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Abstract
Network motifs are small patterns that occur in a network significantly more often than expected.
They have gathered a lot of interest, as they may describe functional dependencies of complex
networks and yield insights into their basic structure [22]. Therefore, a large amount of work went into
the development of methods for network motif detection in complex networks [20, 28, 8, 31, 16, 1, 25].
The underlying problem of motif detection is to count how often a copy of a pattern graph H occurs
in a target graph G. This problem is #W[1]-hard when parameterized by the size of H [14] and
cannot be solved in time f(|H|)no(|H|) under #ETH [7].

Preferential attachment graphs [3] are a very popular random graph model designed to mimic
complex networks. They are constructed by a random process that iteratively adds vertices and
attaches them preferentially to vertices that already have high degree. Preferential attachment has
been empirically observed in real growing networks [24, 19].

We show that one can count subgraph copies of a graph H in the preferential attachment
graph Gn

m (with n vertices and nm edges, where m is usually a small constant) in expected time
f(|H|)mO(|H|6) log(n)O(|H|12)n. This means the motif counting problem can be solved in expected
quasilinear FPT time on preferential attachment graphs with respect to the parameters |H| and m.
In particular, for fixed H and m the expected run time is O(n1+ε) for every ε > 0.

Our results are obtained using new concentration bounds for degrees in preferential attachment
graphs. Assume the (total) degree of a set of vertices at a time t of the random process is d. We
show that if d is sufficiently large then the degree of the same set at a later time n is likely to be
in the interval (1± ε)d

√
n/t (for ε > 0) for all n ≥ t. More specifically, the probability that this

interval is left is exponentially small in d.
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1 Introduction

Network motifs are small patterns that occur in a network significantly more often than
expected. They are relevant for example in the analysis of biological networks such as
transcription networks of bacteria [22]. Detecting network motifs is computationally very
expensive and there exist numerous algorithms for this task [20, 28, 8, 31, 16, 1, 25]. The
underlying problem of motif detection is to count how often a copy of a pattern graph H
occurs in a target graph G. This can be very hard, as counting perfect matchings is #P-
hard [29]. One of the fastest algorithms by Curticapean, Dell, and Marx can count subgraph
copies of a graph H with k edges in a graph G of size n in time kO(k)n0.174k+o(k) [12]. When
it comes to parameterized complexity, counting k-cliques is #W[1]-hard [14] and cannot be
done in time f(k)no(k) under #ETH [7].
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13:2 Motif Counting in Preferential Attachment Graphs

A general question is whether problems that are hard on general graphs can be solved
efficiently in real-world networks. To this end, the average run time of algorithms on random
graphs has been considered (see [15] for a survey from 1997). For example Janson, Łuczak
and Norros show that in certain scale-free random graphs with exponent α > 2 one can find
a maximal clique in polynomial time [18].

Preferential attachment graphs [3] are random graphs designed to mimic complex networks.
They are constructed by a random process that iteratively adds vertices and attaches
them preferentially to vertices that already have high degree. Scale-free behaviour has
been identified as a central property of many complex networks [6, 9] and the preferential
attachment process is a widely recognized explanation [5] of this behaviour. Preferential
attachment has been empirically observed in real growing networks [24, 19].

Recently, the behaviour of some algorithms on preferential attachment graphs has been
analyzed. Let Gnm be the preferential attachment graph with n vertices and m edges per
vertex by (see Section 2 or a rigorous definition). For example, Korula and Lattanzi present
a reconciliation algorithm with proven 97% success in preferential attachment graphs [21]
and Cooper and Frieze show that the cover time of a simple random walk on Gnm is with
high probability asymptotic to 2m

m−1n log(n) [10].
We show that the motif counting problem can be solved in expected quasilinear time on

preferential attachment graphs by a simple algorithm for any motif of constant size. For
simple graphs G and H let #Sub(H,G) be the number of subgraphs of G isomorphic to H.
If the graph G has loops or multi-edges (as preferential attachment graphs do) then the
subgraphs is counted with respect to the simple graph corresponding to G. Our main result
is the following.

I Theorem 5. There exists a function f such that for every graph H and n,m ∈ N one can
compute #Sub(H,Gnm) in expected time f(|H|)mO(|H|6) log(n)O(|H|12)n.

This means one can compute #Sub(H,Gnm) in expected quasilinear FPT time on pref-
erential attachment graphs with respect to the parameters |H| and m. In particular, for
fixed H and m the expected run time is O(n1+ε) for every ε > 0. Our results can be easily
extended to alternative definitions of #Sub(H,G) for multigraphs.

Our result is obtained as follows: At first, we define a value γl(G) for every graph G

and l ∈ N+ and present a simple algorithm to compute #Sub(H,G) in time f(|H|)γ|H|(G)
for some function f (Lemma 3). We then bound γl(G) by the number of subgraphs in
G of bounded size with at most two pendant vertices (Lemma 7). Using this insight, we
can bound the expected value of γl(G) in preferential attachment graphs by E[γl(Gnm)] =
mO(l6) log(n)O(l12)n (Theorem 4), which directly yields the efficient subgraph counting
algorithm. This analysis is based on concentration bounds for vertex degrees, which are
proven in Section 5.

