
Taming the Complexity of Timeline-Based
Planning over Dense Temporal Domains
Laura Bozzelli
University of Napoli “Federico II”, Napoli, Italy

Angelo Montanari
University of Udine, Udine, Italy

Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

Abstract
The problem of timeline-based planning (TP) over dense temporal domains is known to be undecidable.
In this paper, we introduce two semantic variants of TP, called strong minimal and weak minimal
semantics, which allow to express meaningful properties. Both semantics are based on the minimality
in the time distances of the existentially-quantified time events from the universally-quantified
reference event, but the weak minimal variant distinguishes minimality in the past from minimality
in the future. Surprisingly, we show that, despite the (apparently) small difference in the two
semantics, for the strong minimal one, the TP problem is still undecidable, while for the weak
minimal one, the TP problem is just PSPACE-complete. Membership in PSPACE is determined
by exploiting a strictly more expressive extension (ECA+) of the well-known robust class of Event-
Clock Automata (ECA) that allows to encode the weak minimal TP problem and to reduce it to
non-emptiness of Timed Automata (TA). Finally, an extension of ECA+(ECA++) is considered,
proving that its non-emptiness problem is undecidable. We believe that the two extensions of ECA
(ECA+ and ECA++), introduced for technical reasons, are actually valuable per sé in the field of TA.

2012 ACM Subject Classification Computing methodologies→ Planning under uncertainty; Theory
of computation → Quantitative automata

Keywords and phrases Timeline-based planning, timed automata, event-clock automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.34

1 Introduction

Timeline-based planning (TP for short) is a promising approach to real-time temporal planning
and reasoning about executions under uncertainty [10, 11, 13, 14, 15, 16]. Compared to
classical action-based temporal planning [17, 28], TP adopts a more declarative paradigm
which focuses on the constraints that sequences of actions have to fulfil to reach a given goal.
In TP, the planning domain is modeled as a set of independent, but interacting, components,
each one identified by a state variable. The temporal behaviour of a single state variable
(component) is described by a sequence of tokens (timeline) where each token specifies a
value of the variable (state) and the period of time during which it takes that value. The
overall temporal behaviour (set of timelines) is constrained by a set of synchronization rules
that specify quantitative temporal requirements between the time events (start-time and
end-time) of distinct tokens. Synchronization rules have a very simple format: either trigger
rules, expressing invariants and response properties (for each token with a fixed state, called
trigger, there exist some tokens satisfying some mutual temporal relations), or trigger-less
ones, expressing goals (there exist some tokens satisfying some mutual temporal relations).
Notice that the way in which requirements are specified by synchronization rules corresponds
to the “freeze” mechanism in the well-known timed temporal logic TPTL [1], which uses the
freeze quantifier to bind a variable to a specific temporal context (a token in the TP setting).

© Laura Bozzelli, Angelo Montanari, and Adriano Peron;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248562257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

TP has been successfully exploited in a number of application domains, including space
missions, constraint solving, and activity scheduling (see, e.g., [4, 9, 12, 18, 23, 25]). A
systematic study of expressiveness and complexity of TP has been undertaken only very
recently in both the discrete-time and the dense-time settings [5, 6, 20, 21].

In the discrete-time case, the TP problem is EXPSPACE-complete, and expressive
enough to capture action-based temporal planning (see [20, 21]). Despite the simple format of
synchronization rules, the shift to a dense-time domain dramatically increases expressiveness
and complexity, depicting a scenario which resembles that of the well-known timed linear
temporal logics MTL and TPTL, under a pointwise semantics, which are undecidable in
the general setting [1, 26]. The TP problem in its full generality is indeed undecidable [6],
and undecidability is caused by the high expressiveness of trigger rules (if only trigger-less
rules are used, the TP problem is just NP-complete [8]). Decidability can be recovered by
imposing suitable syntactic/semantic restrictions on the trigger rules. In particular, two
restrictions are considered in [5]: (i) the first one limits the comparison to tokens whose start
times follow the start time of the trigger (future semantics of trigger rules); (ii) the second
one imposes that a non-trigger token can be referenced at most once in the timed constraints
of a trigger rule (simple trigger rules). Under these two restrictions, the TP problem is
decidable with a non-primitive recursive complexity [5] and can be solved by a reduction
to model checking of Timed Automata (TA) [2] against MTL over finite timed words, the
latter being a known decidable problem [27]. By removing either the future semantics or
the simple trigger rule restrictions, the TP problem turns out to be undecidable [6, 7].

Our Contribution. In this paper, without imposing any syntactic restriction to the format
of synchronization rules, we investigate an alternative semantics for the trigger rules in the
dense-time setting, which turns out to be still quite expressive and relevant for practical
applications, and has the main advantage of guaranteeing a reasonable computational
complexity. In the standard semantics of trigger rules, if there are many occurrences of
non-trigger tokens carrying the same specified value, say v, nothing forces the choice of a
specific occurrence. For instance, if the trigger token represents a prompt and the v-valued
token is a reaction to it, the chosen v-valued token is not guaranteed to be the first one
after issuing the prompt. In a reactive context, one is in general interested in relating an
issued prompt to the first response to it and not to an arbitrarily delayed one. A similar idea
is exploited by Event-Clock Automata (ECA) [3], a well-known robust subclass of Timed
Automata(TA) [2]. In ECA, each symbol a of the alphabet is associated with a recorder or
past clock, recording (at the current time) the time elapsed since the last occurrence of a,
and a predicting or future clock, measuring the time required for the next occurrence of a.

The alternative semantics of trigger rules is based on the minimality in the time distances
of the start times of existentially quantified tokens in a trigger rule from the start time of
the trigger token. In fact, the minimality constraint can be used to express two alternative
semantics: the weak minimal semantics, which distinguishes minimality in the past, with
respect to the trigger token, from minimality in the future, and the strong minimal semantics,
which considers minimality over all the start times (both in the past and in the future).
Surprisingly, this apparently small difference in the definitions of weak and strong minimal
semantics leads to a dramatic difference in the complexity-theoretic characterization of the TP
problem: while the TP problem under the strong minimal semantics is still undecidable, the
TP problem under the weak minimal semantics turns out to be PSPACE-complete (which
is the complexity of the emptiness problem for TA and ECA [2, 3]). PSPACE membership
of the weak minimal TP problem is shown by a non-trivial exponential-time reduction to

L. Bozzelli, A. Montanari, and A. Peron 34:3

non-emptiness of TA. To handle the trigger rules under the weak minimal semantics, we
exploit, as an intermediate step in the reduction, a strictly more expressive extension of
ECA, called ECA+. This novel extension of ECA is obtained by allowing a larger class of
atomic event-clock constraints, namely, diagonal constraints between clocks of the same
polarity (past or future) and sum constraints between clocks of opposite polarity. In [19],
these atomic constraints are used in event-zones to obtain symbolic forward and backward
analysis semi-algorithms for ECA, which are not guaranteed to terminate. We show that,
similar to ECA, ECA+ are closed under language Boolean operations and can be translated
in exponential time into equivalent TA with an exponential number of control states, but a
linear number of clocks. We also investigate an extension of ECA+, called ECA++, where the
polarity requirements in the diagonal and sum constraints are relaxed, and we show that the
nonemptiness problem for such a class of automata is undecidable. We believe that these
two original extensions of ECA, namely, ECA+ and ECA++, are interesting per sé, as they
shed new light on the landscape of event-clock and timed automata.

