
Finding Linear Arrangements of Hypergraphs with
Bounded Cutwidth in Linear Time
Thekla Hamm
Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract
Cutwidth is a fundamental graph layout parameter. It generalises to hypergraphs in a natural way
and has been studied in a wide range of contexts. For graphs it is known that for a fixed constant k

there is a linear time algorithm that for any given G, decides whether G has cutwidth at most k

and, in the case of a positive answer, outputs a corresponding linear arrangement. We show that
such an algorithm also exists for hypergraphs.

2012 ACM Subject Classification Mathematics of computing → Permutations and combinations;
Mathematics of computing → Hypergraphs; Theory of computation → Dynamic graph algorithms

Keywords and phrases Fixed parameter linear, Path decomposition, Hypergraph

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.20

Funding Supported by the Austrian Science Fund (FWF, Project P31336 and Project W1255-N23).

1 Overview

For a hypergraph H and an enumeration of its vertices V (H), also referred to as linear
arrangement, the cutwidth is the smallest integer k such that for every position i between 1
and |V (H)| − 1 there are at most k hyperedges with one endpoint among the first i and the
other among the last |V (H)| − i vertices of the arrangement. Finding orderings with small
cutwidth for hypergraphs naturally occurs directly in various applications, probably the most
classical one being VLSI design [6]. Also, there are problems for which a vertex ordering
with small cutwidth can be used to obtain a provably good processing order for heuristic
approaches, such as SAT [15]. We want to emphasise that a model using hypergraphs, as
opposed to graphs, is necessary in these scenarios among others, as graphs do not capture all
dependencies correctly.

If one wants to find an ordering with smallest possible cutwidth, this is the classical
Minimum Cut Linear Arrangement Problem which is known to be NP-hard, even
on graphs with maximum vertex degree 3 [7]. However, if one considers a bound k on the
maximum allowed cutwidth as a parameter, one can decide in linear time if a linear ordering
of a hypergraph is possible such that the bound is not exceeded [14]. The known proof is
non-constructive in the sense that it does not infer a way to construct such a linear ordering
in linear time. The asymptotically fastest constructive algorithm given in literature [8] is not
even FPT (fixed parameter tractable) as the runtime complexity lies in O(nk2+3k+3) where
n is the number of vertices of the given hypergraph.

This Work. We give a linear time constructive algorithm.
A key observation is that the fixed bound also bounds the pathwidth of the incidence

graph of the hypergraph. This allows to compute a path decomposition of the incidence
graph in linear time using the result of Bodlaender [1], and then to dynamically compute a
solution along the path decomposition. This approach has been successfully applied to a
number of problems. An overview of the general method for the slightly more general notion
of tree decompositions, as well as some examples for classical problems for which it was used,
can be found e.g. in [3, Chapter 7]. In particular, the method has also been used to give a

© Thekla Hamm;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.IPEC.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

linear time algorithm for the problem we consider restricted to graphs [11]. We extend the
crucial ideas of this algorithm.

We will construct a linear ordering by successively inserting vertices into it as long as
the cutwidth bound is satisfied and successively take into consideration more and more of
the hyperedges when checking whether the cutwidth bound is satisfied. It is reasonable
that if one takes this approach, after a vertex and all its incident hyperedges have been
completely processed the position of this vertex is no longer interesting as it has no further
impact on yet to be processed vertices and hyperedges. Similarly if a hyperedge and all
its vertices have been processed the hyperedge will not play a role when extending the
incomplete linear ordering. The first statement can be strengthened using the fact that
only the positions of the outermost vertices of each hyperedge are necessary to compute the
cutwidth of a linear ordering: After a vertex has been processed and the positions of the
left- and rightmost vertices with respect to the incomplete linear ordering of each incident
hyperedge are known, the vertex will not play a role when extending the incomplete linear
ordering. A path decomposition of the incidence graph implies some order of processing the
vertices and hyperedges such that no more than width-of-the-decomposition-many vertices
and hyperedges are relevant in the way described above at the same time.