Concentration Bounds for Degrees in Preferential Attachment Graphs

A large part of the analysis of our motif counting algorithm is based on concentration bounds
for degrees, which we believe to be of individual interest. Aspects of the degree distributions
in preferential attachment graphs are well studied [5, 4, 2, 17, 23, 27, 26, 32]. For example,
Bollobás et al. [5] show that the degree sequence follows a power law distribution and Peköz
et al. [26, 27] bound the rate of convergence of the degree of individual vertices to a limit
distribution. The resulting tail bounds for degrees of individual vertices, however, have
only polynomial accuracy. We complement these results by providing exponentially strong



J. Dreier and P. Rossmanith 13:3

concentration bounds for vertices or sets of vertices with high degree. We believe these
bounds to be useful for proving structural properties and analyzing algorithms on preferential
attachment graphs beyond motif counting.

Let the vertices in a preferential attachment graph be v1, v2, v3, . . . in order of insertion.
Let t ∈ N and S ⊆ {v1, . . . , vt}. We analyze the evolution of the degree of S in the random
process over time. For n ≥ t and m ≥ 1 we define dnm(S) to be the sum over all degrees of
vertices in S in Gnm (we define dnm(vi) := dnm({vi})).

Assume the degree of S at a time t to be dtm(S) = d. It can be shown that the expected
degree of S at a later time n ≥ t of the same random process asymptotically approaches
E[dnm(S) | dtm(S) = d] ∼

√
n
t d [30]. In general, the preferential attachment process is too

unstable and chaotic to guarantee that the degree of S closely centered around its expected
value. We show, however, that if d is sufficiently large then the degree of S at time n is likely
to be in the interval (1± ε)

√
n
t d (for ε > 0) for all n ≥ t. More specifically, the probability

that this interval is left is exponentially small in d. This is formalized by the following
theorem.

I Theorem 19. For t,m, d ∈ N+, 0 < ε ≤ 1/2, S ⊆ {v1, . . . , vt} with Pr[dtm(S) = d] 6= 0
and d ≥ log(log(3tm))ε−200

Pr
[
(1− ε)

√
n

t
d < dnm(S) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ dtm(S) = d
]
≥ 1− e−ε

200d.

Note that concentration is guaranteed for all n ≥ t simultaneously. This means especially
that the degree of large sets of vertices is strongly concentrated at all times of the random
process. The constants have been chosen to ease calculations and can be greatly improved.

2 Preliminaries

We will denote probabilities by Pr[∗] and expectation by E[∗]. The logarithm is the natural
logarithm. We use common graph theory notation [13]. The order of a graph is |G| = |V (G)|.
The size of a graph is ‖G‖ = |V (G) + E(G)|. All graphs (except preferential attachment
graphs) are simple graphs. The underlying simple graph of a multigraph is obtained by
replacing multi-edges with a single edge and removing self-loops. In this work we focus on
the preferential attachment random graph model [3]. The model generates random graphs by
iteratively inserting new vertices and edges. It depends on a parameter m that equals the
number of edges attached to a newly created vertex. We follow the definition of Bollobás
et al. [5]: For a fixed m, the random process is defined by starting with a single vertex and
iteratively adding vertices, thereby constructing a sequence of graphs G1

m, G
2
m, . . . ,Gtm, where

Gtm has t vertices and mt edges. We define dtm(v) to be the degree of vertex v in the graph
Gtm. The random process for m = 1 works as follows. A random graph is started with one
vertex v1 that has exactly one self-loop. This graph is G1

1. We then define the graph process
inductively: Given Gt−1

1 with vertex set {v1, . . . , vt−1}, we create Gt1 by adding a new vertex
vt together with a single edge from vt to vi, where i is chosen at random from {1, . . . , t} with

Pr[i = s] =
{
dt−1

1 (vs)/(2t− 1) 1 ≤ s < t,

1/(2t− 1) s = t.

This means we add an edge to a random vertex with a probability proportional to its degree
at the time. For m > 1, the process can be defined by merging sets of m consecutive vertices
in Gmt1 to single vertices in Gtm [5]. Let v′1, . . . , v′mt be the vertices of Gmt1 . The graph Gtm
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13:4 Motif Counting in Preferential Attachment Graphs

with vertices v1, . . . , vt is constructed by merging v′(i−1)m+1, . . . , v
′
im into a single vertex vi.

The graph Gtm is a multigraph. The number of edges between vertices vi and vj in Gtm
equals the number of edges between the corresponding sets of vertices in Gmt1 . Self-loops
and multi-edges are allowed.

In this work we obtain concentration bounds for the total degree of a set of vertices
S ⊆ {v1, . . . , vt} during the random process. We define the degree of a set S at time n ≥ t
as dnm(S) =

∑
v∈S d

n
m(v).

3 Subgraph Counting

We start by presenting a very simple algorithm that decides for a graph G and a connected
pattern graph H if there exists a subgraph of G isomorphic to H. Then Lemma 2 and 3
generalize this algorithm into a counting algorithm for arbitrary pattern graphs.

