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Abstract
Inspired by Nisan’s characterization of noncommutative complexity (Nisan 1991), we study different
notions of nonnegative rank, associated complexity measures and their link with monotone computa-
tions. In particular we answer negatively an open question of Nisan asking whether nonnegative
rank characterizes monotone noncommutative complexity for algebraic branching programs. We
also prove a rather tight lower bound for the computation of elementary symmetric polynomials
by algebraic branching programs in the monotone setting or, equivalently, in the homogeneous
syntactically multilinear setting.
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1 Introduction

Measures based on rank are one of the main tools to prove lower bounds in algebraic
complexity theory. The complexity of first-order partial derivatives is the key ingredient for
the best lower bound known for general circuits [2]. When looking at higher-order partial
derivatives, one can consider their rank: the rank of partial derivatives, and some variants,
have been intensively used to obtain lower bounds on restricted models [20, 21, 18]. Nisan [19]
provided one of the earliest and cleanest examples of such a measure: when computing a
polynomial over noncommuting variables by a so-called algebraic branching program, it gives
an exact characterization of the complexity.1 To state this result more precisely, let us give
here the definition of algebraic branching programs used in [19].

I Definition 1. An algebraic branching program (ABP) is a layered directed acyclic graph
with a source s and a sink t. The first layer contains only the source s, the last layer contains
only the sink t. Edges can only appear between vertices of successive layers and carry a weight

1 It was noticed in [7] (see also [17]) that this result actually follows from an older characterization for
word series [10]. This characterization was also extended to tree series in [4], which can be applied to
circuits.
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15:2 Nonnegative Rank Measures and Monotone ABPs

which is a linear form of the variables. The weight of a path from s to t is the product of the
weights of its edges. The (homogeneous) polynomial computed by the ABP is the sum of the
weights of the paths from s to t. The width of a layer is the number of vertices on that layer.

This definition makes sense both in the usual case of commuting variables and in the case
of noncommuting variables, over a free algebra, which we consider for the moment. For a
noncommutative homogeneous polynomial P of degree d over variables in X, define matrices
Mi(P ), for 0 6 i 6 d: the rows of Mi(P ) are indexed by all possible monomials u over X of
degree i, the columns are indexed by all possible monomials v over X of degree d− i, and
the coefficient (u, v) of Mi(P ) is the coefficient of the monomial uv in P . We call this matrix
the i-th Nisan matrix of P . The characterization is then expressed by the following theorem.

I Theorem 2 (Nisan [19], Fliess [10]). The size of a smallest ABP computing a noncommu-
tative polynomial P is the sum of the ranks of its Nisan matrices, i.e.,

∑d
i=0 rkMi(P ). More

precisely, the value rkMi(P ) is the width of the i-th layer in a smallest ABP computing P .
It is also the smallest possible width of the i-th layer in any ABP computing P .

Nisan also considers the case of monotone noncommutative computations. In this case
Nisan does not obtain a characterization of monotone noncommutative complexity, but a
sufficient tool for lower bounds, using the notion of nonnegative rank.

I Definition 3. An ABP over an ordered field is called monotone if all coefficients of linear
forms on the edges are nonnegative.

I Definition 4. The nonnegative rank of a nonnegative matrix M , rk+M , is the smallest
integer r such that M can be written as a sum of r rank-1 nonnegative matrices.

I Proposition 5 (Nisan [19]). For a polynomial P with nonnegative coefficients, the value
rk+Mi(P ) is the smallest possible width of the i-th layer in a monotone ABP computing P .
The size of a smallest monotone ABP computing P is therefore at least

∑d
i=0 rk+Mi(P ).

Nisan [19] leaves the tightness of the inequality in Proposition 5 as an open question: does
nonnegative rank also provide a characterization of monotone noncommutative complexity?
One of our main results is a negative answer to this question (Theorem 25).

Before that, we consider in Section 2 a more general notion of monotone computation,
which we call weakly monotone. Where monotonicity completely disallows cancellations,
weak monotonicity allows them as long as any monomial appearing in the computation
also appears in the end result. In other words, cancellations can be used to obtain the
specific coefficients of a polynomial, but not to produce and then cancel out monomials
outside the support of the polynomial. We strengthen Proposition 5 for weakly monotone
noncommutative ABPs using a new rank measure. We then obtain a separation showing that
weakly monotone noncommutative arithmetic formulas can be exponentially more powerful
than monotone noncommutative ABPs. Thus weakly monotone lower bounds are stronger
than monotone lower bounds.

In Section 3 we prove Theorem 25, answering Nisan’s question, and more generally explore
the link between nonnegative rank measures and the size of monotone noncommutative
algebraic branching programs.

Finally, in Section 4 we focus on proving lower bounds for monotone commutative ABPs,
building on ideas from the previous sections to develop new tools. Imposing monotonicity as
a restriction on arithmetic computations to prove lower bounds has a long history [22, 15],
which often involves hard polynomials and yields exponential lower bounds. We focus here
on the elementary symmetric polynomials en,k. While it is known that the elementary
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symmetric polynomials en,k require monotone, or even homogeneous multilinear, formulas of
size kΩ(k)n [13], these can be efficiently computed by monotone ABPs of size O(k(n−k)): we
give a simple dynamic programming construction and further references in the full version [11].
The existence of efficient computations imply that our lower bound techniques must be very
precise. Surprisingly, there is also a very simple Ω(k(n − k + 1)) monotone lower bound
in [16], but in a model where edge weights can only be a scalar or a scalar times a variable,
not linear forms, which would only give a trivial lower bound in our setting. Our second
main result is a similarly quadratic lower bound for our model, and for weakly monotone
computations, at the cost of a significant increase in the complexity of the proof: we use a
generalization of a combinatorial problem known as Galvin’s problem.2 Our lower bound
can be equivalently stated as applying to homogeneous syntactically multilinear ABPs.