The paper is organized as follows. In Section 2, we recall the TP framework and we
introduce the strong and weak minimal semantics. In Section 3, we prove that the TP problem
under the strong minimal semantics is still undecidable. In Section 4, we introduce and
address complexity and expressiveness issues for ECA+ and ECA++. Moreover, by exploiting
the results for ECA+, we prove PSPACE-completeness of the weak minimal TP problem.
Conclusions provide an assessment of the work done and outline future research themes.

2 The TP Problem

In this section, we recall the TP framework as presented in [15, 20] and we introduce the
strong and weak minimal semantics. In TP, domain knowledge is encoded by a set of state
variables, whose behaviour over time is described by transition functions and constrained by
synchronization rules. We fix the following notation. Let N be the set of natural numbers,
R+ the set of non-negative real numbers, and Intv the set of intervals in R+ whose endpoints
are in N∪ {∞}. Given a finite word w over some alphabet (or, equivalently, a finite sequence
of symbols), |w| denotes the length of w and for all 0 ≤ i < |w|, w(i) is the i-th letter of w.

I Definition 1. A state variable x is a triple x = (Vx, Tx, Dx), where Vx is the finite domain
of the variable x, Tx : Vx → 2Vx is the value transition function, which maps each v ∈ Vx to
the (possibly empty) set of successor values, and Dx : Vx → Intv is the constraint function
that maps each v ∈ Vx to an interval.

A token for a variable x is a pair (v, d) consisting of a value v ∈ Vx and a duration d ∈ R+
such that d ∈ Dx(v). For a token t = (v, d), value(t) denotes the first component v of t.
Intuitively, a token for x represents an interval of time where the state variable x takes
value v. The behavior of the state variable x is specified by means of timelines which are
non-empty sequences of tokens π = (v0, d0) . . . (vn, dn) consistent with the value transition
function Tx, that is, such that vi+1 ∈ Tx(vi) for all 0 ≤ i < n. We associate to the i-th token
(0 ≤ i ≤ n) of the timeline π two punctual events: (i) the start point whose timestamp (start
time), denoted by s(π, i), is 0 if i = 0, and is given by

∑i−1
h=0dh otherwise, and (ii) the end

point whose timestamp (end time), denoted by e(π, i), is given by e(π, i) := s(π, i) + di.
Given a finite set SV of state variables, a multi-timeline of SV is a mapping Π assigning

to each state variable x ∈ SV a timeline for x.

I Example 2. Assume to have transactions (e.g database transactions) accessing a common
shared resource A for read/write operations. The resource A can be unlocked (unA),
read_locked (r_lA) or write_locked (w_lA). A state variable xA = (VA, TA, DA) with

FSTTCS 2019

34:4 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

unA

(0,∞)
r_lA

(m,M)
w_lA

(m,M)

iK

(0,∞)
rlK

(0, Tout)
wlK

(0, Tout)

ruK

(m,M)
wuK

(m,M)

Figure 1 State variables xA and xK .

VA = {unA, r_lA, w_lA} is used to describe the availability/locking of the resource during
time. The value transition function TA is represented as a graph in Figure 1 (left). Each
node is labelled by a value v and by the constraint DA(v). The constants m and M are
lower and upper bound, respectively, for the durations of read/write locking.
A state variable xK = (VK , TK , DK), with K ranging over transaction names, describes
the read/write locking requests issued by transaction K for the use of the resource A. A
transaction can be idle (iK), issuing a read or write lock for accessing the resource (rlK
or wlK , resp.), or reading or writing the resource (ruK or wuK , resp.). Therefore we have
VK = {iK , rlK , wlK , ruK , wuK}. An issued lock request can be accepted allowing the use of
the resource or refused. There is a timeout Tout for waiting the availability of the resource.
The value transition and constraint functions TK and DK are depicted in Figure 1 (right).

Synchronization rules. Fix a finite set SV of state variables. Multi-timelines of SV can
be constrained by a set of synchronization rules, which relate tokens, possibly belonging to
different timelines, through temporal constraints on the start/end-times of tokens (point
constraints) and on the difference between start/end-times of tokens (difference constraints).
The synchronization rules exploit an alphabet Σ of token names to refer to the tokens along
a multi-timeline, and are based on the notions of atom and existential statement.

An atom is either a clause of the form ev(o) ∈ I (point atom), or of the form ev(o) −
ev′(o′) ∈ I (difference atom), where o, o′ ∈ Σ, I ∈ Intv, and ev, ev′ ∈ {s, e}. Intuitively, an
atom ev(o) ∈ I asserts that the ev-time (i.e., the start-time if ev = s, and the end-time
otherwise) of the token referenced by o is in the interval I, while an atom ev(o)− ev′(o′) ∈ I
requires that the difference between the ev-time and the ev′-time of the tokens referenced by o
and o′, respectively, is in I. Formally, an atom is evaluated with respect to a Σ-assignment λΠ
for a given multi-timeline Π of SV which is a mapping assigning to each token name o ∈ Σ a
pair λΠ(o) = (π, i) such that π is a timeline of Π and 0 ≤ i < |π| (intuitively, (π, i) represents
the token of Π referenced by the name o). An atom ev(o) ∈ I (resp., ev(o)− ev′(o′) ∈ I) is
satisfied by λΠ if ev(λΠ(o)) ∈ I (resp., ev(λΠ(o))− ev′(λΠ(o′)) ∈ I).

An existential statement E is a statement of the form E := ∃o1[x1 = v1] · · · ∃on[xn = vn].C,
where C is a conjunction of atoms, oi ∈ Σ, xi ∈ SV , and vi ∈ Vxi for each i = 1, . . . , n. The
elements oi[xi = vi] are called quantifiers. A token name used in C, but not occurring in any
quantifier, is said to be free. Intuitively, the quantifier oi[xi = vi] binds the name oi to some
token in the timeline for variable xi having value vi. A Σ-assignment λΠ for a multi-timeline
Π of SV satisfies E if each atom in C is satisfied by λΠ, and for each quantified token name
oi, λΠ(oi) = (π, h) where π = Π(xi) and the h-th token of π has value vi. A multi-timeline
Π of SV satisfies E if there exists a Σ-assignment λΠ for Π which satisfies E .

