a Boolean combination of the following:

local formulas ψ(ρ)(x) around x and
sentences of the form

χ = ∃x1, . . . , xs

 s∧
i=1

α(ρ)(xi) ∧
∧

1≤i<j≤s
d>2ρ(xi, xj)

 .

Furthermore,
The transformation from ϕ to such a Boolean combination is effective;
If qr(ϕ) = q and n is the length of x, then ρ ≤ 7q, s ≤ q + n.

The (q, k)-type of v in G, denoted by tpGq (v), is the set of all first-order formulas
ϕ(x1, . . . , xk) of quantifier rank at most q such that G |= ϕ(v). A (q, k)-type is a maximal
consistent set of first-order formulas ϕ(x1, · · ·xk) of quantifier rank at most q. Equivalently,
a (q, k)-type is the (q, k)-type of some k-tuple v in some structure G. For a specific (q, k),
there are only finitely many (q, k) types. The number of such types is denoted by t(q, k).

We get the following as a corollary of Gaifman’s locality theorem.

I Corollary 7. Let q ∈ N and ρ = 7q. Let G be a structure and a, a′ ∈ V r, b, b′ ∈ V s such
that tpGq (a) = tpGq (a′), tpGq (b) = tpGq (b′), d(a, b) ≥ 2ρ + 1 and d(a′, b′) ≥ 2ρ + 1. Then
tpGq (a, b) = tpGq (a′, b′).

Locally Bounded Tree-width. We say that a class of structures K has locally-bounded
tree-width if there exists a function f : N→ N such that given any G ∈ K, any v ∈ V and
any r ∈ N, the tree-width of Nr(x) is at most f(r).
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Next we recall some properties of class of graphs closed under minors. An edge contraction
is an operation which removes an edge from a graph while simultaneously merging the two
vertices it used to connect. A graph H is a minor of a graph G if a graph isomorphic to H
can be obtained from G by contracting some edges, deleting some edges and deleting some
isolated vertices. A class K of graphs is said to be closed under minors if for every graph G
in K and every minor H of G, H is also in K.

Suppose a class of graphs K is closed under minors and has locally bounded tree-width
(the class of planar graphs is an example). Let G be a graph in K and let v be an arbitrary
vertex in G. For i ≥ 0, let Li be the set of all vertices of G whose shortest distance from v

is i. For any i, r, the subgraph induced by ∪rj=1Li+j on G has tree-width that depends only
on r. See the full version for a proof of this. This idea has been used to design approximation
algorithms for hard problems [2, 7].

3.2.2 Watermarking Schemes to Preserve FO Queries on Minor Closed
Classes with Locally Bounded Tree-width

Now we prove that there exist watermarking schemes that preserve unary FO queries on
classes of structures that are closed under minors and that have locally bounded tree-width.
We use Gaifman’s locality theorem on the FO query and consider the constituent local
queries. Answer to local queries only depend on local neighborhoods of the structure, which
have bounded tree-width. We can run automata on them and proceed as in the previous
section. We have to be careful that queries run on overlapping neighborhoods don’t interfere
with each other.

Let K be a class of structures whose Gaifman graphs belong to a class of graphs with
locally bounded tree-width and that is closed under minors, let G be a structure in K and let
ψ(x, y) be a unary first-order query. Let q be the rank of ψ(x, y) and let ρ be its locality radius.
Suppose U ⊆ V is the set of active elements for the query ψ(x, y). Let c ∈ U be an active
element such that the set Uc = {b ∈ U | tpGq (b) = tpGq (c)} has the maximum cardinality. Due
to our choice of c, we get |Uc| ≥ |U |

t(q,r+1) (recall that r is the length of x and t(q, r+ 1) is the
possible number of (q, r+ 1)-types). We will show that there is a number l that is a constant
fraction of |U | such that we can hide any mark µ ∈ {0, 1}≤l. Given a weight functionW for G
and a mark µ ∈ {0, 1}l, we select l pairs of elements (b1, b′1), (b2, b′2), . . . , (bl, b′l) from Uc and
define the new weight function Wµ as follows: (Wµ(bi),Wµ(b′i)) = (W (bi) + 1,W (bi)− 1) if
µ(i) = 1 and (Wµ(bi),Wµ(b′i)) = (W (bi)−1,W (bi)+1) if µ(i) = 0. For all other elements,Wµ

is same as W . The new weight function is a 1-local distortion of the old one by construction.
The difficulty is to ensure that the global distortion is bounded by a constant. We overcome
this difficulty by ensuring that bi and b′i cannot be distinguished by the query ψ(x, y): for
almost all a ∈ V r, bi ∈ ψ(a,G) iff b′i ∈ ψ(a,G). The following lemma suggests how to select
such pairs.

