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Abstract
An important task in AI is one of classifying an observation as belonging to one class among several
(e.g. image classification). We revisit this problem in a verification context: given k partially
observable systems modeled as Hidden Markov Models (also called labeled Markov chains), and an
execution of one of them, can we eventually classify which system performed this execution, just by
looking at its observations? Interestingly, this problem generalizes several problems in verification
and control, such as fault diagnosis and opacity. Also, classification has strong connections with
different notions of distances between stochastic models.

In this paper, we study a general and practical notion of classifiers, namely limit-sure classifiers,
which allow misclassification, i.e. errors in classification, as long as the probability of misclassification
tends to 0 as the length of the observation grows. To study the complexity of several notions of
classification, we develop techniques based on a simple but powerful notion of stationary distributions
for HMMs. We prove that one cannot classify among HMMs iff there is a finite separating word
from their stationary distributions. This provides a direct proof that classifiability can be checked in
PTIME, as an alternative to existing proofs using separating events (i.e. sets of infinite separating
words) for the total variation distance. Our approach also allows us to introduce and tackle new
notions of classifiability which are applicable in a security context.
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1 Introduction

The spectacular success of artificial intelligence (AI) and machine learning techniques in
many varied application domains in the last decade has led to the emergence of several new
and old questions, especially regarding their guarantees and correctness. This has led to
several recent projects at the interface of formal methods and AI, whose broad goal is to
formally reason and verify properties about these AI models and tasks. One such important
task in AI is classification, which is a fundamental problem with many practical applications,
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29:2 Classification Among HMMs

e.g., in image processing. In this paper, we consider classification in a verification context.
One main issue when verifying systems is partial observability. It is thus important to know
what information can be recovered from a partially observable system.

We first consider a system perspective: we want to know whether, no matter the execution
of the system, some hidden information is retrievable, at least with high probability. To
represent the system, we thus consider a partially observable stochastic model, namely
Hidden Markov Models (HMM for short) [12, 10], also known as labeled Markov chains [6] or
probabilistic labeled transition systems [5]. While notationally different, these various models
are equivalent in terms of expressive power. In HMMs, states are not observable, but we get
some (potentially stochastic) signals from states. In the specific variant of HMMs that we
study in this paper, we encode the signals from states as labels of transitions exiting states.
That is, the observation from an execution of an HMM is its labeling sequence. We encode the
different hidden information as several HMMs, with different transition probabilities. Finding
the hidden information from the observation thus amounts to classifying the observation
among the different HMMs.

Many problems concerning systems with hidden information can be recast in the framework
of classification, such as, (i) fault diagnosis: classifying between a faulty system that has
executed errors and the system without faults [14, 15, 4, 5]; (ii) opacity: classifying between
high and low privilege parts of the system [10], etc. Although some problems are incomparable
(e.g. diagnosis is intrinsically “asymmetric” while classification is “symmetric”), most proof
techniques and ideas are common. Moreover, results on classification problems have been
applied to show results in these related contexts. While it is not our aim to survey these
applications here, we provide two instances: a fault diagnosis problem [5] is solved using a
result on distance between stochastic systems [6], which is equivalent with classification [11].
Also, opacity is cast as a classification problem in [10]. We hence believe that classification is
a good framework to state and prove algorithmic and complexity results.

Several notions of classification can be defined: sure, almost-sure, and limit-sure, depend-
ing respectively on whether we want the classification to eventually happen for sure, with
probability 1, or with arbitrarily small error. The first two notions have classical solutions
coming from fault-diagnosis [14, 4]: the existence of such classifiers can be checked in PTIME
and PSPACE respectively. The third notion is however the most practical as the classifier is
the most powerful: it can use the long run statistics on observations to take its decision (e.g.
the frequency of ab’s in the word). It is also the hardest notion to study for this very reason.

We focus on this notion of limit-sure classification in this paper. First, a closely-related
problem of distinguishability has been proved to be in PTIME by [11], using the PTIME
algorithm from [6] to test whether the total variation metric between two HMMs is 1. We
reinvestigate these deep results using different techniques, which shines some new light on
this problem. Our starting point is the following: for a very restricted class of HMMs [10],
whose underlying Markov chains are ergodic and crucially, assuming that initial distributions
have non-zero probability on every state, it is sufficient to consider the statistics on states
(e.g. the frequency of state s). These statistics on states are obtained by [10] using the
classical notion of stationary distributions over the underlying Markov Chain, i.e. the HMM
where we forget all observations. As we show in Example 2, stationary distributions on
Markov chains do not suffice for solving limit-sure classification for general HMMs. We build
on this idea and propose a new notion to study the long run statistics of the observations.

Our first contribution is to develop the notion of stationary distributions for general
HMMs to study the long run statistics of the observations. To do so, we focus on beliefs, that
is, the set of states that can be reached with the same observation. We show that a notion of
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stationary distributions can be defined for beliefs in Bottom Strongly Connected Components
(BSCCs), and that it also corresponds to a notion of asymptotic distributions, describing the
asymptotic statistics of beliefs. This generalizes stationary distributions for Markov chains:
for instance, irreducible Markov chains of period k correspond to cycling through k different
beliefs. We believe that this notion can find applications in other contexts.

