
Subexponential-Time Algorithms for Finding
Large Induced Sparse Subgraphs
Jana Novotná
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
janca@kam.mff.cuni.cz

Karolina Okrasa
Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
k.okrasa@mini.pw.edu.pl

Michał Pilipczuk
Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Paweł Rzążewski
Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
p.rzazewski@mini.pw.edu.pl

Erik Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, The Netherlands
e.j.vanleeuwen@uu.nl

Bartosz Walczak
Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

Abstract
Let C and D be hereditary graph classes. Consider the following problem: given a graph G ∈ D,
find a largest, in terms of the number of vertices, induced subgraph of G that belongs to C. We
prove that it can be solved in 2o(n) time, where n is the number of vertices of G, if the following
conditions are satisfied:

the graphs in C are sparse, i.e., they have linearly many edges in terms of the number of vertices;
the graphs in D admit balanced separators of size governed by their density, e.g., O(∆) or
O(

√
m), where ∆ and m denote the maximum degree and the number of edges, respectively; and

the considered problem admits a single-exponential fixed-parameter algorithm when parameter-
ized by the treewidth of the input graph.

This leads, for example, to the following corollaries for specific classes C and D:
a largest induced forest in a Pt-free graph can be found in 2Õ(n2/3) time, for every fixed t; and
a largest induced planar graph in a string graph can be found in 2Õ(n3/4) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Problems, reductions and completeness

Keywords and phrases subexponential algorithm, feedback vertex set, Pt-free graphs, string graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.23

Funding Jana Novotná: Supported by student grants GAUK 1277018, SVV-2017-260452.
Michał Pilipczuk: This work is a part of project TOTAL that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 677651).
Paweł Rzążewski: Partially supported by Polish National Science Centre grant no.
2018/31/D/ST6/00062.
Bartosz Walczak: Partially supported by Polish National Science Centre grant no.
2015/17/B/ST6/01873.

© Jana Novotná, Karolina Okrasa, Michał Pilipczuk, Paweł Rzążewski, Erik Jan van Leeuwen, and
Bartosz Walczak;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 23; pp. 23:1–23:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:janca@kam.mff.cuni.cz
mailto:k.okrasa@mini.pw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7696-3848
mailto:p.rzazewski@mini.pw.edu.pl
mailto:e.j.vanleeuwen@uu.nl
mailto:walczak@tcs.uj.edu.pl
https://doi.org/10.4230/LIPIcs.IPEC.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Subexponential Algorithms Finding Large Sparse Subgraphs

Acknowledgements The results presented in this paper were obtained during the Parameterized
Algorithms Retreat of the algorithms group of the University of Warsaw (PARUW), held in Karpacz
in February 2019. This Retreat was financed by the project CUTACOMBS, which has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 714704).

1 Introduction

Many optimization problems in graphs can be expressed as follows: given a graph G, find a
largest vertex set A such that G[A], the subgraph of G induced by A, satisfies some property.
Examples include Independent Set (the property of being edgeless), Feedback Vertex
Set (the property of being acyclic), and Planarization (the property of being planar). Here,
Feedback Vertex Set and Planarization are customarily phrased in the complementary
form that asks for minimizing the complement of A: given G, find a smallest vertex set X
such that G−X has the desired property. While all problems considered in this paper can be
viewed in these two ways, for the sake of clarity we focus on the maximization formulation.

Formally, we shall consider the following Max Induced C-Subgraph problem. Fix a
graph class C that is hereditary, that is, closed under taking induced subgraphs. Then, given
a graph G, the goal is to find a largest vertex subset A such that G[A] ∈ C. Our focus is on
exact algorithms for this problem with running time expressed in terms of n, the number of
vertices of G. Clearly, as long as the graphs from C can be recognized in polynomial time,
the problem can be solved in 2n · nO(1) time by brute-force; we are interested in non-trivial
improvements over this approach.

The complexity of Max Induced C-Subgraph was studied as early as in 1980 by Lewis
and Yannakakis [19], who proved that when the graph class C does not contain all graphs,
the problem is NP-hard. Recently, Komusiewicz [17] inspected the reduction of Lewis and
Yannakakis and concluded that under the Exponential Time Hypothesis (ETH) one can even
exclude the existence of subexponential-time algorithms for the problem, that is, ones with
running time 2o(n). While the result of Komusiewicz [17] excludes significant improvements
in the running time, there is still room for improvement in the base of the exponent. Indeed,
for various classes of graphs C, algorithms with running time O((2− ε)n) for some ε > 0 are
known; see e.g. [3, 12, 13, 14, 21] and the references therein.

