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Abstract
The probabilistic degree of a Boolean function f : {0, 1}n → {0, 1} is defined to be the smallest d

such that there is a random polynomial P of degree at most d that agrees with f at each point with
high probability. Introduced by Razborov (1987), upper and lower bounds on probabilistic degrees
of Boolean functions – specifically symmetric Boolean functions – have been used to prove explicit
lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems.

In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to
polylogarithmic factors over all fields of fixed characteristic (positive or zero).
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1 Introduction

Studying the combinatorial and computational properties of Boolean functions by representing
them using multivariate polynomials (over some field F) is an oft-used technique in Theoretical
Computer Science. Such investigations into the complexity of Boolean functions have led to
many important advances in the area (see, e.g. [2, 14, 23] for a large list of such results).

An “obvious” way of representing a Boolean function f : {0, 1}n → {0, 1} is via a
multilinear polynomial P ∈ F[x1, . . . , xn] such that P (a) = f(a) for all a ∈ {0, 1}n. While
such a representation has the advantage of being unique, understanding the computational
complexity of f sometimes requires us to understand polynomial representations where we
allow some notion of error in the representation. Here again, many kinds of representations
have been studied, but we concentrate here on the notion of Probabilistic degree of a Boolean
function, introduced by Razborov [16]. It is defined as follows.
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28:2 On the Probabilistic Degrees of Symmetric Boolean Functions

I Definition 1 (Probabilistic polynomial and Probabilistic degree). Given a Boolean function
f : {0, 1}n → {0, 1} and an ε > 0, an ε-error probabilistic polynomial for f is a random
polynomial P (with some distribution having finite support) over F[x1, . . . , xn] such that for
each a ∈ {0, 1}n,

Pr
P

[P(a) 6= f(a)] ≤ ε.

We say that the degree of P, denoted deg(P), is at most d if the probability distribution
defining P is supported on polynomials of degree at most d. Finally, we define the ε-error
probabilistic degree of f , denoted pdegF

ε(f), to be the least d such that f has an ε-error
probabilistic polynomial of degree at most d.

When the field F is clear from context, we use pdegε(f) instead of pdegF
ε(f).

Intuitively, if we think of multivariate polynomials as algorithms and degree as a notion of
efficiency, then a low-degree probabilistic polynomial for a Boolean function f is an efficient
randomized algorithm for f .

The study of the probabilistic degree itself is by now a classical topic, and has had
important repercussions for other problems. We list three such examples below, referring the
reader to the papers for definitions and exact statements of the results.

Razborov [16] showed strong upper bounds on the probabilistic degree of the OR function
over fields of (fixed) positive characteristic. Along with lower bounds on the probabilistic
degree of some symmetric Boolean functions,1 this led to the first lower bounds for the
Boolean circuit class AC0[p], for prime p [16, 17, 19].
Tarui [22] and Beigel, Reingold and Spielman [3] showed upper bounds on the probabilistic
degree of the OR function over any characteristic (and in particular over the reals). This
leads to probabilistic degree upper bounds for the circuit class AC0, which was used by
Braverman [5] to resolve a long-standing open problem of Linial and Nisan [11] regarding
pseudorandom generators for AC0.

Alman and Williams [1] showed that for constant error, the probabilistic degree of
any symmetric Boolean function is at most O(

√
n), and used this to obtain the first

subquadratic algorithm for an offline version of the Nearest Neighbour problem in the
Hamming metric.

In all the above results, it was important to understand the probabilistic degree of a
certain class of symmetric Boolean functions. However, the problem of characterizing the
probabilistic degree of symmetric Boolean functions in general does not seem to have been
considered. This is somewhat surprising, since this problem has been considered in a variety
of other computational models, such as AC0 circuits of polynomial size [8, 6], AC0[p] circuits
of quasipolynomial size [12], Approximate degree2 [15] and Perceptrons3 of quasipolynomial
size [24].

1 Recall that a symmetric Boolean function f : {0, 1}n → {0, 1} is a function such that f(x) depends only
on the Hamming weight of x. Examples include the threshold functions, Parity (counting modulo 2),
etc.

2 A Boolean function f : {0, 1}n → {0, 1} is said to have approximate degree at most d if there is a degree
d polynomial P ∈ R[x1, . . . , xn] such that at each a ∈ {0, 1}n, |f(a)− P (a)| ≤ 1/4.

3 Perceptrons are depth-2 circuits with a Majority gate as the output gate with AND and OR gates
feeding into it.
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Our result. In this paper, we give an almost-complete understanding of the probabilistic
degrees of all symmetric Boolean functions over all fields of fixed positive characteristic and
characteristic 0. For each Boolean function f on n variables, our upper bounds and lower
bounds on pdeg(f) are separated only by polylogarithmic factors in n.

We now introduce some notation and give a formal statement of our result. We shall use
the notation [a, b] to denote an interval in R as well as an interval in Z; the distinction will
be clear from the context. Throughout, fix some field F of characteristic p which is either a
fixed positive constant or 0. Let n be a growing integer parameter which will always be the
number of input variables. We use sBn to denote the set of all symmetric Boolean functions
on n variables. Note that each symmetric Boolean function f : {0, 1}n → {0, 1} is uniquely
specified by a string Spec f : [0, n]→ {0, 1}, which we call the Spectrum of f , in the sense
that for any a ∈ {0, 1}n, we have

f(a) = Spec f(|a|).

