
Unambiguous Catalytic Computation
Chetan Gupta
Indian Institute of Technology Kanpur, India
gchetan@cse.iitk.ac.in

Rahul Jain
Indian Institute of Technology Kanpur, India
jain@cse.iitk.ac.in

Vimal Raj Sharma
Indian Institute of Technology Kanpur, India
vimalraj@cse.iitk.ac.in

Raghunath Tewari
Indian Institute of Technology Kanpur, India
rtewari@cse.iitk.ac.in

Abstract
The catalytic Turing machine is a model of computation defined by Buhrman, Cleve, Koucký, Loff,
and Speelman (STOC 2014). Compared to the classical space-bounded Turing machine, this model
has an extra space which is filled with arbitrary content in addition to the clean space. In such a
model we study if this additional filled space can be used to increase the power of computation or
not, with the condition that the initial content of this extra filled space must be restored at the end
of the computation.

In this paper, we define the notion of unambiguous catalytic Turing machine and prove that
under a standard derandomization assumption, the class of problems solved by an unambiguous
catalytic Turing machine is same as the class of problems solved by a general nondeterministic
catalytic Turing machine in the logspace setting.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases Catalytic computation, Logspace, Reinhardt-Allender

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.16

Funding Rahul Jain: Ministry of Human Resource Development, Government of India
Raghunath Tewari: DST Inspire Faculty Grant, Visvesvaraya Young Faculty Fellowship

Acknowledgements The fourth author would like to thank Michal Koucký for valuable discussions
and for suggesting key ideas which led to the proof of the main result in this paper. The first and
third author would like to thank Ministry of Electronics and IT, India for supporting this research
through the Visvesvaraya PhD. The authors would also like to thank the anonymous reviewers for
their valuable comments which helped in improving the presentation of this paper and suggesting
an alternative proof of CNL = coCNL as a corollary of our result.

1 Introduction

The catalytic computational model was first introduced by Buhrman et al. [2]. It is a
computational model constructed by equipping a standard Turing machine with a large
auxiliary tape in addition to its work tape. This auxiliary tape is filled with arbitrary data
which must be restored at the end of the computation. A catalytic Turing machine with a
workspace of size s(n) can be assumed to have auxiliary space of size 2s(n). The question that
arises is, whether having access to this additional tape increases the power of computation or
not. At first, this extra filled space seemed to be of no use. However, surprisingly, Buhrman
et al. [2] showed that there exist some problems which can be solved by a deterministic

© Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248562239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gchetan@cse.iitk.ac.in
https://orcid.org/0000-0002-8567-9475
mailto:jain@cse.iitk.ac.in
mailto:vimalraj@cse.iitk.ac.in
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Unambiguous Catalytic Computation

catalytic logspace Turing machine (CL) but are not known to be solvable by a standard
deterministic logspace Turing machine (L), or even nondeterministic logspace NL. More
precisely, they showed that uniformTC1 ⊆ CL ⊆ ZPP and uniformTC1 is known to contain
NL which is believed to be different from L. This result gives the motivation to explore the
power of the catalytic Turing machine further.

In a subsequent result, Buhrman et al. [3] defined a nondeterministic catalytic computa-
tional model. In a nondeterministic catalytic Turing machine, the content of the auxiliary
tape must be restored to its initial content for every sequence of nondeterministic choices.
The nondeterministic equivalent of CL is called CNL. Using the same observation as in [2]
they showed that CNL ⊆ ZPP. They also showed that, under a standard derandomization
assumption, the class of problems solvable by a nondeterministic logspace catalytic Turing
machine (CNL) is closed under complement, that is CNL = coCNL. To prove this, they first
show that on a specific input x most of the configuration graphs of a CNL machine will be
of polynomial size. They use the pseudorandom generator of [5] to obtain a polynomial
size configuration graph. However, having access to a polynomial size graph is not enough
because the size of a vertex in the graph is still exponentially larger than the size of the
workspace. To circumvent this problem, they use a hash function picked from a hash family
which maps these vertices injectively to smaller values. After that, they apply the inductive
counting technique of Immerman and Szelepcsényi on this smaller size graph to obtain the
final result [4, 8].

In this paper, we define a variant of nondeterministic catalytic Turing machine called
unambiguous catalytic Turing machine. Analogous to the standard Turing machine, an
unambiguous catalytic Turing machine is a nondeterministic catalytic Turing machine which
has at most one accepting path on each input.

We show that under the same derandomization assumption as that of [3], in the logspace
setting, unambiguous catalytic Turing machine (CUL) and nondeterministic catalytic Turing
machine are equivalent in power. This is stated formally in the following theorem.

I Theorem 1 (Main Theorem). If there exists a constant ε > 0 such that DSPACE(n) *
SIZE(2εn), then CNL = CUL.