Let us add one remark on the definition of ABPs. This computation model is inherently
homogeneous and we only consider nonzero homogeneous polynomials. We could also consider
nonhomogeneous ABPs: these are directed acyclic graphs with a source and a sink, not
necessarily layered, with arcs labelled with affine forms. In the noncommutative case, when
computing a homogeneous polynomial, one can show that there is always a minimal-size ABP
which is homogeneous and corresponds to Definition 1. We provide a proof sketch in the full
version [11]. This is also true in the commutative case for weakly monotone computations.
Hence we shall consider only homogeneous branching programs.

Throughout the paper we use R in the case of an ordered field, but these results hold
over any ordered field. When the field is not ordered we denote it by K and assume it is of
characteristic 0.

2 A rank measure for weakly monotone computations

2.1 Weakly monotone computations
As defined before, the weight of a path is the product of the weights of its edges, i.e., a
product of linear forms. Any of the monomials obtained when expanding completely this
product, by choosing one term in each linear form, is said to be produced along the path.

I Definition 6. An ABP is called weakly monotone if any monomial produced along a path
from the source to the sink has a nonzero coefficient in the polynomial computed by this ABP.

Note that this notion of monotonicity makes sense both in the commutative and noncom-
mutative settings (Sections 2 and 3 deal with noncommutative computations, while we will
use the commutative case in Section 4). We now define a new measure for weakly monotone
computations. We will denote the support of a matrix M by suppM : it is the subset of the
coordinates of M which correspond to nonzero entries.

I Definition 7. The weakly nonnegative rank of a matrix M , denoted by rkwM , is the
smallest number r such that there exist M1, . . . ,Mr of rank 1 (with entries of any sign) such
that suppMi ⊆ suppM for all i and

∑r
i=1Mi = M .

The usual nonnegative rank of a matrix already plays a role in several areas. For instance,
the fact that the minimum number of facets of an extension of a polyhedron is equal to the
nonnegative rank of its so-called slack matrix. In another direction, for a 0, 1-matrix M ,

2 A different generalization of this combinatorial problem was recently used to prove almost quadratic
lower bounds on the size of syntactically multilinear circuits [1].
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15:4 Nonnegative Rank Measures and Monotone ABPs

log(rkM) is a lower bound on the communication complexity of the associated problem. The
log-rank conjecture stipulates that there is also a logO(1)(rkM) upper bound. This conjecture
is known to be equivalent to the fact that for any 0, 1-matrixM , log(rk+M) = logO(1)(rkM).
The influence of communication complexity will be felt here too, as it can be seen from the
use of the support of the matrix in the definition of weakly nonnegative rank. In fact, we
will borrow a few more basic concepts from communication complexity.

I Definition 8. For a matrix M with rows indexed by a set I and columns indexed by a set
J , a combinatorial rectangle is a subset of I × J of the form A×B, with A ⊆ I and B ⊆ J .

A cover of a matrix M is a set of combinatorial rectangles, included in the support of M
and whose union is equal to the support of M . We define covM as the smallest size of a
cover of M .

I Proposition 9. We have covM 6 rkwM and rkM 6 rkwM . For a nonnegative matrixM ,
rkwM 6 rk+M .

Let us remark that we can have rkM < rkwM : this is the case for the following matrix [5],

for which rkR = 3 and covR = 4: R =
(

1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

)
.

The following proposition is the weak monotone version of Proposition 5.

I Proposition 10. For a noncommutative polynomial P , the smallest size of the i-th layer
of a weakly monotone ABP computing P is equal to rkwMi(P ). Hence the weakly monotone
ABP size of P is greater or equal to

∑
i rkwMi(P ).

Proof. Let ` ∈ {1, . . . , d− 1} and let M = M`(P ), r = rkwM .
Consider a weakly monotone ABP computing P . Let s be the size of layer `. Cutting the

ABP at layer ` we get P =
∑s
i=1 LiRi. Let Ai be the matrix of the polynomial LiRi. The

matrices A1, . . . , As satisfy all the conditions to show that rkwM 6 s.
Conversely, write M`(P ) = A1 + . . .+Ar where Ai are rank 1 matrices with suppAi ⊆

suppM . Each Ai can be interpreted as a product of two polynomials LiRi. It is easy to
design a weakly monotone ABP with `-layer of size r computing the polynomials L1, . . . , Lr
on the `-th layer.

So we have proved that for any `, the minimal size of the `-th layer of a weakly monotone
ABP computing P is equal to rkwM`(P ). The last inequality follows from the fact that the
minimal size of a weakly monotone ABP computing P is greater or equal to the sum of the
minimal size of the different layers. J

2.2 Separation of rank measures
We show now that we can have rkwM < rk+M . In the following J is the matrix with all
entries equal to 1 and ‖·‖ is the infinite norm.

I Proposition 11. Let M be a nonnegative matrix. For ε > 0 small enough, N = M + εJ

satisfies rkwN 6 rkM + 1 and rk+N > covM .

Proof. We have rkN 6 rkM + 1 because J is of rank 1, and rkN = rkwN since the support
of N is full. Hence rkwN 6 rkM + 1.

