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Abstract
We study the question of algebraic rank or transcendence degree preserving homomorphisms over
finite fields. This concept was first introduced by Beecken et al. [3] and exploited by them and
Agrawal et al. [2] to design algebraic independence based identity tests using the Jacobian criterion
over characteristic zero fields. An analogue of such constructions over finite characteristic fields were
unknown due to the failure of the Jacobian criterion over finite characteristic fields.

Building on a recent criterion of Pandey, Saxena and Sinhababu [14], we construct explicit
faithful maps for some natural classes of polynomials in fields of positive characteristic, when a
certain parameter called the inseparable degree of the underlying polynomials is bounded (this
parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some
of the results of Beecken, Mittmann and Saxena [3] and Agrawal, Saha, Saptharishi, Saxena [2] in
the positive characteristic setting.
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1 Introduction

Multivariate polynomials are fundamental objects in mathematics. These are the primary
objects of study in algebraic complexity with regard to classifying their hardness as well
as algorithmic tasks involving them. The standard computational model for computing
multivariate polynomials is algebraic circuits. They are directed acyclic graphs with internal
nodes labelled by “+” and “×” gates having the obvious operational semantics, and leaves
are labelled by the input variables or field constants.

An important concept about relationships between polynomials is the notion of algebraic
dependence. A set of polynomials f = {f1, . . . , fm} ⊂ F[x] is said to be algebraically
dependent if there is some nonzero polynomial combination of them that is zero. Such a
nonzero polynomial A(z1, . . . , zm) ∈ F[z], if one exists, for which A(f1, . . . , fm) = 0 is called
the annihilating polynomial for the set {f1, . . . , fm}. For instance, if f1 = x, f2 = y and
f3 = x2 + y2, then A = z2

1 + z2
2 − z3 is an annihilator. Note that the underlying field is very

important. For example, the polynomials x+ y and xp + yp are algebraically dependent over
Fp, but algebraically independent over a characteristic zero field.
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11:2 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

Algebraic independence is very well-studied and it is known that algebraically independent
subsets of a given set of polynomials form a matroid ([13]). Hence, the size of the maximum
algebraically independent subset of f is well-defined and is called the algebraic rank or
transcendence degree of f . We denote it by algrank(f) = algrank(f1, . . . , fm).

Several computational questions arise from the above definition. For instance, given a set
of polynomials f = {f1, . . . , fm}, each fi given in its dense representation, can we compute
the algebraic rank of this set efficiently? What if the fi’s are provided as algebraic circuits?

Furthermore, in instances when algrank(f) = m − 1, the smallest degree annihilating
polynomial is unique ([9]). There could be various questions about the minimal degree
annihilator in this case. For instance, can we compute it efficiently? Kayal [9] showed that
even checking if the constant term of the annihilator is zero is NP-hard, and evaluating the
annihilator at a given point is #P-hard. In fact, recently Guo, Saxena, Sinhababu [7] showed
that even in the general case, checking if the constant term of every annihilator is zero is
NP-hard. This effectively means that computing the algebraic rank via properties of the
annihilating polynomials would be hard.

Despite this, over fields of characteristic zero, algebraic rank has an alternate charac-
terisation via the Jacobian criterion. Jacobi [8] showed that the algebraic rank of a set of
polynomials f(⊆ F[x]) is given by the linear rank (over the rational function field F(x)) of
the Jacobian of these polynomials. This immediately yields a randomized polynomial time
algorithm to compute the algebraic rank of a given set of polynomials by computing the rank
of the Jacobian matrix evaluated at a random point [12, 15, 16, 5].

Faithful homomorphisms and PIT
Algebraic independence shares a lot of similarities with linear independence due to the
matroid structure. One natural task is to find a rank-preserving transformation in this
setting. This is defined by what are called faithful homomorphisms.

I Definition 1.1 (Faithful homomorphisms [3]). Let f = {f1, . . . , fm} ⊆ F[x] be a set of
polynomials. If K is an extension field of F, a homomorphism Φ : F[x]→ K[y] is said to be
an F-faithful homomorphism for {f1, . . . , fm} if

algrankF {f1, . . . , fm} = algrankF {Φ(f1), . . . ,Φ(fm)} .

Ideally, we would like a faithful homomorphism with |y| ≈ algrank {f} and K = F. Beecken,
Mittmann and Saxena [3] showed that a generic F-linear homomorphism to algrank(f) many
variables would be an F-faithful homomorphism with high probability.

One important consequence of faithful homomorphisms is that they preserve nonzeroness
of any polynomial composition of f1, . . . , fm.

I Lemma 1.2 ([3, 2]). Suppose f1, . . . , fm ∈ F[x1, . . . , xn] and Φ is an F-faithful homo-
morphism for {f1, . . . , fm}. Then, for any circuit C(z1, . . . , zm) ∈ F[z1, . . . , zm], we have
C(f1, . . . , fm) = 0⇔ C(Φ(f1), . . . ,Φ(fm)) = 0.