We prove Theorem 1 by giving an unambiguous logspace catalytic algorithm which
answers if in the configuration graph of a CNL machine, the accepting vertex is reachable
from the starting vertex or not. For this, we use (i) the pseudorandom generator used by [1]
and [3] to obtain a small size min-unique weighted configuration graph of the CNL machine,
(ii) the hashing scheme of [3] which maps the vertices of the configuration graph to smaller
values, and (iii) the double counting technique of [7]. Our result is analogous to a result of
[1] in the traditional Turing machine model, where authors prove that, if there are problems
in DSPACE(n) which require exponential size circuits, then UL = NL.

The rest of the paper is organized as follows. Section 2 contains definitions of nondetermin-
istic and unambiguous catalytic computation. We state the derandomization assumption
under which our result holds, pseudorandom generators and the hashing scheme that we
have used. In Section 3, we prove the main result CUL = CNL.

2 Preliminaries

In this section, we present the necessary definitions, notations, and lemmas. We start with
the definition of a nondeterministic catalytic Turing machine as defined in [3].

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:3

I Definition 2. LetM be a nondeterministic Turing machine with three tapes: one input
tape, one work tape, and one auxiliary tape.

Let x ∈ {0, 1}n be an input, and w ∈ {0, 1}sa(n) be the initial content of the auxiliary
tape. We say thatM(x,w) accepts x if there exists a sequence of nondeterministic choices
that makes the machine accept. If for all possible sequences of nondeterministic choices
M(x,w) does not accept, the machine rejects x.

ThenM is said to be a catalytic nondeterministic Turing machine using workspace s(n)
and auxiliary space sa(n) if for all inputs, the following three properties hold.
1. Space bound. The machineM(x,w) uses space s(n) on its work tape and space sa(n)

on its auxiliary tape.
2. Catalytic condition. M(x,w) halts with w on its auxiliary tape, irrespective of its

nondeterministic choices.
3. Consistency. The outcome of the computation is consistent among all initial aux-tape

content w. M(x,w) should either accept for all choices of w — in which case we say
M accepts x — or it rejects for all possible w — M rejects x. However, the specific
nondeterministic choices that makeM(x,w) go one way or the other may depend on w.

I Definition 3. CNSPACE(s(n)) is the set of decision problems that can be solved by a
nondeterministic catalytic Turing machine with at most s(n) size workspace and 2s(n) size
auxiliary space. CNL denotes the class CNSPACE(O(logn)).

Unambiguous computation is a natural restriction of nondeterministic computation where
on every input the Turing machine can have at most one nondeterministic path which accepts
the input. In the domain of catalytic computation, the definition naturally extends as follows.

I Definition 4. An unambiguous catalytic Turing machine is a nondeterministic catalytic
Turing machine which on every input produces at most one sequence of nondeterministic
choices where the machine accepts.

I Definition 5. CUSPACE(s(n)) is the set of decision problems that can be solved by an
unambiguous catalytic Turing machine with at most s(n) size workspace and 2s(n) size
auxiliary space. CUL denotes the class CUSPACE(O(logn)).

In order to present our result, we will use the notion of configuration graph. Configuration
graphs of a classical Turing machine are used heavily in proving space-bounded computation
results. A modified version of configuration graph was used for catalytic computations by
Buhrman et al. in [3]. They defined the configuration graph in the context of catalytic
computation in the following way: LetM be a nondeterministic catalytic Turing machine with
c logn size workspace and nc size auxiliary space. Then, GM,x,w denotes the configuration
graph of a nondeterministic catalytic Turing machine M on input x and initial auxiliary
content w. Every vertex of GM,x,w corresponds to a configuration ofM reachable from the
initial configuration ofM which consists of the content of the work tape and the auxiliary
tape, head positions of all three tapes and the current state. The graph has a directed edge
from a vertex ver1 to a vertex ver2 if the configuration corresponding to ver2 can be reached
from the configuration corresponding to ver1 in one step inM. We will denote the number
of the vertices in a configuration graph GM,x,w by |GM,x,w|.

A configuration of a nondeterministic catalytic Turing machine M with c logn size
workspace and nc size auxiliary space can be described with at most c logn+ nc + logn+
log(c logn)+lognc+O(1) = O(nc) bits, where we need c logn+nc bits for work and auxiliary
tape content, logn+ log(c logn) + lognc bits for the tape heads, and O(1) bits for the state
information. Thus, the total number of configurations ofM can be upper bounded by 2O(nc),
which also implies |GM,x,w| ≤ 2O(nc) for an input x and initial auxiliary content w.

FSTTCS 2019

16:4 Unambiguous Catalytic Computation

In Section 3, we will prove CUL = CNL under the same assumption the following
derandomization result holds.