Our next contribution is to show how this notion of stationary distribution of HMMs can
be used to characterize limit-sure classifiability. We show that we cannot classify between
HMMs iff they have beliefs which can be reached by the same observation and for which the
stationary distributions can be separated by one finite word (for which the probability is
different). This provides a PTIME algorithm to test for limit-sure classifiability. Note that
the existence of such a PTIME algorithm has been established in [11], where this result was
formulated in terms of HMMs distinguishability. The proofs are different however, as [11]
focuses on separating events [6], that is sets of infinite words with probability 0 (resp. 1) in
one of the HMMs (resp. the other one), while considering stationary distributions allows us
to focus on a single finite separating word with probability p (resp. q 6= p).

Our final contribution is to study classifiability in a security context: an attacker has
different attacks against different HMMs. To be able to perform his attack, he needs to
find one execution that can be classified (and thus attacked) rather than whether every
execution can be classified. We call this notion attack-classification. We study limit-sure
attack-classification using the notion of stationary distributions for HMMs developed above.
We show that deciding whether there exists a limit-sure attack-classifier between two HMMs
is PSPACE-complete. On the other hand, if we consider a variation on the notion of limit-sure
attack-classifier, which extends distinguishability for HMMs [11], we are able to show that it
is not only different from limit-sure attack-classifier, but this problem is also undecidable.
All missing proofs and details can be found in the long version [1].

2 Preliminaries and Problem Statement

A Hidden Markov Model [12, 13, 10] (HMM for short) A on finite alphabet Σ is a tuple
A = (S,M, σ0) with S a set of states, σ0 an initial distribution, M : S ×Σ× S → [0; 1], such
that for all s,

∑
a,s′ M(s, a, s′) = 1. Notice that this notion has been referred to using different

names in the literature: labeled Markov chains, pLTS (probabilistic transition systems) in
[5], probabilistic automata (not to be confused with Rabin’s Probabilistic automata), etc.
Classical Markov chains can be viewed as HMMs with a single letter alphabet. In what
follows we assume knowledge of classical properties, definitions about Markov chains, such
as irreducibility, aperiodicity and refer to [9] for a formal treatment.

A run ρ of A is a sequence in S(Σ×S)∗. It starts in s−(ρ), with σ0(s−(ρ)) > 0, and ends
in state s+(ρ). An observation w from A is a sequence of letters w = a1 · · · an ∈ Σ∗ such
that there exists a run ρ made of n+ 1 states ρ = s0, a1 . . . , ansn with σ0(s0) > 0 and for all
i > 0, M(si−1, ai, si) > 0. We denote obs(ρ) = w. For a run ρ = s0, a1 . . . , ansn, we define
its probability as P (ρ) = σ0(s0) ·

∏n
i=1M(si−1, ai, si). We sometimes abuse notation and

write M(s1, w, sn) to mean
∏n
i=1M(si−1, ai, si). We define the probability of an observation

w ∈ Σ∗ as P (w) =
∑
ρ|obs(ρ)=w P (ρ). In general we write PAσ to express the probability in

HMM A with initial distribution σ. If σ(s) = 1, then we use PAs instead.
A non-deterministic finite automaton (NFA for short) is as usual a structure A =

(S,∆, S0), where the transition probabilities (as in a HMM) are replaced with a transition
relation ∆ and initial distribution is replaced by a set of initial states S0. For a HMM
(S,M, σ0), we can associate the NFA A = (S,∆, S0), by taking (s, a, t) ∈ ∆ iff M(s, a, t) > 0
and s ∈ S0 iff σ0(s) > 0. The notion of paths and observation is preserved. Fig. 1 shows an
HMM on the left and an NFA on the right.
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Figure 1 Example of an HMM A on alphabet Σ = {a, b} and of an NFA BA on alphabet Σ.

The language of an automaton (or by extension of an HMM) is the set of observations
L(A) = {w | w = obs(ρ), ρ a path of A}. We denote by L∞(A) the set of infinite observations
in A, that is such that every of its prefix is in L(A). Finally, we use the standard way to
extend probabilities to some sets of infinite paths, by means of cylinder-sets [2]. In particular,
taking two HMMs A1,A2 on the same alphabet, L∞(A1)∩L∞(A2) is measurable. We write
L(A, s) for the language of A starting in state s.

A strongly connected component C of an HMM A is a maximal set of states such that
there is a path from any state of C to any state of C. A strongly connected component C is
called a bottom strongly connected component(BSCC) if the only states reachable from C are
in C. For instance, there is only one BSCC in the NFA of Fig. 1, with 2 states {x, y} and
{z}. Runs of an HMM end up in one of the BSCCs with probability 1.

Probabilistic Finite Automata (PFA). Several lower bounds will come from results on
Rabin’s probabilistic finite automaton (PFA) [8]. A PFA A on finite alphabet Σ is a tuple
A = (S, (Ma)a∈Σ, σ0) with S a set of states, σ0 an initial distribution, Ma : S×S → [0, 1] for
each a ∈ Σ, such that for all a, s,

∑
s′ Ma(s, s′) = 1. Similar to HMMs, the states of a PFA

are not observed, but only letters a ∈ Σ are. The difference is that we can control a PFA by
choosing an action a ∈ Σ, while in HMMs, we observe passively an observation a ∈ Σ.