Given a f ∈ sBn, we define the period of f , denoted per(f), to be the smallest positive
integer b such that Spec f(i) = Spec f(i+ b) for all i ∈ [0, n− b]. We say f is k-bounded if
Spec f is constant on the interval [k, n− k]; let B(f) denote the smallest k such that f is
k-bounded.

Standard decomposition of a symmetric Boolean function [12]. Fix any f ∈ sBn. Among
all symmetric Boolean functions f ′ ∈ sBn such that Spec f ′(i) = Spec f(i) for all i ∈
[dn/3e, b2n/3c], we choose a function g such that per(g) is as small as possible. We call g
the periodic part of f . Define h ∈ sBn by h = f ⊕ g. We call h the bounded part of f .

We will refer to the pair (g, h) as a standard decomposition of the function f . Note that
we have f = g ⊕ h.

I Observation 2. Let f ∈ sBn and let (g, h) be a standard decomposition of f . Then,
per(g) ≤ bn/3c and B(h) ≤ dn/3e.

In this paper, we prove the following upper and lower bounds for the probabilistic degrees
of symmetric Boolean functions. While the most important setting for understanding the
probabilistic degree is the setting of constant error (i.e. ε = Ω(1)), we state the upper bound
results for arbitrary ε > 0 since the inductive construction naturally gives rise to this stronger
statement.

I Theorem 3 (Upper bounds on probabilistic degree). Let F be a field of constant characteristic
p (possibly 0) and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let (g, h) be
a standard decomposition of f . Then we have the following for any ε > 0.
1. If per(g) = 1, then pdegF

ε(g) = 0, .
If per(g) is a power of p, then pdegF

ε(g) ≤ per(g), [12]
(Note that per(g) cannot be a power of p if p = 0.)

2. pdegF
ε(h) = Õ(

√
B(h) log(1/ε) + log(1/ε)),

3. pdegF
ε(f) =


O(
√
n log(1/ε)) if per(g) > 1 and not a power of p, [1]

Õ(min{
√
n log(1/ε),per(g)+ otherwise.√

B(h) log(1/ε) + log(1/ε)})
When p is positive, we can replaced the Õ(·) with O(·) in all the above bounds.

We obtain almost (up to polylogarithmic factors) matching lower bounds for all symmetric
Boolean functions over all fields.

FSTTCS 2019
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I Theorem 4 (Lower bounds on probabilistic degree). Let F be a field of constant characteristic
p (possibly 0) and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let (g, h) be
a standard decomposition of f . Then for any constant ε ≤ 1/3, we have
1. pdegF

ε(g) = Ω̃(
√
n) if per(g) > 1 and is not a power of p and Ω̃(min{

√
n,per(g)})

otherwise.
2. pdegF

ε(h) = Ω̃(
√
B(h)),

3. pdegF
ε(f) =

{
Ω̃(
√
n) if per(g) > 1 and not a power of p,

Ω̃(min{
√
n, per(g) +

√
B(h)}) otherwise.

where the Ω̃(·) hides poly(logn) factors.

I Remark 5. A natural open question following our results is to remove the polylogarithmic
factors separating our upper and lower bounds. We remark that in characteristic 0, such
gaps exist even for the very simple OR function despite much effort [13, 9, 4]. Over positive
characteristic, there is no obvious barrier, but our techniques fall short of proving tight lower
bounds for natural families of functions such as the Exact Threshold functions (defined below).

Many proofs are omitted for lack of space. They appear in the full version of the paper.

1.1 Proof Outline
For the outline below, we assume that the field is of fixed positive characteristic p.

Upper bounds. Given a symmetric Boolean function f on n variables with standard
decomposition (g, h), it is easy to check that pdegε(f) = O(pdegε(g)+pdegε(h)). So it suffices
to upper bound the probabilistic degrees of periodic and bounded functions respectively.

For periodic functions g with period a power of p, Lu [12] showed that the exact degree
of the Boolean functions is at most per(g). If the period is not a power of p, then we use the
upper bound of Alman and Williams [1] that holds for all symmetric Boolean functions (as
we show below, this is nearly the best that is possible).

For a t-constant function h (defined in Section 3), we use the observation that any t-
constant function is essentially a linear combination of the threshold functions Thr0

n, . . . ,Thrtn
(see Section 2 for the definition) and so it suffices to construct probabilistic polynomials for
Thrin, for i ∈ [0, t].4

Our main technical upper bound is a new probabilistic degree upper bound of
O(
√
t log(1/ε) + log(1/ε)) for any threshold function Thrtn. This upper bound interpol-

ates smoothly between a classical upper bound of O(log(1/ε)) due to Razborov [16] for t = 1
and a recent result of Alman and Williams [1] that yields O(

√
n log(1/ε)) for t = Ω(n).

The proof of our upper bound is based on the beautiful inductive construction of Alman
and Williams [1] which gives their above-mentioned result. The key difference between our
proof and the proof of [1] is that we need to handle separately the case when the error
ε ≤ 2−Ω(t).5 In [1], this is a trivial case since any function on n Boolean variables has an
exact polynomial of degree n which is at most O(

√
n log(1/ε)) when ε ≤ 2−Ω(n). In our

setting, the correct bound in this case is O(log(1/ε)), which is non-obvious. We obtain
this bound by a suitable modification of Razborov’s technique (for t = 1) to handle larger
thresholds.