I Lemma 6 ([5, 6]). If there exists a constant ε > 0 such that DSPACE(n) * SIZE(2εn)
then for all constants c there exists a constant c′ and a function G : {0, 1}c′ logn → {0, 1}n
computable in O(logn) space, such that for any circuit C of size nc∣∣∣ Pr

r∈{0,1}n
[C(r) = 1]− Pr

s∈{0,1}c′ log n
[C(G(s)) = 1]

∣∣∣ < 1
n
.

Buhrman et al. in [3], showed a way to get a small size configuration graph of a
nondeterministic logspace catalytic Turing machine. We will use the following lemma in our
result, a stronger version of which was proved in [3].

I Lemma 7 ([3]). Let M be a nondeterministic catalytic Turing machine using c logn
size workspace and nc size auxiliary space. If there exists a constant ε > 0 such that
DSPACE(n) * SIZE(2εn), then there exists a function G : {0, 1}O(logn) → {0, 1}nc , such
that on every input x and initial auxiliary content w, for at least one seed s ∈ {0, 1}O(logn),
|GM,x,w⊕G(s)| ≤ n2c+3. Moreover, G is logspace computable. (w⊕G(s) represents the bitwise
XOR of w and G(s))

Let G be a directed graph, with vertex set V (G) and edge set E(G). Then, a weight
function for G is a map W : E(G)→ N which maps every edge in E(G) to a natural number.
Let GW denote the weighted graph with respect to the weight function W . We say a weight
function is a k-bit weight function if every edge in E(G) gets a weight in the range [0, 2k − 1].
A k-bit weight function for a graph G of n vertices can be thought of as a kn2 length binary
string b = b1b2 . . . bk.n2 . In such a representation, the weight assigned to the ith edge ei of G
is W (ei) = Dec(bj+1bj+2 . . . bj+k), where j = k.(i− 1) and Dec(x) is the natural number
whose decimal representation is the binary string x.

We say GW is min-unique, if there is a unique minimum weight path between every pair
of vertices in GW . For any two vertices u and v in V (GW), we denote the weight of the
minimum weight path from u to v by dist(u, v). The following lemma implicit in [1] shows
that under the assumption of Lemma 6 there exists a logspace computable pseudorandom
generator which gives an O(logn)-bit min-unique weight function for any graph of n vertices.

I Lemma 8. If there exists a constant ε > 0 such that DSPACE(n) * SIZE(2εn), then there
exists a logspace computable function W : {0, 1}O(logn) → {0, 1}c′n2 logn, such that for any
directed graph G of n vertices there exists at least one seed s′ ∈ {0, 1}O(logn) for which GW (s′)
is min-unique.

We also borrow the following lemma about the existence of a hash family from [3].

I Lemma 9 ([3]). For every n, there exists a family of hash functions {hk}n
3

k=1, with each
hk a function {0, 1}n → {0, 1}4 logn, such that the following properties hold. First, hk is
computable in space O(logn) for every k, and second, for every set S ⊂ {0, 1}n with |S| ≤ n
there is a hash function in the family that is injective on S.

I Definition 10. Let G be a directed graph, h : V (G) → {1, 2, . . . , n} be a hash function
and W be a weight function for a graph of n vertices. Then, the hashed-weighted graph
denoted by Gh,W is a weighted graph, such that every edge uv ∈ E(Gh,W) has weight
W (uv) = W (h(u)h(v)).

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:5

3 Reinhardt-Allender’s Double Counting in the Catalytic Setting

In this section, we will prove Theorem 1 by constructing a CUL machineM′ which accepts
the same language as that of a given CNL machineM. The core idea is to use the double
counting technique of Reinhardt and Allender [7] on the configuration graph ofM. However,
there are few hurdles to implement it.

Firstly note that, as shown by Buhrman et al. [3], the configuration graph of a CNL
machine M can be of exponential size. Therefore, it is not possible for M′ to do double
counting on this graph in its workspace, which is just logarithmic in size. To handle this
problem, we use the pseudorandom generator of Lemma 7 to get a small size configuration
graph. But this does not solve the problem completely as the size of a vertex in the
configuration graph is still very large. To solve this, we use the family of hash functions
described in Lemma 9. One of these functions injectively maps the vertices of the configuration
graph to small hashed values. Both the pseudorandom generator of Lemma 7 and hash
function family of Lemma 9 were also used in [3] for performing inductive counting. In our
result, to do double counting we need to make the configuration graph min-unique, therefore,
we also use the pseudorandom generator of Lemma 8.

InM′, we do the double counting on the configuration graph ofM for every possible
triplet consisting of seeds of the pseudorandom generators of Lemma 7 and 8 and a hash
function from the hash family of Lemma 9. During the double counting we move on to the
next triplet if the hash function doesn’t map the vertices injectively or the configuration
graph is not min-unique, otherwise, after finishing double counting we accept if the accepting
node in the configuration graph was encountered at some point during the process.