2.1 Probabilistic equivalence can be checked in PTIME
The PTIME algorithm for probabilistic equivalence is at the core of the PTIME algorithms
from [6] (and hence [11, 5] using it), [10] and ours. Let σ1, σ2 be distributions over states of
HMMs A1,A2 respectively. HMMs A1,A2 are equivalent from distributions σ1, σ2, denoted
(A1, σ1) ≡ (A2, σ2), if for any observation w ∈ Σ∗, we have PA1

σ1
(w) = PA2

σ2
(w). In [3] (see

also [6]), it is shown how to test in polynomial time whether PA1
σ1
≡ PA2

σ2
, i.e.

∀w ∈ Σ∗, (σ1 σ2) ·
[
M1(w) ∅
∅ M2(w)

]
· (1, · · · , 1,−1, · · · ,−1)T = 0

As the dimension of Eq(A1,A2) = {
[
M1(w) ∅
∅ M2(w)

]
· (1, · · · , 1,−1, · · · ,−1)T | w ∈

Σ∗} is at most |A1|+ |A2|, we can build a basis v1, . . . v` for Eq(A1,A2) of size ` ≤ |A1|+ |A2|.
It suffices then to check whether (σ1 σ2) · vi = 0 for all i ≤ `.

Notice that equivalence of PFA has been known to be in PTIME for 30 years [16], before
HMMs [3]. Actually, equivalences of HMMs of and PFAs are inter-reducible (one direction
can be found in [7], and the other one is easy by considering the HMM associated with a
PFA, which performs actions of the PFA uniformly at random).
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2.2 The classification problem and its variants
Let (Ai)i≤k be a set of HMMs representing different behaviors of a system under observation.
The system secretly picks one HMM behavior to follow, i.e. it is a priori unknown which
of the HMMs is being followed by the system. We want to classify, i.e. find out, which
HMM behavior the system follows, only by looking at the observation w ∈ Σ∗. The longer
we observe the system, the larger the length of the observation and better the information
we have to find out the HMM. This leads us to the notion of classifiability. As it suffices to
consider HMMs pairwise, we will consider in the following there is only a choice between
k = 2 HMMs. We will denote them by A1, with n states, and A2, with m states. Formally,
a classifier is a function f : Σ∗ → {⊥, 1, 2} that outputs the index of the HMM from an
observation, or possibly ⊥ if it cannot conclude (yet). Consider for example A1,A2, both
following the HMM in Figure 1, the difference being that A1 starts in x while A2 starts
in z. If the observation starts with b, then we know the systems follows A2, because b is
not possible from x. We can thus let f(bw) = 2. However, if the observation is ab2a, then
it could come from any A1 or A2. If the systems are probabilistically equivalent, then no
matter how much we observe, we cannot classify among them. However, this is one extreme
case. One can consider several notions of classifiability:

sure classifiability: there exists a classifier f that eventually identifies the accurate HMM
that generated w. That is, for all w ∈ Σ∞, there exists a finite prefix v of w and a
classifier f for v such that f(v) = 1 (resp. f(v) = 2) iff there is no path ρ of A2 (resp. of
A1) with obs(ρ) = w.
almost-sure classifiability: there exists a classifier f that eventually identifies the accurate
HMM that generated w with probability 1. This classifier cannot do errors, but there
may be some infinite observation that cannot be classified, though the probability it
happens should be 0 (such as tossing tail forever on a fair coin).
limit-sure classifiability: there exists a classifier f that, for all ε > 0, eventually provides
the accurate HMM with probability > 1− ε. This is the most general notion: sure implies
almost-sure implies limit-sure classifiability.

This leads to the two main questions that we are interested in, for each of the above
notions: (i) how easy is it to decide if there exists a classifier? (ii) if there exists a classifier,
how easy is it to produce one explicitly? For the first question, we can answer easily for the
two first notions, which have been studied in different contexts.

I Proposition 1 ([14, 4]). We can surely classify among 2 HMMs iff L∞(A1)∩L∞(A2) = ∅,
and this can be checked in PTIME. We can almost-surely classify among 2 HMMs iff the set
L∞(A1) ∩ L∞(A2) has probability 0, and this is a PSPACE-complete problem.

For the first two notions, building the classifier is also easy: intuitively, it suffices to
compute the set of states reached with the observation (called belief in the next section) for
both HMMs. If the system is classifiable, one of these sets will eventually (almost surely
with the second notion) become empty. The classifier answers the HMM with non-empty set.