L. Bozzelli, A. Montanari, and A. Peron 34:5

I Definition 3. A synchronization rule R for the set SV of state variables has the forms
(trigger rule) o0[x0 = v0]→ E1 ∨ E2 ∨ . . . ∨ Ek, (trigger-less rule) > → E1 ∨ E2 ∨ . . . ∨ Ek,
where o0 ∈ Σ, x0 ∈ SV , v0 ∈ Vx0 , and E1, . . . , Ek are existential statements. In trigger rules,
the quantifier o0[x0 = v0] is called trigger, and it is required that only o0 may appear free in
Ei (for i = 1, . . . , k). For trigger-less rules, it is required that no token name appears free.

Intuitively, a trigger o0[x0 = v0] acts as a universal quantifier, which states that for
all the tokens of the timeline for the state variable x0 having value v0, at least one of the
existential statements Ei must be true. Trigger-less rules simply assert the satisfaction of
some existential statement. Formally, the standard semantics of the synchronization rules is
defined as follows. A multi-timeline Π of SV satisfies a trigger-less rule R of SV if Π satisfies
some existential statement of R. Π satisfies a trigger rule R of SV with trigger o0[x0 = v0]
if for every position i of the timeline Π(x0) for x0 such that Π(x0)(i) = (v0, d), there is an
existential statement E of R and a Σ-assignment λΠ for Π such that λΠ(o0) = (Π(x0), i) and
λΠ satisfies E . Trigger-less are usually exploited to express initial conditions or the goals of
the problem. Trigger rules are useful to specify invariants and response requirements.

I Example 4. With reference to Example 2, we introduce synchronization rules to guarantee
that the shared resource A is accessed in mutual exclusion during writing. We first define
some shorthand for expressing conjunctions of atoms where o and o are token names:

during(o, o) := s(o) − s(o) ∈ [0,∞) ∧ e(o) − e(o) ∈ [0,∞) requires that the token
referenced by o occurs during the token referenced by o;
overlap(o, o) := e(o)− s(o) ∈ (0,∞) ∧

∧
ev∈{s,e} ev(o)− ev(o) ∈ (0,∞) asserts that the

o’s token does not start before the o’s token and crosses the end point of the o’s token.

The following first pair of trigger-less rules fix the initial conditions: the resource A is
initially unlocked and each transaction K is idle. The next trigger rule ensures that when a
transaction K reads the resource A, the resource is locked for reading. The last trigger rule
requires that when K writes A, there is a write locking token of A having the same temporal
window as the K-token.
> → ∃o[xA = unA]. s(o) ∈ [0, 0] and > → ∃o[xK = iK]. s(o) ∈ [0, 0];
o0[xK = ruK]→ ∃o[xA = r_lA].during(o, o0);
o0[xK = wuK]→ ∃o[xA = w_lA].during(o, o0) ∧ during(o0, o).

The two trigger rules above ensure the mutual exclusion among reads and writes of the
resource A by the same transaction K. The following rules are added to guarantee mutual
exclusion when distinct transactions K and H write A, i.e. we have to ensure that K and H
do not feature tokens of value wuK and wuH , respectively, with the same temporal window.

o0[xK = wuK]→
∨
s∈{iH ,wlH ,rlH}

(
∃o[xH = s].during(o, o0) ∨ ∃o[xH = s].during(o0, o)∨

∃o[xH = s].overlap(o0, o) ∨ ∃o[xH = s].overlap(o, o0)
)
.

Minimal semantics of trigger rules. In the following we define the variant of the semantics
for trigger rules newly proposed and investigated in this paper. It is obtained from the
standard semantics by additionally requiring that the given Σ-assignment λΠ selects for
each (existential) quantifier o[x = v] a token for variable x with value v whose start point
has a minimal time distance from the start point of the trigger. Actually, the constraint of
minimality can be used to express two alternative semantics: the weak minimal semantics
which distinguishes minimality in the past (w.r.t. the trigger token) from the minimality in
the future, and the strong minimal semantics which considers minimality over all the start
times (both in the past and in the future) of the tokens for a variable x and x-value v.

FSTTCS 2019

34:6 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

I Definition 5. Let o0 ∈ Σ. A Σ-assignment λΠ for a multi-timeline Π of SV is weakly
minimal w.r.t. o0 if for each o ∈ Σ with λΠ(o) = (π, i), the following holds:

minimality in the past: if s(π, i) ≤ s(λΠ(o0)) then there is no position ` along the timeline
π such that value(π(i)) = value(π(`)) and s(π, i) < s(π, `) ≤ s(λΠ(o0)).
minimality in the future: if s(π, i) ≥ s(λΠ(o0)) then there is no position ` along the
timeline π such that value(π(i)) = value(π(`)) and s(π, i) > s(π, `) ≥ s(λΠ(o0)).

A Σ-assignment λΠ for Π is strongly minimal w.r.t. o0 if for each o ∈ Σ with λΠ(o) =
(π, i), there is no position ` along the timeline π such that value(π(i)) = value(π(`)) and
|s(π, `)− s(λΠ(o0))| < |s(π, i)− s(λΠ(o0))|.

The weak minimal (resp., strong minimal) semantics of the trigger rules is obtained from
the standard one by imposing that the considered Σ-assignment λΠ is weakly minimal (resp.,
strongly minimal) w.r.t. the trigger token o0.

Note that we consider start points of tokens for expressing minimality. Equivalent
semantics can be obtained by considering end points of tokens instead.

With reference to Example 4, we observe that, due to the constraints during and overlap,
the weak minimal semantics for the considered trigger rules corresponds to the standard one.

Domains and plans. A TP domain D = (SV,R) is specified by a finite set SV of state
variables and a finite set R of synchronization rules modeling their admissible behaviors. A
weak (resp., strong) minimal plan of D is a multi-timeline of SV satisfying all the rules in R
under the weak (resp., strong) minimal semantics of trigger rules. The weak (resp. strong)
minimal TP problem is checking given a domain D, whether there is a weak (resp. strong)
minimal plan of D. We also consider the discrete-time versions of the previous problems,
where the durations of the tokens in a plan are restricted to be natural numbers.
I Assumption 6 (Strict time monotonicity). In the following, for simplifying the technical
presentation of some results, without loss of generality, we assume that given a state variable
x = (Vx, Tx, Dx), the duration of a token for x is never zero, i.e., for each v ∈ Vx, 0 /∈ Dx(v).

3 Undecidability of the strong minimal TP problem

In this section, we establish the negative result for the strong minimal semantics by a
polynomial-time reduction from the halting problem for Minsky 2-counter machines [24].
The key feature in the reduction is the possibility to express for a given value v, a temporal
equidistance requirement w.r.t. the start point of the trigger token for the start points of the
last token before the trigger with value v and the first token after the trigger with value v.