We detect if the configuration graph is not min-unique the same way Reinhardt and
Allender do it in [7]. Detecting if a hash function doesn’t map the vertices injectively is tricky.
Note that, to check whether two vertices of the configuration graph have been mapped to
the same value or not cannot be done directly by storing them in the workspace ofM′. This
is because the size of those vertices can be large. Therefore, we perform a clever bit by bit
comparison of these vertices to check if they have been mapped to the same value or not.
We outline this procedure in Algorithm 3.

In the following lemma, we prove the existence of the pseudorandom generators and the
family of hash functions in the context of a configuration graph of a CNL machine.

I Lemma 11. Let M be a nondeterministic catalytic Turing machine using c logn size
workspace and nc size auxiliary space. For an input x and auxiliary content w, let G be the
pseudorandom generator as given in Lemma 7 and s be a seed such that, |GM,x,w⊕G(s)| ≤ N ,
where N = n2c+3. Then,
1. there exists a family of logspace computable hash functions H = {hk}O(N3)

k=1 , such that
for each k we have hk : {0, 1}N → {0, 1}4 logN , and at least one hk ∈ H injectively maps
V (GM,x,w⊕G(s)) to {0, 1}4 logN .

2. if there exists a constant ε > 0 such that DSPACE(n) * SIZE(2εn), then there exists
a logspace computable function W : {0, 1}O(logN4) → {0, 1}c′N8 logN4 , such that for at
least one seed s′ ∈ {0, 1}O(logN4), the hashed-weighted graph GM,x,w⊕G(s),hk,W (s′) is
min-unique, where hk injectively maps V (GM,x,w⊕G(s)) to {0, 1}4 logN .

Proof. We know that the size of a vertex(configuration) in GM,x,w⊕G(s) can be upper bounded
by O(nc). For the sake of simplicity, we assume that O(nc) ≤ N . Then, 1 follows directly
from Lemma 9 if you take the set S(of Lemma 9) as V (GM,x,w⊕G(s)).

Now, consider the graph GM,x,w⊕G(s) where every vertex is hashed by hk to some value
in the range [0, N4 − 1] injectively. If we treat this hashed graph as a graph of N4 many
vertices, then 2 follows from Lemma 8. J

FSTTCS 2019

16:6 Unambiguous Catalytic Computation

3.1 Proof of Main Theorem
Since CUL ⊆ CNL follows by definition, we only need to show that CNL ⊆ CUL. LetM be a
nondeterministic catalytic Turing machine with c logn size workspace and nc size auxiliary
space. We will prove CNL ⊆ CUL by showing that there exists an unambiguous catalytic
Turing machine M′ with c′ logn size workspace and nc

′ size auxiliary space, where c′ is
sufficiently larger than c, such that on every input x and auxiliary content w, M(x,w)
accepts if and only ifM′(x,w) accepts. For the sake of simplicity, we assume thatM has a
unique configuration when it accepts an input. Let accw and startw denote the accept and
start configurations ofM on input x and auxiliary content w respectively.

Let G, H, W and N be as given in Lemma 11. For s ∈ {0, 1}O(logn), hk ∈ H, and
s′ ∈ {0, 1}O(logN4), we say a triplet 〈s, hk, s′〉 is a good triplet, if (1) hk injectively maps the
vertices of GM,x,w⊕G(s) to {0, 1}4 logN and (2) GM,x,w⊕G(s),hk,W (s′) is min-unique. Otherwise,
we call it a bad triplet. Existence of a good triplet follows directly from Lemma 11.

In our algorithm forM′, we iterate over all possible combinations of s, hk, and s′. In
each iteration we work with the hashed-weighted configuration graph GM,x,w⊕G(s),hk,W (s′).
For a good triplet 〈s, hk, s′〉, our algorithm Accepts if there is a path from startw⊕G(s) to
accw⊕G(s). Otherwise, for a bad triplet 〈s, hk, s′〉 the algorithm moves on to the next triplet.

To perform the double counting technique on GM,x,w⊕G(s),hk,W (s′), we need to identify
the vertices which are at distance i from startw⊕G(s). For this, our algorithm uses an
unambiguous procedure Reachable. Another unambiguous procedure Badgraph is used
to check if hk maps V (GM,x,w⊕G(s),hk,W (s′)) to {0, 1}4 logN injectively or not.

Algorithm 1 outlines the main algorithm ofM′, Algorithm 2 and Algorithm 3 outline
the procedures Reachable and Badgraph respectively.

3.1.1 Description of the Algorithm 1
Let x be the input and w be the auxiliary content ofM′. We iterate over all triplets 〈s, hk, s′〉
using the loop of line 2. In line 3, we set w to w ⊕G(s) and weight function wt to W (s′).
For the sake of simplicity, we assume that the function wt assigns weight one to every edge.
If not we can always split an edge with weight l to an l length path, similar to how it is done
in Lemma 2.1 of [7].