Unlike the two first notions, limit-sure classifiability cannot be expressed in terms of the
language. Indeed, it is possible to limit-surely classify among A1,A2, and yet L(A1) = L(A2).
Also, a limit-sure classifier can use statistics in order to give its estimate, which opens a lot
of possibilities. Let us illustrate these:

I Example 2. Consider again A1,A2, where both are the HMM A from Fig. 1, where A1
starts from state x and A2 starts from state z. If the observation starts with b, then it is
easy to conclude that the HMM is A2. If it starts with a, then the set of states which can

FSTTCS 2019



29:6 Classification Among HMMs

be reached after observation a is {x, y} in A1 and {z} in A2, which are both in the BSCCs.
Actually, after an even number of b’s (and any number of a’s), we still have {x, y} the set of
states possible in A1 and {z} in A2. In the following section using stationary distributions
on HMMs, we will show how to compute that if the HMM is A1, after an even number of b’s,
the long term average is 3

5 to be in x and 2
5 to be in y. From this, we deduce that the long

term average is 4
5 = 3

51 + 2
5

1
2 to perform an a after an even number of b’s. On the other hand,

if the HMM is A2, then the state is z and we obtain the long term average 1
2 to perform

letter a after an even number of b’s. As the observation grows, the average frequency over
the observation will tend towards the long term average by law of large numbers. Thus the
classifier f(w) = 1, if the average frequency of a’s after an even number of b’s observed in w
is closer to 4

5 than to 1
2 , is limit-sure. Notice that using the standard stationary distributions

on Markov chains as in [10] only tells us that both A1 and A2 stay in long term average
frequency 3

7 in x, 2
7 in y, and 2

7 in z , and thus do 5
7 = 3

7 + 2
7

1
2 + 2

7
1
2 of a’s in average, which

cannot limit-surely classify between A1,A2.

From the point of view of practical applicability, limit-sure classifiers are the most
powerful, although harder to study. In Section 4, we will study limit-sure classifiability, that
we simply call classifiability. In Section 5, we further generalize this notion to a game-theoretic
attack-classification framework, which is applicable in security settings.

3 Stationary distributions for HMMs

In order to solve limit-sure classification, we would like to use statistics on observations.
Stationary distributions, which is a concept developed for Markov chains, tells us the
frequency to expect about states, as used in [10]. We generalize this concept to HMMs to
take into account observations. While stationary distributions for HMMs turn out to be
crucial in the realm of classifiability, we believe it is also of independent interest.

For a Markov chain M , a stationary distribution σ is a distribution over states of M
such that σ ·M = σ. In HMMs, the observation plays an important role and changes our
knowledge of states in which the run could be. Thus, we consider the set of states that
could be reached in an HMM A with a given observation, and call this as the belief-state
or just belief. Formally, let w be an observation. The belief BA(w) associated with w is
the set of states {s+(ρ) | obs(ρ) = w} which can be reached by a path labeled by w. For
instance, with the HMM A from Fig. 1, we have BA(aa) = {x, y}. We let BA = (2S ,∆, s0)
be the belief automaton associated with A: (i) its states represent the beliefs associated with
observations of A, (ii) we have (B, a,B′) ∈ ∆ if B′ = {s′ | ∃s ∈ B,M(s, a, s) > 0}, and (iii)
s0 = {s | σ0(s) > 0} ∈ 2S . This is the usual subset construction used for determinizing an
automaton, as shown on Fig. 1. As BA is deterministic, we sometimes abuse notation and
denote ∆(B, a) for the unique B′ with (B, a,B′) ∈ ∆.

Consider a BSCC D of HMM A (as for Markov chains, this is to ensure irreducibility).
For x ∈ D, we denote by BxD the subgraph of BA reachable from {x}. On figure 1, we have
ByD = BA. It has a unique BSCC, with 2 beliefs {x, y} and {z}. We now show that this is
the general form of the belief automaton:

I Lemma 3. There is a unique BSCC in BxD, and it does not depend upon x ∈ D.

We denote ED the set of beliefs X in the unique BSCC of BxD, and EA the union over all
BSCCs D of A. Notice that EA may not contain all beliefs in the BSCCs of BA, because
we restrict ourselves to beliefs X reachable from {x} with a single state x of a BSCC of
A. This is crucial for Lemma 3 to hold. We will see that considering singletons is not a
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Figure 2 Markov chain Mx,y associated with the belief {x, y}.

restriction: assume that the belief reached in a BSCC of beliefs comes from two different
states x, y. Either the statistics on observation from x and y are the same, in which case we
change nothing by considering them only from x. Otherwise, they have different statistics on
observation, and looking at the observed statistics will give away with arbitrarily small error
the state x or y which they originate from.

For Markov chains (i.e. HMMs on a one letter alphabet), the BSCC ED is exactly
X1 → X2 · · · → Xk → X1, with k the period of this BSCC. Hence, this construction can be
seen as a generalization to HMMs of the notion of period of a Markov chain. We use it to
generalize the Fundamental theorem of Markov chains to HMMs.

Let X ∈ EA. We are interested in the asymptotic distribution associated to belief X, that
is the statistics over states of X given that the belief state is X. From that, we will be able to
deduce the statistics over observations. Let WX the (possibly countable infinite) set of words
which brings from belief X to belief X without seeing belief X in-between. Consider σy,i the
distribution over X such that σy,i(x) =

∑
w∈W i

X
M(y, w, x), the probability of reaching x

from y after seeing i words of WX . To compute the limit of σy,i, we define the stationary
distribution σX : X → [0, 1] of the HMM given a belief X. For that, we enrich the states of
A with its beliefs, considering the product A× BA (same runs with same probabilities as in
A). For all x, y ∈ X, let MX(x, y) be the probability in the HMM A× BA to reach (y,X)
from (x,X) before reaching any other (z,X), z 6= y (we refer to [2] to compute MX(x, y) for
all x, y). We have that for all x ∈ X,

∑
y∈XMX(x, y) = 1, that is MX is a Markov chain.