It remains to show the lower bound on r = rk+N . Write N = N1 + . . . + Nr with
Ni nonnegative matrix of rank 1. Write Ni = aib

T
i with ai and bi nonnegative satisfying

‖ai‖ = ‖bi‖: this implies that ‖ai‖, ‖bi‖ 6
√
‖N‖ 6 2

√
‖M‖ for ε small enough. Let ãi
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and b̃i be obtained from ai and bi by putting to 0 all entries smaller or equal to
√
ε. Let

Ñi = ãib̃
T
i . The support of Ñi is a combinatorial rectangle. Moreover, supp Ñi ⊆ suppM

since any nonzero entry of Ñi is greater than ε.
Let us show that suppM ⊆

⋃
i supp Ñi. Let Ñ = Ñ1 + . . . + Ñr. For any entry (x, y),

we have |Ni(x, y) − Ñi(x, y)| 6 2
√
ε
√
‖M‖ so ‖N − Ñ‖ 6 2r

√
ε‖M‖. This shows that

‖M − Ñ‖ 6 ‖M −N‖ + ‖N − Ñ‖ 6 ε + 2r
√
ε‖M‖. Hence ‖M − Ñ‖ is smaller than the

smallest nonzero entry of M for ε small enough. This proves that suppM is covered by⋃r
i=1 supp Ñi. J

We want to apply the previous proposition to a matrix with a large gap between rank and
covering bound. Such examples are known: the n×n matrix defined by Mi,j = (ai− aj)2 for
distinct reals a1, . . . , an has rank 3 but covM = Ω(logn) [3]; the slack matrix of a generic
polygon also exhibits such a gap [9] (note that this matrix is not explicit).

We will build on a third construction to obtain an exponential separation between
weakly monotone formulas and monotone ABPs in the noncommutative setting. Let Un
be the matrix whose rows and columns are indexed by {0, 1}n and which is defined by
Un(u, v) = (〈u, v〉 − 1)2, where the scalar product is over R.

I Theorem 12 ([6], see also [8]). It holds that rkUn = O(n2) and covUn = 2Ω(n).

Using Proposition 11, this theorem gives a matrix with an exponential gap between
weakly nonnegative rank and nonnegative rank.

I Proposition 13. For ε > 0 small enough, rkw(Un+εJ) = O(n2) and rk+(Un+εJ) = 2Ω(n).

2.3 Separating noncommutative monotone and weakly monotone
classes

Let us define a noncommutative polynomial over the variables {x0, x1}. For u ∈ {0, 1}n, let
xu = xu1 . . . xun

and define P =
∑
u,v∈{0,1}n(〈u, v〉 − 1)2xuxv. This polynomial was used

in [14] to obtain the following separation.

I Theorem 14 ([14]). The noncommutative polynomial P defined above has formula size
O(n3) but monotone circuit size 2Ω(n).

As a consequence, we get a separation illustrating the difference between monotone and
weakly monotone computations.

I Definition 15. A formula is called weakly monotone if any monomial produced by the
computation (before any possible cancellations) has a nonzero coefficient in the computed
polynomial. More formally, a formula is weakly monotone if any monomial produced by a
parse tree is present in the computed polynomial.

I Theorem 16. For ε > 0 small enough, the noncommutative polynomial P + ε(x0 + x1)2n

has weakly monotone formula size O(n3) but requires monotone ABP size 2Ω(n).

Proof. Let Q = P + ε(x0 + x1)2n for some ε > 0 small enough. The polynomial P has
formula size O(n3) by the upper bound from Theorem 14. The polynomial ε(x0 + x1)2n has
formula size O(n). Since the support of Q is full, the formula obtained for Q by summing
these two formulas is weakly monotone.

The middle Nisan matrix of Q is Mn(Q) = Un + εJ so rk+Mn(Q) = 2Ω(n) by Proposi-
tion 13. It follows from Proposition 5 that Q has monotone ABP size 2Ω(n). J

FSTTCS 2019



15:6 Nonnegative Rank Measures and Monotone ABPs

3 Monotone noncommutative complexity vs monotone rank
measures

This section is devoted to the comparison between nonnegative rank measures and the size
of monotone noncommutative algebraic branching programs, in particular Nisan’s question
on the tightness of the lower bound for monotone noncommutative ABPs. Let us start by a
particular case where the inequality is tight.

We work over a field K of characteristic zero. We say a vector v is a weakly monotone linear
combination of u1, . . . , up if there exist scalars λi for 1 6 i 6 p such that no cancellations
occur:

v =
∑
i∈[1,p]

λiui with supp(v) =
⋃

i∈[1,p]
λi 6=0

supp(ui).

3.1 In the case of ranks at most 2
In the case where each Nisan matrix is of rank at most 2, we prove that an algebraic
branching program of minimal size can be chosen to be monotone (or weakly monotone).
Since rkM 6 2 implies rkM = rkwM = rk+M , it means that the measures

∑
i rk+Mi(P )

and
∑
i rkwMi(P ) do characterize the monotone and weakly monotone ABP size in this case.

The proof of the next two lemmas can be found in the full version [11].

I Lemma 17. If a homogeneous noncommutative polynomial P of degree d with nonnegative
coefficients satisfies rkMi(P ) = 2 for all 0 < i < d, then there exists a monotone ABP of
width 2 computing P . Hence the minimal size of a monotone ABP computing P is equal to∑d

i=0 rk+Mi(P ).

I Lemma 18. If P is a homogeneous noncommutative polynomial of degree d such that
rkMi(P ) = 2 for all 0 < i < d, there exists a weakly monotone ABP of width 2 computing P .
Hence the minimal size of a weakly monotone ABP computing P is equal to

∑d
i=0 rkwMi(P ).