Note that from now onwards, we will denote the hashed-weighted graph for the fixed
triplet 〈s, hk, s′〉 by GM,x,w,hk,wt. We define two sets C=i and C<i for GM,x,w,hk,wt as follows:

C=i = {ver ∈ V (GM,x,w,hk,wt) | dist(startw, ver) = i},

C<i =
i−1⋃
j=0

C=j .

For applying double counting technique, we use two counters ci and di, where, ci = |C<i+1|
and di = Σver∈C<i+1dist(startw, ver). Clearly, c0 = 1 and d0 = 0. From lines 5 to 19, we
compute the counters ci and di iteratively from the values of ci−1 and di−1. Since for a good
triplet 〈s, hk, s′〉, |GM,x,w,hk,wt| can not be more than N4, we compute ci’s and di’s for i = 1
to M , where M = N4. Note that we set M = N4 for a special case where wt assigns weight
one to every edge, otherwise, its value can be different and need to be set accordingly.

Since hk maps the vertices of GM,x,w,hk,wt on {0, 1}4 logN , we go over all possible hashed
values v from 0 to M − 1 and check if there is a vertex ver in GM,x,w,hk,wt such that
dist(startw, ver) = i and hk(ver) = v, using the procedure Reachable. If there exists such
a vertex ver than we increment ci and di accordingly in line 10. Moreover, if ver is an
accepting node then we store this information in the final variable.

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:7

Algorithm 1 Algorithm ofM′.
G andW are as described in Lemma 11. S and S′ are the set of seeds for G andW respectively
and H is the hash function family. M = N4 is the maximum size of the configuration graph
for a good triplet 〈s, hk, s′〉.
1: procedure unambiguousSimulation(Input x, Auxiliary Content w)
2: for 〈s, hk, s′〉 ∈ S ×H × S′ do
3: w ← w ⊕G(s), wt←W (s′), final← FALSE
4: c0 ← 1, d0 ← 0
5: for i = 1 to M do
6: ci ← ci−1, di ← di−1
7: for v = 0 to M − 1 do
8: (found, finalreach)← Reachable(v, i, hk, wt, ci−1, di−1, s)
9: if found = TRUE then
10: ci ← ci + 1, di ← di + i

11: if finalreach = TRUE then
12: final← TRUE
13: end if
14: else if found = BAD then
15: w ← w ⊕G(s)
16: Jump to line 2
17: end if
18: end for
19: end for
20: w ← w ⊕G(s)
21: if final = TRUE then
22: Accept
23: end if
24: end for
25: Reject
26: end procedure

If the triplet 〈s, hk, s′〉 is bad, we catch it while computing the values of ci’s and di’s
using Reachable and move to the next triplet after restoring the initial auxiliary content w
in line 15 by XORing it again with G(s). If it is good, then the loop of line 2 terminates
normally. After which we restore w in line 20 and Accept if final is TRUE in line 22 or
move to the next triplet if final is FALSE.

Finally, if accw is not reachable from startw for any good triplet 〈s, hk, s′〉, we Reject in
line 25.

3.1.2 Description of the Algorithm 2
Reachable(v, i, hk, wt, ci−1, di−1, s) is called only if the following conditions are satisfied:

Condition A: All the vertices in C<i have a unique minimum weight path from startw.
Condition B: All the vertices in C<i are injectively mapped to the set {0, 1}4 logN .

We define the following conditions based on which Reachable detects a bad triplet:
Condition I: There exists a vertex ver1 in C<i and a vertex ver2 in C=i, such that
hk(ver1) = hk(ver2) = v. (hk doesn’t map V (GM,x,w,hk,wt) to {0, 1}4 logn injectively.)

FSTTCS 2019

16:8 Unambiguous Catalytic Computation

Condition II: There exist vertices ver1 and ver2 in C=i such that hk(ver1) = hk(ver2) =
v. (hk doesn’t map V (GM,x,w,hk,wt) to {0, 1}4 logn injectively.)
Condition III: There exists a vertex ver in C=i such that hk(ver) = v and ver has
more than one minimum weight paths from startw. (GM,x,w,hk,wt is not min-unique.)

Reachable is a nondeterministic procedure which Rejects on all sequences of non-
deterministic choices except one, where it returns one of the following pair of values:

(BAD, FALSE) if at least one of the Condition I, II, and III is satisfied.
(TRUE, TRUE) if none of the Condition I, II, or III are satisfied and there exists a
vertex ver in C=i, such that hk(ver) = v and ver = accw.
(TRUE, FALSE) if none of the Condition I, II, or III are satisfied and there exists a
vertex ver in C=i, such that hk(ver) = v but ver 6= accw.
(FALSE, FALSE) if none of the Condition I, II, or III are satisfied and there does not
exist a vertex ver in C=i, such that hk(ver) = v.