Structure. We start by giving a formal definition of our problem and an overview over
previous research in Section 2. In Section 3, we introduce the pathwidth of the incidence
graph of a hypergraph, and prove that a bound on the cutwidth induces a bound on it. We
also work to obtain a path decomposition that has convenient structural properties for our
dynamic programming approach. Section 4 is dedicated to problem specific arguments: In
Section 4.1 we prove that it is sufficient to consider linear arrangements that are constructed
in a certain way along the path decomposition. The idea is the same that was used for graphs
[11]. It utilises the notion of so called typical sequences. Using the results of the previous
sections, we formulate a dynamic program that works on path decompositions of incidence
graphs and allows us to present our main result in Section 4.2. In Section 5 we indicate a
possibility to lift the algorithm to a more general setting.

2 Formal Introduction and Preliminary Observations

We start with a hypergraph H = (V,E). That is V is some finite set and E contains subsets
of vertices, possibly with multiplicities, i.e. we allow parallel hyperedges.

I Definition 1. A linear arrangement of a hypergraph H is a bijection ϕ : V (H) ↔
{1, . . . , |V (H)|}. The cutwidth of a linear arrangement ϕ at position i ∈ N is defined
as cw(ϕ, i) = |{e ∈ E(H) | ∃v, w ∈ e ϕ(v) ≤ i < ϕ(w)}|. The cutwidth of a linear
arrangement ϕ is defined as cw(ϕ) = max

i∈N
cw(ϕ, i). The cutwidth of a hypergraph H is

defined as cw(H) = min
ϕ linear

arrangement of H

cw(ϕ).

If one is interested in the cutwidth of hypergraphs, one can neglect all hyperedges inH that
contain less than two vertices, as such hyperedges do not contribute to the cutwidth of any
linear arrangement of H. From now on we will assume that ∀e ∈ E(H), |e| ≥ 2 for our input
hypergraph H and refer to this assumption as hyperedge cardinality assumption. Note
that any hypergraph H ′ can be transformed to satisfy this condition in time in O(|E(H ′)|)
by deleting all hyperedges that are too small.

T. Hamm 20:3

k-Cutwidth Bounded Linear Arrangement (k-CWLA)
Instance Hypergraph H = (V, E) such that ∀e ∈ E(H) |e| ≥ 2

Task Find a linear arrangement ϕ of H with cw(ϕ) ≤ k

or decide that cw(H) > k.

We present a linear time algorithm, running in time in O(|V (H)|) that solves k-CWLA.
If one drops the condition on the hyperedge cardinalities, this directly implies an algorithm
that runs in time in O(|E(H)|+ |V (H)|).

2.1 Known Results
The best algorithm given in literature for k-CWLA runs in time in O(|V (H)|k2+3k+3) [8]
and relies on complicated dynamic programming on a linear arrangement which is iteratively
extended. There is an FPT-algorithm for constructing path decompositions of polymatroids
with bounded width. Concretely:

I Theorem 2 ([4]). Let F be a fixed finite field. Given n subspaces of Fr for some r and a
parameter k, in time in O(rm2 + n3), we can either find an enumeration V1, V2, . . . , Vn of
the subspaces, such that dim((V1 + . . .+Vi)∩ (Vi+1 + . . .+Vn)) ≤ k for all i ∈ {1, . . . , n− 1},
or decide that no such enumeration exists, where each Vi is given by its spanning set of di
vectors and m =

∑n
i=1 di.

One can write k-CWLA in a way that this theorem is applicable by setting F = E(H) and
the subspaces to be the |V (H)| subspaces spanned by the hyperedges incident to each of
the vertices of H. Then one obtains a O(|E(H)|5 + |V (H)|3) (or O(|E(H)|3 + |V (H)|3)
using the same observations as we do in Section 2.2) algorithm to solve k-CWLA. Thus this
approach yields a runtime which is not linear in the size of the hypergraph. Also, as it is not
specifically adapted to the problem at hand but rather general, if one wants to understand
the algorithmic details, it is comparatively complicated and probably impractical. We also
remark that the algorithm presented in this paper, leaves scope for extending to a more
general setting (see Section 5).