Then we can easily conclude:

I Theorem 19. Let P be a noncommutative polynomial, homogeneous of degree d > 0, such
that rkMi(P ) 6 2 for all i. Then the minimal size of a weakly monotone ABP computing P
is equal to

∑d
i=0 rkwMi(P ). Moreover, if P is nonnegative, the minimal size of a monotone

ABP computing P is equal to
∑d
i=0 rk+Mi(P ).

Proof. Assume P is nonnegative homogeneous of degree d > 0. We prove the second point
by induction on d. If d = 1 the polynomial P is linear with nonnegative coefficients, P 6= 0,
and thus rk+M0(P )+rk+M1(P ) = 2, which is the size of a minimal monotone ABP. Assume
now that d > 1. If rkMi(P ) = 2 for all 0 < i < d, then the minimal size of a monotone ABP
computing P is equal to

∑d
i=0 rk+Mi(P ) by Lemma 17. Otherwise, there exists 0 < i < d

such that rk+Mi(P ) = 1. It means that P = QR with Q and R homogeneous of degree
i and d − i. By induction the minimal size of a monotone ABP computing Q is equal to∑d
i=0 rk+Mi(Q) and similarly for R. The conclusion follows easily for P .
The proof of the first point is analogous, using Lemma 18. J

3.2 Separation of monotone rank measure and ABP size
We now prove a separation between the sum-of-ranks measure and the minimal noncommu-
tative ABP size, both in the monotone and in the weakly monotone cases.
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If X = X1 ] . . . ]Xd is a partition of the set of variables, a noncommutative polynomial
f is called ordered over the family X1, . . . , Xd if it is homogeneous of degree d and if each
monomial m from f is of the form v1v2 · · · vd, where vi ∈ Xi for each i.

We will use several times the following very simple observation.

I Proposition 20. Let Ei be the i-th coordinate hyperplane of Kn. and E =
⋂
i∈I Ei for

I ⊆ [n]. Let v ∈ E, and u1, . . . , up ∈ Kn. Assume v =
∑p
j=1 λjuj is a weakly monotone

linear combination. Then for all j such that λj 6= 0, we have uj ∈ E.
In particular, if v 6= 0 is a weakly monotone linear combination v =

∑
j λjuj, then there

exists j0 such that λj0 6= 0 and uj0 ∈ E \ {0}.

I Lemma 21. There exists a noncommutative ordered degree 3 polynomial H with nonnegative
coefficients in R over the set of variables (X,Y, Z) with |X| = 4, |Y | = 2, |Z| = 4, such that
rk+Mi(H) = rkwMi(H) = rkMi(H) = 3 for i ∈ {1, 2}, so that

∑3
i=0 rk+Mi(H) =∑3

i=0 rkwMi(H) = 8, but the minimal size of a monotone ABP and of a weakly monotone
ABP is 9.

Proof. Define the vectors A =
(

1
0
0
1

)
, B =

(
0
1
1
0

)
, C =

(
1
0
1
0

)
, D =

(
0
1
0
1

)
(they correspond to

the columns of the matrix R of Section 2). Then, rk(A,B,C,D) = 3 and rkw(A,B,C,D) =
4, since cov(A,B,C,D) = 4. Define the matrices M ∈ R4×8

>0 and N ∈ R8×4
>0 : M

def=

(A B A+C
2

B+C
2 C C C+D

2
C+D

2 ) and N
def=
(
A B A+C

2
B+C

2
C C C+D

2
C+D

2

)
. As C+D

2 = A+B
2 , the columns

of M are monotone linear combinations of A, B and C. Moreover, the columns of N are
monotone linear combinations of (AC ) , (BC ) and ( CD ). Hence, rk+M = rk+N = 3. This
shows that rkwM = rkwN = 3.

Let X = {x1, x2, x3, x4}, Y = {y1, y2} and Z = {z1, z2, z3, z4}. We consider the ordered
polynomial H ∈ R>0[X,Y, Z]:

H
def= x1y1z1 + x4y1z1 + x2y1z2 + x3y1z2 + x1y1z3 + 1

2x3y1z3 + 1
2x4y1z3 + 1

2x1y1z4

+ 1
2x2y1z4 + x3y1z4 + x1y2z1 + x3y2z1 + x1y2z2 + x3y2z2 + 1

2x1y2z3 + 1
2x2y2z3

+ 1
2x3y2z3 + 1

2x4y2z3 + 1
2x1y2z4 + 1

2x2y2z4 + 1
2x3y2z4 + 1

2x4y2z4.

One can verify than the middle Nisan matrices of H are M1(H) = M and M2(H) = N .
Assume that there exists a weakly monotone noncommutative homogeneous ABP of

size 8 =
∑

rkwMi(H) computing H. It means that the ABP has exactly rkwMi nodes
at layer i for 0 6 i 6 3. In particular, such an ABP has three nodes at layer 1, each one
computing a polynomial P (1)

1 (X), P (1)
2 (X) and P (1)

3 (X) and has also three nodes at layer
2 which compute the polynomials P (2)

1 (X,Y ), P (2)
2 (X,Y ) and P (2)

3 (X,Y ). The goal is to
show that these triplets of polynomials are precisely defined and there is no way to link them
together in a weakly monotone ABP. By definition of the Nisan matrix, we can see columns
of M as polynomials in R[X] and columns of N as polynomials in R[X,Y ].

B Claim 22. The polynomials P (1)
1 , P (1)

2 and P
(1)
3 weakly monotonically generate the

columns of M and the polynomials P (2)
1 , P (2)

2 and P (2)
3 weakly monotonically generate the

columns of N .