4 We actually need to construct probabilistic polynomials for all the threshold functions simultaneously.
We ignore this point in this high-level outline.

5 This case comes up naturally in the inductive construction, even if one is ultimately only interested in
the case when ε is a constant.
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Lower bounds. Here, our proof closely follows a result of Lu [12], who gave a characterization
of symmetric Boolean functions that have quasipolynomial-sized AC0[p] circuits.6 To show
circuit lower bounds for a symmetric Boolean function h, Lu showed how to convert a circuit
C computing h to a circuit C ′ computing either the Majority or a MODq function (where q
and p are relatively prime). Since both of these are known to be hard for AC0[p] [16, 17], we
get the lower bound.

We show how to use Lu’s reductions (and variants thereof) but in the setting of probabilistic
polynomials. This works because

We also have strong probabilistic degree lower bounds for the Majority and MODq

functions (in fact, this is the source of the AC0[p] lower bound).
Lu’s constructions of the hard functions from h (and our variants) involve taking ANDs
and ORs of a few copies of (restrictions of) h. This also gives a reduction from the hard
functions to h in the setting of probabilistic degree, since ANDs and ORs are known to
have small probabilistic degree [16].

With these observations in place, the proof reduces to a careful case analysis to get the
correct lower bound in each case. Interestingly, while it is not clear whether these ideas give
a tight understanding of the AC0[p]-circuit complexity of symmetric Boolean functions, they
do give nearly tight (up to log factors) lower bounds for probabilistic degree.

2 Preliminaries

Some Boolean functions. Fix some positive n ∈ N. The Majority function Majn on n

Boolean variables accepts exactly the inputs of Hamming weight at least n/2. For t ∈ [0, n],
the Threshold function Thrtn accepts exactly the inputs of Hamming weight at least t; and
similarly, the Exact Threshold function EThrtn accepts exactly the inputs of Hamming weight
exactly t. Finally, for b ∈ [2, n] and i ∈ [0, b− 1], the function MODb,i

n accepts exactly those
inputs a such that |a| ≡ i (mod b). In the special case that i = 0, we also use MODb

n.

I Fact 6. We have the following simple facts about probabilistic degrees. Let F be any field.
1. (Error reduction [9]) For any δ < ε ≤ 1/3 and any Boolean function f , if P is an ε-error

probabilistic polynomial for f , then Q = M(P1, . . . ,P`) is a δ-error probabilistic polyno-
mial for f where M is the exact multilinear polynomial for Maj` and P1, . . . ,P` are inde-
pendent copies of P. In particular, we have pdegF

δ(f) ≤ pdegF
ε(f) ·O(log(1/δ)/ log(1/ε)).

2. (Composition) For any Boolean function f on k variables and any Boolean functions
g1, . . . , gk on a common set of m variables, let h denote the natural composed function
f(g1, . . . , gk) on m variables. Then, for any ε, δ > 0, we have pdegF

ε+kδ(h) ≤ pdegF
ε(f) ·

maxi∈[k] pdegF
δ(gi).

3. (Sum) Assume that f, g1, . . . , gk are all Boolean functions on a common set of m variables
such that f =

∑
i∈[k] gi. Then, for any δ > 0, we have pdegF

kδ(f) ≤ maxi∈[k] pdegF
δ(gi).

2.1 Some previous results on probabilistic degree
The following upper bounds on probabilistic degrees of OR and AND functions were proved
by Razborov [16] in the case of positive characteristic and Tarui [22] and Beigel, Reingold
and Spielman [3] in the general case.

6 Recall that an AC0[p] circuit is a constant-depth circuit made up of gates that can compute the Boolean
functions AND, OR, NOT and MODp (defined below).

FSTTCS 2019



28:6 On the Probabilistic Degrees of Symmetric Boolean Functions

I Lemma 7 (Razborov’s upper bound on probabilistic degrees of OR and AND). Let F be a
field of characteristic p. For p > 0, we have

pdegF
ε(ORn) = pdegF

ε(ANDn) = O(p log(1/ε)). (1)

For any p, we have

pdegF
ε(ORn) = pdegF

ε(ANDn) = O(logn · log(1/ε)). (2)

We now recall two probabilistic degree lower bounds due to Smolensky [18, 20], building
on the work of Razborov [16].

I Lemma 8 (Smolensky’s lower bound for close-to-Majority functions). For any field F, any
ε ∈ (1/2n, 1/5), and any Boolean function g on n variables that agrees with Majn on a 1− ε
fraction of its inputs, we have

pdegF
ε(g) = Ω(

√
n log(1/ε)).

I Lemma 9 (Smolensky’s lower bound for MOD functions). For 2 ≤ b ≤ n/2, any F such that
char(F) = p is coprime to b, any ε ∈ (1/2n, 1/(3b)), there exists an i ∈ [0, b− 1] such that

pdegF
ε(MODb,i

n ) = Ω(
√
n log(1/bε)).

I Remark 10. From the above lemma, it also easily follows that if b ≤ n/4, then for every
i ∈ [0, b− 1], we have pdegF

ε(MODb,i
n ) = Ω(

√
n log(1/bε)). This is the usual form in which

Smolensky’s lower bound is stated. The above form is slightly more useful to us because it
holds for b up to n/2.