Reachable in line 3-31, guesses the vertices of C<i in ascending order of their hashed
values from hk. In every iteration, it first cleans a portion of M′’s workspace say z and
selects l ≤ i− 1 nondeterministically. Then using the workspace z and auxiliary content w
ofM′ it simulates the machineM on x and w for l steps.

During a simulation, we denote the current configuration ofM by (z, w, pos, state), where
z denotes the work tape content, w denotes the auxiliary content, pos denotes the head
positions on the different tapes and state denotes the current state.

To ensure the ascending order, we use the variable h which is initially set to -1. After
every simulation, we compare the hashed value of the current configuration to h in line 7. If
the order is violated, we continue the simulation untilM halts, restore w and Reject. If
not, we assign hk(z, w, pos, state) to h and use it in the next iteration.

In line 13, we store the sum of the distance of all ci−1 many guessed vertices from startw
in the variable d. Variable vpresent intends to store the information about the existence of a
vertex ver in C<i, such that hk(ver) = v. In line 15, we set vpresent to TRUE if h = v.

In line 17-29, if l = i − 1 then we increment cnt for every neighbour of the current
configuration which hashes to v. We also set finalreach to TRUE if a neighbour of the
current configuration is an accepting node accw. Later, we use variables cnt and vpresent to
decide the returning value of Reachable. In line 30, we continue the simulation until a
halting state is reached to restore the auxiliary content.

Outside the loop, in line 32, we compare d with di−1 and Reject if d 6= di−1. Since vertices
in C<i have unique minimum weight path from startw and they were all guessed in ascending
order of their hashed value, d = di−1 holds only for one sequence of nondeterministic choices.
For a more detailed proof of why d = di−1 holds only for one sequence of nondeterministic
choices, one can refer to Theorem 2.2 of [7].

vpresent = FALSE implies that there is no vertex ver in C<i, such that hk(ver) = v. In
such a case, we return the appropriate value based on the value of cnt. cnt = 0 implies
that there is no vertex ver in C=i, such that hk(ver) = v, therefore, we return (FALSE,
FALSE). cnt = 1 implies that there is exactly one vertex ver in C=i, such that hk(ver) = v,
therefore, we return (TRUE, finalreach). cnt > 1 implies that either the Condition II or
III satisfies, therefore, we return (BAD, FALSE).

vpresent = TRUE implies that there is a vertex ver in C<i, such that hk(ver) = v. Here
again, if cnt = 0 we return (FALSE, FALSE). But if cnt > 0, we need to check if Condition
I is satisfied i.e. there is a vertex ver′ 6= ver for which we incremented cnt in line 22 when it
was encountered through a path of weight i. Note that, in Reinhardt-Allender’s algorithm
we do not need to check this because there we do not work with hashed graphs.

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:9

We call the procedure Badgraph to check if the Condition I is satisfied or not. If
Badgraph returns TRUE i.e. Condition I is satisfied, we return (BAD, FALSE). If
Badgraph returns FALSE, then that means that all the vertices for which we incremented
cnt in line 22 were actually the vertex ver encountered through a different path of weight i,
hence we return (FALSE, FALSE).

3.1.3 Description of the Algorithm 3
Badgraph is also a nondeterministic procedure which Rejects on all sequences of non-
deterministic choices except one, where it returns TRUE if Condition I is satisfied, else it
returns FALSE.

Badgraph is called from Reachable if there is a vertex ver in C<i, such that hk(ver) = v

and cnt > 0. Let F denote the set of all the vertices for which cnt was incremented in the
line 22 of Reachable.

In Badgraph we compare ver with every vertex in F one bit at a time because we
cannot store all the bits due to the limited workspace ofM′. In line 2, we set g to be the
index of the vertex in F we intend to compare with ver. In line 3, we set t to be the index
of the bits that we intend to compare. Since a vertex is basically a configuration of machine
M on input x and auxiliary content w, we keep T = O(nc).

From line 4 to 40, we compare the two bits by guessing the vertices of C<i in the same
manner as we do in Rechable. In line 17, we store the tth bit of ver in bit1. To get the gth
vertex of F we use the variable cnt′ which is set to 0 initially in line 4. We increment cnt′
by one every time l = i− 1 and neighbour of the current configuration hashes to v. Thus,
cnt′ = g in line 25 implies that we have the gth vertex of F and we store the tth bit of that
vertex in bit2.

In line 38, we compare both bits bit1 and bit2 and if they are unequal then that means
that there is at least one vertex in F which is different from ver but both have the same
hash value. That implies that Condition I is satisfied and hence we return TRUE.

If we never encounter unequal bits in line 38, then that means that all the vertices in F
are actually the vertex ver. Therefore, we return FALSE in line 43.