I Theorem 7. The strong minimal TP problem is undecidable even in the discrete-time
setting.

Proof. A nondeterministic Minsky 2-counter machine is a tuple M = (Q, qinit, qhalt,∆),
where Q is a finite set of (control) locations, qinit ∈ Q is the initial location, qhalt ∈ Q is
the halting location, and ∆ ⊆ Q × L × Q is a transition relation over the instruction set
L = {inc, dec, zero_test} × {1, 2}. For a transition δ = (q, op, q′) ∈ ∆, we define from(δ) := q,
op(δ) := op, and to(δ) := q′. Without loss of generality we assume that:

for each transition δ ∈ ∆, from(δ) 6= qhalt and to(δ) 6= qinit, and
there is exactly one transition in ∆, denoted δinit, having as source location qinit.

An M -configuration is a pair (q, ν) consisting of a location q ∈ Q and a counter valuation
ν : {1, 2} → N. A computation of M is a non-empty finite sequence (q1, ν1), . . . , (qk, νk) of
configurations such that for all 1 ≤ i < k, there is some instruction opi = (tagi, ci) ∈ L, so

L. Bozzelli, A. Montanari, and A. Peron 34:7

that (qi, opi, qi+1) ∈ ∆ and: (i) νi+1(c) = νi(c) if c 6= ci; (ii) νi+1(ci) = νi(ci) + 1 if tagi = inc;
(iii) νi+1(ci) = νi(ci) − 1 and νi(ci) > 0 if tagi = dec; and (iv) νi+1(ci) = νi(ci) = 0 if
tagi = zero_test. The halting problem is to decide whether for a machine M , there is a
computation starting at the initial configuration (qinit, νinit), where νinit(1) = νinit(2) = 0,
and leading to some halting configuration (qhalt, ν) (it was proved to be undecidable in [24]).
To prove Theorem 7 we construct a TP instance DM = (SVM , RM) such that M halts iff
there exists a strong minimal discrete-time plan for DM .

We exploit a state variable xM for encoding the evolution of the machine M and
additional state variables for checking that the values of counters in the timeline for xM
are correctly updated. The domain VM of the state variable xM is given by VM := V∆ ×
{1L, 1R, 2L, 2R, [L,]L, [R,]R} where V∆ is the set of pairs (δ′⊥, δ), where δ′⊥ ∈ ∆∪{⊥}, δ ∈ ∆,
and to(δ′⊥) = from(δ) if δ′⊥ 6= ⊥, and δ = δinit otherwise. Intuitively, in the pair (δ′⊥, δ), δ
represents the transition currently taken by M from the current non-halting configuration C,
while δ′⊥ is ⊥ if C is the initial configuration, and δ′ represents the transition exploited by
M in the previous computational step otherwise.

A configuration C = (q, ν) of M is encoded by the timelines πC (configuration codes) of
length 9 for the state variable xM illustrated in the following figure, where v ∈ V∆ (called
V∆-value of πC) is of the form (δ′⊥, δ) such that from(δ) = q. Note that the configuration

(v, 1L) (v, [L)

ν(1) + 1

(v, 2L)

1

(v,]L)

ν(2) + 1

(v, [R)

1

(v, 2R)

1

(v,]R)

ν(2) + 1

(v, 1R)

1

(vnew, 1L)

ν(1) + 1

Left Part Right Part

code πC is subdivided in two parts. In the left part (resp., right part), the encoding of
counter 1 (resp., 2) precedes the encoding of counter 2 (resp., 1). The value ν(1) of counter 1
is encoded by the duration, which is ν(1) + 1, of the counter token with value marked by
1L in the left part, and the counter token with value marked by 1R in the right part, and
similarly for counter 2. The four tokens with values marked by [L,]L, [R, and]R, respectively,
are called tagged tokens and their duration is always 1: they are used to check by trigger
rules (under the strong minimal semantics) that increment and decrement M -instructions
are correctly encoded. Moreover, we require that the configuration code πC satisfies the
following additional requirement (V∆-requirement), with v = (δ′⊥, δ) and δ = (q, op, q′):

vnew = v if to(δ) = qhalt, and vnew is of the form (δ, δ′′) otherwise (consecution);
if δ = δinit then the counter tokens have duration 1;
if op = (dec, c) (resp., op = (zero_test, c)), then the durations of the counter tokens with
values (v, cL) and (v, cR) are greater than 1 (resp., are equal to 1).

A pseudo-configuration code is defined as a configuration code but the durations of the
counter tokens are arbitrary with the restriction that the V∆-requirement is fulfilled.

By construction and the assumption onM , we can easily define a trigger-less rule Rinit,halt
and define the transition and constraint function of xM in such a way that the timelines
of xM satisfying Rinit,halt (called pseudo-computation codes) are the sequences of the form
π0 · · ·πn such that: (i) πi · πi+1(0) and πn are pseudo-configuration codes for all 0 ≤ i < n,
(ii) if n > 0 (resp., n = 0), the V∆-value of π0 · π1(0) (resp., π0) is (⊥, δinit) (initialization),
and (iii) the V∆-value of πn is of the form (δ′⊥, δ) such that to(δ) = qhalt (halting).

We now consider the crucial part of the reduction which has to guarantee that along a
pseudo-computation code the counters are correctly encoded (i.e., the durations of the left
and right tokens for each counter in a pseudo-configuration code coincide) and are updated

FSTTCS 2019

34:8 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

accordingly to the M -instructions. Here, we focus on the increment instruction (inc, 1) for
counter 1. For this, we exploit trigger rules in conjunction with an additional state variable
x(inc,1) having domain Vcheck := {check1, check2, trigger ,⊥} and capturing the timelines π
such that the duration of each token is at least 1 and the untimed part of π is an arbitrary
non-empty word over Vcheck . Let πM be a pseudo-computation code, πC a non-initial pseudo-
configuration code of πM with V∆-value (δ′⊥, δ) such that δ′⊥ 6= ⊥ and op(δ′⊥) = (inc, 1)
(we denote by V(inc,1) the set of such V∆-values), and πCp

the pseudo-configuration code
preceding πC along πM . We need to ensure that the duration of the token for counter 1
(resp., 2) in the left part of πC is one plus the duration (resp., is the duration) of the token for
counter 1 (resp., 2) in the right part of πCp

. The proposed encoding ensures that the previous
requirement holds iff for each token tk1L

of πM with value in V(inc,1) × {1L}, the following
holds ((inc, 1)-requirement): for the last token marked by]R (resp., [R) preceding tk1L

and
the first token marked by [L (resp.,]L) following tk1L

, their start points have the same time
distance from the start point of tk1L

. Then, in order to enforce the (inc, 1)-requirement, we
first require that:

(*) the timelines πM and π(inc,1) of variables xM and x(inc,1), respectively, are synchronized,
i.e., they have the same length and for each position i, the start-times of the ith tokens
of πM and π(inc,1) coincide;

(**) for the timeline π(inc,1) for variable x(inc,1) (synchronized with πM), it holds that a token
has value trigger (resp., has value check1, resp., has value check2) iff the associated token
along πM has a value in V(inc,1) × {1L} (resp., in V∆ × {]R, [L}, resp., in V∆ × {[R,]L}).