Thus, constructing explicit faithful homomorphisms can also be used for polynomial identity
testing (PIT), which is the task of checking if a given algebraic circuit C computes the
identically zero polynomial. For PIT, the goal is to design a deterministic algorithm that
runs in time polynomial in the size of the circuit. There are two types of PIT algorithms,
whitebox and blackbox – in the blackbox setting, we are only provided evaluation access to
the circuit and some of its parameters (such as degree, number of variables, size etc.). Thus
blackbox PIT algorithms for a class C is equivalent to constructing a hitting set, which is
a small list of points in S ⊂ Fn such that any nonzero polynomial f ∈ C is guaranteed to
evaluate to a nonzero value on some a ∈ S.
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It follows from Lemma 1.2 that if we can construct explicit F-faithful homomorphisms
for a set {f1, . . . , fm} whose algebraic rank is k � n, then we have a variable reduction
that preserves the nonzeroness of any composition C(f1, . . . , fm). This approach was used
by Beecken, Mittmann and Saxena [3] and Agrawal, Saha, Saptharishi, Saxena [2], in the
characteristic zero setting, to design identity tests for several subclasses by constructing
faithful maps for {f1, . . . , fm} with algebraic rank at most k = O(1), when

each fi is a sparse polynomial,
each fi is a product of multilinear, variable disjoint, sparse polynomials,
each fi is a product of linear polynomials,

and further generalisations.
All the above constructions crucially depend on the fact that the rank of the Jacobian

captures algebraic independence. However, this fact is true only over fields of characteristic
zero and hence the above results are not known to hold over fields of positive characteristic.

Algebraic independence over finite characteristic
A standard example to exhibit the failure of the Jacobian criterion over fields of finite
characteristic, is

{
xp−1y, yp−1x

}
– these polynomials are algebraically independent over Fp

but the Jacobian is not full-rank over Fp. Pandey, Saxena and Sinhababu [14] characterised
the extent of failure of the Jacobian criterion for {f1, . . . , fm} by a notion called the inseparable
degree associated with this set (formally defined in the full version [4]). Over characteristic
zero, this is always 1 but over characteristic p this is a power of p. In their work, Pandey et al.
presented a Jacobian-like criterion to capture algebraic independence. Informally, each row
of the generalized Jacobian matrix is obtained by taking the Taylor expansion of fi(x + z)
about a generic point, and truncating to just the terms of degree up to the inseparable degree1
(formally defined in the full version [4]). The exact characterisation is more involved and is
presented in Subsection 2.2 but we just state their theorem here.

I Theorem 1.3. [14] Let {f1, . . . , fk} be a set of n-variate polynomials over a field F with
inseparable degree t. Then, they are algebraically dependent if and only if

∃(α1, . . . , αk)( 6= 0) ∈ F(z)k s.t.
k∑
i=1

αi·Ht(fi) = 0 mod 〈Ht(f1), . . . ,Ht(fk)〉≥2
F(z)+〈x〉

t+1
.

Although the above statement seems slightly different from the one in [14], it is not too
hard to see that they are actually equivalent. In their paper, Pandey et al. have stated their
criterion in terms of functional dependence. However, stated this way, it clearly generalises
the traditional Jacobian criterion.

In the setting when the inseparable degree is constant, this characterisation yields a
randomized polynomial time algorithm to compute the algebraic rank. Thus, a natural
question is whether this criterion can be used to construct faithful homomorphisms for similar
classes of polynomials as studied by Beecken et al. [3] and Agrawal et al. [2].

I Remark 1.4. Recently, Guo et al. [7] showed that the task of testing algebraic independence
is in AM ∩ coAM via a very different approach. However, it is unclear if their algorithm also
yields constructions of faithful homomorphisms or applications to PIT in restricted settings.

1 Over characteristic zero, the inseparable degree is 1 and this is just the vector of first order partial
derivatives.
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11:4 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

1.1 Our Results
Following up on the criterion of Pandey, Saxena and Sinhababu [14] for algebraic independence
over finite characteristic, we extend the results of Beecken et al. [3] and Agrawal et al. [2] to
construct faithful homomorphisms for some restricted settings. We note that we have not
formally defined the term inseparable degree yet. Although the definition would be required
to precisely understand the criterion of Pandey, Saxena and Sinhababu [14], it is not essential
for the proofs in this paper. The interested reader may find these field theoretic preliminaries
and formal definitions in the full version of the paper [4].