Assume there is a subgraph H ′ of G isomorphic to H that we want to find and let l = |H|.
Since H ′ is a connected graph with at most l vertices there exists a vertex v ∈ V (G) such
that H ′ is contained in the l-neighborhood G[NG

l (v)] of v. We build a spanning tree T of
G[NG

l (v)]. Since T is a tree, it is fairly easy to find H ′ if H ′ is a subgraph of T . But what
happens if H ′ contains edges that are not contained in T? We call the edges of G[NG

l (v)]
that are not in T the extra edges of the l-neighborhood of v. Since H has at most

(
l
2
)

edges, there exists a subset F of at most
(
l
2
)
many extra edges such that H is contained in

(V (T ), E(T ) ∪ F ). The graph (V (T ), E(T ) ∪ F ) is a tree with at most
(
l
2
)
extra edges and

therefore has bounded treewidth. Using Courcelle’s theorem [11] it is still easy to find H ′ in
(V (T ), E(T ) ∪ F ). In summary, one can find the graph H ′ by enumerating all v ∈ V (G) and
sets F of at most

(
l
2
)
extra edges in the l-neighborhood of v in G, and then using Courcelle’s

theorem.
We define a value γl(G) of a graph G, which can be obtained by multiplying the size of

each l-neighborhood with the number of sets of extra edges of size at most
(
l
2
)
.

I Definition 1. Let G be a graph and l ∈ N+. We define

γl(G) =
∑

v∈V (G)

|NG
l (v)|

(l2)∑
k=0

(
‖G[NG

l (v)]‖ − |NG
l (v)| − 1

k

)
.

For multigraphs G, γl(G) is defined with respect to the simple underlying graph.

We now show that γl(G) captures the run time of the previously discussed algorithm (up to
a factor independent of G). We start with counting connected patterns and generalize this
afterwards to arbitrary patterns.

I Lemma 2. There exists a function f such that for every graph G and connected graph H
one can compute #Sub(H,G) in time f(|H|)γ|H|(G).

Proof. Let l = |H|. We compute spanning trees Tv of G[NG
l (v)] for v ∈ V (G) in time∑

v∈V (G) O(‖G[NG
l (v)]‖) by breadth-first searches. Let Fv := {F | F ⊆ E(G[NG

l (v)]) \
E(Tv), |F | ≤

(
l
2
)
} be the set of all subsets of at most

(
l
2
)
edges that are in G[NG

l (v)] but not
in Tv. We construct the sets Fv for v ∈ V (G) in time

∑
v∈V (G) O(‖G[NG

l (v)]‖+ |Fv|l2).
Let I be the set of all subgraphs of G isomorphic to H. For v ∈ V (G) and F ∈ Fv let

Iv,F be the set of subgraphs H ′ of (V (Tv), E(Tv) ∪ F ) such that H ′ is isomorphic to H,
v ∈ V (H ′) and F ⊆ E(H ′). We claim that #Sub(H,G) = |I| =

∑
v∈V

∑
F∈Fv

|Iv,F (H)|
|H| . Let

H ′ be a subgraph of G. If H ′ is not isomorphic to H then by definition H ′ 6∈ Iv,F for all
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v ∈ V (G), F ∈ Fv. Assume now that H ′ is isomorphic to H. To prove the claim, need to
make sure that H ′ is counted exactly |H| times. This is the case because H ′ ∈ Iv,F if and
only if v ∈ V (H ′) and F = E(H ′) \ E(Tv).

In order to compute #Sub(H,G), it is now sufficient to iterate over all v ∈ V and F ∈ Fv
and compute |Iv,F |. The graph (V (Tv), E(Tv) ∪ F ) is a tree with at most

(
l
2
)
additional

edges and therefore has treewidth at most
(
l
2
)

+ 1. By Courcelle’s theorem [11], there exists
a function f ′ such that one can compute |Iv,F | in time f ′(l)|NG

l (v)|.
The run time of this procedure is dominated by the time taken to compute Tv,Fv for

v ∈ V (G) and |Iv,F | for v ∈ V, F ∈ Fv. Since ‖G[NG
l (v)]‖ ≤ |NG

l (v)|+ |Fv|, this run time is
bounded by∑

v∈V (G)

O
(
‖G[NG

l (v)]‖+ |Fv|l2 + |Fv|f ′(l)|NG
l (v)|

)
= O

(
f ′(l)

∑
v∈V
|Fv||NG

l (v)|
)
. J

I Lemma 3. There exists a function f such that for graphs G and H one can compute
#Sub(H,G) in time f(|H|)γ|H|(G).

Proof. (Sketch) Let H be a representative set of all connected pairwise non-isomorphic
graphs with at most |H| vertices. We compute #Sub(H ′, G) for every connected graph
H ′ ∈ H. Via inclusion-exclusion, we can compute #Sub(H,G). We sketch how the procedure
works if H consists of two components. Via induction, it can be generalized to an arbitrary
number of components. Let C1 and C2 be the components of H. The value c = #Sub(C1, G) ·
#Sub(C2, G) counts all ways in which the two components of H can be embedded in G.
However, c might be larger than #Sub(H,G) since it also counts all embeddings where the
two components intersect in G by sharing one or more vertices. Every intersection of the
two components is connected, thus, we can count them and subtract them. J

We now have a subgraph counting algorithm with efficient run time if the function γ|H|(G)
is small. If G has bounded degree or is a tree, then γ|H|(G) is an fpt function for the
parameter |H|. It remains to show that the function is also small for certain random graphs.

4 Bounding γl in Preferential Attachment Graphs

The remainder of this paper is concerned with the analysis of the run time of the aforemen-
tioned algorithm on preferential attachment graphs. This is done by using our concentration
bounds for degrees (Theorem 19) to prove the following theorem.

I Theorem 4. Let l, n,m ∈ N+ with n ≥ 2. Then E[γl(Gnm)] = mO(l6) log(n)O(l12)n.

This is then sufficient to prove our main result.