3.1.4 Correctness of Algorithm 1
We divide the proof of correctness of the Algorithm 1 into two cases:

Case 1 - Triplet 〈s, hk, s′〉 is good: We first prove that if triplet 〈s, hk, s′〉 is good
then given the correct values of ci−1 and di−1 the ith iteration of the loop of line 5 correctly
computes values of ci and di.

First notice that, since triplet 〈s, hk, s′〉 is good, Reachable will never return BAD
for any of the v chosen in line 7. Now, for every vertex ver in C=i, a call to Reach-
able(hk(ver), i, hk, wt, ci−1, di−1, s) will return (TRUE, finalreach) after which we update
the values ci and di accordingly in line 10. And for any vertex ver not in C=i, a call to
Reachable(hk(ver), i, hk, wt, ci−1, di−1, s) will return (FALSE, FALSE). Thus at the end
of the ith iteration we will have the correct values of ci and di.

Since we start with the correct values of c0 and d0, we can say that the loop of line 5
terminates normally with the correct values of cM and dM . Now, if the vertex accw is present
in the graph GM,x,w,hk,wt such that dist(startw, accw) = i, then final is set to TRUE in
the ith iteration of the loop of line 5 when Reachable(hk(accw), i, hk, wt, ci−1, di−1, s) is
called and it returns (TRUE, TRUE). Following which we halt and Accept in line 22 after
restoring the initial auxiliary content ofM′ by XORing it with G(s). �

FSTTCS 2019

16:10 Unambiguous Catalytic Computation

Algorithm 2 The Reachable procedure.
Reachable(v, i, hk, wt, ci−1, di−1, s) is called only if Condition A and Condition B are
satisfied. The procedure checks if there exists a ver ∈ V (GM,x,w,hk,wt) such that hk(ver) = v,
dist(startw, ver) = i and ver = accw.
1: procedure Reachable(v, i, hk, wt, ci−1, di−1, s)
2: d← 0, h← −1, vpresent ← FALSE, cnt← 0, finalreach← FALSE
3: for j = 1 to ci−1 do
4: Clean the workspace z for simulation ofM.

5: Nondeterministically guess l ≤ i− 1.
6: SimulateM on (x, w) using z as workspace for l steps.
7: if hk(z, w, pos, state) ≤ h then
8: Continue the simulation until a halting state is reached.
9: w ← w ⊕G(s)
10: Reject
11: end if
12: h← hk(z, w, pos, state)
13: d← d + l

14: if h = v then
15: vpresent ← TRUE
16: end if
17: if l = i− 1 then
18: q = Number of configurations reachable from (z, w, pos, state) in one step
19: for r = 1 to q do
20: Simulate one more step.
21: if hk(z, w, pos, state) = v then
22: cnt← cnt + 1
23: if (z, w, pos, state) = accw then
24: finalreach← TRUE
25: end if
26: end if
27: Simulate a step back.
28: end for
29: end if
30: Continue the simulation until a halting state is reached.
31: end for
32: if d 6= di−1 then
33: w ← w ⊕G(s)
34: Reject
35: end if
36: if vpresent = FALSE then
37: if cnt = 0 then return (FALSE, FALSE)
38: else if cnt = 1 then return (TRUE, finalreach)
39: else if cnt > 1 then return (BAD, FALSE)
40: end if
41: else
42: if cnt = 0 then return (FALSE, FALSE)
43: else if Badgraph(v, i, hk, wt, ci−1, di−1, s, cnt) = TRUE then
44: return (BAD, FALSE)
45: else return (FALSE, FALSE)
46: end if
47: end if
48: end procedure

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:11

Algorithm 3 The Badgraph procedure.
Badgraph(v, i, hk, wt, ci−1, di−1, s, cnt) is called only if Condition A and Condition B
are satisfied. The procedure checks if hk maps V (GM,x,w,hk,wt) to {0, 1}4 logn injectively or
not.
1: procedure Badgraph(v, i, hk, wt, ci−1, di−1, s, cnt)
2: for g = 1 to cnt do
3: for t = 1 to T do
4: d← 0, h← −1, bit1← 0, bit2← 0, cnt′ ← 0
5: for j = 1 to ci−1 do
6: Clean the workspace z for simulation ofM.
7: Nondeterministically guess l ≤ i− 1.
8: SimulateM on (x,w) using z as workspace for l steps.
9: if hk(z, w, pos, state) ≤ h then

10: Continue the simulation until a halting state is reached.
11: w ← w ⊕G(s)
12: Reject
13: end if
14: h← hk(z, w, pos, state)
15: d← d+ l