I Lemma 8. Suppose ψ(x, y) is a query and ψ(ρ)
1 (x, y), ψ(ρ)

2 (x, y), . . . , ψ(ρ)
α (x, y) are the local

formulas given by Theorem 6 (Gaifman’s locality theorem). Suppose G is a structure and
a ∈ V r, b, b′ ∈ V are such that G |= ψ

(ρ)
i (a, b) iff G |= ψ

(ρ)
i (a, b′) for every i ∈ {1, 2, . . . , α}.

Then b ∈ ψ(a,G) iff b′ ∈ ψ(a,G).

Now our goal is to select a large number of pairs (b, b′) from Uc such that they cannot be
distinguished by any local query ψ(ρ)

i (x, y), as assumed in Lemma 8. Let us fix some k ≥ 1
and apply Lemma 3 to every local query ψ(ρ)

i (x, y). We get a MSO formula ψ̃i(x, y) such
that for every structure G′ with a parse tree T of clique-width at most k, ψ(ρ)

i (G′) = ψ̃i(T ).
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L0 L1 Li+2jθ+j Li+2(j+1)θ+j+1

v
θ layers θ layers θ layers θ layers

Bθ(Li+2jθ+j) Bθ(Li+2(j+1)θ+j+1)

Figure 1 Division of Gaifman’s graph of G into Bands and layers.

Our next goal is to identify substructures of G with bounded clique-width. Since we are
considering structures of bounded local tree-width, any neighborhood of G of bounded radius
has bounded tree-width, hence bounded clique-width.

For the MSO formulas ψ̃1(x, y), ψ̃2(x, y), . . . , ψ̃α(x, y), let A1, A2, . . . , Aα be the corres-
ponding tree automata. Let A be the tree automaton obtained by applying the usual product
construction to A1, A2, . . . , Aα and let m be the number of states in A.

We pick some element v ∈ V arbitrarily from the universe of G, let L0 = {v}, and then
define the layer Li to be the elements of G which are at a distance exactly i from v. This
divides the graph into layers L0, L1, L2, . . .. For a layer Lj , define the band B2ρ(Lj) to be the
union of the layers Lj−2ρ, Lj−2ρ+1, . . . , Lj , . . . , Lj+2ρ−1, Lj+2ρ. Intuitively, B2ρ(Lj) consists
of the layer Lj , 2ρ layers to the left of Lj and 2ρ layers to the right. Let θ = (2(r + 1) + 2)ρ
and define the band Bθ(Li) in an analogous way. For 0 ≤ i ≤ 2θ, define Li to be the set of
layers {Li, Li+2θ+1, Li+4θ+2, . . .} = {Li+2jθ+j | j ≥ 0}. Since there are 2θ + 1 such sets, it
must be the case that there is some Li such that |Uc∩ (∪Li)| ≥ |Uc|

2θ+1 . We denote by Y1, Y2 . . .

the layers in this ∪Li in increasing order of their distance from L0. If v is any element in Lj ,
then S2ρ(v) ⊆ B2ρ(Lj). Notice that by construction, B2ρ(Yi)∩B2ρ(Yj) = ∅ = Bθ(Yi)∩Bθ(Yj)
for any i 6= j. Refer to Fig. 1 for a visual representation of the bands. The layer L0 is
represented by the single vertex v. The layers Li+2jθ+j , Li+2(j+1)θ+j+1 are represented by
solid vertical lines. Other layers are represented by vertical lines that are grayed out.

In the sequence of layers that we obtained, let Y ′1 , Y ′2 , . . . Y ′γ be those that contain at
least 2mm + 2 elements from Uc. Let Y ′′1 , Y ′′2 , . . . , Y ′′δ be the layers that contain less than
2mm+2 elements from Uc. Let v′′1 , v′′2 , . . . , v′′δ be arbitrarily chosen elements of Y ′′1 , Y ′′2 , . . . , Y ′′δ
respectively that are in Uc (we may ignore a particular Y ′′i if it does not contain any elements
of Uc in it). We will use the set of pairs M1 = {(v′′1 , v′′2 ), . . . , (v′′δ−1, v

′′
δ )} for watermarking.

Next we select watermarking pairs from the layers Y ′1 , Y ′2 , . . . Y ′γ . For each layer Y ′i , let
Ni be the substructure induced by the band Bθ(Y ′i ). This is a band of width 2θ + 1, so its
tree-width and hence clique-width (say k) depends only on 2θ+1, which in turn depends only
on the locality radius ρ and the input length r. Now we can apply Lemma 4 with the tree
automaton A and the parse tree T of Ni of clique width at most k, setting Y = Y ′i ∩Uc. We
get pairs (b(i,1), b

′
(i,1)), (b(i,2), b

′
(i,2)), . . . , (b(i,n), b

′
(i,n)), where n = b |Y

′
i ∩Uc|

4mm+4 c. We will use the
set of pairs M2 = ∪i ∪j {(b(i,j), b′(i,j))} also for watermarking. Again note that all elements
in the pairs are in Uc.