Since the duration of a token is not zero, the previous two requirements (*)–(**) can be
easily expressed by trigger rules under the strong minimal semantics. Finally, we require that
for each trigger-token tktrigger along the timeline π(inc,1) for x(inc,1) and for each ` = 1, 2, the
start points of the last check`-token of π(inc,1) preceding tktrigger and the first check`-token
following tktrigger have the same time distance from the start point of tktrigger . By the strong
minimal semantics, this requirement can be expressed by the following two trigger rules,
where op = (inc, 1), which ensure that for the check`-tokens (` = 1, 2) whose start points
have the smallest time distance from the start point of the trigger, there is one preceding the
trigger and one following the trigger:

o[xop = trigger]→ ∃o1[xop = check1]∃o2[xop = check2].
∧
`=1,2 s(o)− s(o`) ∈ [0,∞)

o[xop = trigger]→ ∃o1[xop = check1]∃o2[xop = check2].
∧
`=1,2 s(o`)− s(o) ∈ [0,∞). J

4 Decidability of the weak minimal TP problem

In this section, we show that the weak minimal TP problem is decidable and PSPACE-
complete. The upper bound is obtained by an exponential-time reduction to nonemptiness
of Timed Automata (TA) [2]. In order to handle the trigger rules under the weak minimal
semantics, we exploit as an intermediate step an extension, denoted by ECA+, of the known
class of Event Clock Automata (ECA) [3]. The rest of the section is organized is follows.
We first shortly recall the class of Timed Automata (TA) [2]. Then, in Subsection 4.1, we
introduce and address complexity and expressiveness issues for the newly introduced class of
ECA+. Finally, in Subsection 4.2, we solve the weak minimal TP problem.

Let Σ be a finite alphabet. A timed word w over Σ is a finite word w = (a0, τ0) · · · (an, τn)
over Σ × R+ (τi is the time at which ai occurs) such that τi ≤ τi+1 for all 0 ≤ i < n

(monotonicity). The timed word w is also denoted by (σ, τ), where σ is the untimed word
a0 · · · an and τ = τ0 · · · τn. A timed language over Σ is a set of timed words over Σ.

L. Bozzelli, A. Montanari, and A. Peron 34:9

A TA over Σ is a tuple A = (Σ, Q,Q0, C,∆, F), where Q is a finite set of (control)
states, Q0 ⊆ Q is the set of initial states, C is a finite set of clocks, F ⊆ Q is the set of
accepting states, and ∆ is the finite set of transitions (q, a, θ,Res, q′) such that q, q′ ∈ Q,
a ∈ Σ, Res ⊆ C is a clock reset set, and θ is a clock constraint over C, that is a conjunction
of atomic formulas of the form c ∼ n (simple constraints) with c ∈ C, ∼∈ {<,≤,≥, >},
and n ∈ N. We denote by KA the maximal constant used in the clock constraints of A.
Intuitively, in a TA A, while transitions are instantaneous, time can elapse in a control state.
The clocks progress at the same speed and can be reset independently of each other when a
transition is executed, in such a way that each clock keeps track of the time elapsed since
the last reset. Moreover, clock constraints are used as guards of transitions to restrict the
behavior of the automaton. Formally, a configuration of A is a pair (q, val), where q ∈ Q and
val : C → R+ is a clock valuation for C assigning to each clock a non-negative real number.
For t ∈ R+ and a reset set Res ⊆ C, the valuations (val + t) and val[Res] are defined as: for
all c ∈ C, (val + t)(c) = val(c) + t, and val[Res](c) = 0 if c ∈ Res and val[Res](c) = val(c)
otherwise. For a clock constraint θ, val satisfies θ, written val |= θ, if for each conjunct c ∼ n
of θ, val(c) ∼ n.

A run r of A on a timed word w=(a0, τ0) · · · (an, τn) over Σ is a sequence of configurations
r = (q0, val0) · · · (qn+1, valn+1) starting at an initial configuration (q0, val0), with q0 ∈
Q0 and val0(c) = 0 for all c ∈ C, and such that for all 0 ≤ i ≤ n (we let τ−1 = 0):
(qi, ai, θ,Res, qi+1) ∈ ∆ for some constraint θ and reset set Res, (vali + τi − τi−1) |= θ and
vali+1 = (vali + τi − τi−1)[Res]. The run r is accepting if qn+1 ∈ F . The timed language
LT (A) of A is the set of timed words w over Σ s.t. there is an accepting run of A over w.

4.1 Extended Event-clock Automata

In this section, we introduce an extension, denoted by ECA+, of Event Clock Automata
(ECA) [3]. In ECA, clocks have a predefined association with the input alphabet symbols
and their values refer to the time distances from previous and next occurrences of input
symbols. ECA+ extend ECA by allowing a larger class of atomic event-clock constraints,
namely diagonal constraints (alias difference constraints) between clocks of the same polarity
and sum constraints between clocks of opposite polarity. Additionally, we consider the
extension of ECA+, denoted by ECA++, where the polarity requirements in the diagonal
and sum constraints are relaxed. We show that ECA+ are more expressive than ECA and
that they can be translated in exponential time into equivalent TA. Differently from ECA+,
ECA++ are a very powerful formalism having an undecidable nonemptiness problem.

Here, we adopt a propositional-based approach where the input alphabet is given by 2P
for a given set of atomic propositions. The set CP of event clocks associated with P is given
by CP :=

⋃
p∈P{

←−cp,−→cp}. Thus, for each proposition p ∈ P, there are two event clocks: the
event-recording or past clock ←−cp which records the time elapsed since the last occurrence of p
in the input word (if any), and the event-predicting or future clock −→cp which provides the
time required to the next occurrence of p (if any). A special value ⊥ is exploited to denote
the absence of a past (resp., future) occurrence of proposition p. Formally, the values of the
event clocks at a position i of a timed word w can be deterministically determined as follows.