I Theorem 1.5. Let f1, . . . , fm ∈ F[x1, . . . , xn] such that algrank {f1, . . . , fm} = k and
the inseparable degree is t. If t and k are bounded by a constant, then we can construct
a polynomial (in the input length) sized list of homomorphisms of the form Φ : F[x] →
F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be to F-faithful for the set
{f1, . . . , fm}, in the following two settings:

When each of the fi’s are sparse polynomials,
When each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Prior to this, construction of faithful homomorphisms over finite fields was known only in
the setting when each fi has small individual degree [3]. Over characteristic zero fields, the
inseparable degree is always 1 and hence the faithful maps constructed in [3], [2] over such
fields can be viewed as special cases of our constructions.

The above theorem also holds for a few other models studied by Agrawal et al. [2] (for
instance, occur-k products of sparse polynomials). We mention the above two models just as
an illustration of lifting the recipe for faithful maps from [3, 2] to the finite characteristic
setting.

I Corollary 1.6. If {f1, . . . , fm} ∈ F[x1, . . . , xn] is a set of s-sparse polynomials with algebraic
rank k and inseparable degree t where k, t = O(1). Then, for the class of polynomials of the
form C(f1, . . . , fm) for any polynomial C(z1, . . . , zm) ∈ F[z], there is an explicit hitting set
of size (s · deg(C))O(1).

I Corollary 1.7. Let C =
∑m
i=1 Ti be a depth-4 multilinear circuit of size s, where each Ti is a

product of variable-disjoint, s-sparse polynomials. Suppose {T1, . . . , Tm} ∈ F[x1, . . . , xn] is a
set of polynomials with algebraic rank k and inseparable degree t where k, t = O(1). Then, for
the class of polynomials of the form C(T1, . . . , Tm) for any polynomial C(z1, . . . , zm) ∈ F[z],
there is an explicit hitting set of size (s · deg(C))O(1).

Comparison with the PIT of [14]

Pandey et al. [14] also gives a PIT result for circuits of the form
∑
i (fi,1 · · · fi,m) where

algrank {fi,1, . . . , fi,m} ≤ k for every i and each fi,j is a degree d polynomial in F[x1, . . . , xn].
They extend the result of Kumar and Saraf [11] to arbitrary fields by giving quasi-polynomial
time hitting sets if kd is at most poly-logarithmically large.

Corollary 1.7 however is incomparable to the PIT of Pandey et al. [14] for the following
reasons:

The algebraic rank bound in the case of [14, 11] is a gate-wise bound rather than a global
bound. Thus, in principle, it could be the case that algrank {fi,1, . . . , fi,m} is bounded by
k for each i but this would not necessarily translate to a bound on algrank

{∏
j fi,j : i

}
as demanded in Corollary 1.7. Hence, in this regard, the PIT of [14, 11] is stronger.
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In the regime when we have algrank
{∏

j fi,j : i
}

and the inseparable degree of this set
to be bounded by a constant, Corollary 1.7 presents an explicit hitting set of polynomial
size, whereas it is unclear if [14, 11] provide any non-trivial upper bound as this does not
translate to any bound on algrank {fi,1, . . . , fi,m}.

On other models studied by Agrawal et al. [2]

Our results, in its current form, do not extend directly some of the other models studied
by Agrawal et al. [2], most notably larger depth multilinear formulas. The primary hurdle
appears to be the recursive use of explicit faithful homomorphisms for larger depth formulas.
In the characteristic p setting, unfortunately, it is unclear if a bound on the inseparable
degree of the original gates can be used to obtain a bound on the inseparable degree of other
sets of polynomials considered in the recursive construction of Agrawal et al. [2].

1.2 Proof overview
The general structure of the proof follows the outline of Agrawal et al. [2]’s construction of
faithful homomorphisms in the characteristic zero setting. Roughly speaking, this can be
described in the following steps:

Step 1 : For a generic linear map Φ : x → F(s)[y1, . . . , yk], write the Jacobian of the
set {f1 ◦ Φ, · · · , fk ◦ Φ} in terms of the Jacobian of the set {f1, · · · , fk}. This can be
described succinctly as a matrix product of the form

Jy(f ◦ Φ) = Φ(Jx(f)) · Jy(Φ(x)).

Step 2 : We know that Jx(f) is full rank. Ensure that Φ(Jx(f)) (where Φ is applied to
every entry of the matrix Jx(f)) remains full rank. This can be done if f ’s are some
structured polynomials such as sparse polynomials, or variable-disjoint products of sparse
polynomials etc.

Step 3 : Choose the map Φ so as to ensure that

rank(Φ(Jx(f)) · Jy(Φ(x))) = rank(Φ(Jx(f))).

This is typically achieved by choosing Φ so as to make Jy(Φ(x)) a rank-extractor. It
was shown by Gabizon and Raz [6] that a parametrized Vandermonde matrix has this
property, and this allows one to work with a homomorphism of the form (loosely speaking)

Φ : xi 7→
k∑
j=1

sijyj .

We would like to execute essentially the same sketch over fields of finite characteristic
but we encounter some immediate difficulties. The criterion of Pandey et al. [14] over finite
characteristic is more involved but it is reasonably straightforward to execute Steps 1 and
2 in the above sketch using the chain rule of (Hasse) derivatives. The primary issue is in
executing Step 3 and this is for two very different reasons.