I Theorem 5. There exists a function f such that for every graph H and n,m ∈ N one can
compute #Sub(H,Gnm) in expected time f(|H|)mO(|H|6) log(n)O(|H|12)n.

Proof. Direct consequence of Lemma 3 and Theorem 4. J

We prove Theorem 4 via multiple steps. In Lemma 7, we bound for every graph G and
l ∈ N+, γl(G) ≤ 16l6 |B2

4l3(G)|, where Bbl (G) is defined below.

I Definition 6. For a graph G and l, b ∈ N let Bbl (G) be the set of subgraphs in G of size at
most l with no isolated vertices and at most b pendant vertices. If G is a multigraph then
Bbl (G) is defined with respect to the simple underlying graph.

FSTTCS 2019



13:6 Motif Counting in Preferential Attachment Graphs

Then we use the degree bounds from Theorem 19 to step by step (Lemma 8 – 11) bound the
expected value of |Bbl (G)| in preferential attachment graphs.

I Lemma 7. Let G be a graph and l ∈ N+. Then γl(G) ≤ 16l6 |B2
4l3(G)|.

Proof. For every v ∈ V (G) let Tv be a breadth-first spanning tree with root v in G[NG
l (v)]

and Fv := {F | F ⊆ E(G[NG
l (v)]) \E(Tv), |F | ≤

(
l
2
)
} be the set of all subsets of at most

(
l
2
)

edges that are in G[NG
l (v)] but not in Tv. Clearly γl(G) =

∑
v∈V (G) |NG

l (v)||Fv|.
Let v ∈ V (G), w ∈ NG

l (v), F ∈ Fv. Let U ⊆ V (G) be the set containing v, w and all
endpoints of the edges in F . We define a graph Hv,w,F as follows: Start with the empty
graph, add the vertices U , the edges F , and for every u ∈ U the unique path in Tv from v to
u. Since Tv is a breadth-first spanning tree, every path in Tv starting at v contains at most
l + 1 vertices. Since also |U | ≤ 2

(
l
2
)

+ 2, we can bound V (Hv,w,F ) ≤ (2
(
l
2
)

+ 2)(l + 1) ≤ 4l3.
Furthermore Hv,w,F contains no vertices with degree zero and every vertex in Hv,w,F except
for v and w is guaranteed to have degree at least two. This implies Hv,w,F ∈ B2

4l3(G).
Let further v′ ∈ V (G), w′ ∈ NG

l (v). If there exists F ′ ∈ F(v′) with Hv,w,F = Hv′,w′,F ′

then v ∈ V (Hv,w,s) and w ∈ V (Hv,w,s). Also there exists at most one F ′ ∈ Fv such
that Hv,w,F = Hv′,w′,F ′ . Thus, there are at most 16l6 choices for v′, w′, F ′ such that
Hv,w,F = Hv′,w′,F ′ . J

It is now sufficient to bound the expected value of |Bbl (G)| in preferential attachment
graphs. At first, we use Theorem 19 to give an upper bound on the degrees of single vertices.

I Lemma 8. There exists h > 0 such that for a ∈ R, n, t, d ∈ N+ with n ≥ at, and
a ≥ h log log(3at) it holds that Pr

[
dn1 (vt) ≥ a

√
n
t

]
≤ e−a/h.

Proof. Let S = {vt, . . . , vt+da/5e}. Then dn1 (vt) ≤ dn1 (S). We assume h to be large enough
that a ≥ 1000. Therefore t+ da/5e ≤ at ≤ n and a/5 ≤ dt+da/5e

1 (S) ≤ 2d1 + a/5e ≤ a/2. We
use these inequalities to bound

Pr
[
dn1 (vt) ≥ a

√
n

t

]
≤
ba/2c∑
d=da/5e

Pr
[
d
t+da/5e
1 (S) = d

]
Pr
[
dn1 (S) ≥ 2

√
n

t
d
∣∣∣ dt+da/5e

1 (S) = d
]
.

Let ε = 1/2. We choose h large enough such that a/5 ≥ log(log(3(t + da/5e)))ε−200 and
ε200a/5 ≥ a/h. Theorem 19 yields for da/5e ≤ d ≤ ba/2c

Pr
[
dn1 (S) ≥ (1 + ε)

√
n

t+ da/5ed
∣∣∣ dt+da/5e

1 (S) = d
]
≤ e−ε

200d ≤ e−a/h. J

While it is easy to use the expected degree of a vertex to show that the probability that
a single edge vxvy exists in Gn1 is close to 1/√xy, it is surprisingly involved to bound the
probability that multiple edges occur. This is because the existence of some edges influences
the degree. Lemma 8 helps us here. We first show the result for m = 1 (Lemma 9) and then
lift it to arbitrary values of m (Lemma 10).

I Lemma 9. Let n ≥ 2 and E ⊆
({v1,...,vn}

2
)
. Then

Pr[E ⊆ E(Gn1 )] ≤ log(n)O(|E|)2 ∏
vxvy∈E

1/√xy.
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Proof. We can assume E that E = {vx1vy1 , . . . , vxlvyl} with xi < yi for 1 ≤ i ≤ l and
yi < yj if i < j. Also, we define for k ≤ l, Ek = {vx1vy1 , . . . , vxkvyk} as the subset of the
first k edges. The chain rule gives us

Pr[E ⊆ E(Gn1 )] =
l∏

k=1
Pr[vxkvyk ∈ E(Gn1 ) | Ek−1 ⊆ E(Gn1 )].