We will also need the following result of Alman and Williams [1].

I Lemma 11. Let F be any field. For any n ≥ 1, ε > 0 and f ∈ sBn, pdegF
ε(f) =

O(
√
n log(1/ε)).

2.2 A string lemma
Given a function w : I → {0, 1} where I ⊆ N is an interval, we think of w as a string from
the set {0, 1}|I| in the natural way. For an interval J ⊆ I, we denote by w|J the substring of
w obtained by restriction to J .

The following simple lemma can be found, e.g. as a consequence of [10, Chapter I, Section
2, Theorem 1].

I Lemma 12. Let w ∈ {0, 1}+ be any non-empty string and u, v ∈ {0, 1}+ such that
w = uv = vu. Then there exists a string z ∈ {0, 1}+ such that w is a power of z (i.e. w = zk

for some k ≥ 2).

I Corollary 13. Let g ∈ sBn be arbitrary with per(g) = b > 1. Then for all i, j ∈ [0, n− b+1]
such that i 6≡ j (mod b), we have Spec g|[i,i+b−1] 6= Spec g|[j,j+b−1].

Proof. Suppose Spec g|[i,i+b−1] = Spec g|[j,j+b−1] for some i 6≡ j (mod b). Assume without
loss of generality that i < j < i + b. Let u = Spec g|[i,j−1], v = Spec g|[j,i+b−1], w =
Spec g|[i+b,j+b−1]. Then u = w and the assumption uv = vw implies uv = vu. By Lemma 12,
there exists a string z such that uv = zk for k ≥ 2 and therefore per(g) < b. This contradicts
our assumption on b. J
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I Lemma 14. Let n ∈ N be a growing parameter and let f ∈ sBn with periodic part g.
For any 1 ≤ b ≤ bn/3c, either per(g) ≤ b or for all distinct i, j ∈ [dn/3e − b, dn/3e],
Spec f |[i,i+(dn/3e+b)] 6= Spec f |[j,j+(dn/3e+b)].

Proof. W.l.o.g. say i < j. Assume per(g) > b (otherwise, we are done trivially). Then,
for any b′ ≤ b, it follows that there is an k ∈ [dn/3e, b2n/3c − b′] such that Spec f(k) 6=
Spec f(k + b′). In particular, we see that Spec f |[i,i+(dn/3e+b)] 6= Spec f |[i+b′,i+b′+(dn/3e+b)].
Fixing b′ = j − i yields the result. J

3 Upper bounds

In this section, we will first prove upper bounds on the probabilistic degree of a smaller
class of symmetric Boolean functions, called t-constant functions, and then use it to prove
Theorem 3.

3.1 Upper bound on probabilistic degree of t-constant functions
I Definition 15 (t-constant function). For any positive n ∈ N and t ∈ [0, n], a Boolean
function f ∈ sBn is said to be t-constant if f |{x:|x|≥t} is a constant, that is, Spec f |[t,n] is a
constant.

The following observation is immediate.

I Observation 16. A Boolean function f : {0, 1}n → {0, 1} is t-constant if and only if
f =

∑t
j=0 ajThrjn, for some a0, . . . , at ∈ {−1, 0, 1}. In other words, f is t-constant if and

only if there exists a linear polynomial g(Y0, . . . , Yt) = a0Y0 + · · ·+ atYt ∈ F[Y0, . . . , Yt] with
aj ∈ {−1, 0, 1}, j ∈ [0, t] such that f = g(Thr0

n, . . . ,Thrtn).

We will prove an upper bound on the probabilistic degree of t-constant Boolean functions.
For this, we first generalize the notion of probabilistic polynomial and probabilistic degree to
a tuple of Boolean functions. This generalization was implicit in [1].

I Definition 17 (Probabilistic poly-tuple and probabilistic degree). Let f = (f1, . . . , fm) :
{0, 1}n → {0, 1}m be an m-tuple of Boolean functions and ε ∈ (0, 1). An ε-error probabilistic
poly-tuple for f is a random m-tuple of polynomials P (with some distribution having finite
support) from F[X1, . . . , Xn]m such that

Pr
P∼P

[P (x) 6= f(x)] ≤ ε, for all x ∈ {0, 1}n.

We say that the degree of P is at most d if P is supported on m-tuples of polynomials
P = (P1, . . . , Pm) where each Pi has degree at most d. Finally we define the ε-error
probabilistic degree of f , denoted by pdegF

ε(f), to be the least d such that f has an ε-error
probabilistic poly-tuple of degree at most d.

We make a definition for convenience.

I Definition 18 (Threshold tuple). For positive n ∈ N, t ∈ [0, n], an (n, t)-threshold
tuple is any tuple of Boolean functions (Thrt1n , . . . ,Thrtmn ), with t1, . . . , tm ∈ [0, t] and
max{t1, . . . , tm} ≤ t.

The main theorem of this subsection is the following.

FSTTCS 2019
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I Theorem 19. For any positive n ∈ N, t ∈ [0, n], if T is an (n, t)-threshold tuple and
ε ∈ (0, 1/3), then

pdegε(T ) =
{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

As a corollary to the above theorem, we get an upper bound for the probabilistic degree
of t-constant functions.