Proof. Let us show the result at layer 1, the case of layer 2 is symmetrical. Consider a
column C of the first Nisan matrix: say it corresponds to the coefficient of yjzk in H. If we
instantiate the variables yj and zk to 1 and the other variables from Y ∪ Z to 0 in the ABP,

FSTTCS 2019



15:8 Nonnegative Rank Measures and Monotone ABPs

we get C as a linear combination of columns representing P (1)
1 (X), P (1)

2 (X) and P (1)
3 (X).

More precisely, C =
∑3
s=1 λsP

(1)
s where λs 6= 0 if and only if we can read the monomial yjzk

between the node corresponding to P (1)
s (X) and the output of the ABP.

It remains to show that this linear combination C =
∑3
s=1 λsP

(1)
s is weakly monotone.

Assume this is not, it means for some i the coefficient of xi is 0 in C but there exists s such
that λs 6= 0 and the coefficient of xi in P (1)

s is different to 0. It means that the coefficient of
xiyjzk is 0 in H but there is a path in the ABP with nonzero coefficient for this monomial
(otherwise the scalar in front of P (1)

s (X) would be 0). It contradicts the fact that the ABP is
weakly monotone. C

B Claim 23. If three vectors U , V andW weakly monotonically generate the family (A,B,C)
then (up-to permuting the names of U , V and W ), U ∈ RA,V ∈ RB and W ∈ RC.

Proof. As rk(A,B,C) = 3, we can consider the vector-space F generated by {A,B,C},
namely F = {T ∈ R4 | t1 + t2 − t3 − t4 = 0}. So the vectors U , V and W must form a basis
of F and so, have to lie in F . For 1 6 i 6 4, let Ei be the i-th coordinate hyperplane of R4.

Notice that RA = F ∩ E2 ∩ E3. By Proposition 20, since A is a weakly monotone linear
combination of U, V,W , (at least) one of the vectors {U, V,W} must belong to E2 ∩E3. Since
this vector lies also in F , it is in RA.

In the same way, since RB = F ∩ E1 ∩ E4 and RC = F ∩ E2 ∩ E4, one vector of B must
belong to RB and one must belong to RC.

Since RA,RB,RC are 3 distinct one-dimensional linear subspaces, each one of these spaces
has to contain one of the vectors U, V,W . C

B Claim 24. If three vectors Q, R and S weakly monotonically generate the columns of N
then, up to permuting the names of Q, R and S, Q ∈ R (AC ) , R ∈ R (BC ) , S ∈ R ( CD ) .

Proof. Let us define B = {Q,R, S}. We can easily see that the columns of N lie in the vector
space given by the intersection of the three hyperplanes F1 = {T ∈ R8 | t1 + t2 = t3 + t4},
F2 = {T ∈ R8 | t5 + t6 = t7 + t8} and F3 =

{
T ∈ R8 |

∑4
i=1 ti =

∑8
j=5 tj

}
. As rk(Q,R, S) =

rkN , the vectors Q, R and S are in F1 ∩ F2 ∩ F3.
For 1 6 i 6 8, we denote by Ei the i-th coordinate hyperplane of R8. Looking at the

two first columns of N we can notice that R (AC ) = F1 ∩ F2 ∩ F3 ∩ E2 ∩ E3 ∩ E6 ∩ E8 and
R (BC ) = F1 ∩ F2 ∩ F3 ∩ E1 ∩ E4 ∩ E6 ∩ E8 are two distinct one-dimensional spaces of R8. By
Proposition 20, there is at least one vector of B (let us suppose this is Q) such that Q = q (AC )
and at least one other vector of B (assume this is R) such that R = r (BC ).

Finally we need to identify the last vector S. For that, we decompose S =
(
S1
S2

)
where

S1 is the projection of S on its first four coordinates and S2 the projection on the last
four. Now, we know that B weakly monotonically generates the last two columns of N . So
there exist a1, a2, a3, b1, b2, b3 ∈ R such that: a1q (AC ) + a2r (BC ) + a3

(
S1
S2

)
=
( A+C

2
C+D

2

)
and

b1q (AC )+b2r (BC )+b3
(
S1
S2

)
=
( B+C

2
C+D

2

)
. By Proposition 20, as

( A+C
2

C+D
2

)
∈ E2 and

( B+C
2

C+D
2

)
∈ E4,

we know that a2 = b1 = 0. Moreover, as A and (A + C) are not colinear, it means that
S1 belongs to the plane vect(A,A + C) (by the way, this space is inside E2). Similarly,
S1 ∈ vect(B,B + C). As B /∈ E2, these two planes are distinct, so the intersection is of
dimension at most 1. Moreover, vect(C) is in the intersection, and so, S1 ∈ vect(C). There
exists s 6= 0 such that S1 = sC. As a1qA + a3sC = A+C

2 , it implies that a1q = a3s = 1
2 .

Then, we have C
2 + S2

2s = C+D
2 , i.e., S2 = sD. C
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Consequently, by Claim 22 and Claim 24, one node at layer 2 computes the polynomial
whose matrix is s ( CD ) (with s 6= 0). By instantiating y1 to 0 and y2 to 1/s, this node computes
exactly the polynomial corresponding to D as a weakly monotone linear combination of the
nodes at layer 1. By Claim 23, the nodes at layer 1 are polynomials associated to A, B and
C (up to scalar multiplication). This would imply that rkw(A,B,C,D) = 3, which is false.
Hence, there does not exist a weakly monotone ABP of size 8.