We fix some 1 ≤ k ≤ l and set x = xk, y = yk. It is now sufficient to show that

Pr[vxvy ∈ E(Gn1 ) | Ek−1 ⊆ E(Gn1 )] ≤ log(n)O(k)/
√
xy.

If dy−1
1 (vx) = l for l ∈ N then the edge vxvy is inserted with probability l/(2y − 1). Thus

Pr[vxvy ∈ E(Gn1 ) | Ek−1 ⊆ E(Gn1 )] =
∞∑
l=1

l/(2y − 1) · Pr[dy−1
1 (vx) = l | Ek−1 ⊆ E(Gn1 )]

= 1/(2y − 1) · E[dy−1
1 (vx) | Ek−1 ⊆ E(Gn1 )] ≤ E[dy1(vx) | Ek−1 ⊆ E(Gn1 )]/y. (1)

Let now λ ∈ R, whose value we will specify later. Since dy1(vx) ≤ 2y, the law of total
probability states

E[dy1(vx) | Ek−1 ⊆ E(Gn1 )] ≤ λ+ 2yPr[dy1(vx) > λ | Ek−1 ⊆ E(Gn1 )]
≤ λ + 2yPr[dy1(vx) > λ]/Pr[Ek−1 ⊆ E(Gn1 )]. (2)

We now need to find a lower bound for Pr[Ek−1 ⊆ E(Gn1 )]. For the first y steps the summed
degree of all vertices is at most 2y. Also each vertex has degree at least one. This means
that every individual edge has probability at least 1/2y, independent of where previous edges
are. This observation together with the chain rule yields

Pr[Ek−1 ⊆ E(Gn1 )] =
k−1∏
i=1

Pr[vxivyi ∈ E(Gn1 ) | Ei−1 ⊆ E(Gn1 )] ≤ 1/(2y)k. (3)

Combining (1), (2), and (3) yields

Pr[vxvy ∈ E(Gn1 ) | E ⊆ E(Gn1 )] ≤ λ/y + 2yPr[dy1(vx) > λ](2y)k/y. (4)

Let h be the constant from Lemma 8. We now set λ = h log(y)2k
√
y/x. Then (4) and

Lemma 8 (with a = h log(y)2k and e−a/h = y−2k) yield

Pr[vxvy ∈ E(Gn1 ) | E ⊆ E(Gn1 )] ≤ h log(y)2k
√
y/x/y+ 2y−2k(2y)k = log(n)O(k)/

√
xy. J

I Lemma 10. Let n,m ∈ N+, n ≥ 2 and E ⊆
({v1,...,vn}

2
)
. Then

Pr[E ⊆ E(Gnm)] ≤ log(n)O(|E|)2
m2|E|

∏
vxvy∈E

1/√xy.

Proof. One can simulate Gnm via Gmn1 , by merging every m consecutive vertices into a single
one. For vxvy ∈ E let Exy = {vx′vy′ | m(x − 1) + 1 ≤ x′ ≤ mx,m(y − 1) + 1 ≤ y′ ≤ my}.
This means the edge vxvy is present after the merge operation in Gnm if any edge from Exy is
present in Gmn1 . The union bound and Lemma 9 yield

Pr[E ⊆ E(Gnm)] ≤ log(n)O(|E|)2 ∏
vxvy∈E

∑
vx′vy′∈Exy

1/
√
x′y′

≤ log(n)O(|E|)2
m2|E|

∏
vxvy∈E

1/√xy.
J
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13:8 Motif Counting in Preferential Attachment Graphs

We can now bound E[|Bbl (Gnm)|] by iterating over all possible embeddings of graphs of
size at most l with no isolated vertices and b pendant vertices into Gnm. We use Lemma 10 to
bound the probability that the edges required for this embedding are indeed present in Gnm.

I Lemma 11. Let l, b, n,m ∈ N+ with n ≥ 2. Then E[|Bbl (Gnm)|] = nb/2 log(n)O(l4)mO(l2).

Proof. Let H be a graph with at most l vertices, at most b pendant vertices and no isolated
vertices. Let p be the expected number of subgraphs of Gnm that are isomorphic to H. We
want to give an upper bound for p. Let V (H) = {u1, . . . , uγ} with γ ≤ l and let δ1, . . . , δγ
be the degree sequence of V (H). We compute the following bound for later

n∑
xi=1

1√
xδii

≤ 1 +
∫ n

1

1√
xδi

dx ≤ 1 +
{

log(n) if δi ≥ 2,
2
√
n if δi = 1.

(5)

For integers 1 ≤ x1, . . . , xγ ≤ n, we consider an embedding of H into Gnm that maps
ui to vxi (for 1 ≤ i ≤ γ). According to Lemma 10, the probability that this embedding of
H is a subgraph of Gnm is at most log(n)O(l4)mO(l2)∏γ

i=1
1√
xi
δi
. We sum over all possible

embeddings and use (5) to bound p by

n∑
x1=1

· · ·
n∑

xγ=1
log(n)O(l4)mO(l2)

γ∏
i=1

1√
xδii

= log(n)O(l4)mO(l2)
n∑

x1=1

1√
xδ1

1

· · ·
n∑

xγ=1

1√
x
δγ
γ

(5)= log(n)O(l4)mO(l2)(1 + log(n))γ(1 + 2
√
n)b = nb/2 log(n)O(l4)mO(l2).