The first is that, unlike in the characteristic zero setting, the analogue of the matrix
Jy(Φ(x)) have many correlated entries. In the characteristic zero setting, we have complete
freedom to choose Φ so that Jy(Φ(x)) can be any matrix that we want. Roughly speaking,
we only have n · k parameters to define Φ but the analogue of Jy(Φ(x)) is much larger in the
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11:6 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

finite characteristic setting. Fortunately, there is just about enough structure in the matrix
that we can show that it continues to have some rank-preserving properties. This is done
in Section 3.

The second hurdle comes from the subspace that we need to work with in the modified
criterion. The rank-extractor is essentially parametrized by the variable s. In order to show
that it preserves the rank of Φ(Jx(f)) under right multiplication, we would like ensure that
the variable s effectively does not appear in this matrix. In the characteristic zero setting,
this is done by suitable restriction on other variables to remove any dependencies on s in
Φ(Jx(f)). Unfortunately, in the criterion of Pandey et al. [14], we have to work modulo some
suitable subspace and these elements introduce other dependencies on s that appear to be
hard to remove. Due to this hurdle, we are unable to construct F(s)-faithful homomorphisms
even in restricted settings.

However, we observe that for the PIT applications, we are merely required to ensure
that {f1 ◦ Φ, . . . , fk ◦ Φ} remain F-algebraically independent instead of F(s)-algebraically
independent. With this weaker requirement, we can obtain a little more structure in the
subspace involved and that lets us effectively execute Step 3.

Structure of the paper

We begin by describing some preliminaries that are necessary to understand the criterion
of Pandey, Saxena and Sinhababu [14] in the next section. Following that, in Section 3, we
show that certain Vandermonde-like matrices have rank-preserving properties. We use these
matrices to give a recipe of constructing faithful maps, in Section 4, and execute this for the
settings of Theorem 1.5 in Section 5.

2 Preliminaries

2.1 Notations
For a positive integer m, we will use [m] to denote set {1, 2, . . . ,m}.
We will use bold face letters such as x to denote a set of indexed variables {x1, . . . , xn}.
In most cases the size of this set would be clear from context. Extending this notation,
we will use xe to denote the monomial xe1

1 · · ·xen
n .

For a set of polynomials f1, . . . , fm, we will denote by 〈f1, . . . , fm〉K the set of all K-linear
combinations of f1, . . . , fm. Extending this notation, we will use 〈f1, . . . , fm〉rK to denote
the set of all K-linear combinations of r-products fi1 · · · fir (with i1, . . . , ir ∈ [m]) and
〈f1, . . . , fm〉≥rK similarly. In instances when we just use 〈f1, . . . , fm〉, we will denote the
ideal generated by f1, . . . , fm.

Hitting set generators

I Definition 2.1 (Hitting set generators (HSG)). Let C be a class of n-variate polynomials.
A tuple of polynomials G = (G1(α), . . . , Gn(α)) is a hitting set generator for C if for every
nonzero polynomial P (x) ∈ C we have P (G1(α), . . . , Gn(α)) is a nonzero polynomial in α.

The degree of this generator is defined to be max deg(Gi).

Intuitively, such a tuple can be used to generate a hitting set for C by running over several
instantiations of α. Also, it is well known that any hitting set can be transformed into to
HSG via interpolation.
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Isolating weight assignments

Suppose wt : {xi} → N is a weight assignment for the variables {x1, . . . , xn}. We can extend
it to define the weight of a monomial as follows.

wt(xe) =
n∑
i=1

ei · wt(xi)

I Definition 2.2. A weight assignment wt : {xi} → N is said to be isolating for a set S of
monomials if every pair of distinct monomials in S receives distinct weights.

With this background, we are now ready to state the criterion for algebraic independence
over fields of finite characteristic. Similar to the Jacobian Criterion, Pandey, Saxena and
Sinhababu [14] reduce the problem of checking algebraic independence to that of checking
linear independence. However, their criterion is slightly more subtle in the sense that we will
have to check the linear independence of a set of vectors modulo a large subspace.

A formal statement of the Jacobian criterion along with some field theoretic preliminaries
are present in the full version [4]. These include the formal definition of terms such as insep-
arable degree etc. to precisely understand the criterion of Pandey, Saxena and Sinhababu [14]
but are not essential for the proof in this paper.

2.2 The PSS Criterion over fields of finite characteristic
In this section we present a slightly different perspective on the criterion of Pandey et al. [14].
A more elaborate discussion of their criterion is deferred to the full version [4].

Define the following operator Ht(f) := deg≤t(f(x + z)− f(z)), where deg≤t restricts to
just those monomials in x of degree at most t. It is also worth noting that Ht(f) does not
have a constant term and this would become useful in the criterion.