Another direction, which is of main interest to us, is to impose more conditions on the
input graphs G in the hope of obtaining faster algorithms for restricted cases. Formally, we
fix another hereditary graph class D and consider Max Induced C-Subgraph where the
input graph G is additionally required to belong to D.

In this line of research, the class C of edgeless graphs, which corresponds to the classical
Max Independent Set (MIS) problem, has been extensively studied. Suppose D is the class
of H-free graphs, that is, graphs that exclude some fixed graph H as an induced subgraph.
As observed by Alekseev [1], the problem is NP-hard on H-free graphs unless H is a path
or a subdivision of the claw (K1,3); the reduction of [1] actually excludes the existence of a
subexponential-time algorithm under ETH in these cases. On the positive side, the maximal
classes for which polynomial-time algorithms are known are the P6-free graphs [15] and the
fork-free graphs [20]. It would be consistent with our knowledge if MIS was polynomial-time
solvable on H-free graphs whenever H is a path or a subdivision of the claw.

It turns out that if we only aim at subexponential-time instead of polynomial-time
algorithms, many more tractability results can be obtained for MIS, and usually they are also

J. Novotná et al. 23:3

much simpler conceptually. Bacsó et al. [2] showed that MIS can be solved in 2O(
√
tn logn)

time on Pt-free graphs, for every t ∈ N. Very recently, Chudnovsky et al. [8] reported a
2O(
√
n logn)-time algorithm on long-hole-free graphs, which are graphs that exclude every

cycle of length at least 5 as an induced subgraph.
In the light of the results above, it is natural to ask whether structural assumptions on

the class D from which the input is drawn, like e.g. Pt-freeness, can help in the design of
subexponential-time algorithms for other maximum induced subgraph problems, beyond C
being the class of edgeless graphs. This is precisely the question we investigate in this work.

Our contribution. We identify three properties that together provide a way to solve the
Max Induced C-Subgraph problem on graphs from D in subexponential time, where C
and D are hereditary graph classes. They are as follows:

The class C should consist of sparse graphs. To be specific, let us assume that every
n-vertex graph from C has O(n) edges.
The class D may contain dense graphs, but they should admit balanced separators whose
size is somehow governed by the density. To be specific, let us assume that every graph
from D with maximum degree ∆ has a balanced separator of size O(∆), or that every
graph from D with m edges has a balanced separator of size O(

√
m).

The Max Induced C-Subgraph problem on graphs from D can be solved in 2Õ(w) ·nO(1)

time, where w is the treewidth of the input graph. Here, notation Õ(·) hides polylogar-
ithmic factors.

We show that if these conditions are simultaneously satisfied, then the Max Induced
C-Subgraph problem on graphs from D can be solved in 2Õ(n2/3) time in the presence of
balanced separators of size O(∆) and in 2Õ(n3/4) time for balanced separators of size O(

√
m).

The precise statement and proof of this result can be found in Section 2.
The conditions on C look natural and are satisfied by various specific classes of interest,

like forests (corresponding to Feedback Vertex Set) and planar graphs (corresponding to
Planarization). On the other hand, the condition on D looks more puzzling. However,
there are certain non-sparse classes of graphs where the existence of such balanced separators
has been established. For instance, balanced separators of size O(∆) are known to exist
in Pt-free graphs for any fixed t ∈ N [2], and in long-hole-free graphs [8]. The existence of
balanced separators of size O(

√
m) is known for string graphs, which are intersection graphs

of arc-connected subsets of the plane, and more generally for intersection graphs of connected
subgraphs in any proper minor-closed class [18]. All these observations yield a number of
concrete corollaries to our main result, which are gathered in Section 3. In Section 4, we
discuss some lower bounds: we show that if C is the class of forests (corresponding to the
Feedback Vertex Set problem) and D is characterized by a single excluded induced
subgraph, then under the Exponential Time Hypothesis one cannot hope for subexponential-
time algorithms in greater generality than provided by our main result.

2 Main result

We use standard graph notation. We assume the reader’s familiarity with treewidth. We
recall some notation for tree decompositions in Section 5, where it is actually needed.

For a graph G, a set S ⊆ V (G) is a balanced separator if every connected component of
G− S has at most 2

3 |V (G)| vertices. It is known that small balanced separators can be used
to construct tree decompositions of small width, as made explicit in the following lemma.