The corresponding decision problem to k-CWLA however, i.e. deciding if the cutwidth
of a hypergraph is smaller than k without outputting a corresponding linear arrangement, is
known to be solvable in time in O(|V (H)|+ |E(H)|). This was proved in [14]. The given
algorithm is non-constructive and uses an adaptation of the analogue of the Myhill-Nerode
theorem for coloured graphs to work on the incidence graph of hypergraphs. If one restricts
the problem to hypergraph instances for which the hyperedge cardinality assumption holds,
as we do, one can use the same observations that we will make in Section 2.2 to obtain
an algorithm that runs in O(|V (H)|). In [13] van Bevern restates the open problem of
constructing a linear arrangement with k-bounded cutwidth if possible in linear time and
points out the importance of such an algorithm for practical purposes. It is also worth noting
that the comparatively heavy machinery used to obtain the decision result leads to a high
dependency of the complexity on k, and obstructs combinatorial properties of a solution.

For k-CWLA restricted to graphs a linear time algorithm is known [11]. Our algorithm
for hypergraphs uses and extends the crucial ideas of this algorithm.

2.2 The Vertex Degree Property
I Lemma 3. Let H satisfy the hyperedge cardinality assumption. If for any v ∈ V (H) we
have that |{e ∈ E(H) | v ∈ e}| > 2k then cw(H) > k.

IPEC 2019

20:4 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

Lemma 3 motivates considering the vertex degree property of a hypergraph H which H
satisfies if ∀v ∈ V (H) |{e ∈ E(H) | v ∈ e}| ≤ 2k. Obviously, if H satisfies the vertex degree
property, |E(H)| ∈ O(|V (H)|).

When claiming runtime in O(|V (H)|), we need to make clear how we assume H to be
given as input. Note that in general the analogue of an incidence matrix for hypergraphs does
not allow to check the vertex degree property in linear time. However a natural analogue
of an adjacency list for hypergraphs, in which we list for each vertex the hyperedges it is
incident to, can easily be seen to allow the following:
I Remark 4.

Checking if H satisfies the vertex degree property in time in O(|V (H)|),
and if H satisfies the vertex degree property, checking the membership of a given vertex
in a given hyperedge in constant time.

3 Path Decompositions of Incidence Graphs

The cutwidth of a hypergraph relates to the pathwidth of its incidence graph, in two ways:
Firstly this parameter is bounded by the cutwidth and secondly its boundedness allows the
decomposition of the hypergraph given as instance in a way that is useful for our algorithm.
We will elaborate on the properties that make the decomposition useful in Section 4 and for
now focus on the definition of the parameter, proving the fact that it is bounded by cutwidth
and showing that there is a decomposition of our hypergraph with certain properties.

I Definition 5. The incidence graph GI(H) of H is given by
V (GI(H)) = {vu | u ∈ V (H)} ∪̇ {ve | e ∈ E(H)} and E(GI(H)) = {{vu, ve} | u ∈ e}.

For a thorough description of our algorithm, we need the following technical statement
that allows us to transform our input into easily accessible information about the incidence
graph in linear time. The proof is not difficult.

I Lemma 6. Let H be a hypergraph that has the vertex degree property. The following can
be computed in time in O(|V (H)|) from our representation of H:

The representation of GI(H) by its adjacency list;
for each x ∈ V (GI(H)), type(x) ∈ {‘vertex’, ‘hyperedge’} with

type(x) =
{
‘vertex’ if x ∈ {vu ∈ GI(H) | u ∈ V (H)}
‘hyperedge’ if x ∈ {ve ∈ GI(H) | e ∈ E(H)}

; and

for each x ∈ {vu ∈ V (GI(H)) | u ∈ V (H)} a lookup table for the corresponding u ∈ V (H).

The following definition was introduced by Robertson and Seymour [10]. It is a special-
isation of the notion of tree decomposition and treewidth. Both have been studied in various
contexts, one being as foundation for dynamic parameterised algorithms [3, Chapter 7].