I Corollary 20. For any t-constant Boolean function f : {0, 1}n → {0, 1} and ε ∈ (0, 1/3),

pdegε(f) =
{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

Proof. By Observation 16, there exists g(Y0, . . . , Yt) = a0Y0 + · · ·+ atYt ∈ F[Y0, . . . , Yt] with
aj ∈ {−1, 0, 1}, j ∈ [0, t] such that f = g(Thr0

n, . . . ,Thrtn). We note that deg g = 1. So by
Theorem 19, we get

pdegε(f) = deg g · pdegε(Thr0
n, . . . , Thrt

n) =

{
Õ(
√

t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√

t log(1/ε) + log(1/ε)), char(F) = p > 0.
.

J

Before we prove Theorem 19, we will gather a few results that we require. The following
lemma is a particular case of Bernstein’s inequality (Theorem 1.4, [7]).

I Lemma 21. Let X1, . . . , Xm be independent and identically distributed Bernoulli random
variables with mean p. Let X =

∑m
i=1Xi. Then for any θ > 0,

Pr [|X −mp| > θ] ≤ 2 exp
(
− θ2

2mp(1− p) + 2θ/3

)
.

We will also need the following polynomial construction.

I Theorem 22 (Lemma 3.1, [1]). For any symmetric Boolean function f : {0, 1}n → {0, 1}
and integer interval [a, b] ⊆ [0, n], there exists a symmetric multilinear polynomial EX[a,b]f ∈
Z[X1, . . . , Xn] such that deg(EX[a,b]f) ≤ b− a and Spec (EX[a,b]f)|[a,b] = Spec f |[a,b].

We will now prove Theorem 19.

Proof of Theorem 19. For any a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Fk, fix the notation
a ∗ b = (a1b1, . . . , akbk). Throughout, the notation 1 will denote the constant-1 vector of
appropriate length.

For positive characteristic p, we prove that for any positive n ∈ N, t ∈ [0, n] and
ε ∈ (0, 1/100), any (n, t)-threshold tuple T has an ε-error probabilistic poly-tuple T of degree
at most Ap

√
t log(1/ε) +Bp log(1/ε), for constants Ap = Bp = 4800000p (we make no effort

to minimize the constants). For p = 0, we prove a similar result with a degree bound of
A0 logn ·

√
t log(1/ε) + B0 logn · log(1/ε), for A0 = B0 = 5000000. This will prove the

theorem for ε < 1/100. To prove the theorem for all ε ≤ 1/3, we use error reduction (Fact 6)
and reduce the error to 1/100 and then apply the result for small error.
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The proof is by induction on the parameters n, t and ε. At any stage of the induction,
given an (n, t)-threshold tuple with error parameter ε, we construct the required probabilistic
poly-tuple by using the probabilistic poly-tuples (guaranteed by inductive hypothesis) for
suitable threshold poly-tuples with n/10 inputs and error parameter ε/4. Thus the base
cases of the induction are as follows.

Base Case: Suppose n ≤ 10. Let T = (T1, . . . , Tm) be an (n, t)-threshold tuple. Let
Q1, . . . , Qm be the unique multilinear polynomial representations of T1, . . . , Tm respectively.
Then Q = (Q1, . . . , Qm) is an ε-error probabilistic poly-tuple for T , for all ε ∈ (0, 1/100),
with degQ ≤ n = 10.

Base Case: Suppose ε ≤ 2−t/160000. Let T = (T1, . . . , Tm) = (Thrt1n , . . . ,Thrtmn ) be any
(n, t)-threshold tuple and let r = 160000 log(1/ε).

Suppose n ≤ r. Let Q1, . . . , Qm be the unique multilinear representations of T1, . . . , Tm
respectively. Then Q = (Q1, . . . , Qm) is an ε-error probabilistic polynomial with degQ ≤ n ≤
r = dlog(1/ε)e. Now suppose n > r. Let P1 = (EX[0,r]T1, . . . ,EX[0,r]Tm). Then degP1 ≤ r.
Choose a uniformly random hash function H : [n]→ [r] and let Sj = H−1(j), j ∈ [r].

First let us suppose that char(F) = p > 0. Choose αi ∼ Fp, i ∈ [n] independently
and uniformly at random and define Lj(x) =

∑
i∈Sj

αixi, for x ∈ {0, 1}n, j ∈ [r]. For
i ∈ [m], let P(i)

2 = Q
(i)
r (Lp−1

1 , . . . ,Lp−1
r ), where Q(i)

r is the unique multilinear polynomial
representation of Thrtir . Let P2 = (P(1)

2 , . . . ,P(m)
2 ). Define P = 1− (1−P1) ∗ (1−P2), that

is, P = (P(1), . . . ,P(m)), where P(i) = OR2(P (i)
1 ,P(i)

2 ), for all i ∈ [m].
Note that since ε ≤ 2−t/160000, we have r = 4800000 log(1/ε) ≥ t. Thus ti ≤ t ≤ r, for

all i ∈ [m]. Now fix any a ∈ {0, 1}n. Let Za = {i ∈ [m] : Thrtin (a) = 0} and Na = {i ∈ [m] :
Thrtin (a) = 1}. So we have |a| < ti ≤ t ≤ r and hence EX[0,r]Ti(a) = 0, for all i ∈ Za. Also
|(Lp−1