I Lemma 1 ([11]). If every subgraph of a graph G has a balanced separator of size at most
k, then the treewidth of G is O(k).

IPEC 2019

23:4 Subexponential Algorithms Finding Large Sparse Subgraphs

Now, we are ready to state and prove our main result.

I Theorem 2. Let C and D be classes of graphs that satisfy the following conditions:
(P1) Every n-vertex graph from C has O(n) edges.
(P2) The class D is closed under taking induced subgraphs.
(P3) Given a graph G ∈ D with n vertices and treewidth w, one can find a largest set

A ⊆ V (G) such that G[A] ∈ C in 2Õ(w) · nO(1) time.
Furthermore, let the class D satisfy one of the following conditions:
(P4a) Every graph in D with maximum degree ∆ has a balanced separator of size O(∆), or
(P4b) Every graph in D with n vertices and maximum degree ∆ has a balanced separator of

size O(
√
n∆).

Then, given an n-vertex graph G ∈ D, one can find a largest set A ⊆ V (G) such that
G[A] ∈ C in time
(1) 2Õ(n2/3), if D satisfies (P4a), or
(2) 2Õ(n3/4), if D satisfies (P4b).

Proof. Let a constant τ be defined as follows, depending on which of the two conditions is
satisfied by D:

τ =
{

1/3 if D satisfies (P4a),
1/4 if D satisfies (P4b).

We devise a branching algorithm that finds a largest set A ⊆ V (G) such that G[A] ∈ C in
2Õ(n1−τ) time. This matches the complexity bounds from the statement of the theorem.

Let G ∈ D be the input graph and n be the number of its vertices. Consider a fixed solution
A, that is, a largest set A ⊆ V (G) such that G[A] ∈ C. Let A′ ⊆ A be the set of vertices of
degree greater than nτ in G[A]. By property (P1), we have |A′| = O(n/nτ) = O(n1−τ).

The algorithm guesses the set A′ exhaustively, by trying all subsets of V (G) of the
appropriate sizes O(n1−τ), which results in nO(n1−τ) = 2Õ(n1−τ) branches. Fix one such
branch and assume, for the purpose of further description of the algorithm, that it corresponds
to the true set A′ (i.e., the one obtained from the fixed solution A). Let G′ = G−A′.

Suppose that G′ contains a vertex v of degree at least n2τ . If v ∈ A, then v has degree
at most nτ in G[A] (since v /∈ A′). The algorithm further guesses that v /∈ A and discards
v (one branch), or it guesses that v ∈ A and discards all but at most nτ neighbors of v in
G′ (at most nnτ branches). In the latter case, we do not fix the assumption that v or any
particular neighbor of v belongs to A, so that the vertices that have survived this step can
still be discarded in subsequent branching steps.

The step described above is repeated exhaustively. The overall number of branches
generated in this way can be bounded as follows, where k = |V (G′)|:

F (k) 6 F (k − 1) + nn
τ

· F (k − (n2τ − nτ))
6 F (k − 2) + nn

τ

· F (k − (n2τ − nτ)) + nn
τ

· F (k − (n2τ − nτ))
6 . . . 6 F (k − (n2τ − nτ)) + (n2τ − nτ) · nn

τ

· F (k − (n2τ − nτ))
= (n2τ − nτ + 1) · nn

τ

· F (k − (n2τ − nτ))

6
(

(n2τ − nτ + 1) · nn
τ
)k/(n2τ−nτ)

6
(

(n2τ − nτ + 1) · nn
τ
)n/(n2τ−nτ)

= nO(n1+τ−2τ) = 2Õ(n1−τ).

J. Novotná et al. 23:5

Once the branching step can no longer be applied, we obtain an induced subgraph G′′ of
G′ of maximum degree less than n2τ . In the branch where all the choices have been made
correctly (i.e., according to the fixed solution A), G′′ still contains all vertices from A \A′.

By property (P2), we have G′′ ∈ D. Thus G′′ satisfies either (P4a) or (P4b), which means
that G′′ has a balanced separator of size O(n2/3) in the former case or O(

√
n · n1/2) = O(n3/4)

in the latter case. In both cases, the size of the separator is O(n1−τ). Moreover, by the same
argument, balanced separators of that size also exist in every subgraph of G′′. Therefore,
by Lemma 1, we conclude that G′′ has treewidth O(n1−τ). Since |A′| 6 O(n1−τ), it follows
that the graph G[V (G′′) ∪A′] also has treewidth O(n1−τ).