For instance, on Fig. 1, let X = {x, y} ∈ E. The Markov chain MX is depicted in Fig. 2 has
a unique stationary distribution σ(x) = 3

5 and σ(y) = 2
5 . We obtain:

I Theorem 4. Given a HMM A, let X be a belief in EA. Then, MX has a unique
stationary distribution denoted σX : X → [0, 1], i.e. σX ·MX = σX . Further, for all y ∈ X,
σy,i −→

i→+∞
σX .

Proof sketch. We apply the fundamental theorem to MX to get the statement. It suffices
to show that MX is ergodic. For all x ∈ X, by Lemma 3, there is an observation vx leading
from {x} to X, i.e. ∆({x}, vx) = X. As ∆({x}, vix) is increasing with i and |∆({x}, vix)| ≤ n
for all i, we obtain ∆({x}, vn+1

x ) = ∆(X, vn+1
x ). We can then obtain a word wx with

∆({x}, wx) = ∆(X,wx) = X. Now, by induction on the size of X, we can build a uniform
word w such that ∆({x}, w) = X for all x ∈ X. For all x, y ∈ X, we get M |w|X (x, y) > 0. J

4 Limit-sure Classifiability

We start by stating the definition of limit-sure classification more precisely:

I Definition 5. Two HMMs A1,A2 are limit-sure classifiable iff there exists a computable
function, also called a classifier, f : Σ∗ → {1, 2} such that P (ρ run of A1 of size k |
f(obs(ρ)) = 2)→k→∞ 0, and similarly for ρ run of A2.

FSTTCS 2019
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Figure 3 Twin automaton (on the left) and twin-belief automaton (on the right), for A1,A2

starting in states y and z.

(Notice we do not need ⊥ as the classifier is allowed to give erroneous answers at first).
Consider the Maximum A Posteriori (MAP) classifier [12, 10]: it answers 1 if PA1(u) >
PA2(u), and 2 otherwise. To do so, it just needs to record for every state of A1 (resp. every
state of A2) the probability to observe u and finish in state s1 (resp. s2). Indeed, we may
then compute confidence(i, u) = PAi (u)

PA1 (u)+PA2 (u) , i.e. the probability that the decision i is
correct after observing u. Notice that this confidence is not necessarily non-decreasing, and
that the answer of a classifier can also switch from one answer to the other. In fact, we show
in Proposition 16 in [1] that if (A1,A2) is limit-sure classifiable, then the MAP classifier
will be a limit-sure classifier. The main problem is to decide when limit-sure classification
holds. In fact, this problem can be solved in PTIME. We remark that a variant of the
problem was already shown to be in PTIME, namely distinguishability [6, 11]. While both
problems coincide for HMMs, as explained in Section 4.4, our proof described in the rest of
this section, crucially uses the notion of stationary distributions for HMMs developed in the
previous section.

4.1 The Twin Automaton and the Twin Belief Automaton

Given HMMs A1,A2, we define their twin automaton A = (S = S1 × S2,∆, s0) as the
product of the automata associated with A1×A2 by forgetting the probabilities. Recall that
A1 has n states and A2 has m states. The transition relation is ∆ = {((s1, s2), a, (t1, t2)) |
MA1(s1, a, t1) > 0,MA2(s2, a, t2) > 0}, with initial state s0 = (s1

0, s
2
0). We call states of

A twin states. In the following, we will often consider the belief automata BA,BA1 ,BA2

associated with A,A1,A2, obtained by the subset construction (see Section 3). States of
BA will be called twin beliefs. Notice that although twin beliefs are formally sets of pairs
of states in 2S1×S2 , we can also present them as pairs of sets of states 2S1 × 2S2 because
if (s1, s2) and (s′1, s′2) are in the same twin belief, then we also have (s1, s

′
2) and (s′1, s2) in

this twin belief. We will thus write the twin belief X(u) associated with observation u as
X(u) = (X1(u), X2(u)), with X1(u), X2(u) the beliefs states of BA1 ,BA2 associated with u.
Figure 3 presents an example with a twin automaton and the twin belief automaton for two
copies of the HMM given in figure 1, one starting in state y and the other starting in state z.