The operator Ht however, as defined above, is indexed by t. Pandey et al. [14] show that
the correct value of t to work with is the inseparable degree of the given set of polynomials
(see full version [4] for details).

Let Ut(f) = Ut(f1, . . . , fk) denote the subspace 〈Ht(f1), . . . ,Ht(fk)〉≥2
F(z) mod 〈x〉t+1.

Then, for any h ∈ Ut(f), we define the modified Jacobian matrix as follows.

PSSJact(f , h) =


Ht(f1) + h

Ht(f2)
...

Ht(fk)

 .
The columns of this matrix are indexed by monomials in x and entries in the column indexed
by xe are the coefficient of xe in the corresponding rows.

I Theorem 2.3 (Alternate Statement for the PSS-criterion). Let {f1, . . . , fk} be a set of
n-variate polynomials over a field F with inseparable degree t. Then, they are algebraically
independent if and only if for every h ∈ Ut(f), PSSJact(f , h) is full rank.

Let Vt(g1, . . . , gk) denote the subspace 〈Ht(g1), . . . ,Ht(gk)〉≥2
F(g(v)) mod 〈y〉t+1. The fol-

lowing lemma can be inferred in the dependent case.

I Lemma 2.4. Let F any field and K be an extension field of F. If {g1, . . . , gk} is a set
of n-variate polynomials in K[y] that are F-algebraically dependent, then for any positive
integer t, there exists h′ ∈ Vt(g1, . . . , gk) such that PSSJact(g, h′) is not full rank.

A proof is given in the full version [4] for the sake of completeness, but we note that the
steps are almost identical to those in [14].

FSTTCS 2019



11:8 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

3 Rank Condensers from Isolating Weight Assignments

In this section, we focus on rank-preserving properties of certain types of matrices. These
are slight generalisations of similar properties of Vandermonde matrices that were proved
by Gabizon and Raz [6] that would be necessary for the application to constructing faithful
homomorphisms.

I Lemma 3.1. Suppose we have an n× n matrix V given by

V =
((
sj·wi

))
i,j

where wi < wj whenever i < j. If V ′ is a matrix obtained from V by replacing some of the
non-diagonal entries by zero, then det(V ′) 6= 0 and furthermore deg(det(V ′)) =

∑n
i=1 i · wi.

The proof of this lemma is not too hard, and can be found in the full version [4].
The following lemma extends this to rank-preserving properties of a related matrix.

I Lemma 3.2. Let A be a matrix over a field F with k rows and columns indexed by
monomials in x of degree at most D that is full-rank. Further, let w = (w1, . . . , wn) be an
isolating weight assignment for the set of degree D monomials, and let wt(xe) =

∑n
i=1 wiei.

Suppose MΦ is a matrix whose rows are indexed by monomials in x of degree at most D,
and columns indexed by pure monomials

{
ydi : i ∈ {1, . . . , k} , d ≤ D

}
given by

MΦ(xe, ydi ) =
{
si·wt(xe) if deg(xe) = d

0 otherwise
.

where s is a formal variable. Then, rankF(s)(A ·MΦ) = rankF(A).

Proof. By the Cauchy-Binet formula, if we restrict M ′Φ to a set T of k-columns, then

det(A ·M ′Φ[T ]) =
∑

S⊆Columns(A)
|S|=k

det(A[S]) · det(M ′Φ[S, T ])

We wish to show that the above sum is nonzero for some choice of columns T . We do that by
first defining a weight function on minors of A, then proving that there is a unique nonzero
minor of A of largest weight, and then choosing a set of columns T such that the degree of
det(M ′Φ[S, T ]) coincides with this chosen weight function. Define the weight of a minor of A
as follows:

Suppose the columns of the minor is indexed by S = {xe1 , . . . ,xek} with the property
that wt(xe1) < wt(xe2) < · · · < wt(xek). Define the weight of this minor as

wt(S) =
k∑
i=1

i · wt(xei)

where, recall, wt(xei) =
∑
j wj · ei(j).

B Claim 3.3. There is a unique nonzero k × k minor of A of maximum weight.

Proof. Suppose S1 and S2 are two different minors of A with the same weight. We will just
identify S1 and S2 by the set of column indices for simplicity. Say S1 has columns indexed
by xe1 , . . . ,xek with wt(xe1) < wt(xe2) < · · · < wt(xek) and S2 has columns indexed by
xe′

1 , . . . ,xe′
k with wt(xe′

1) < wt(xe′
2) < · · · < wt(xe′

k).
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Suppose S1 and S2 agree on the first i columns, that is ej = e′j for all j ≤ i, and say
wt(ei+1) < wt(e′i+1). By the matroid property, there must be some column xe′

j from S2 that
we can add to S1 \ {xei+1} so that S = S1 \ {xei+1} ∪

{
xe′

j

}
is also a nonzero minor of A.