We know that G[V (G′′) ∪A′] ∈ D and, in the branch where all choices have been made
correctly, this graph contains the entire maximum-size solution A. Now, we apply the
procedure assumed in (P3) to the graph G[V (G′′) ∪ A′] and observe that in the correct
branch it finds some maximum-size solution (possibly different from A). Let us point out
that in this step it is not sufficient to consider only the graph G′′, as the vertices from A′

introduce some additional constraints on the solution we are looking for.
For the time complexity, the algorithm considers 2Õ(n1−τ) branches and in each of them

it executes the procedure assumed in (P3) in 2Õ(n1−τ) time, which gives the total running
time of 2Õ(n1−τ). J

I Remark 3. The condition (P1) in the statement of Theorem 2 can be relaxed to “every
n-vertex graph from C has O(n2−ε) edges, for some constant ε > 0”. Then, we can follow
the same approach with the following modification: we choose τ = 1− 2

3ε in case of (P4a)
and τ = 1 − 3

4ε in case of (P4b), and replace the threshold for branching on high-degree
vertices from n2τ to n2τ+ε−1. This way, we obtain algorithms with running time 2Õ(n1−ε/3)

for property (P4a) and 2Õ(n1−ε/4) for property (P4b). This running time is subexponential
for every ε > 0.

One can also imagine unifying properties (P4a) and (P4b) into the existence of a balanced
separator of size O(nα∆β), for some constants α, β. However, then, one needs to be careful
when choosing τ so that it belongs to the interval [0, 1]. As we did not find concrete examples
of interesting graph classes D for which this approach would yield non-trivial results and
which would not satisfy either (P4a) or (P4b), we refrain from discussing further details here.

3 Corollaries

In this section, we discuss possible classes C and D which satisfy the conditions of Theorem 2.
For some choices of C, we obtain well-studied computational problems:
1. for matchings, we obtain Max Induced Matching,
2. for forests, we obtain Max Induced Forest, also known as Feedback Vertex Set,
3. for graphs of maximum degree d, where d is fixed, we obtain Max Induced Degree-d

Subgraph,
4. for planar graphs, we obtain Max Induced Planar Subgraph, also known as Planar-

ization,
5. for graphs embeddable in Σ, where the surface Σ is fixed, we obtain Max Induced

Σ-Embeddable Subgraph,
6. for graphs of degeneracy at most d, where d is fixed, we obtain Max Induced d-

Degenerate Subgraph.
It is clear that all these classes satisfy property 1 of Theorem 2.

Given a graph of treewidth w, its tree decomposition of width at most 4w + 3 can be
computed in 2O(w) · n2 time (see e.g. [9, Section 7.6]). Therefore, for the purpose of verifying
property 3, we can assume that a tree decomposition of width O(w) is additionally provided

IPEC 2019

23:6 Subexponential Algorithms Finding Large Sparse Subgraphs

on input. While 2Õ(w) · nO(1)-time algorithms are quite straightforward and well known for
the first two problems on the list, this is not necessarily the case for the others. For Max
Induced Degree-d Subgraph, an algorithm with running time 2O(w) · nO(1) can be easily
derived from the meta-theorem of Pilipczuk [22]. Algorithms for Max Induced Planar
Subgraph and, more generally, Max Induced Σ-Embeddable Subgraph, were provided
by Kociumaka and Pilipczuk [16]. Finally, we give a suitable algorithm for Max Induced
d-Degenerate Subgraph in Lemma 8 in Section 5.

It may be tempting to consider, as C, the graphs with no even cycle C2k (not necessarily
induced), for some fixed integer k > 2. This is because such graphs have O(n2−Ω(1/k))
edges [5], and thus they satisfy the generalization of property 1 mentioned in Remark 3 for
ε = Ω(1/k). However, for these classes, property 3 turns out to be problematic: for any fixed
` > 5, there is no algorithm for a minimum set of vertices hitting all (non-induced) copies of
C` in a graph with treewidth w with running time 2o(w2) · nO(1) unless the ETH fails [22]
(this bound appears to be essentially tight, as the problem can be solved in 2Õ(w2) · nO(1)

time [10]). It is unclear whether the additional assumption that the input graph belongs to
some class D, considered here, can help.