I Lemma 6 (Proposition 18 in [6]). Let (X ′1, X ′2) be a reachable twin belief of BA. Let
X1 ⊆ X ′1, X2 ⊆ X ′2. Let σ1, σ2 be two distributions over X1, X2 with (A1, σ1) ≡ (A2, σ2).
Then one cannot classify between A1,A2.
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4.2 Characterization for classifiability
Our goal is to use the result of Section 3 to obtain stationary distributions in A1,A2, and
classify between them by comparing the stochastic language wrt these stationary distributions
using probabilistic equivalence (see Section 2.1). In order to do this, we first need to compare
the same information in both HMMs. The idea is to consider twin beliefs from each HMM:
we will enrich A1 with the beliefs of A2, and vice versa. Let A′1 be the HMM where the
state space is S1 × 2S2 , and the transition matrix is MA′

1
((x, Y ), a, (x′, Y ′)) = MA1(x, a, x′)

if Y ′ = {y′ | (y, a, y′), y ∈ Y }, and 0 otherwise, for all x, Y, a, x′, Y ′. We define similarly
A′2 with set of states S2 × 2S1 . It is easy to see that for all observation w, the belief state
BA′

1
(w) = {(x1, BA2(w)) | x1 ∈ BA1(w)}, is isomorphic to the twin belief (BA1(w), BA2(w)),

isomorphic to BA′
2
(w), and we will abuse notation and represent beliefs of A′1 and A′2 as

twin belief (X1, X2), where X1 or X2 can be empty.
What we are interested in is what happens after a BSCC of A is reached. We thus

consider twin beliefs reachable from some (x1, x2) in the BSCC of A. The set of twin beliefs
reachable in A′1 and in A′2 from ({x1}, {x2}) are almost the same, except for twin beliefs of
the form (X1, ∅) which cannot be reached in A′2, and of the form (∅, X2) which cannot be
reached in A′1.

I Definition 7. We say that a twin belief (X1, X2) is oblivious if the languages of BA1 from
X1 and of BA2 from X2 are the same.

By definition, if (X1, X2) is not oblivious, there are words differentiating X1 and X2.
Now, assume that X = (X1, X2) is oblivious. The twin beliefs reachable from (X1, X2)

are the same in A′1 and A′2. To potentially differentiate them, we need to consider their long
term statistics. Let B1 and B2 be the belief automata associated with A′1 and A′2. Let EA be
the union of BSCCs of twin beliefs accessible from twin states in the BSCCs of twin states,
as in lemma 3. Let X ∈ EA. In this case, we say that X is in the BSCCs of twin beliefs. We
define σ1

X : X1 → [0, 1] the stationary distribution in A′1 around the twin belief X (formally,
σ1
X is defined on (x,X2) for all x ∈ X1, and we omit the second component X2 because it is

constant). In the same way, we define σ2
X : X2 → [0, 1] for the second component X2 around

the twin belief X. We can then look for words differentiating A1,A2, i.e. with different
probabilities from σ1

X and from σ2
X . We can now state our characterization:

I Theorem 8. The following are equivalent:
1. One cannot limit-surely classify between A1,A2,
2. There exists an oblivious X ∈ EA in a BSCC of twin beliefs such that (A1, σ

1
X) ≡ (A2, σ

2
X),

3. There exists a BSCC D of A and X1 ⊆ S1, X2 ⊆ S2, and y1 ∈ X1, y2 ∈ X2, such that
(y1, x2) ∈ D for all x2 ∈ X2 and (x1, y2) ∈ D for all x1 ∈ X1, and two distributions σ1

over X1 and σ2 over X2 such that (A1, σ
1) ≡ (A2, σ

2).

The second condition is sufficient to show that MAP is a limit-sure classifier (see Pro-
position 16 in [1]). However, checking condition 2 explicitly is not algorithmically efficient,
as the belief automaton can have exponentially many states. Instead, to obtain a PTIME
algorithm to check limit-sure classifiability, we will use the third condition. For comparison,
in [6], a variant of the equivalence between (1) and (3) is shown, without using the stationary
distributions σ1

X , σ
2
X of (2).

For the proof, we note that the case of 2 implies 3 is easy. For the remaining two directions,
i.e. 1 implies 2 and 3 implies 1, proofs are technical, and can be found in the long version [1].
For 1 implies 2, we prove that negation of 2 implies that the MAP classifier (defined in
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beginning of Section 4) is limit-sure, implying negation of 1. Intuitively, negation of 2 means
that every pair of reachable beliefs have a distinguishing word. It then suffices to consider
statistics on these finite number of distinguishing words to know the originating HMM with
arbitrarily high probability. For 3 implies 1, we show that any twin belief (H1, H2) reached
from (y1, y2) in EA must be oblivious because of the probabilistic equivalence. We show this
implies (A1, σ

1
H1,H2

) and (A2, σ
2
H1,H2

) are equivalent and conclude using Lemma 6.

4.3 A PTIME Algorithm
Theorem 8 gives us a characterization for the existence of a limit-sure classifier. The third
condition is particularly interesting, because it does not require computing beliefs. Using
this, we can build an efficient algorithm, similar to [6], to test in PTIME whether there exists
a limit-sure classifier between A1,A2.

Our Algorithm 1, presented below, uses linear programming: we let v1, . . . , v` be the
basis of Eq(A1,A2) (see Section 2.1). There exist two distributions σ1, σ2 over X1, X2 with
(A1, σ

1) ≡ (A2, σ
2) iff the linear system of equations (for all j ≤ `, (σ1 σ2) · vj = 0) has a

solution (with σ1, σ2 as variables), which can be solved in Polynomial time.

Algorithm 1 Limit-sure Classifiability.