To complete the proof, we show there is a monotone ABP of size 9 computing H. There
are two natural monotone ABPs of size 9, let us describe one of them. One can compute
the four polynomials associated to A, B, C and D at the first layer. It gives the following

monotone ABP of size 9: H = 1
2 ( x1+x4 x2+x3 x1+x3 x2+x4 )

( y1 0 0
0 y1 0
y2 y2 y1
0 0 y2

)( 2z1+z3
2z2+z4
z3+z4

)
. J

I Theorem 25. There exists a noncommutative homogeneous degree 3 polynomial P over
4 variables such that rk+Mi(P ) = rkwMi(P ) = rkMi(P ) = 3 for i ∈ {1, 2}, so that∑3

i=0 rk+Mi(P ) =
∑3
i=0 rkwMi(P ) = 8, but the minimal size of a weakly monotone or

monotone ABP computing P is 9.

Proof. Consider the noncommutative polynomial P = H(x1, x2, x3, x4, x1, x2, x1, x2, x3, x4).
As H is ordered, and as the previous substitution follows this order, it is injective over the
set of monomials which appear in H, that is to say, if m1 and m2 are two monomials from H

which give the same monomial in P , then m1 = m2. It directly implies that the substitution
establishes a bijection between the set of monomials which appear in H and the ones which
appear in P . We will say that this substitution is faithful.

Any ABP A which computes the polynomial H can be transformed into an ABP B which
computes P with layers of same size by a direct substitution of the variables. Moreover,
if A is monotone, then B is immediately monotone. Then, if A is weakly monotone, the
faithfulness property implies that B is also weakly monotone.

In the other direction, if in a weakly monotone noncommutative ABP A computing P we
replace the variables x1 and x2 in the second layer by y1 and y2 and the variables x1, x2, x3
and x4 in the third layer by z1, z2, z3 and z4, then we get a new ABP B which computes the
polynomial H(x1, x2, x3, x4, y1, y2, z1, z2, z3, z4). The fact that this transformation preserves
the monotonicity is still immediate. The faithfulness property implies it also preserves the
weak monotonicity. So, the theorem follows from Lemma 21. J

I Corollary 26 (Gap increasing with the degree and the number of variables). Let P be the
polynomial defined in Theorem 25. Let m,n > 1. Let X1, . . . , Xn be n sets of distinct
variables, with each set of size 4. Let Q(X1, . . . , Xn) =

∑n
j=1 P

m(Xj). This is a polynomial
of degree 3m in 4n variables such that

∑3m
i=0 rk+Mi(Q) =

∑3m
i=0 rkwMi(Q) = 7mn− n+ 2

but the minimal size of a monotone or weakly monotone ABP for it is equal to 8mn− n+ 2.

Proof. Let us first consider the case n = 1. From Theorem 25, one can easily check that
rkMi(Pm(X1)) = 1 for imultiple of 3 and rkMi(Pm(X1)) = rk+Mi(Pm(X1)) = 3 otherwise,
and that a minimal (weakly) monotone ABP computing Pm(X1) has 8m+ 1 nodes.

Consider a weakly monotone ABP for Q. Assume there is an internal node α and two
distinct indices k and k′ such that α depends on at least one variable of Xk and one variable
of Xk′ . Consequently, one path of the ABP produces a monomial which contains both a
variable in Xk and a variable not in Xk. Since Q =

∑n
j=1 P

m(Xj), a given monomial in Q
can only contain variables coming from a single Xk. The above statement thus contradicts
the fact that the ABP is weakly monotone. Hence, we can partition the internal nodes of the
ABP into n parts, each one related to one variable set Xj . As mentioned earlier, a minimal
weakly monotone ABP for Pm(Xj) has 8m− 1 internal nodes. The minimal size of a weakly
monotone ABP is therefore 8mn−n+ 2. The same is true of a monotone ABP computing Q.
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Let us compute the sum of ranks for Q. If 0 < i < 3m, the i-th Nisan matrix of Q is
block-diagonal with n blocks, where the j-th block corresponds to the i-th Nisan matrix
of Pm(Xj). As the nonnegative rank of a block-diagonal matrix is equal to the the sum of
the nonnegative ranks of its blocks, rkMi(Q) = rk+Mi(Q) = n for i ∈ {3, 6, . . . , 3m − 3}
and rkMi(Q) = rk+Mi(Q) = 3n for i ≡ 1, 2 mod 3. Summing over the different layers we
get that the sum-of-ranks measure for Q, both for usual rank and nonnegative rank, and
thus for weakly nonnegative rank, is equal to 7mn− n+ 2. J

An upper bound on the size of a monotone ABP computing a homogeneous degree d
polynomial P is obtained by summing, for each ` ∈ {0, . . . , d} the minimal number of rows
extracted from M`(P ) whose cone contains all other columns of M`(P ). The example above
shows that this is not a characterization of monotone size: for the polynomial H built in
Lemma 21, it is needed to extract 4 rows in both M1(H) and M2(H). The same remark
applies in the weakly monotone setting (about the minimum number of extracted rows which
weakly monotonically generate all the rows).

4 Lower bounds for monotone commutative ABPs

4.1 Lower bound tools for monotone and weakly monotone ABPs
Consider a homogeneous degree d commutative polynomial P . For ` ∈ {0, . . . , d}, we define
the setM`(P ) of matrices, whose rows are indexed by commutative degree-` monomials and
whose columns indexed by degree-(d− `) commutative monomials. A matrix M belongs to
M`(P ) if:
(a) for any degree d commutative monomial m such that m does not appear in P and

any (m1,m2) satisfying m = m1m2, m1 of degree ` and m2 of degree d − `, we have
Mm1,m2 = 0;

(b) for any other degree d commutative monomial m,
∑
m1m2=mMm1,m2 is equal to the

coefficient of m in P .
For a matrix M whose rows and columns are indexed by noncommutative monomials, we
define M com the matrix obtained by summing rows and columns indexed by the same
commutative monomial.