Now, let us consider classes D. Examples of classes satisfying property a in Theorem 2
come from forbidding some induced subgraphs. Bacsó et al. [2] proved that Pt-free graphs
with maximum degree ∆ have treewidth O(∆ · t). Very recently, Chudnovsky et al. [8]
observed that long-hole-free graphs, that is, graphs with no induced cycles of length at least
5, also have balanced separators of size O(∆).

An example of a class satisfying property b is the class of string graphs – intersection
graphs of arc-connected subsets of the plane. Lee [18] showed that they admit balanced
separators of size O(

√
m), where m is the number of edges. In fact, he proved a more general

result that ifM is a class of graphs excluding a fixed graph as a minor, then intersection
graphs of connected subgraphs of graphs fromM admit balanced separators of size O(

√
m).

String graphs are precisely the intersection graphs of connected subgraphs of planar graphs.
Summing up, we obtain the following.

I Corollary 4. Each of the following problems can be solved in 2Õ(n2/3) time on Pt-free
graphs (for every fixed t) and in long-hole-free graphs, and in 2Õ(n3/4) time on string graphs:
1. Max Induced Matching,
2. Max Induced Forest,
3. Max Induced Degree-d Subgraph, for every fixed d ∈ N,
4. Max Induced Planar Subgraph,
5. Max Induced Σ-Embeddable Subgraph, for every fixed surface Σ,
6. Max Induced d-Degenerate Subgraph, for every fixed d ∈ N.

We note that subexponential-time algorithms for Max Induced Matching and Max
Induced Forest on string graphs were already known [6], even with a better running time
than provided above. As we have argued, in Corollary 4, we can replace string graphs with
intersection graphs of connected subgraphs of graphs from M, where M is any class of
graphs excluding a fixed graph as a minor; this is because the result of Lee [18] holds in that
generality.

4 Max Induced Forest in H-free graphs

Our original motivation was the Max Induced Forest problem. In the previous section,
we discussed a subexponential-time algorithm solving it on Pt-free graphs. We now show
that as long as the considered class of inputs D is characterized by a single excluded induced

J. Novotná et al. 23:7

subgraph, that is, we investigate Max Induced Forest on H-free graphs for a fixed
graph H, we cannot hope for more positive results. Namely, it turns out that if H is not a
linear forest (i.e., a collection of vertex-disjoint paths), the problem is unlikely to admit a
polynomial-time or even a subexponential-time algorithm on H-free graphs. Specifically, we
obtain the following dichotomy.

I Theorem 5. Let H be a fixed graph.
1. If H is a linear forest, then the Max Induced Forest problem can be solved in 2Õ(n2/3)

time on H-free graphs with n vertices.
2. Otherwise, on H-free graphs, the Max Induced Forest problem is NP-complete and

cannot be solved in 2o(n) time unless the ETH fails.

Theorem 5 1 follows from Corollary 4, because every linear forest is an induced subgraph
of some path. Statement 2 follows from a combination of arguments already existing in the
literature. However, since the proof is simple, we include it for the sake of completeness.

We prove Theorem 5 2 in two steps. First, we consider graphs H that contain a cycle
or two branch vertices, that is, vertices of degree at least 3. In this case, we can apply the
standard argument of subdividing every edge a suitable number of times, cf. [7, Theorem 3].

I Lemma 6. Let H be a fixed graph that either contains a cycle or has a connected component
with at least two branch vertices. Then Max Induced Forest is NP-complete on H-free
graphs. Moreover, there is no algorithm solving Max Induced Forest in 2o(n) time for
n-vertex H-free graphs unless the ETH fails.

Proof. We reduce from Max Induced Forest in graphs with maximum degree 6; it is
known that this problem is NP-complete and has no subexponential-time algorithm assuming
ETH [9]. Let G be a graph with n vertices and maximum degree 6. Let G∗ be the graph
obtained from G by subdividing every edge |V (H)|+ 1 times. It is straightforward to observe
that G has an induced forest on n − k vertices if and only if G∗ has an induced forest on
|G∗| − k vertices. Moreover, the number of vertices in G∗ is linear in n.

Finally, we show that G∗ is H-free. First, observe that if H contains a cycle, then H
cannot be a subgraph of G∗, as the girth of G∗ is greater than |V (H)|+ 1. On the other
hand, the distance between any two branch vertices in G∗ is at least |V (H)| + 1, so G∗
does not contain H as a subgraph in case H has two branch vertices in the same connected
component. J

By Lemma 6, the only graphs H for which we might hope for a polynomial-time or even
a subexponential-time algorithm for Max Induced Forest on H-free graphs are collections
of disjoint subdivided stars. To resolve this case, we will show that the problem remains hard
for line graphs. Recall that the line graph L(G) of a graph G is the graph whose vertices
are the edges of G and where the adjacency relation corresponds to the relation of having a
common endpoint in G.