I Definition 8 (Determinisitic clock valuations). An event-clock valuation is a mapping
val : CP 7→ R+ ∪ {⊥}, assigning to each event clock a value in R+ ∪ {⊥}. For a timed word
w = (σ, τ) over 2P and a position 0 ≤ i < |w|, the event-clock valuation valwi , specifying the
values of the event clocks at position i along w, is defined as follows for each p ∈ P:

FSTTCS 2019

34:10 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

valwi (←−cp) =

τi − τ` if there exists the unique 0 ≤ ` < i : p ∈ σ(`) and

∀k : ` < k < i⇒ p /∈ σ(k)
⊥ otherwise

valwi (−→cp) =

τ` − τi if there exists the unique i < ` < |σ| : p ∈ σ(`) and

∀k : i < k < `⇒ p /∈ σ(k)
⊥ otherwise

An ECA+ over 2P is a tuple A = (2P , Q,Q0, CP ,∆, F), where Q is a finite set of states,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and ∆ is a finite set of
transitions (q, a, θ, q′), where q, q′ ∈ Q, a ∈ 2P , and θ is an ECA+ event-clock constraint that
is a conjunction of atomic formulas of the following forms, where p, p′ ∈ P , ∼∈ {<,≤,≥, >},
and n⊥ ∈ N ∪ {⊥}: (i) ←−cp ∼ n⊥ or −→cp ∼ n⊥ (simple constraints); or (ii) ←−cp −←−cp′ ∼ n⊥
or −→cp −−→cp′ ∼ n⊥ (diagonal constraints between event clocks of the same polarity); or (iii)
←−cp +−→cp′ ∼ n⊥ (sum constraints between event clocks of opposite polarity). We denote by
KA the maximal constant used in the event-clock constraints of A. An ECA [3] is an ECA+

which does not use diagonal and sum constraints. We also consider the extension of ECA+,
denoted by ECA++, where the transition guards also exploit as conjuncts diagonal (resp.,
sum) constraints over event clocks of opposite polarity (resp., of the same polarity).

Let us fix an event-clock valuation val. We extend in the natural way the valuation val to
differences (resp., sums) of event clocks: for all c, c′ ∈ CP , val(c− c′) = val(c)− val(c′) and
val(c+ c′) = val(c) + val(c′) where each sum or difference involving ⊥ evaluates to ⊥. Given
an event-clock constraint θ, val satisfies θ, written val |= θ, if for each conjunct t ∼ n⊥ of θ,
either (i) val(t) 6= ⊥, n⊥ 6= ⊥, and val(t) ∼ n⊥, or (ii) val(t) = ⊥, n⊥ = ⊥, and ∼∈ {≤,≥}.

A run π of an ECA+ (resp., ECA++) A over a timed word w = (σ, τ) is a sequence of
states π = q0, . . . , q|w| such that q0 ∈ Q0 and for all 0 ≤ i < |w|, (qi, σ(i), θ, qi+1) ∈ ∆ for
some constraint θ such that valwi |= θ. The run π is accepting if q|w| ∈ F . The timed language
LT (A) of A is the set of timed words w over 2P s.t. there is an accepting run of A on w.

As an example, let us consider the ECA+ Ap, depicted below, whose set P of atomic
propositions consists of a unique proposition p. Evidently, Ap accepts the set of timed words

q0 q1
{p}

q2
{p}, ←−cp +−→cp = 1

q3
{p}

w of length 3 of the form ({p}, τ0), ({p}, τ1), ({p}, τ2) such that the time difference between
the first and last symbol is 1, i.e. τ2 − τ0 = 1. One can easily show that there is no ECA
accepting LT (Ap). Hence, we obtain the following result.

I Theorem 9. For a proposition p, there is a timed language over 2{p} which is definable by
ECA+ but is not definable by ECA. Hence, ECA+ are strictly more expressive than ECA.

Like ECA [3], we show that the class of timed languages accepted by ECA+ (resp., ECA++)
is closed under Boolean operations. The closure under complementation is crucially based
on the fact that event-clock values are determined solely by the input word.

I Theorem 10 (Closure properties). Given two ECA+ (resp., ECA++) A and A′ over 2P with
n and n′ states, respectively, one can construct ECA+ (resp., ECA++) A∪, A∩, and Ac such
that: (i) A∪ (resp., A∩) accepts LT (A) ∪ LT (A′) (resp., LT (A) ∩ LT (A′)) and has n+ n′

(resp., nn′) states and greatest constant max(KA,KA′); and (ii) Ac accepts the complement
of LT (A) and has 2O(n) states and greatest constant KA.

It is known that ECA can be translated in singly exponential time into equivalent TA [3].
We generalize this result to the class of ECA+.

L. Bozzelli, A. Montanari, and A. Peron 34:11

I Theorem 11 (From ECA+ to TA). Given an ECA+ A over 2P , one can construct in
exponential time a TA A′ over 2P such that LT (A′) = LT (A) and KA′ = KA. Moreover, A′
has n · 2O(p) states and O(p) clocks, where n is the number of A-states and p is the number
of event-clock atomic constraints used by A.

Sketched proof. Let A = (2P , Q,Q0, CP ,∆, F) be an ECA+ over 2P . The TA A′ accepting
LT (A) is essentially obtained from A by replacing each atomic event-clock constraint of A
with a set of standard clocks together with associated reset operations and clock constraints.
To remove simple event-clock constraints of A, we proceed as in [3]. Here, we focus on the
removal of diagonal constraints over event-predicting clocks. Let us consider a diagonal
predicting clock constraint η : −→cp−−→cp′ ∼ n⊥ of A where n⊥ ∈ N∪{⊥}. We consider the case
n⊥ 6= ⊥ (the other case being simpler). For handling the constraint η, the TA A′ exploits the
fresh standard clock cη and in case n⊥ = 0 and ∼ is ≥, the additional fresh standard clock ĉη.
The first (resp., second) clock is reset only if proposition p′ (resp., p) occurs in the current
input symbol. Assume that the prediction η is done by A at position i of the input word
for the first time. Then, the simulating TA A′ carries the obligation η in its control state in
order to check that there are next positions where p and p′ occur and τp − τp′ ∼ n⊥ holds,
where τp (resp., τp′) is the timestamp associated with the first next position ip > i (resp.,
ip′ > i) where p (resp., p′) occurs. Note that all the predictions η done by A before positions
ip and ip′ correspond to the same obligation. First, assume that the first next position ip′ > i

where p′ occurs strictly precedes position ip. In this case, on reading position ip′ , A′ resets
the clock cη and replaces the old obligation η with the updated obligation (η, p′) in order to
check that the constraint cη ∼ n⊥ holds when the next p occurs (i.e., at position ip). If a
new prediction η is done at a position jnew ≥ ip′ strictly preceding ip, the fresh obligation η
is carried in the control state together with the obligation (η, p′). We distinguish two cases:

p′ occurs in some position strictly following jnew and strictly preceding ip. Let j′ be
the smallest of such positions. On reading position j′, A′ replaces the old obligations
η and (η, p′) with (η, p′) and resets the clock cη iff η is a lower bound constraint, i.e.,
∼∈ {>,≥}. This is safe since if η is a lower bound, then the fulfillment of prediction η at
jnew guarantees the fulfillment of prediction η at position i. Vice versa, if η is an upper
bound, then the fulfillment of prediction η at i guarantees the fulfillment of prediction η′
at position jnew. Thus, when η is a lower bound, new obligations (η, p′) rewrite the old
ones, while when η is an upper bound, new obligations (η, p′) are ignored.
there is no position strictly following jnew and strictly preceding ip, where p′ occurs. In
this case, when ip is read, the old obligation η is replaced with the obligation (η, p) unless
p′ occurs at position ip (in the latter case, A′ simply checks that 0 ∼ n⊥).