1 (a), . . . ,Lp−1
r (a))| ≤ |a| < ti w.p.1, and so P(i)

2 (a) = Q
(i)
r ((Lp−1

1 (a), . . . ,Lp−1
r (a))) = 0

w.p.1, for all i ∈ Za simultaneously. Thus P(i)(a) = 0 w.p.1, for all i ∈ Za simultaneously.
Further we have |a| ≥ ti, for all i ∈ Na. We will now show that P(i)(a) = 1 w.p. at least

1− ε, for all i ∈ Na simultaneously. If |a| ≤ r, then again P (i)
1 (a) = 1, for all i ∈ Na and so

P(i)(a) = 1 w.p.1. Now suppose |a| ≥ r. Without loss of generality, assume t1 ≤ · · · ≤ tm = t.
Then we have P(1)

2 (a) ≥ · · · ≥ P(m)
2 (a) w.p.1, under the order 1 > 0. So it is enough to show

that P(m)(a) = 1 w.p. at least 1− ε.
Define I(H) = {j ∈ [r] : supp(a) ∩ Sj 6= ∅}. We get

Pr
[
P(m)

2 (a) = 0
]

= Pr
[
P(m)

2 (a) = 0 | |I(H)| < r/10
]
· Pr [|I(H)| < r/10]

+ Pr
[
P(m)

2 (a) = 0 | |I(H)| ≥ r/10
]
· Pr [|I(H)| ≥ r/10]

≤ Pr [|I(H)| < r/10] + max
H:|I(H)|≥r/10

Pr
[
P(m)

2 (a) = 0 | H
]
.

By Union Bound, we get

Pr [|I(H)| < r/10] ≤
∑

I⊆[r], |I|=r/10

Pr [I(H) ⊂ I] ≤
(

r

r/10

)
1

10r ≤
1
4r ≤

1
4 ·

1
2r ≤

ε

4 .

Now fix any H such that |I(H)| ≥ r/10, and let ` = |I(H)|. Note that P(m)
2 (a) is 0 if and

only if at most t−1 many Lj(a) are non-zero. We consider only j ∈ I(H). For each j ∈ I(H),
the probability that Lj(a) is non-zero is 1− 1/p ≥ 1/2. Thus, the expected number of Lj(a)
(j ∈ I(H)) that are non-zero is at least `/2 ≥ r/20. Thus, by Lemma 21,
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Pr
[
P(m)

2 (a) = 0 | H
]

= Pr [|I(H) ∩ {j : Lj(a) = 1}| ≤ t− 1 | H] ≤ 2 exp
(
− r

240

)
<

ε

2 .

where for the inequality we have used the fact that t ≤ r/40. Thus Pr
[
P(m)

2 (a) = 0
]
≤ ε,

proving the base case when char(F) = p > 0.
Now suppose char(F) = 0. Then for i ∈ [m] we let P(i)

2 = Q
(i)
r (O1, . . . ,Or), where

Q
(i)
r is the unique multilinear polynomial representation of Thrtir , and for j ∈ [r], Oj is a

1/3-error probabilistic polynomial for ORSj
, the OR function on variables (Xk : k ∈ Sj). Let

P2 = (P(1)
2 , . . . ,P(m)

2 ). Define P = 1 − (1 − P1) ∗ (1 − P2), that is, P = (P(1), . . . ,P(m)),
where P(i) = OR2(P (i)

1 ,P(i)
2 ), for all i ∈ [m]. The rest of the analysis follows similarly,

proving the base case when char(F) = 0.

Inductive Construction. For any positive characteristic p, any n′ < n, t′ ∈ [0, n′] and ε′ ∈
(0, 1/100), assume the existence of an ε′-error probabilistic poly-tuple for any (n′, t′)-threshold
tuple, with degree at most Ap

√
t′ log(1/ε′) +Bp log(1/ε′); similarly, for characteristic zero,

assume we have a probabilistic poly-tuple of degree A0 logn·
√
t′ log(1/ε′)+B0 logn·log(1/ε′).

We now consider an (n, t)-threshold tuple T = (T1, . . . , Tm) = (Thrt1n , . . . ,Thrtmn ). As-
sume that the parameter ε > 2−t/160000 since otherwise can use the construction from the
base case. Define

T ′ = (T ′1, . . . , T ′m) =
(

Thrt1/10
n/10 , . . . ,Thrtm/10

n/10

)
,

T ′′+ = (T ′′1,+, . . . , T ′′m,+) =
(

Thrt1/10+20
√
t log(1/ε)

n/10 , . . . ,Thrtm/10+20
√
t log(1/ε)

n/10

)
,

T ′′− = (T ′′1,−, . . . , T ′′m,−) =
(

Thrt1/10−20
√
t log(1/ε)

n/10 , . . . ,Thrtm/10−20
√
t log(1/ε)

n/10

)
.

By induction hypothesis, let T′,T′′+,T′′− be ε/4-error probabilistic poly-tuples for T ′, T ′′+, T ′′−
respectively. Let N′′ = (1 − T′′+) ∗ T′′−. For any x ∈ {0, 1}n, choose a random subvector
x̂ ∈ {0, 1}n/10 with each coordinate chosen independently with probability 1/10, with
replacement. Define

T(x) = N′′(x̂) ∗ E(x) + (1−N′′)(x̂) ∗T′(x̂),

where E = (E1, . . . , Em), with Ei = EX[ti−300
√
t log(1/ε),ti+300

√
t log(1/ε)]Thrtin , i ∈ [m]. We

will now prove that T is an ε-error probabilistic poly-tuple for T .