1: Compute D1, . . . , Dk the BSCCs of the twin automaton A.
2: for i=1..k do
3: for (y1, y2) ∈ Di do
4: Let X1 = {x1 | (x1, y2) ∈ Di}, X2 = {x2 | (y1, x2) ∈ Di}.
5: if there exist two distributions σ1, σ2 over X1, X2 with σ1(y1) > 0 and σ2(y2) > 0
6: with (A1, σ

1) ≡ (A2, σ
2) then

7: return not classifiable
8: return classifiable

The correctness of the algorithm is immediate from Theorem 8, as it checks explicitly for
the third condition to hold, in which case it returns not classifiable. If the third condition is
false for every BSCC D, then it returns classifiable.

4.4 Comparison with Distinguishability between HMMs [11]
We complete this section, by comparing our results with a related result on HMMs. In [11],
the problem of distinguishability between labeled Markov Chains has been considered. First,
labeled Markov Chains are just another name for HMMs. The idea behind distinguishability
is similar to the idea behind classifiability. Still, there are some technical differences:
distinguishability asks that for all ε > 0, there exists a (1− ε)-classifier, that is a classifier
f : Σ∗ → {⊥, 1, 2}, such that if the classifier answers f(u) = 1, then there is probability at
least (1− ε) that the observation comes from a run from A1, and similarly for f(u) = 2. To
compare, limit-sure classifiers need to be uniform over ε (see the next section).

The authors of [11] show that this notion can be checked in PTIME, by indirectly using
the result of [6] stating that one can check in PTIME whether the total variation distance
between two HMMs is 1. More precisely, the total variation distance is defined as:

I Definition 9. The total variation distance between two HMMs A1 and A2 is given by

d(A1,A2) = sup
E⊂Σω

|PA1(E)− PA2(E)|.
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This supremum has been shown to be a maximum [6]. It is not too hard to show that
limit-sure classification coincides with these notions as well for HMMs:

I Theorem 10. The following are equivalent:
1. There exists a limit-sure classifier for A1,A2,
2. For all ε > 0, there exists a (1− ε)-classifier for A1,A2,
3. d(A1,A2) = 1.

The proofs to obtain the PTIME algorithms are quite different though: we use stationary
distributions in HMMs while [6] focuses on separating events. Some intermediate results are
however related: our Proposition 18 in [1] is to be compared with Proposition 19 b) of [6]:
Our statement is stronger as the equivalence is true from all pairs of states with the same
(non stochastic) language - and in particular from (i1, j1) = (y1, y2) (cf Proposition 17 in [1]).
Also, the proof of Proposition 18 in [1] is simple, using strict convexity focusing on one finite
separating word, while in [6], the existence of a maximal separating events (sets of infinite
words) is used crucially in the proof of Proposition 19 b).

Surprisingly, our resulting algorithm is very similar to the one in [6], whereas we use very
different methods. Still, we can restrict the search to distributions in a BSCC of twin states,
while [6] considers subdistributions on the whole state space of twin states. This allows us to
optimize the number of variables in the Linear Program.

5 Attack-classification

While limit-sure classification allows for some misclassification, i.e. error in classification,
it requires that every execution of the HMMs is classifiable. From a security perspective,
if one wants to make sure that two systems cannot be distinguished from each other, then
the question changes slightly: from the point of view of an attacker who could exploit the
knowledge of which model the system is following, it need not classify every single execution.
It only needs to find one execution for which it can decide. This gives rise to what we call
attack-classification, which amounts to providing the attacker with a reset action she can
play when she believes the execution cannot be classified. Then, a new (possibly the same)
HMM is taken at random and an execution of this new HMM is observed by the attacker.
For instance, it is not possible to limit-surely classify between HMM A3 and HMM A4 on
Figure 4, because executions starting with a b cannot be classified. On the other hand, an
attacker can wait for an execution of the system starting with an a, for which he is sure the
HMM is A3. If it starts with a b, then the attacker just forgets this execution and wait for a
new execution of the system (the “reset” operation).

x

y

b, 1
10

a, 9
10

b

z b x′

y′

b, 9
10

a, 1
10

b

Figure 4 HMMs A3,A4 and A5 (left to right). One cannot classify betweeen A3,A4, but they
can be attack-classified. On the other hand, one cannot attack-classify between A3,A5.
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We start by considering limit-sure attack-classifiers, namely, we require that there exists
a reset-strategy, which with probability 1, resets only finitely many times, and a limit-sure
classifier for the observation after the last reset. We also consider what happens if instead of
limit-sure classifier, we ask for the existence of a family of (1− ε)-classifiers after the last
reset, one for each ε. The difference is that the reset action can take into account the ε in
the latter, but not in the former. While both notions coincide for the classifiers defined in
the previous section, we show now that they do not coincide for attack-classification.