For an arbitrary but fixed graph H with at most l vertices, no isolated vertices and at
most b pendant vertices we have bound the expected number of occurrences p. There
are no more than 2l2 graphs with at most l fixed vertices. Therefore, E[|Bbl (Gnm)|] ≤
2l2nb/2 log(n)O(l4)mO(l2). J

At last, Theorem 4 is a direct consequence Lemma 7 and Lemma 11.

5 Degree Bounds

In this section we show that under certain conditions the degree of vertices is closely centered
around their expected value. This is formalized in Theorem 19, which is proven at the end
of this section. We separately show upper and lower bounds and then join these bounds
together. These bounds are proven by first giving bounds that hold for a short interval of
time (Section 5.1) and then extending these bounds for longer intervals of time (Section 5.2).

Let n ≥ t and S ⊆ {v1, . . . , vt}. Remember that dnm(S) is the degree of a set S in Gnm.
Due to the technical nature of this section, we sometimes consider the set S ⊆ {v1, . . . , vt}
to be fixed and write D(n) as shorthand for dn1 (S) to avoid having large formulas as a
superscript. We also define D(n) := D(bnc) for n ∈ R. For n > t we can explicitly state the
probability distribution of D(n) under the condition D(n− 1) as

Pr[D(n) = x | D(n− 1)] =


D(n− 1)/(2n− 1) x = D(n− 1) + 1
1−D(n− 1)/(2n− 1) x = D(n− 1)
0 otherwise.
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5.1 Short-Term Degree Bounds
Here we show that for small δ from time-step t to (1 + δ)t it is very likely that we increase
the degree of the set S by a factor of 1 + δ/2 +O(δ2).

I Lemma 12. Let 0 < δ < 1 and t ≥ 2
δ2 . Then

Pr
[
D
(
(1 + δ)t

)
≤
(
1 + δ

2 − 2δ2)D(t)
∣∣ D(t)

]
≤ e− 1

16 δ
3D(t).

Proof. For every t′ ∈ R D(t′) = D(bt′c). For every t′ ∈ N either D(t′) = D(t′ − 1) or
D(t′) = D(t′ − 1) + 1. Let N be the number of integers between t and (1 + δ)t. Let ∆i with
1 ≤ i ≤ N be the Bernoulli variable indicating that D(btc + i) = D(btc + i − 1) + 1 and
∆ = ∆1 + · · ·+ ∆N . Then D(t) + ∆ = D((1 + δ)t). Furthermore

Pr[∆i = 1 | ∆1, . . . ,∆i−1, D(t)] = D(btc+ i− 1)
2(btc+ i)− 1 ≥

D(t)
2(1 + δ)t .

Let X = X1 + · · · + XN be the sum of identically distributed Bernoulli variables with
Pr[Xi = 1] = D(t)

2(1+δ)t . We consider two experiments: The first game is N tosses of a fair coin.
The second one is N tosses of a biased coin, where the probability that the ith coin comes up
head depends on the outcome of the previous coins but always is at least 1/2. Obviously, the
probability of at least s heads in the second experiment is at least as high as the probability
of at least s heads in the first experiment. The same argument implies

Pr[∆ ≤ s | D(t)] ≤ Pr[X ≤ s | D(t)]. (6)

With t ≥ 2
δ2 we get N ≥ δt− 1 ≥ (δ − 1

2δ
2)t and

E[X | D(t)] = N Pr[Xi = 1 | D(t)] ≥ (δ − δ2/2)D(t)
2(1 + δ) . (7)

In contrast to ∆, we can directly apply Chernoff bounds to X:

Pr
[
X ≤ (1− δ)E

[
X | D(t)

] ∣∣∣ D(t)
]
≤ e− 1

2 δ
2E[X|D(t)]. (8)

Combining the above inequality with (7), (6) and (8) yields

Pr
[
∆ ≤ (1− δ)(δ − δ2/2)D(t)

2(1 + δ)

∣∣∣ D(t)
] (6)(7)
≤ Pr

[
X ≤ (1− δ)E[X | D(t)]

∣∣∣ D(t)
]

(8)
≤ e−

1
2 δ

2E[X|D(t)]
(7)
≤ e−

δ3−δ4/2
4(1+δ) D(t) ≤ e−

1
16 δ

3D(t). (9)

For 0 ≤ δ ≤ 1, (1−δ)(δ−δ2/2)
2(1+δ) ≥ δ

2 − 2δ2. Thus, by (9) and D((1 + δ)t) = ∆ +D(t)

Pr
[
D((1 + δ)t) ≤ (1 + δ/2− 2δ2)D(t)

∣∣ D(t)
]

= Pr
[
∆ ≤ (δ/2− 2δ2)D(t)

∣∣ D(t)
]

≤ e−
1

16 δ
3D(t).

J

Unfortunately, an additional factor of log(2et) is introduced in the following upper bound.
The proof is very similar to the previous one and is omitted for lack of space.