Correctness of Inductive Construction. We now check that the construction above gives
an ε-error probabilistic poly-tuple for T . Fix any a ∈ {0, 1}n. Let â ∈ {0, 1}n/10 be chosen
as given in the inductive construction.

Suppose |a| ≤ 2t. Let θ = 10
√
t log(1/ε). Applying Lemma 21, we get

Pr [||â| − |a|/10| > θ] < ε/4. By induction hypothesis, the probability that T′(â) does
not agree with T ′(â) is at most ε/4, and similarly for T′′+ and T′′−. Let Ga be the event that
none of the above events occur; by a union bound, the event Ga occurs with probability at
least 1− ε. In this case, we show that T(a) = T (a), which will prove the correctness of the
construction in the case that |a| ≤ 2t.

To see the above, observe the following for each i ∈ [m].
T′i(â) = Ti(a) if ||a| − ti| > 10θ. This is because T′i(â) = T ′i (â) by our assumption that
the event Ga has occurred. Further, we also have T ′i (â) = Ti(a) since |â− |a|/10| ≤ θ (by
occurrence of Ga) and hence |a| ≥ ti if and only if |â| ≥ ti/10.
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If ||a| − ti| > 30θ, then N′′i (â) = 0. This is because ||â| − |a|/10| ≤ θ and hence
||â| − ti/10| > 2θ. Hence, either T′′i,+(â) = 1 or T′′i,−(â) = 0 and therefore, N′′i (â) = 0.
Thus, when ||a| − ti| > 30θ, the definition of T yields Ti(a) = T′i(â) = Ti(a). We are
therefore done in this case.
If ||a| − ti| < 10θ, then N′′i (â) = 1. This is similar to the analogous statement above.
Therefore, when ||a| − ti| < 10θ, we have Ti(a) = Ei(a) = Ti(a) as |a| ∈ [ti −
300
√
t log(1/ε), ti + 300

√
t log(1/ε)]. Hence, we are done in this case also.

If 10θ ≤ ||a| − ti| ≤ 30θ, then Ei(a) = T′(â) = Ti(a). Since N′′i (â) ∈ {0, 1} for each
i ∈ [m], we again obtain Ti(a) = Ti(a).

This shows that for any a such that |a| ≤ 2t, whenever Ga does not occur, T(a) = T (a).
Now suppose |a| > 2t. Then by a Chernoff bound (follows from Lemma 21), we get

Pr [|â| < 1.5t/10] < 2 exp(−t/400) < ε/2. Also, by the induction hypothesis, the probability
that T′(â) does not agree with T ′(â) is at most ε/4, and similarly for T′′+ and T′′−. Let Ga
denote the event that none of the above events occur; we have Pr [G] ≥ 1− ε. As above, we
show that when Ga occurs, then T(a) = T (a).

To see this, we proceed as follows.
Since |a| ≥ 2t and |â| ≥ 1.5t/10, both T (a) and T′i(â) are both the constant-1 vector.
Further, we note that we have N′′i (â) = 0 for each i ∈ [m]. This is because ||â| − ti/10| ≥
(|â| − t/10) ≥ t/20 > 20

√
t log(1/ε).

This implies that Ti(a) = T′i(â) = 1 for each i ∈ [m].
Hence, when Ga does not occur, we have T(a) = T (a), which proves the correctness of the
construction.

Correctness of Degree. The computation that shows that deg(T) satisfies the inductive
claim is omitted here and is in the full version of the paper. J

3.2 Upper bounds from Theorem 3

Upper bound for pdegε(g). This result is due to Lu [12].

Upper bound for pdegε(h). Let B(h) = k. Thus we can write h = h1 + (1− h̃2), for k-
constant symmetric Boolean functions h1, h2, where h̃2(x1, . . . , xn) = h2(1− x1, . . . , 1− xn).
But then by Corollary 20, pdegε(h1) = pdegε(h2) = O(

√
k log(1/ε) + log(1/ε)) and so

pdegε(h) = O(
√
k log(1/ε) + log(1/ε)) over positive characteristic p. For p = 0, we obtain

the same upper bound up to log-factors.

Upper bound for pdegε(f). Let (g, h) be the standard decomposition of f . So f = g⊕h =
g + h − 2gh. Further, we already have the Alman-Williams bound of O(

√
n log(1/ε)) on

pdegε(f) (Lemma 11). So we get pdegε(f) = O(min{
√
n log(1/ε),per(g)+

√
B(h) log(1/ε)+

log(1/ε)}) over positive characteristic and the same bound up to log-factors over characteristic
0. This concludes the proof of Theorem 3.

4 Lower bounds

In this section, we prove the lower bounds from Theorem 4.
Throughout, F is fixed to be some arbitrary field of characteristic p (possibly 0). We use

pdegε(·) instead of pdegF
ε(·) and pdeg(·) instead of pdegF

1/3(·).
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4.1 Preliminary lemmas
We need some preliminary lemmas. The proofs are omitted for lack of space.