Figure 4 illustrates the difference between these two notions, considering A3 and A5.
First, for all ε > 0, there exists an (1 − ε)-attack-classifier: given an ε, the reset strategy
resets if the first letter b happens within the first kε = log( 1

9ε ) steps. That is, the reset
strategy is τ(a∗) = ⊥, τ(akεw) = ⊥ and τ(a`b) = reset for ` < kε. For observation akεw, the
classifier claims that the HMM is A3, which is true with probability at least (1− ε). However,
this reset strategy is not compatible with limit-sure classifier (and, in fact, no reset strategy
is), because it is not uniform wrt all ε: once a b has been produced, no more information
can be gathered. On the other hand, limit-sure attack-classified implies the existence of
(1 − ε)-attack-classifiers for all ε. Thus the former notion of limit-sure attack-classifier is
strictly contained in the latter. More importantly, we show that deciding the former is
PSPACE-complete, while the latter turns out to be undecidable.

5.1 Limit-sure attack-classifiability is PSPACE-complete
Let us first formalize the definition of attack-classification.

I Definition 11. We say two HMMs A1,A2 are limit-sure attack-classifiable if: there exists
1. reset strategy τ : Σ∗ → {⊥, reset} telling when to reset, and which eventually stops

resetting, with probability 1 on the reset runs, and
2. limit-sure classifier for u, where u ∈ Σ∗ denotes the suffix of observations since last reset.

In the following, we show an algorithmic characterization for this concept. Intuitively,
there needs to exist one execution of one HMM (say A1), such that no matter the execution
of the other HMM with the same observation, we can eventually classify between these two
executions. We will thus consider A′1 and A′2, the HMMs A1 and A2 enriched with the
beliefs of the other HMM.

First, we define classifiable twin states in the BSCC of twin states: (x1, x2) ∈ A is
classifiable iff for (X1, X2) in the unique BSCC of twin beliefs, either (X1, X2) is non
oblivious or (X1, X2) is oblivious and (A1, σ

1
X1,X2

) 6≡ (A2, σ
2
X1,X2

), for (σ1
X1,X2

, σ2
X1,X2

) the
stationary distributions built for (X1, X2). Notice that it does not depends upon the choice
of (X1, X2). For a belief state X2 of A2, we say that (x1, X2) ∈ A′1 is classifiable if (x1, x2)
is classifiable for all x2 ∈ X2 (in particular, every (x1, x2) is in a BSCC of twin states). In
particular, (x1, ∅) is classifiable. We define (x2, X1) ∈ A′2 similarly.

I Proposition 12. (A1,A2) is limit-sure attack-classifiable iff there exists a classifiable
(x1, X2) ∈ A′1, or a classifiable (x2, X1) ∈ A′2.

In case there are more than two HMMs, we follow the state s of one HMM and the belief
of every other HMMs along the observation, and we need to check classifiability between (s, t)
for every t in the belief of any of the other HMMs. Using this characterization, we obtain:

I Theorem 13. Let A1, A2 be two HMMs. It is PSPACE-complete to check whether (A1,A2)
are limit-sure attack-classifiable.
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5.2 Existence of (1 − ε) attack-classifiers for all ε is undecidable
We now turn to the other notion. Let ε > 0. An (1 − ε) attack-classifier for two HMMs
A1,A2 is given by:
1. A reset strategy τ : Σ∗ → {⊥, reset} telling when to reset, and which eventually stops

resetting, with probability 1 on the reset runs, and
2. a (1 − ε)-classifier for u, where u ∈ Σ∗ denotes the suffix of the observations since the

last reset.

We next show that this notion, which we showed to be weaker than limit-sure attack-
classifiability on Fig 4, is also computationally much harder, in fact, it is undecidable.

I Theorem 14. It is undecidable to know whether for all ε, there exists an (1− ε) attack-
classifier between 2 HMMs.

Intuitively, we reduce from the problem of whether a PFA B, that accepts all words with
probability in (0, 1), is 0 and 1 isolated, that is, there is no sequence of words (wi)i∈N such
that limn→∞P

B(wi) = 0 or = 1. This problem is undecidable [8]. The idea is to transform
the PFA into an HMM which performs the actions of the PFA uniformly at random. We
check whether we can attack classify this HMM with an HMM which accepts all words of
size k with probability 1/2k. This is possible if 0 is not isolated or if 1 is not isolated.

6 Conclusion

In this paper, we tackled the notion of limit-sure classifiability between HMMs, which is
a general notion in studying how to uncover hidden information in partially observable
systems. The class of classifiers we consider are quite powerful, as they can use statistics on
the observations in order to take their decision. To obtain our results, summarized in the
table below we developed a robust theory of stationary distributions for HMMs.

While limit-sure classifiability is stronger and more complex than almost-sure classifiability,
checking for it is in a lower complexity class: PTIME instead of PSPACE-complete. This
result shines some new light on total variation metric for stochastic systems, recovering with
different techniques the PTIME result from [6]. We also considered attack-classifiability, where
the attacker needs to classify at least one observation rather than every execution. In this
setting, there is a difference between limit-sure classifier and the existence of (1−ε)-classifiers
for each ε. Limit-sure attack-classifiability is decidable (PSPACE-complete), whereas the
existence of (1− ε)-classifiers for all ε is undecidable.

limit-sure
classifiability

limit-sure
attack-classifiability

∀ε, (1− ε)
attack-classifiability

Complexity PTIME PSPACE-complete Undecidable
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