I Lemma 13. Let 0 < δ ≤ 1
e2 and t ≥ 2

δ2 . Then

Pr
[
D((1 + δ)t) ≥ (1 + δ/2 + 2δ2)D(t)

∣∣∣ D(t)
]
≤ log(2et)e− 1

8 δ
3D(t).
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5.2 Long-Term Degree Bounds
In the previous subsection we established bounds for a small interval from step t to step
(1 + δ)t with an error of order δ2. In this subsection we combine these bounds into long-term
bounds. We get these bounds by defining positions t0 = t and tk+1 = (1 + δk)tk with k ∈ N
and using the union bound to guarantee that for each interval from time tk to tk+1 the
short-term bounds hold. The choice of δk is of high importance for the success of this strategy.
It turns out that we need the product

∏∞
k=1(1 + δk) to diverge, but the error

∏∞
k=1(1 + δ2

k)
to converge. We settle for δk = ε/k2/3, which satisfies both conditions.

Lemma 14 and Lemma 15 bridge the gap between the bounds for small intervals and
longer periods by stating that if the degree differs by a factor of (1± ε) from its expected
value then there has been one interval where the allowed error O(δ2) has been exceeded.

I Lemma 14. Let 0 < ε ≤ 1/8, t > 0, and f : R → R be an increasing function. For every
k ∈ N let δk = ε

k2/3 , hk =
∏k−1
i=1 (1 + δi), and ck =

∏k−1
i=1 (1 + 1

2δi − 2δ2
i ).

If there is an n ∈ N, such that t < n and f(n) < (1− ε)
√

n
t f(t), then there is a k ∈ N

such that f((1 + δk)hkt) < (1 + 1
2δk − 2δ2

k)f(hkt) and f(hkt) ≥ ckf(t).

Proof. Consider any n ∈ N, n ≥ t. Let k(n) ∈ N be the maximal value such that hk(n)t ≤ n.
Then n

1+δk(n)
≤ hk(n)t, because of the maximality of k(n). Notice that

(1− ε)
√
n

t
≤ e− 1

2 εe−
1
2 ε

√
n

t
= e−

1
2 ε

√
n

teε
≤ e− 1

2 ε
√

n

t(1 + δk(n))
≤ e− 1

2 ε
√
hk(n)

and for all k ∈ N

ck ≥
k−1∏
i=1

e
1
2 δi−3δ2

i ≥
(k−1∏
i=1

eδi
) 1

2
∞∏
i=1

e
− 3ε2

i4/3 ≥
(k−1∏
i=1

(1 + δi)
) 1

2
e−4ε2

≥ e− 1
2 ε
√
hk.

Combining the upper two inequalities gives us (1 − ε)
√
n/t ≤ ck. We assumed f(n) <

(1− ε)
√

n
t f(t). Monotonicity of f yields f(hk(n)t) ≤ f(n) < (1− ε)

√
n
t f(t) ≤ ck(n)f(t).

Let J = { j ≥ 0 | f(hj+1t) < cj+1f(t) }. The set J is not empty because k(n) − 1 ∈ J
by the equation above. Furthermore, 0 /∈ J because h1 = c1 = 1 and therefore f(h1t) =
f(t) = c1f(t). Let now k be the minimal value in J . Then k > 0, f(hkt) ≥ ckf(t), and
f(hk+1t) < ck+1f(t). At last, we have

f((1+ δk)hkt) = f(hk+1t) < ck+1f(t) = (1+ 1
2δk−2δ2

k)ckf(t) ≤ (1+ 1
2δk−2δ2

k)f(hkt). J

The proof of Lemma 15 is similar to the one of Lemma 14 and is therefore omitted.

I Lemma 15. Let 0 < ε ≤ 1/40, t > 0, and f : R → R be an increasing function. For every
k ∈ N let δk = ε

k2/3 , hk =
∏k−1
i=1 (1 + δi), and ck =

∏k−1
i=1 (1 + 1

2δi + 2δ2
i ).

If there is an n ∈ N, such that t < n and f(n) > (1 + ε)
√

n
t f(t), then there is a k ∈ N

such that f((1 + δk)hkt) > (1 + 1
2δk + 2δ2

k)f(hkt) and f(hkt) ≤ ckf(t).

I Lemma 16. Let 0 < ε ≤ 1/40, t > 1
ε6 . For every k ∈ N let δk = ε

k2/3 , hk =
∏k−1
i=1 (1 + δi),

c+
k =

∏k−1
i=1 (1 + 1

2δi + 2δ2
i ) and c−k =

∏k−1
i=1 (1 + 1

2δi − 2δ2
i ). Then

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt), D(hkt) ≥ c−k D(t)

∣∣ D(t)
]
≤ e− 1

16 δ
3
kc
−
k
D(t),

Pr
[
D((1 + δk)hkt) > (1 + 1

2δk + 2δ2
k)D(hkt), D(hkt) ≤ c+

kD(t)
∣∣ D(t)

]
≤ log(2et)e− 1

8 δ
3
kc

+
k
D(t).
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Proof. At first we focus on the first bound. By the law of total probability

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt), D(hkt) ≥ c−k D(t)

∣∣ D(t)
]

≤ Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) ≥ c−k D(t)
]
.

The second line of this equation states the probability that the degree of a vertex is in the
future below a certain threshold under the condition that it is currently above a certain
threshold. We can bound this probability if we assume that it currently is not above, but
exactly at the threshold:

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) ≥ c−k D(t)
]

≤ Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) = c−k D(t)
]
.

Similarly, the probability that the degree of a vertex is in the future above a certain threshold
under the condition that it is currently below a certain threshold can be bounded by assuming
that it is exactly at the threshold. Thus, it suffices to prove the following two bounds

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt)

∣∣ D(hkt) = c−k D(t)
]
≤ e− 1

16 δ
3
kc
−
k
D(t),

Pr
[
D((1 + δk)hkt) > (1 + 1

2δk + 2δ2
k)D(hkt)

∣∣ D(hkt) = c+
kD(t)

]
≤ log(2et)e− 1

8 δ
3
kc

+
k
D(t).