In both the cases on reading position ip, the constraint cη ∼ n⊥ is checked and the
obligation (η, p′) is discarded. The case where ip′ = ip is trivial (on reading position i, A′
checks that 0 ∼ n⊥ holds). Finally, assume that ip strictly precedes i′p. The cases where
either c 6= 0 or ∼ is distinct from ≥ are easy to handle, since in these cases if η is a lower
bound (resp., upper bound), then the prediction η done at position i is not satisfied (resp., is
satisfied). Thus, we focus on the case where c = 0 and ∼ is ≥. On reading position ip, the
clock ĉη is reset and the old obligation η is replaced with the updated obligation (η, p) in
order to check that the constraint ĉη = 0 holds when the next p′ occurs (i.e., at position ip′).
In this case, new obligations (η, p) occurring before position ip′ are ignored, i.e., the clock ĉη
is not reset at such positions. Finally, in order to ensure that raised obligations about η are
eventually checked, the accepting states of A′ do not contain such obligations. J

FSTTCS 2019

34:12 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

Theorem 11 cannot be extended to the class of ECA++. In fact we show that for these
automata, the nonemptiness problem is undecidable. The undecidability proof is similar to
the one for the strong minimal TP problem.

I Theorem 12. The nonemptiness problem of ECA++ is undecidable even for the subclass
of ECA++ which use only simple atomic event-clock constraints and diagonal constraints over
event clocks of opposite polarity of the form ←−cp −−→cp′ = 0.

4.2 Solving the weak minimal TP problem

In this section, by exploiting the results of Section 4.1, we establish the following result,
where for a TP domain D = (SV,R), the maximal constant KD of D is the greatest integer
occurring in the atoms of R and in the constraint functions of the variables in SV .

I Theorem 13. Given a TP domain D = (SV,R), one can build in exponential time a TA AD
with 2O(N+

∑
x∈SV

|Vx|) states, O(N+ |SV |) clocks, and maximal constant O(KD), where N is
the overall number of quantifiers and atoms in the rules of R, such that LT (AD) 6= ∅ iff there
is a weak minimal plan of D. Moreover, the weak minimal TP problem is PSPACE-complete.

Sketched proof. For each x ∈ SV , let x = (Vx, Tx, Dx). In order to prove the first part of
Theorem 13, we first define an encoding of the multi-timelines of SV by means of timed
words over 2P for the set P of propositions given by {init}∪

⋃
x∈SV Px where for each x ∈ SV ,

Px = {x}× Vx×{s, e}× {0, 1}. We use the propositions in Px to encode the tokens tk along
a timeline for x: the start point and end point of tk are specified by propositions (x, v, s, b)
and (x, v, e, b), respectively, where b ∈ {0, 1} and v is the value of tk. The meaning of the
bit b ∈ {0, 1} is explained below. The additional proposition init ∈ P is used to mark the
first point of a multi-timeline code in order to check point atoms of trigger rules by ECA+

event-clock constraints. A code for a timeline for x is a timed word w over 2Px of the form
w = ({(x, v0, s, b0)}, τ0), ({(x, v0, e, b0)}, τ1) · · · ({(x, vn, s, bn)}, τn), ({(x, vn, e, bn)}, τn+1)

such that for all 0 ≤ i ≤ n: (i) vi+1 ∈ Tx(vi) if i < n; (ii) τ0 = 0 and τi+1 − τi ∈ Dx(vi);
(iii) let `i be the greatest index 0 ≤ j < i such that vj = vi if such an index exists, and let
`i := ⊥ otherwise. Then, bi = (b`i

+ 1) mod 2 if `i 6= ⊥, and bi = 0 otherwise. Intuitively,
for each value v ∈ Vx occurring along w, the associated bit acts as a modulo 2 counter which
is incremented at each visit of v along w (in the handling of the trigger rules under the weak
minimal semantics, it is used by ECA+ event-clock constraints to reference the end-event of a
token whose start-event (x, v, s) is the first occurrence of (x, v, s, b) for some b ∈ {0, 1} after
the current input position). The timed word w encodes the timeline for x of length n+ 1
given by π = (v0, τ1 − τ0) . . . (vn, τn+1 − τn). Note that since the duration of a token is not
zero, we have that τi+1 > τi for all 0 ≤ i ≤ n. A code for a multi-timeline for SV is obtained
by merging different timelines (one for each variable x ∈ SV), i.e., it is a non-empty timed
word w over 2P of the form w = (P0, τ0) · · · (Pn, τn) such that: (i) for all x ∈ SV , the timed
word obtained from (P0 ∩ Px, τ0) · · · (Pn ∩ Px, τn) by removing the pairs (∅, τi) is a code of a
timeline for x; (ii) init ∈ P0, init /∈ Pi for all 1 ≤ i ≤ n, and P0 ∩ Px 6= ∅ for all x ∈ SV .

The trigger rules in R under the weak minimal semantics can be handled by ECA+ over
2P : the start and end points of the chosen non-trigger tokens are mapped to last and next
occurrences of propositions in P w.r.t. the current input position (trigger) of a multi-timeline
encoding, while the atoms in the rules are mapped to ECA+ event-clock constraints. Note
that ECA+ cannot express trigger-less rules since the semantics of these rules does not
constraint the chosen punctual events to be closest as possible to a reference event.

L. Bozzelli, A. Montanari, and A. Peron 34:13

B Claim 1. One can construct in exponential time an ECA+ A∀ over 2P such that for each
multi-timeline Π of SV and encoding wΠ of Π, wΠ is accepted by LT (A∀) iff Π satisfies
the trigger rules in R under the weak minimal semantics. Moreover, A∀ has a unique state,
O(Na) atomic event-clock constraints, and maximal constant O(KD), where Na is the overall
number of atoms in the trigger rules in R.

For the trigger-less rules in R, the following result (Claim 2) has been established in [5]
for a slightly different encoding of the multi-timelines. The result can be easily adapted to
the encoding proposed here.