16: if h = v then
17: Store the tth bit of (z, w, pos, state) in bit1.
18: end if
19: if l = i− 1 then
20: q = Number of configurations reachable from (z, w, pos, state)
21: for r = 1 to q do
22: Simulate one more step.
23: if hk(z, w, pos, state) = v then
24: cnt′ ← cnt′ + 1
25: if cnt′ = g then
26: Store the tth bit of (z, w, pos, state) in bit2.
27: end if
28: end if
29: Simulate a step back.
30: end for
31: end if
32: Continue the simulation until a halting state is reached.
33: end for
34: if d 6= di−1 then
35: w ← w ⊕G(s)
36: Reject
37: end if
38: if bit1 6= bit2 then
39: return TRUE
40: end if
41: end for
42: end for
43: return FALSE
44: end procedure

FSTTCS 2019

16:12 Unambiguous Catalytic Computation

Case 2 - Triplet 〈s, hk, s′〉 is bad: A triplet 〈s, hk, s′〉 is bad if
Violation I: hk does not injectively map the vertices of GM,x,w,hk,wt to {0, 1}4 logN .
Violation II: GM,x,w,hk,wt is not min-unique.

We will show that if both violations occur simultaneously then Algorithm 1 moves to the
next triplet without finishing all M iterations of the loop of line 5. The other cases where
only one violation occurs can be analysed similarly.

Let ver1 and ver2 be two vertices of GM,x,w,hk,wt such that (1) dist(startw, ver1) ≤
dist(startw, ver2), (2) hk(ver1) = hk(ver2), and (3) there does not exist any other pair
of vertices say ver3 and ver4 such that hk(ver3) = hk(ver4) and dist(startw, ver3) ≤
dist(startw, ver4) < dist(startw, ver2). ver1 and ver2 exist due to Violation I.

Let ver be a vertex which has more than one minimum weight paths from startw such
that there is no other vertex ver′ with more than one minimum weight paths from startw
and dist(startw, ver′) < dist(startw, ver). ver exists due to Violation II.

Let dist(startw, ver2) = i and dist(startw, ver) = j. First note that i ≤ M , because
if i > M then the first M + 1 vertices on the shortest path from startw to ver2 are all
injevtively mapped to {0, 1}4 logN which is not possible because M = N4 = |{0, 1}4 logN |.

Let i ≤ j, then both Condition A and Condition B are satisfied for C<i, therefore,
the first i − 1 iterations of the loop of line 5 will terminate normally with correct values
of ci−1 and di−1. But on the ith iteration Reachable(hk(ver2), i, hk, wt, ci−1, di−1, s) will
return (BAD, FALSE) as Condition I or II are satisfied and Algorithm 1 will move on to
the next triplet. The case of j < i is similar. �

Finally, if accw /∈ GM,x,w,hk,wt for any good triplet 〈s, hk, s′〉 then the value of final is
never set to TRUE, therefore, after going over all triplets we Reject in line 25.

3.2 coCUL and an alternative proof of CNL = coCNL
Note that, if in line 22 of Algorithm 1 we Reject instead of Accept after finding an accepting
node in the configuration graph for a good triplet 〈s, hk, s′〉 and in line 25 we finally Accept
instead of Reject after not finding the accepting node in any of the configuration graph
for a good triplet 〈s, hk, s′〉, then L(M′) = L(M). This proves that coCNL ⊆ CUL(= CNL),
which implies that CUL = CNL = coCNL = coCUL.

References
1 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, Matching, and Counting Uniform

and Nonuniform Upper Bounds. J. Comput. Syst. Sci., 59(2):164–181, October 1999. doi:
10.1006/jcss.1999.1646.

2 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing
with a Full Memory: Catalytic Space. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 857–866, New York, NY, USA, 2014. ACM.
doi:10.1145/2591796.2591874.

3 Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic Space: Non-
determinism and Hierarchy. Theory of Computing Systems, 62(1):116–135, January 2018.
doi:10.1007/s00224-017-9784-7.

4 Neil Immerman. Nondeterministic Space is Closed Under Complement. SIAM Journal on
Computing, 17:935–938, 1988.

5 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM.
doi:10.1145/258533.258590.

https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1145/258533.258590

C. Gupta, R. Jain, V. R. Sharma, and R. Tewari 16:13

6 Adam R. Klivans and Dieter van Melkebeek. Graph Nonisomorphism Has Subexponential Size
Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput., 31(5):1501–1526,
May 2002. doi:10.1137/S0097539700389652.

7 Klaus Reinhardt and Eric Allender. Making Nondeterminism Unambiguous. SIAM J. Comput.,
29(4):1118–1131, February 2000. doi:10.1137/S0097539798339041.

8 Robert Szelepcsényi. The Method of Forced Enumeration for Nondeterministic Automata.
Acta Informatica, 26:279–284, 1988.

FSTTCS 2019

https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539798339041

	Introduction
	Preliminaries
	Reinhardt-Allender's Double Counting in the Catalytic Setting
	Proof of Main Theorem
	Description of the Algorithm 1
	Description of the Algorithm 2
	Description of the Algorithm 3
	Correctness of Algorithm 1

	coCUL and an alternative proof of CNL = coCNL