Suppose that

wt(xe1) < · · · < wt(xei+r ) < wt(xe′
j ) < wt(xei+r+1) < · · · < wt(xek ).

Then,

wt(S) =
i∑

a=1
a · wt(xea) +

i+r∑
a=i+2

(a− 1) · wt(xea) + (i+ r) wt(xe′
j ) +

k∑
a=i+r+1

a · wt(xea)

>

i∑
a=1

a · wt(xea) + (i+ 1) wt(xe′
j ) +

k∑
a=i+2

a · wt(xea) >
k∑
a=1

a · wt(xea) = wt(S1)

Hence, there cannot be two different nonzero minors of A of the same weight. Thus, the
nonzero minor of largest weight is unique. C

We will now choose k columns from M ′Φ as follows in such a way that the degree of the
corresponding determinant agrees with the weight function. Note that the matrix M ′Φ has a
natural block-diagonal structure based on the degree of the monomials indexing the rows
and columns.

Let S0 be the unique k × k minor of A having maximum weight. Further, assume its
columns are indexed by xe1 , . . . ,xek with wt(xe1) < wt(xe2) < . . . < wt(xek). Let
di = deg(xei) =

∑
j(ei)j .

Choose the columns T =
{
yd1

1 , yd2
2 , . . . , ydk

k

}
of the matrix M ′Φ.

By Lemma 3.1, for any set of S′ ⊆ Columns(A), we have deg(det(MΦ[S′, T ])) ≤ wt(S′) and
furthermore we also have deg(M ′Φ[S0, T ]) = wt(S0) as we chose the columns T to ensure that
the main diagonal of the sub-matrix has only nonzero elements. Hence,

det(A ·M ′Φ[T ]) =
∑

S⊆Columns(A)
|S|=k

det(A[S]) · det(M ′Φ[S, T ]) 6= 0

since the contribution from A[S0] det(M ′Φ[S0, T ]) is the unique term of highest degree and so
cannot be cancelled. J

4 Construction of Explicit Faithful Maps

We will be interested in applying a map Φ : F[x] → F(s)[y] and study the transform-
ation of the PSS-Jacobian. Since the entries of the PSS-Jacobian involve Ht(f(x)) =
deg≤t (f(x + z)− f(z)), we would need to also work with Ht(g(y)) where g(y) = f ◦ Φ. To
make it easier to follow, we shall use a different name for the variables in the two cases.
Hence,

Ht(f(x)) := deg≤t (f(x + z)− f(z)) , Ht(g(y)) := deg≤t (g(y + v)− g(v)) .
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4.1 Recipe for constructing faithful maps
Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials with algrank {f1, . . . , fm} = k and inseparable
degree t. We will work with linear transformations of the form:

Φ : xi 7→ aiy0 +
k∑
j=1

swi·jyj , for all i ∈ [n],

Φz : zi 7→ aiv0 +
k∑
j=1

swi·jvj , for all i ∈ [n].

where all the variables on the RHS are formal variables. Further, define {g1, . . . , gm} ∈ F[z]
as gi = fi ◦ Φ and Ht(gi) = deg≤t(gi(y + v)− gi(v)).

The main lemma of this section is the following recipe for constructing faithful maps.

I Lemma 4.1 (Recipe for faithful homomorphisms). Let f1, . . . , fm ∈ F[x] be polynomials
such that their algebraic rank is at most k and suppose the inseparable degree is bounded by a
constant t. Further,

suppose G = (G1(α), . . . , Gn(α)) is a hitting-set generator (HSG) for the class of all k×k
minors of PSSJact(f , h) for any h ∈ Ut(f).
suppose w : [n]→ N is an isolating weight assignment for the set of n-variate monomials
of degree at most t.

Then, the homomorphism Φ : F[x1, . . . , xn]→ F(s, α)[y0, . . . , yk] defined as

Φ : xi 7→ y0Gi(α) +
k∑
j=1

yj · sw(i)j ,

is an F-faithful homomorphism for the set {f1, . . . , fm}.

As mentioned earlier, the rough proof sketch would be to first write the PSS-Jacobian of
the transformed polynomials g in terms of f , express that as a suitable matrix product, and
use some rank extractor properties of the associated matrix, as described in Section 3. So
first, let us see how we can get the required matrix product.

I Lemma 4.2 (Evolution of polynomials under Φ). Let Φ : x → F(s)[y] and Φz : z →
F(s)[v] be given as above. Further, for any polynomial h′(a1, . . . , am) ∈ F(g(v))[a], define
h(a1, . . . , am) ∈ F(f(z))[a] as follows.

coeffae(h) is got by replacing every occurrence of gi(v) by fi(z) in coeffae(h′)

Then,

h′(Ht(g1), . . . ,Ht(gm)) = Φ ◦ Φz(h(Ht(f1), . . . ,Ht(fm))).