I Lemma 23. Let n,m ∈ N, n > m and ε ≤ 1/3. Let f ∈ sBn and g ∈ sBm be such that
per(g) divides per(f) and per(f) ≤ (n−m+2)/2. Then pdegε(f) = Ω(pdegε(g)/ log3(n/ε)).

I Lemma 24. For any 1/2n ≤ ε ≤ 1/3, pdegε(EThrdn/2en ) = Ω̃(
√
n log(1/ε)).

4.2 Lower bounds from Theorem 4
We recall the lower bound for periodic functions from Theorem 4. In light of Observation 2,
this is a slightly more general statement.

I Lemma 25. Let g ∈ sBn be any function with per(g) = b ≤ n/3, then pdegε(g) = Ω̃(
√
n)

if per(g) > 1 and is not a power of p and Ω̃(min{
√
n, per(g)}) otherwise.

Proof. Assume per(g) = b > 1. Consider the two cases below.

b is not a power of p. Let b′ be any non-trivial divisor of b which is coprime to p (if p = 0,
we simply take b′ = b). For i ∈ [0, b′ − 1], define gi = MODb′,i

dn/3e. The functions g
and gi satisfy the hypotheses of Lemma 23 and therefore for any constant ε ≤ 1/3,
pdegε(g) = Ω̃(pdegε(gi)).
Note that as b ≤ n/3, we have b′ ≤ n/6 ≤ 1

2dn/3e. Hence, by Lemma 9, for some
i ∈ [0, b′ − 1], pdeg1/n2(gi) = Ω(

√
n log(n2/b)) = Ω̃(

√
n).

Therefore pdeg1/n2(g) = Ω̃(
√
n) and hence by Fact 6 item 1 pdeg(g) = Ω̃(

√
n).

b = pk for some k ∈ N. Let m = min(b2/100, dn/3e). Let g′ ∈ sBm with per(g′) = b be
such that Spec (g′)(i) = 0 whenever bm/2c − bb/2c ≤ i ≤ bm/2c and Spec (g′)(i) = 1
whenever bm/2c < i ≤ bm/2c+ b− bb/2c − 1.
Again, the functions g and g′ satisfy the hypotheses of Lemma 23 and therefore for any
constant ε ≤ 1/3, pdegε(g) = Ω̃(pdegε(g′)).
Note that g′ agrees with the Majm function on all inputs x ∈ {0, 1}m such that ||x|−(m/2)|
is at most b/2. By a Chernoff bound (follows from Lemma 21),

Pr
x∈{0,1}m

[||x| −m/2| > b/2] ≤ 2e− b2
2m = 2e−50 < 1/5.

Therefore g′ agrees with Majm on more than 4/5 fraction of inputs and hence by Lemma 8,
pdeg(g′) = Ω(

√
m). Therefore, pdeg(g) = Ω̃(

√
m) = min(Ω̃(b), Ω̃(

√
n)). J

We now recall the lower bound for bounded symmetric Boolean functions from Theorem 4.

I Lemma 26. Let h ∈ sBn be such that B(h) ≤ dn/3e. Then, pdegε(h) = Ω̃(
√
B(h)),

Proof. Let B(h) = b. Then, we know that Spech(i) = 0 for i ∈ [b, n− b] and further either
Spech(b− 1) or Spech(n− b+ 1) is 1. We assume w.l.o.g. that Spech(n− b+ 1) = 1 (the
other case is similar).

Fix some integer b′ = b−O(1) so that 2b+ 2bb′/2c ≤ n. Define h′ ∈ sBb′ as

h′(x) =
∨

i∈[0,bb′/2c]

h(x1n−b−2bb′/2c+i0b−b
′+2bb′/2c−i), for all x ∈ {0, 1}b

′
.

We claim that h′ = Majb′ . To show this, we proceed as follows.
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Let |x| ≤ b′/2 and therefore |x| ≤ bb′/2c. Then for all i ∈ [0, bb′/2c], using our choice of
b′, we have

b ≤ n− b− 2bb′/2c ≤ |x1n−b−2bb′/2c+i0b−b
′+2bb′/2c−i| = |x|+ (n− b− 2bb′/2c+ i) ≤ n− b

and therefore none of the terms in the OR above evaluate to 1. Thus h′(x) = 0.
Let |x| > b′/2 and therefore |x| ≥ bb′/2c+ 1. Let |x| = bb′/2c+ j for some j ∈ [1, db′/2e].

Let i = bb′/2c − j + 1. Then |x1n−b−2bb′/2c+i0b−b′+2bb′/2c−i| = n− b+ 1. Therefore the OR
evaluates to 1 and h′(x) = 1.

From the above we see that h′ = Majb. Now,

pdeg(h′) ≤ pdeg2/n(h′)

≤ pdeg1/n(OR) · pdeg1/n2(h)

≤ O(log2 n) ·O(logn) · pdeg(h)

≤ Õ(pdeg(h)).

The second inequality follows from Fact 6 item 2 and the third inequality follows from
Lemma 7 and Fact 6 item 1.

Since pdeg(Majb′) = Ω(
√
b′) = Ω(

√
b), it follows that pdeg(h) = Ω̃(

√
b). J

Using the above, a short case analysis yields the lower bound on pdeg(f) for general
f ∈ sBn. The proof is omitted.
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