I Lemma 9. Suppose a watermarking pair (v′′i , v′′(i+1)) ∈ M1 consists of elements from
Y ′′i , Y

′′
(i+1) respectively. If the tuple a = 〈a1, . . . , ar〉 is such that {a1, . . . , ar} ∩ (B2ρ(Y ′′i ) ∪

B2ρ(Y ′′(i+1))) = ∅, then v′′i ∈ ψ(a,G) iff v′′(i+1) ∈ ψ(a,G).

I Lemma 10. Suppose a watermarking pair (b, b′) ∈M2 was selected from some set Vj (as
specified in Lemma 4) of some band Ni. If a = 〈a1, . . . , ar〉 is such that {a1, . . . , ar}∩Vj = ∅,
b ∈ ψ(a,G) iff b′ ∈ ψ(a,G).

FSTTCS 2019



36:12 Query Preserving Watermarking Schemes for Locally Treelike Databases

Y ′i

b

b′

2ρ 2ρ
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2ρ
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2ρ

Cj−1

2ρ
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2ρ
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2ρ
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a1 in these regions 2ρ2ρ

a2 in these regions and outside

Figure 2 The regions C1, . . . , Cr+1 and a1, a2 used in Case III of the proof of Lemma 10.

Proof.
Case I: {a1, . . . , ar} ∩B2ρ(Y ′

i ) = ∅. In this case, since b, b′ are both on the layer Y ′i , we
have Sρ(a) ∩ (Sρ(b) ∪ Sρ(b′)) = ∅. Hence we can apply Corollary 7 to infer the result.

Case II: Sρ(a) ⊆ B(2(r+1)+2)ρ(Y ′
i ). In this case, Sρ(abb′) ⊆ B(2(r+1)+2)ρ(Y ′i ) = Bθ(Y ′i ).

We selected (b, b′) according to Lemma 4, with the tree automaton A running on a parse
tree of Ni. Since the tree automaton runs all the automata A1, A2, . . . , Aα simultaneously,
we infer that Ni |= ψ

(ρ)
j (a, b) iff Ni |= ψ

(ρ)
j (a, b′) for every j ∈ {1, 2, . . . , α}. Since

Sρ(abb′) ⊆ Bθ(Y ′i ), the substructure induced on Ni by Sρ(abb′) is isomorphic to the
substructure induced on G by Sρ(abb′). Since ψ(ρ)

j (x, y) is a local formula around x, y
with locality radius ρ, we infer that Ni |= ψ

(ρ)
j (a, b) iff G |= ψ

(ρ)
j (a, b) and Ni |= ψ

(ρ)
j (a, b′)

iff G |= ψ
(ρ)
j (a, b′) for every j ∈ {1, 2, . . . , α}. Hence, G |= ψ

(ρ)
j (a, b) iff G |= ψ

(ρ)
j (a, b′) for

every j ∈ {1, 2, . . . , α}. We can now apply Lemma 8 to infer the result.
Case III: {a1, . . . , ar} ∩B2ρ(Y ′

i ) 6= ∅ and {a1, . . . , ar} 6⊆ B(2(r+1)+2)ρ(Y ′
i ). In this

case, some elements of a may be within distance 2ρ from b, b′. Some elements of a
may be quite far and their ρ neighborhoods may not be included in Bθ(Y ′i ). We divide
Bθ(Y ′i )\B2ρ(Y ′i ) into r+1 regions C1, C2, . . . Cr+1. Define C1 = B4ρ(Y ′i )\B2ρ(Y ′i ), C2 =
B6ρ(Y ′i ) \B4ρ(Y ′i ), etc. Since there are r + 1 such regions, and only r parameters in a,
there is a region, say Cj that doesn’t contain any elements of a. Let a1 be the tuple of
elements of a that are in B2ρ(Y ′i ) ∪ C1 ∪ · · · ∪ Cj−1 and let a2 consist of the remaining
elements of a. Note that Sρ(a1bb

′) ∩ Sρ(a2) = ∅ (since the region Cj is of width 2ρ,
a1bb

′ are on the inside of this band and a2 are on the outside). Refer to Fig. 2 for a
visual presentation of a1, a2. The layer Y ′i is represented by a solid vertical line, in which
b, b′ are highlighted. Other layers are represented by vertical lines that are grayed out.
Boundaries of regions are represented by dashed vertical lines. Each region consists of
2ρ layers on the left and 2ρ layers on the right. Since the layer Cj doesn’t contain any
elements of a, it acts as a buffer between Sρ(a1bb