It is worth noting that the polynomial h(a1, . . . , am) is independent of s. This would be
crucial later on in the proof. The proof of this lemma is not too hard and can be found in
the full version [4].

I Corollary 4.3 (Matrix representation of the evolution). Suppose A′ is a matrix whose
columns are indexed by monomials in y. Further suppose a row in A′ corresponds to a
polynomial, say h′(Ht(g1), . . . ,Ht(gm)) ∈ F(g(v))[y], whose entry in the column indexed
by ye is coeffye(h′(Ht(g))) ∈ F(v, s). If A is the corresponding matrix (having entries
from F(z)) with columns indexed by monomials in x and the corresponding row being
h(Ht(f1), . . . ,Ht(fm)) ∈ F(f(z))[x] as described in Lemma 4.2, then

A′ = Φz(A)× M̃Φ

where M̃Φ(xe,yd) = coeffyd(Φ(xe)).
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Using these and Lemma 3.2, we are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Without loss of generality, say {f1, . . . , fk} is an algebraically inde-
pendent set. We wish to show that if gi = fi ◦ Φ, then {g1, . . . , gk} is an F-algebraically
independent set as well. Assume on the contrary that {g1, . . . , gk} is an F-algebraically
dependent set. Then for t being the inseparable degree of {f1, . . . , fk}, by Lemma 2.4, there
exists

h′ ∈ Vt(g1, . . . , gk) := 〈Ht(g1), . . . ,Ht(gk)〉≥2
F(g(v)) mod 〈y〉t+1

such that PSSJact(g, h′) is not full rank. Without loss of generality, we can assume that
the entries of PSSJact(g, h′) are denominator-free by clearing out any denominators. Corres-
ponding to h′, define h as in Lemma 4.2, which would also satisfy that

h ∈ Ut(f1, . . . , fk) := 〈Ht(f1), . . . ,Ht(fk)〉≥2
F(z) mod 〈x〉t+1

.

It is worth stressing the fact that the polynomial h is independent of the variable s. Then by
Corollary 4.3 we get

PSSJact(g, h′) = Φz(PSSJact(f , h))× M̃Φ.

Now, if we substitute v0 = 1 and vi = 0 for every i ∈ [k], we get

PSSJact(g, h′)(v0 = 1, v1 = . . . = vk = 0) = PSSJact(f , h)(z = G(α))× M̃Φ.

But since {f1, . . . , fk} is algebraically independent, Theorem 2.3 yields that PSSJact(f , h)
has full rank. Thus, PSSJact(f , h)(z = G(α)) also has full rank since G = (G1(α), . . . , Gn(α))
is a hitting-set generator for the class of all k × k minors of PSSJact(f , h). Most crucially,
the matrix PSSJact(f , h) is independent of the variable s.

To complete the proof, we need to show that multiplication by M̃Φ continues to keep this
full rank to contradict the initial assumption that PSSJact(g, h′) was not full rank.

Finally note that for the Φ we have defined, M̃Φ restricted to only the pure monomial
columns{

yji : i ∈ {1, . . . , k} , j ∈ {0, 1, . . . , t}
}
,

is the same as MΦ as defined in Lemma 3.2. Further, w is an isolating weight assignment for
the set of n-variate monomials of degree at most t, we satisfy the requirements of Lemma 3.2.
Hence, by Lemma 3.2,

rankF(s,α) (PSSJact(g, h′)(v0 = 1, v1 = . . . , vk = 0)) = rankF(α) PSSJact(f , h)(z = G(α))
=⇒ rankF(s,α,v) (PSSJact(g, h′)) ≥ rankF(α) PSSJact(f , h)(z = G(α))

= k,

which contradicts our assumption that it was not full rank. Hence, it must indeed be the
case that {f1 ◦ Φ, . . . , fk ◦ Φ} is F - algebraically independent. J

5 Explicit faithful maps and PIT applications in restricted settings

We now describe some specific instantiations of the recipe given by Lemma 4.1 in restricted
settings. Let us first recall the statement of the main theorem.

FSTTCS 2019



11:12 Constructing Faithful Homomorphisms over Fields of Finite Characteristic

I Theorem 1.5. Let f1, . . . , fm ∈ F[x1, . . . , xn] such that algrank {f1, . . . , fm} = k and
the inseparable degree is t. If t and k are bounded by a constant, then we can construct
a polynomial (in the input length) sized list of homomorphisms of the form Φ : F[x] →
F(s)[y0, y1, . . . , yk] such that at least one of them is guaranteed to be to F-faithful for the set
{f1, . . . , fm}, in the following two settings:

When each of the fi’s are sparse polynomials,
When each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Proof. By Lemma 4.1, Φ : F[x1, . . . , xn]→ F(s, α)[y0, . . . , yk] defined as

Φ : xi 7→ y0Gi(α) +
k∑
j=1

yj · sw(i)j ,

is a faithful homomorphism for the set {f1, . . . , fm} if for any h ∈ Ut(f), w = (w1, . . . , wn)
is a basis isolating weight assignment for PSSJac(f , h) and G = (G1(α), . . . , Gn(α)) is such
that the rank of PSSJact(f , h) is preserved after the substitution z→ a for some a ∈ G. We
define the weight using the standard hashing techniques [10, 1].