I Proposition 27. A homogeneous degree-d noncommutative polynomial Q computes com-
mutatively P without cancelling monomials if and only if M`(Q)com ∈ M`(P ) for all
` ∈ {0, . . . , d}.

Proof. The polynomial Q computes commutatively P if and only if, for each `, the ma-
trix M := M`(Q)com satisfies the following: for any degree d commutative monomial m,∑
m1m2=mMm1,m2 is equal to the coefficient of m in P .
The polynomial Q does not cancel monomials if and only if, for all monomial m not

appearing in P and for all decomposition m = m1m2, there is no noncommutative monomial
m′ = m′1m

′
2 in Q such that m′i computes commutatively mi for i ∈ {1, 2}.

Together, these two statements prove the proposition. J

For a homogeneous degree d polynomial P and ` ∈ {0, . . . , d} consider the support matrix
S`(P ) indexed by degree-` commutative monomials on the rows, degree-(d− `) commutative
monomials on the column, such that S`(P )m1,m2 = 1 if the coefficient of m1m2 in P is
nonzero and S`(P )m1,m2 = 0 otherwise.
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I Definition 28. For M,S two matrices of the same size we define rkw(M,S) to be the
smallest r such that there exist rank 1 matrices M1, . . . ,Mr such that supp(Mi) ⊆ supp(S)
and M =

∑r
i=1Mi.

Notice that rkwM , defined in Section 2, is nothing but rkw(M,M).

I Theorem 29. The size of a monotone ABP computing a homogeneous commutative
polynomial P of degree d is at least

∑d
`=0 min{rk+M | M ∈M`(P ), M > 0}. If the ABP

is weakly monotone the bound becomes
∑d
`=0 min{rkw(M,S`(P )) | M ∈M`(P )}.

Proof. Let ` ∈ {1, . . . , d−1}. Consider an ABP computing P with minimal number of nodes
at level `: say it is w. Cutting this ABP at layer ` gives a decomposition P =

∑w
i=1QiRi.

For i ∈ {1, . . . , w} let Mi be the matrix of QiRi. All matrices Mi are of rank 1 and we
have

∑w
i=1Mi ∈ M`(P ). If the ABP is monotone, the matrices Mi are nonnegative and

we get min{rk+M | M ∈ M`(P ), M > 0} 6 w. If the ABP is weakly monotone, we have
supp(Mi) ⊆ supp(S`(P )). Hence min{rkw(M,S`(P )) | M ∈M`(P )} 6 w. J

For two same-sized matrices M,S, let cov(M,S) be the smallest number of combinatorial
rectangles included in the support of S and whose union covers the support of M .

I Proposition 30. cov(M,S) 6 rkw(M,S).

Proof. Let r = rkw(M,S) and write M =
∑r
i=1Mi with Mi of rank 1, supp(Mi) ⊆ supp(S).

We have supp(M) ⊆
⋃r
i=1 supp(Mi): this shows that cov(M,S) 6 r. J

I Corollary 31. Any weakly monotone ABP computing P has size greater or equal to∑d
`=0 min{cov(M,S`(P )) | M ∈M`(P )}.

4.2 Application to the elementary symmetric polynomials
For n positive integer we write [n] = {1, . . . , n}. For 0 6 k 6 n, let en,k be the elementary
symmetric polynomial of degree k over the variables x1, . . . , xn: en,k =

∑
I∈([n]

k )
∏
i∈I xi.

Notice that Sj(en,k) is exactly the disjointness matrix Dn,j,k−j with rows indexed by elements
of
([n]
j

)
and columns indexed by elements of

( [n]
k−j
)
, and whose entry in row A and column B

is 1 if A ∩B = ∅ and 0 otherwise.
To get lower bounds for en,k using Corollary 31 we need to show that, for enough values

of j and for any M ∈Mj(en,k), cov(M,Dn,j,k−j) is large.

I Proposition 32. For n, j, k fixed, assume cov(M,Dn,j,k−j) 6 m for some M ∈Mj(en,k).
Then there exists A1, . . . , Am ⊆ [n] with the following property:

For all B ∈
(

[n]
k

)
, there is i ∈ {1, . . . ,m} such that |Ai ∩B| = j. (1)

Proof. LetM ∈Mj(en,k). Assume U1 × V1, . . . , Um × Vm is a set of combinatorial rectangles
from

([n]
j

)
×
( [n]
k−j
)
included in the support of Dn,j,k−j and covering suppM . Notice that

such a combinatorial rectangle U × V is included in the support of Dn,j,k−j if and only if(⋃
u∈U u

)
∩
(⋃

v∈V v
)

= ∅. For i ∈ {1, . . . ,m}, let Ai =
⋃
u∈Ui

u. From the previous remark
the set of combinatorial rectangles R1, . . . , Rm defined by Ri =

(
Ai

j

)
×
([n]\Ai

k−j
)
is included in

the support of Dn,j,k−j and covers suppM .
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Let us show that the family {A1, . . . , Am} satisfies Equation (1). Let B ∈
([n]
k

)
. The

monomial
∏
i∈B xi appears in en,k so one non-zero entry of M is of the form (I, J) with

I ∈
([n]
j

)
, J ∈

( [n]
k−j
)
and I ∪ J = B. Therefore (I, J) ∈ Ri for some i ∈ {1, . . . ,m}, i.e.

|Ai ∩B| = |I| = j. J

We will now relate our lower bound endeavor to a combinatorial question known as
Galvin’s problem: for n a multiple of 4, prove a lower bound on the size m of a family
{A1, . . . , Am} ⊆

( [n]
n/2
)
such that for any B ∈

( [n]
n/2
)
, there exists i such that |Ai ∩B| = n/4.