B Claim 2. One can construct in exponential time a TA A∃ over 2P accepting the codes
of the multi-timelines of SV which satisfy the trigger-less rules in R. Moreover, A∃ has
2O(Nq+

∑
x∈SV

|Vx|) states, O(|SV |+Nq) clocks, and maximal constant O(KD), where Nq is
the overall number of quantifiers in the trigger-less rules of R.

By Theorem 11 and Claim 1–2, the first part of Theorem 13 concerning the construction of
the TA AD for the TP domain D, directly follows. For the second part of Theorem 13, we
recall that non-emptiness of a TA A can be solved by an NPSPACE search algorithm in the
region graph of A which uses space logarithmic in the number of states of A and polynomial
in the number of clocks and in the length of the encoding of the maximal constant of A [2].
Thus, since AD can be built on the fly, and the search in the region graph of AD can be
done without explicitly constructing AD, membership in PSPACE of the weak minimal
TP problem follows. PSPACE-hardness is proved by a polynomial time reduction from a
domino-tiling problem for grids with rows of linear length [22]. J

5 Conclusions

We have addressed the TP problem in the dense-time setting under two novel semantics
of the trigger rules: the weak and strong minimal ones. Surprisingly, we have shown that,
despite the apparently small difference in the two semantics, the strong minimal one leads to
an undecidable TP problem, while the weak minimal one leads to a PSPACE-complete TP
problem. In order to solve the weak minimal TP problem, we have investigated two novel
and strictly more expressive extensions of ECA which we believe to be interesting per sé in
the field of TA. As for future work, we shall study the strong minimal TP problem when
just one or two state variables are used, whose decidability remains an open issue. Moreover,
we aim at investigating the TP problem in the controllability setting, where the values of
some variables are not under the system control, but depend on the environment.

References
1 R. Alur and T. A. Henzinger. A Really Temporal Logic. Journal of the ACM, 41(1):181–204,

1994.
2 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126(2):183–235, 1994.
3 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-Clock Automata: A Determinizable

Class of Timed Automata. Theoretical Computer Science, 211(1-2):253–273, 1999.
4 J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T. Kichkaylo, P. Morris, J. Ong,

E. Remolina, T. Smith, and D. Smith. EUROPA: A Platform for AI Planning, Scheduling,
Constraint Programming, and Optimization. In Proc. of the 4th ICKEPS, 2012.

5 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. Complexity of Timeline-Based Planning
over Dense Temporal Domains: Exploring the Middle Ground. In Proc. of the 9th GandALF
2018, EPTCS 277, pages 191–205, 2018.

FSTTCS 2019

34:14 Taming Complexity of Timeline-Based Planning over Dense Temporal Domains

6 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. Decidability and Complexity of Timeline-
Based Planning over Dense Temporal Domains. In Proc. of the 16th KR, pages 627–628. AAAI
Press, 2018.

7 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. Undecidability of future timeline-based
planning over dense temporal domains. arxiv.org/abs/1904.09184, 2019. arXiv:1904.09184.

8 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and G. J. Woeginger. Timeline-Based
Planning over Dense Temporal Domains with Trigger-less Rules is NP-Complete. In Proc. of
the 19th ICTCS, volume 2243 of CEUR Workshop Proceedings, pages 116–127, 2018.

9 A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and N. Policella. An Innovative Product for
Space Mission Planning: An A Posteriori Evaluation. In Proc. of the 17th ICAPS, pages
57–64, 2007.

10 A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci. Flexible Timeline-Based Plan
Verification. In Proc. of the 32nd KI, LNCS 5803, pages 49–56. Springer, 2009.

11 A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci. Analyzing Flexible Timeline-Based
Plans. In Proc. of the 19th ECAI, volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 471–476. IOS Press, 2010.

12 S. Chien, D. Tran, G. Rabideau, S.R. Schaffer, D. Mandl, and S. Frye. Timeline-Based Space
Operations Scheduling with External Constraints. In Proc. of the 20th ICAPS, pages 34–41.
AAAI, 2010.

13 M. Cialdea Mayer and A. Orlandini. An Executable Semantics of Flexible Plans in Terms of
Timed Game Automata. In Proc. of the 22nd TIME, pages 160–169. IEEE Computer Society,
2015.

14 M. Cialdea Mayer, A. Orlandini, and A. Ubrico. A Formal Account of Planning with Flexible
Timelines. In Proc. of the 21st TIME, pages 37–46. IEEE Computer Society, 2014.

15 M. Cialdea Mayer, A. Orlandini, and A. Umbrico. Planning and Execution with Flexible
Timelines: a Formal Account. Acta Informatica, 53(6–8):649–680, 2016.

16 A. Cimatti, A. Micheli, and M. Roveri. Timelines with Temporal Uncertainty. In Proc. of the
27th AAAI, 2013.

17 M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

18 J. Frank and A. Jónsson. Constraint-based Attribute and Interval Planning. Constraints,
8(4):339–364, 2003.

19 G. Geeraerts, J.F. Raskin, and N. Sznajder. Event Clock Automata: From Theory to Practice.
In Proc. of the 9th FORMATS, LNCS 6919, pages 209–224. Springer, 2011.

20 N. Gigante, A. Montanari, M. Cialdea Mayer, and A. Orlandini. Timelines are Expressive
Enough to Capture Action-based Temporal Planning. In Proc. of the 23rd TIME, pages
100–109. IEEE Computer Society, 2016.

21 N. Gigante, A. Montanari, M. Cialdea Mayer, and A. Orlandini. Complexity of Timeline-Based
Planning. In Proc. of the 27th ICAPS, pages 116–124. AAAI Press, 2017.

22 D. Harel. Algorithmics: The spirit of computing. Wesley, 2nd edition, 1992.
23 A. K. Jónsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith. Planning in

Interplanetary Space: Theory and Practice. In Proc. of the 5th AIPS, pages 177–186. AAAI,
2000.

24 M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
25 N. Muscettola. HSTS: Integrating Planning and Scheduling. In Intelligent Scheduling, pages

169–212. Morgan Kaufmann, 1994.
26 J. Ouaknine and J. Worrell. On Metric Temporal Logic and Faulty Turing Machines. In Proc.

of the 9th FOSSACS, LNCS 3921, pages 217–230. Springer, 2006.
27 J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal Logic

over finite words. Logical Methods in Computer Science, 3(1), 2007.
28 J. Rintanen. Complexity of Concurrent Temporal Planning. In Proc. of the 17th ICAPS,

pages 280–287. AAAI, 2007.

http://arxiv.org/abs/1904.09184

	Introduction
	The TP Problem
	Undecidability of the strong minimal TP problem
	Decidability of the weak minimal TP problem
	Extended Event-clock Automata
	Solving the weak minimal TP problem

	Conclusions