Defining w: Define w : [n] → N as w(i) = (t + 1)i (mod p), where t is the inseparable
degree.

Assuming t to be a constant, there are only poly(n) many distinct monomials in x of degree
at most t. Thus, standard results by Klivans and Spielman [10] or Agrawal and Biswas [1]
shows that it suffices to go over poly(n) many ‘p’s before w isolates all monomials in x of
degree at most t.
Let PSSJact(f) be the matrix with columns indexed by monomials in x of degree at most t
and rows by k-variate monomials ae in degree at most t, defined as follows.

PSSJact(f)[ae,xd] = coeffxd(Ht(f)e)

Set K =
(
k+t
t

)
be the number of rows in PSSJact(f). Then the following is true.

B Claim 5.1. If G is a hitting set generator for every K ′ ×K ′ minor of PSSJact(f) where
K ′ ≤ K, then the rank of PSSJact(f , h) is preserved for every h ∈ Ut(f).

Proof. We need to show that there is an a in G which has the following property:

For any h ∈ Ut(f), if {Ht(f1) + h,Ht(f2), . . . ,Ht(fk)} are linearly independent, then
so are {Ht(f1)(a) + h(a), Ht(f2)(a), . . . ,Ht(fk)(a)}.

Now suppose this is not the case. Then it must be the case that without loss of generality,
some h ∈ Ut(f), PSSJact(f , h) has full rank but for any a ∈ G,

α1(Ht(f1)(a) + h(a)) +
k∑
i=2

(αi ·Ht(fi)(a)) = 0.

Here, not all of {αi}i∈[k] are zero. However by our hypothesis, this would mean that

α1(Ht(f1) + h) +
k∑
i=2

(αi ·Ht(fi)) 6= 0.
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Let B be a basis of the rows in Ht(f). Then each of {Ht(f1) + h,Ht(f2), . . . ,Ht(fk)} can
be written in terms of rows in B. Thus, the above statement can be rewritten as

K′∑
i=1

βi · bi = α1(Ht(f1) + h) +
k∑
i=2

(αi ·Ht(fi)) 6= 0

where {βi}i∈[K′] are some scalars and K ′ = |B|.
This shows that not all {βi}K

′

i=1 can be zero. Now since G is a hitting set generator for
every K ′ ×K ′ minor in PSSJact(f), there is some a ∈ G such that {bi(a)}i∈[K′] continue
to remain linearly independent. Thus,

∑K′

i=1 βi × bi(a)! = 0, since not all {βi}i∈[K′] is zero.
However, this shows that

α1(Ht(f1)(a) + h(a)) +
k∑
i=2

(αi ·Ht(fi)(a)) =
K′∑
i=1

βi × bi(a) 6= 0.

This contradicts our assumption, and so it must be the case that for any h ∈ Ut(f), the
rank of PSSJact(f , h) is preserved. C

Thus, now it is only a question of finding a hitting set generator of low degree, for every
K ′ ×K ′ minor of PSSJact(f) where K ′ ≤ K. The definitions of these generators for both
cases are similar to those in [2] and the details can be found in the full version [4]. J

5.1 Applications to PIT
As stated in Subsection 1.1, using Lemma 1.2, we get two straightforward corollaries for PIT
for related models (Corollary 1.6 and Corollary 1.7). As mentioned there, the results are
incomparable with the PIT results of Pandey et al. [14] and Kumar and Saraf [11]. For the
proof idea, the interested reader may look at the full version [4].

6 Conclusion and open problems

We studied the task of constructing faithful homomorphisms in the finite characteristic
setting and extended the results of Agrawal et al. [2] in the setting when the inseparable
degree is bounded. There are some very natural open problems in this context.

Are the homomorphisms constructed in the paper also F(s)-faithful homomorphisms?

Our proof only provides a recipe towards constructing F-faithful homomorphisms due to
technical obstacles involving the criterion for algebraic independence over finite character-
istic fields. This is not an issue in characteristic zero fields; Agrawal et al. [2] construct
F(s)-faithful homomorphisms.

How crucial is the notion of inseparable degree in the context of testing algebraic
independence?

The criterion of Pandey, Saxena and Sinhababu [14] crucially depends on this field
theoretic notion and there seems to be compelling algebraic reasons to believe that this
is necessary. However, as mentioned earlier, Guo, Saxena and Sinhababu [7] showed
that algebraic independence testing is in AM ∩ coAM and this proof has absolutely no
dependence on the inseparable degree.
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