Actually, Chiarelli et al. [7] reported that the hardness of Max Induced Forest on line
graphs was observed by Speckenmeyer in his PhD thesis [23]. However, we were unable to
find this result there. Therefore, we provide the easy proof, which boils down to essentially
the same argument as in [7, Theorem 5].

I Lemma 7. Max Induced Forest is NP-complete on line graphs. Moreover, there is no
algorithm solving Max Induced Forest in 2o(n) time for n-vertex line graphs unless the
ETH fails.

IPEC 2019

23:8 Subexponential Algorithms Finding Large Sparse Subgraphs

Proof. We reduce from the Hamiltonian Path problem, which is NP-complete and has no
subexponential-time algorithm, even if the input graph has linearly many edges [9]. Let G
be a graph, which is the input instance of Hamiltonian Path.

First, note that any induced forest in L(G) corresponds to a collection of vertex-disjoint
paths in G. More formally, consider a set E′ ⊆ E(G), such that L(G)[E′] is a forest. We
claim that the subgraph G′ = (V (G), E′) of G is a collection of vertex-disjoint paths. Suppose
not. This means that G′ contains a vertex v of degree at least 3 or a cycle C. In the former
case, the edges incident to v in G′ form a clique in L(G)[E′]. In the latter case, the edges of
the cycle C form a cycle in L(G)[E′]. In either case, we get a contradiction to the assumption
that L(G)[E′] is a forest.

We claim that G has a Hamiltonian path if and only if L(G) has an induced forest on n−1
vertices. Indeed, the n− 1 edges of a Hamiltonian path in G induce a path (in particular,
a forest) in L(G). For the converse, suppose that L(G) has an induced forest on at least
n− 1 vertices. By the observation above, this induced forest corresponds to a collection of
vertex-disjoint paths in G with at least n − 1 edges in total. This is only possible if this
collection consists of a single path of length n− 1, that is, a Hamiltonian path in G.

Finally, observe that the number of vertices of L(G) is equal to the number of edges of G,
which is linear in the number of vertices of G. J

Recall that line graphs are claw-free, that is, they contain no induced copy of K1,3. Thus
Lemma 7 implies that if H contains any star with at least 3 leaves, then Max Induced
Forest remains NP-complete and has no subexponential-time algorithm on H-free graphs
unless ETH fails. Theorem 5 2 follows from combining Lemma 6 and Lemma 7.

5 Largest induced degenerate subgraph in low-treewidth graphs

This section is devoted to the proof of the following result, which we used in Section 3.

I Lemma 8. For every fixed d ∈ N, there is an algorithm for Max Induced d-Degenerate
Subgraph with running time 2O(w logw) · n, where w is the treewidth of the input graph and
n is the number of its vertices.

Preliminaries on tree decompositions. First, we introduce some notation and terminology.
A tree decomposition of a graph G is a tree T together with a mapping β(·) that assigns a
bag β(x) to each node x of T in such a way that the following conditions hold:
(T1) for each u ∈ V (G), the set of nodes x with u ∈ β(x) induces a connected non-empty

subtree of T ; and
(T2) for each uv ∈ E(G), there exists a node x such that {u, v} ⊆ β(x).
The width of a tree decomposition (T, β) is maxx∈V (T) |β(x)| − 1, and the treewidth of a
graph G is the minimum width of a tree decomposition of G.

Henceforth, all tree decompositions will be rooted: the underlying tree T has a prescribed
root vertex r. This gives rise a natural ancestor-descendant relation: we write x � y if x is
an ancestor of y (where possibly x = y). Then, for a node x of T , we define the component
at x as

α(x) =
(⋃
y�x

β(y)
)
\ β(x).

It easily follows from (T1) and (T2) that then N(α(x)) ⊆ β(x) for every node x.
A nice tree decomposition is a normalized form of a rooted tree decomposition in which

every node is of one of the following four kinds.

J. Novotná et al. 23:9

Leaf node: a node x with no children and with β(x) = ∅.
Introduce node: a node x with one child y such that β(x) = β(y)∪{u} for some vertex
u /∈ β(y).
Forget node: a node x with one child y such that β(x) = β(y) \ {u} for some vertex
u ∈ β(y).
Join node: a node x with two children y and z such that β(x) = β(y) = β(z).