Lemma 12 and 13 state that if 0 ≤ δk = e/k3/2 ≤ 1/e2 and hkt ≥ 2/δ2
k for every k then these

bounds are true. We observe that for 0 ≤ ε ≤ 1/8 the first precondition is always satisfied. We
will finish the proof by showing that hkt ≥ 2/δ2

k for every k. Observe that for 0 ≤ k ≤ 1 we
have hkt ≥ 2/ε2 ≥ 2/δ2

k. We can therefore assume k ≥ 2. First, we need a lower bound for hk.

hk =
k−1∏
i=1

(1 + ε

i2/3 ) ≥
k−1∏
i=1

e
ε

i2/3 ≥ e3ε(k−1)1/3
≥ e2εk1/3

One can show that ex/x4 ≥ e4/256 for x > 0. We therefore get for x = 2εk1/3

hk ≥ e2εk1/3
= e2εk1/3

(2εk1/3)4
16ε6

δ2
k

≥ ex

x4
16ε6

δ2
k

≥ e4

256
16ε6

δ2
k

≥ 2ε6

δ2
k

.

Since t ≥ 1
ε6 it follows that hkt ≥ 2

δ2
k

. J

I Lemma 17. For 0 < ε ≤ 1/40 and 1
ε6 < t ∈ N

Pr
[
(1− ε)

√
n

t
D(t) < D(n) < (1 + ε)

√
n

t
D(t) for all n ≥ t

∣∣∣ D(t)
]

≥ 1 − log(15t)ε−6 exp
(
−ε1510−24D(t)

)
.

Proof. Observe that

Pr
[
(1− ε)

√
n

t
D(t) < D(n) < (1 + ε)

√
n

t
D(t) for all n ≥ t

∣∣∣ D(t)
]
≥ 1− (p+ + p−)
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with

p− := Pr
[
D(n) < (1− ε)

√
n

t
D(t) for some n ≥ t

∣∣∣ D(t)
]

p+ := Pr
[
D(n) > (1 + ε)

√
n

t
D(t) for some n ≥ t

∣∣∣ D(t)
]
.

We proceed by finding upper bounds for p+ and p−. For k ∈ N let δk = ε
k2/3 , hk =∏k−1

i=1 (1 − δi), c−k =
∏k−1
i=1 (1 − 1

2δi − 2δ2
i ) and c+

k =
∏k−1
i=1 (1 − 1

2δi + 2δ2
i ). Every function

f(t) : R → R that is a realization of the random variables D(t) is monotonically increasing.
It follows using Lemma 14, Lemma 15, the union bound over all possible choices of k, and
Lemma 16 that

p− ≤
∞∑
k=0

Pr
[
D((1 + δk)hkt) < (1 + 1

2δk − 2δ2
k)D(hkt), D(hkt) ≥ c−k D(t)

∣∣∣ D(t)
]

≤
∞∑
k=0

e−
1

16 δ
3
kc
−
k
D(t),

p+ ≤
∞∑
k=0

Pr
[
D((1 + δk)hkt) > (1 + 1

2δk + 2δ2
k)D(hkt), D(hkt) ≤ c+

kD(t)
∣∣∣ D(t)

]
≤
∞∑
k=0

log(2et)e− 1
8 δ

3
kc

+
k
D(t).

It remains to show that p+ + p− ≤ log(15t)ε−6 exp
(
−ε1510−24D(t)

)
. This last last step

requires a longer calculation which we omit because of space limitations. J

The next lemma is a slight variant of Lemma 17. The proof is omitted for lack of space.

I Lemma 18. For t ∈ R, t ≥ 1, 0 < ε ≤ 1/2, d ∈ N with Pr[D(t) = d] 6= 0 and
d ≥ log(log(3t))ε−200

Pr
[
(1− ε)

√
n

t
d < D(n) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ D(t) = d
]
≥ 1− e−ε

200d.

At last, we generalize this result to different values of m.

I Theorem 19. For t,m, d ∈ N+, 0 < ε ≤ 1/2, S ⊆ {v1, . . . , vt} with Pr[dtm(S) = d] 6= 0
and d ≥ log(log(3tm))ε−200

Pr
[
(1− ε)

√
n

t
d < dnm(S) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ dtm(S) = d
]
≥ 1− e−ε

200d.

Proof. As stated in the introduction, we can simulate Gnm via Gmn1 , by merging every m
consecutive vertices into a single one. Let Gnm be a graph with vertices V = {v1, . . . , vn}.
We can assume that this graph has been constructed from a graph Gmn1 with vertex set
V ′ = {v′1, . . . , v′mn} by merging v′(i−1)m+1, . . . , v

′
im into vi for 1 ≤ i ≤ n. Let S′ ⊆ V ′ be the

set of vertices in Gmn1 that are merged into S. Since the graph allows multi-edges, dnm(S) and
dmn1 (S′) have the same probability distribution. Lemma 17 states with dmn1 (S′) = D(mn)

Pr
[
(1−ε)

√
n

t
d < dmn1 (S′) < (1+ε)

√
n

t
d for all nm ≥ tm

∣∣∣ dtm1 (S′) = d
]
≥ 1−e−ε

200d. J
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