′) and Sρ(a2).
Let the structure H1 be an isomorphic copy of Ni (which is the substructure induced
by Bθ(Y ′i )). Since H1 consists of 2θ + 1 layers, the tree-width and hence clique-width of
H1 depends only on 2θ + 1. Let H2 be a disjoint union of at most r spheres of radius
at most 2rρ, containing an isomorphic copy of Nρ(a2) (details of constructing H2 are
in the full version). The clique-width of H2 also depends only on r and ρ. Let H be
the disjoint union of H1 and H2. For the elements a1bb

′ in Ni, the isomorphism with
H1 will give corresponding elements in H1; let h(a1bb

′) be these corresponding elements.
Similarly, let h(a2) be the elements in H2 corresponding to a2 in Nρ(a2). Let T be a
parse tree of Ni (and so of H1) and T ′ be a parse tree of H2 of minimum clique-widths,
with k being the maximum of these two widths. We obtain a parse tree T ′′ of H of
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clique-width at most k by making T and T ′ as subtrees of a new root labeled by the
union operation. We selected b, b′ according to Lemma 4 with the tree automaton A

and parse tree T . We infer that the automaton A labels the roots of Th(a1b) and Th(a1b′)
with the same state. Hence, the automaton A labels the roots of T ′′h(a1ba2) and T ′′h(a1b′a2)
with the same state (note that h(a1bb

′) are in T while h(a2) are in T ′). Hence, we
infer that H |= ψ

(ρ)
j (h(a), h(b)) iff H |= ψ

(ρ)
j (h(a), h(b′)) for every j ∈ {1, 2, . . . , α}. The

substructure induced on G by Sρ(abb′) is isomorphic to the substructure induced on H by
Sρ(h(abb′)). Since ψ(ρ)

j (x, y) is a local formula around x, y with locality radius ρ, we infer
that H |= ψ

(ρ)
j (h(a), h(b)) iff G |= ψ

(ρ)
j (a, b) and H |= ψ

(ρ)
j (h(a), h(b′)) iff G |= ψ

(ρ)
j (a, b′).

Hence, G |= ψ
(ρ)
j (a, b) iff G |= ψ

(ρ)
j (a, b′) for every j ∈ {1, 2, . . . , α}. We can now apply

Lemma 8 to infer the result. J

The technique of considering a small number of layers to get graphs of bounded tree-width
was known before [2, 7]. Here, we find ways of using it to bound global distortions and
that is the main technical contribution of this paper. Now we state the main result of this
sub-section.

I Theorem 11. Suppose K is a class of structures whose Gaifman graphs belong to a class
of graphs that is closed under minors and have locally bounded tree-width. Suppose ψ(x, y)
is a unary first-order query of input length r. Then, there exists a scalable watermarking
scheme preserving ψ(x, y) on structures in K.

Proof idea. Every pair in M1 ∪M2 can hide one bit in the database and |M1 ∪M2| is a
constant fraction the size of the set of active tuples, as shown in the full version. For a given
parameter a, a pair (b, b′) ∈ M1 ∪M2 contributes to global distortion only if a intersects
with some spheres around (b, b′), as proved in Lemma 9 and Lemma 10. The spheres are
mutually disjoint, so a can intersect with at most r spheres. Hence the global distortion is
bounded by r. J

4 Conclusion

In [14], there is a transformation of watermarking schemes for non-adversarial models into
schemes for adversarial models, under some assumptions. As observed in [13], the same
transformation under similar assumptions also work for MSO and FO queries. Hence, our
result on FO queries can also use a similar transformation to work on adversarial models.

The difficulty with non-unary queries is that Gaifman graphs don’t capture information
about active tuples – even if two elements b1, b2 appear in the same active tuple, the Gaifman
graph may not have an edge between b1 and b2. The results on VC dimension use powerful
results from model theory [19] or versions of finite Ramsey theorem for hyper graphs [16].
It remains to be seen whether similar results are true for watermarking schemes. It also
remains to be seen if the condition on closure under minors can be dropped and watermarking
schemes can still be obtained, as shown for VC dimension in [12].

Beginning with graphs of bounded degree, it is now known that for the much bigger class
of graphs that are nowhere dense, FO properties can be efficiently decided. It remains to be
seen whether results on watermarking schemes can be extended to the class of graphs that
are nowhere dense.

We don’t know if there are deeper connections between bounded VC dimension and
presence of scalable watermarking schemes preserving queries. Some progress is made in [13],
where it is shown that unbounded VC dimension doesn’t necessarily mean absence of scalable
watermarking schemes, but more work is needed in this direction.
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