Moreover, we require that the root r of the nice tree decomposition satisfies β(r) = ∅.
It is known that any given tree decomposition (T, β) of width k of an n-vertex graph

G can be transformed in kO(1) · max(n, |V (T)|) time into a nice tree decomposition of G
of width at most as large, see [9, Lemma 7.4]. Moreover, given an n-vertex graph G of
treewidth w, a tree decomposition of G of width at most 5w+ 4 can be computed in 2O(w) ·n
time [4], and this tree decomposition has at most n nodes. By combining these two results,
for the proof of Lemma 8, we can assume that the input graph G is supplied with a nice
tree decomposition (T, β) of width k 6 5w + 4, where w = tw(G). From now on, our goal is
to design a suitable dynamic programming algorithm working on this decomposition with
running time 2O(k log k) · n = 2O(w logw) · n.

Dynamic programming states. The main idea behind our dynamic programming algorithm
is to view the notion of degeneracy via vertex orderings, as expressed in the following fact.

I Lemma 9 (Folklore). A graph H is d-degenerate if and only if there is a linear ordering σ
of vertices of H such that every vertex of H has at most d neighbors that are smaller in σ.

Hence, the problem considered in Lemma 8 can be restated as follows: find a largest set
A ⊆ V (G) that admits a linear ordering σ in which every vertex of A has at most d neighbors
in G[A] that are smaller in σ. Intuitively, our dynamic programming will therefore keep track
of the intersection of the bag with A, the restriction of σ to this intersection; and how many
smaller neighbors of each vertex from this intersection have been already forgotten.

We now proceed with formal details. For a node x of T , a set X ⊆ β(x), a linear ordering
σ of X, and a function f : X → {0, . . . , d}, we define Φx[X,σ, f] ∈ N as follows. The value
Φx[X,σ, f] is the maximum size of a set Y ⊆ α(x) such that X ∪ Y admits a linear ordering
τ with the following properties: τ restricted to X is equal to σ and for every a ∈ X, there are
at most f(a) vertices b ∈ Y that are adjacent to a and smaller than a in τ . Note that other
neighbors of a that belong to X are not taken into consideration when verifying the quota
imposed by f(a). Note also that such a set Y always exists, as Y = ∅ satisfies the criteria.

For a fixed node x, the total number of triples (X,σ, f) as above is at most

2k+1 · (k + 1)! · (d+ 1)k+1 6 2O(k log k).

Hence, we now show how to compute the values Φx[X,σ, f] in a bottom-up manner, so that
the values for a node x are computed based on the values for the children of x in 2O(k log k)

time. The answer to the problem corresponds to the value Φr[∅, ∅, ∅], where r is the root
of T . While Φr[∅, ∅, ∅] is just the size of a largest feasible solution, an actual solution can be
recovered from the dynamic programming tables using standard methods within the same
complexity: for every computed value Φx[X,σ, f], we store the way this value was obtained,
and then we trace back the solution from Φr[∅, ∅, ∅] in a top-down manner.

Transitions. It remains to provide recursive formulas for the values of Φx[·, ·, ·]. We only
present the formulas, while the verification of their correctness, which follows easily from the
definition of Φx[·, ·, ·], is left to the reader. As usual, we distinguish cases depending on the
type of x.

IPEC 2019

23:10 Subexponential Algorithms Finding Large Sparse Subgraphs

Leaf node x. Then we have only one value:

Φx[∅, ∅, ∅] = 0.

Introduce node x with child y such that β(x) = β(y) ∪ {u}. Then

Φx[X,σ, f] =
{

Φy[X,σ, f] if u /∈ X;
Φy[X \ {u}, σ|X\{u}, f |X\{u}] if u ∈ X.

Forget node x with child y such that β(x) = β(y) \ {u}. Then we have

Φx[X,σ, f] = max
(

Φy[X,σ, f], 1 + max
(σ′,f ′)∈S(X,σ,f)

Φy[X ∪ {u}, σ′, f ′]
)
,

where S(X,σ, f) is the set comprising the pairs (σ′, f ′) satisfying the following:
σ′ is a vertex ordering of X ∪ {u} whose restriction to X is equal to σ; and
f ′ : X ∪ {u} → {0, . . . , d} is such that for all a ∈ X that are adjacent to u and larger
than u in σ′, we have f ′(a) 6 f(a)− 1, and for all other a ∈ X, we have f ′(a) 6 f(a).
Moreover, we require that f ′(u) 6 d− `, where ` is the number of vertices a ∈ X that
are adjacent to u and smaller than u in σ′.