Proving a lower bound on a family {A1, . . . , Am} satisfying Equation (1) for the parameters
k = n/2 and j = n/4 is a generalization of Galvin’s problem because the sets Ai can be of
arbitrary size, instead of n/2 in the original problem.

We first give a lower bound for the middle elementary symmetric polynomial. The
argument is similar to the solution of Galvin’s original problem presented in [12, Theorem
11.1], which we reproduce here for completeness. It is based on the following result, restricted
here to the case of codes over an alphabet with 2 elements (we denote by ∆ the symmetric
difference between two sets).

I Theorem 33 ([12], Theorem 1.10). Suppose 0 < δ < 1
2 is given. Then there exists ε > 0

such that for any d even satisfying δn < d < (1 − δ)n, any family of distinct subsets
C1, . . . , Cm ⊆ [n] such that, for all i 6= j, |Ci∆Cj | 6= d, has size m 6 (2− ε)n.

I Lemma 34. There exists α > 0 such that for n ∈ 4N \ {0}, k = n/2 and j odd, any family
{A1, . . . , Am} satisfying Equation (1) has size m > αn.

Proof. Assume there exists A1, . . . , Am ⊆ [n] such that F = {A1, . . . , Am} satisfies Equa-
tion (1). Let V be the subspace of Fn2 spanned by the characteristic vectors of the elements
of F . By assumption, for all B ∈

( [n]
n/2
)
, there exists F ∈ F such that |B ∩F | = j; this means

that 〈χ(B), χ(F )〉 = 1 6= 0 because j is odd. Hence V ⊥ contains no vector of weight n/2.
Because V ⊥ is a vector space, it implies that for any C,D ⊆ [n] such that χ(C), χ(D) ∈ V ⊥,
|C∆D| 6= n/2.

By Theorem 33, |V ⊥| 6 (2− ε)n for some constant ε > 0. This means that dimV ⊥ 6
(1− α)n for some α > 0. It follows that m = |F| > dimV > αn. J

I Lemma 35. For n ∈ 4N, every weakly monotone ABP computing en,n/2 has size Ω(n2).

Proof. There exists α > 0 such that for n ∈ 4N, k = n/2 and j odd, any family {A1, . . . , Am}
satisfying Equation (1) has size m > αn by Lemma 34. It follows from Proposition 32
that for all M ∈ Mj(en,n/2), cov(M,Dn,j,n/2−j) > αn. The lower bound is obtained by
Corollary 31. J

From the simple observation en,k(x1, . . . , xm, 0, . . . , 0) = em,k(x1, . . . , xm), Lemma 35
yields quadratic lower bounds on the size of weakly monotone ABPs computing en,k for δn 6
k 6 n/2 for a fixed δ > 0. However we need to be more careful to get a quadratic lower bound
for e.g. en,2n/3. Indeed the simple reduction en,k(x1, . . . , xn) =

∏n
i=1 xi ·en,n−k

(
1
x1
, . . . , 1

xn

)
uses divisions, which are not allowed in our model and would cost too much to remove.

In an ABP, the formal degree fdegt(α) of a node α with respect to a variable t is defined
as the maximum degree in t of the polynomial computed along a path from the source to α,
which is also the maximal degree in t of a monomial produced along a path from the source
to α. By definition, the formal degree of the source is 0. Let us denote by α̂ the polynomial
computed at the node α. Remark that fdegt(α) > degt(α̂). The formal degree in t of an
ABP is the formal degree in t of its output.
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Let us show now that we can always extract the part of maximal formal degree without
changing the size of an ABP. We denote by [tk]f the coefficient of the homogeneous component
of f of degree k in t. The proofs of the next two lemmas can be found in the full version [11].

I Lemma 36. Let A be an ABP of size s and of formal degree k in the variable t computing
a polynomial f . Then there exists A′ an ABP of size at most s such that A′ computes [tk]f .

Moreover, if A is weakly monotone, then it is also the case for A′.

I Lemma 37. If there is a weakly monotone ABP of size s computing the polynomial en,p,
then for all q 6 p, there is a weakly monotone ABP of size at most s which computes the
polynomial en−q,p−q.

I Theorem 38. Every weakly monotone ABP, or equivalently every homogeneous syntacti-
cally multilinear ABP, computing en,k has size Ω(min{k2, (n− k)2}).

Proof. Let us first prove the lower bound when n and k are even.
If k 6 n/2, then as mentioned previously, any weakly monotone ABP of size s implies a

weakly monotone ABP of size at most s for e2k,k by putting some variables to 0. So in this
case s = Ω(k2) by Lemma 35.

Otherwise, we have k > n/2. It means that k > 2k − n > 0. Then a weakly monotone
ABP of size s for en,k gives a weakly monotone ABP of size at most s for e2n−2k,n−k by
Lemma 37, choosing the parameters p = k and q = 2k− n. The lower bound s = Ω((n− k)2)
follows from Lemma 35.

The lower bound is obtained for n odd by noticing that e2bn/2c,k can be reduced to en,k
by putting one variable to 0. Moreover, en,k reduces to en−1,k−1 by Lemma 37. So the lower
bound holds for n and k of any parity.

This lower bound also holds in the homogeneous syntactically multilinear model: indeed,
any such ABP computing en,k is weakly monotone because en,k has all degree k monomials
in its support. J
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