Join node x with children y and z. Then

Φx[X,σ, f] = max
fy+fz6f

Φy[X,σ, fy] + Φz[X,σ, fz],

where fy + fz 6 f means that fy(a) + fz(a) 6 f(a) for each a ∈ X.

It is straightforward to see that using the formulas above, each value Φx[X,σ, f] can be
computed in 2O(k log k) time based on the values computed for the children of x. This
completes the proof of Lemma 8.

References
1 Vladimir E. Alekseev. The effect of local constraints on the complexity of determination of

the graph independence number. Combinatorial-algebraic methods in applied mathematics,
pages 3–13, 1982. (in Russian).

2 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
van Leeuwen. Subexponential-Time Algorithms for Maximum Independent Set in Pt-Free and
Broom-Free Graphs. Algorithmica, 81(2):421–438, 2019.

3 Ivan Bliznets, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Largest Chordal
and Interval Subgraphs Faster than 2n. Algorithmica, 76(2):569–594, 2016. doi:10.1007/
s00453-015-0054-2.

4 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

5 John Adrian Bondy and Miklós Simonovits. Cycles of even length in graphs. J. Combin.
Theory Ser. B, 16(2):97–105, 1974.

6 Édouard Bonnet and Paweł Rzążewski. Optimality Program in Segment and String Graphs.
Algorithmica, 81(7):3047–3073, 2019. doi:10.1007/s00453-019-00568-7.

7 Nina Chiarelli, Tatiana Romina Hartinger, Matthew Johnson, Martin Milanič, and Daniël
Paulusma. Minimum connected transversals in graphs: New hardness results and tractable
cases using the price of connectivity. Theor. Comput. Sci., 705:75–83, 2018. doi:10.1016/j.
tcs.2017.09.033.

https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00453-019-00568-7
https://doi.org/10.1016/j.tcs.2017.09.033
https://doi.org/10.1016/j.tcs.2017.09.033

J. Novotná et al. 23:11

8 Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. On the
Maximum Weight Independent Set Problem in graphs without induced cycles of length at
least five. CoRR, abs/1903.04761, 2019. arXiv:1903.04761.

9 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Inf. Comput., 256:62–82, 2017. doi:10.1016/j.
ic.2017.04.009.

11 Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separations. J. Combin.
Theory Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

12 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. In STOC 2016, pages 764–775. ACM, 2016.

13 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Exact Algorithm for the Maximum
Induced Planar Subgraph Problem. In ESA 2011, volume 6942 of LNCS, pages 287–298.
Springer, 2011.

14 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large Induced Subgraphs via Triangula-
tions and CMSO. SIAM J. Comput., 44(1):54–87, 2015.

15 Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. In SODA 2019, pages
1257–1271. SIAM, 2019.

16 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
CoRR, abs/1706.04065, 2017. arXiv:1706.04065.

17 Christian Komusiewicz. Tight Running Time Lower Bounds for Vertex Deletion Problems.
ACM Trans. on Comput. Theory (TOCT), 10(2):6:1–6:18, 2018.

18 James R. Lee. Separators in Region Intersection Graphs. In ITCS 2017, volume 67 of LIPIcs,
pages 1:1–1:8. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2017.

19 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

20 Vadim V. Lozin and Martin Milanič. A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595–604, 2008.

21 Marcin Pilipczuk and Michał Pilipczuk. Finding a Maximum Induced Degenerate Subgraph
Faster Than 2n. In IPEC 2012, volume 7535 of LNCS, pages 3–12. Springer, 2012.

22 Michał Pilipczuk. Problems Parameterized by Treewidth Tractable in Single Exponential
Time: A Logical Approach. In MFCS 2011, volume 6907, pages 520–531. Springer, 2011.

23 Ewald Speckenmeyer. Untersuchungen zum Feedback Vertex Set Problem in ungerichteten
Graphen. PhD thesis, Universität Paderborn, 1983. In German.

IPEC 2019

http://arxiv.org/abs/1903.04761
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1016/j.jctb.2018.12.007
http://arxiv.org/abs/1706.04065
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4

	Introduction
	Main result
	Corollaries
	Max Induced Forest in H-free graphs
	Largest induced degenerate subgraph in low-treewidth graphs