I Definition 7. A path decomposition of a graph G = (V,E) is a sequence (X1, . . . , Xs)
with Xi ⊆ V (G) such that
(i) ∀e ∈ E(G) ∃ 1 ≤ i ≤ s such that e ⊆ Xi; and
(ii) ∀v ∈ V (G) ∃ 1 ≤ i ≤ j ≤ s such that v ∈ Xk ⇔ i ≤ k ≤ j.

The width of a path decomposition (X1, . . . , Xs) is defined as width((X1, . . . , Xs)) =
max

1≤i≤s
|Xi| − 1. The pathwidth of a graph G is defined as minimum width of a path decom-

position of G, i.e. pw(G) = min
(X1,...,Xs)

path decomposition of G

width((X1, . . . , Xs)). The Xi are called the

bags of the path decomposition.

T. Hamm 20:5

I Theorem 8. Let H satisfy the hyperedge cardinality assumption. If cw(H) ≤ k then
pw(GI(H)) ≤ k.

Proof. Let ϕ be a linear arrangement of H with cw(ϕ) ≤ k and define for i = 1, . . . , |V (H)|
X2i−1 = {ve | ∃v, w ∈ e ϕ(v) < i ≤ ϕ(w)} ∪ {vϕ−1(i)} and
X2i = {ve | ∃v, w ∈ e ϕ(v) ≤ i < ϕ(w)} ∪ {vϕ−1(i)}.

It is easy to verify that this defines a path decomposition of GI(H) with width at most k. J

The boundedness of pathwidth in connection with the following well-known result will allow
us to find a path decomposition of the incidence graph with bounded width in linear time.

I Theorem 9 ([1]). Given some graph G, it can be decided in time in O(|V (G)|) if pw(G) ≤ k
and if this is the case a path decomposition (X1, . . . , Xs) of G with width at most k and
s ∈ O(|V (G)|) can be computed in time in O(|V (G)|).

The remainder of this section is dedicated to transforming the path decomposition we
obtain from Theorem 9 into a more convenient form. The first step is standard.

I Definition 10. A path decomposition (X1, . . . , Xs) is nice if for all 1 ≤ i ≤ s it holds that
|Xi4Xi−1| = 1. (We artificially set X0 = ∅.) Then for every Xi one of the following holds:
|Xi \ Xi−1| = 1, then call Xi introduce bag. We say x with {x} = Xi \ Xi−1 is
introduced.
|Xi−1 \Xi| = 1, then call Xi forget bag. We say x with {x} = Xi−1 \Xi is forgotten.

I Lemma 11 ([2]). A path decomposition (X1, . . . , Xs) of a graph G can be transformed into
a nice path decomposition (X ′1, . . . , X ′s′) of G in time in O(s · width((X1, . . . , Xs))) without
increasing the width and with s′ ∈ O(s · width((X1, . . . , Xs))).

The fact that we also need to handle hyperedges leads to some additional technicalities.
For this reason we will want to use a nice path decomposition with an additional restriction,
which we call extra niceness, in our dynamic program.

I Definition 12. A path decomposition (X1, . . . , Xs) of an incidence graph GI(H) is extra
nice if it is nice and for all e ∈ E(H) there is some u ∈ e such that vu appears in the path
decomposition before ve, i.e. ∀e ∈ E(H) min

vu∈Xi
u∈e

i < min
ve∈Xi

i.

Just like path decompositions can be efficiently be transformed into nice path decomposi-
tions, it is easy to modify nice path decompositions of an incidence graph to obtain extra
nice path decompositions efficiently.

I Lemma 13. Let H satisfy the hyperedge cardinality assumption and have the vertex degree
property. A nice path decomposition (X1, . . . , Xs) of GI(H) can be transformed into an
extra nice path decomposition (X ′1, . . . , X ′s) of GI(H) in time in O(s · width((X1, . . . , Xs))2)
without increasing the width.

The results of this section applied in series prove the following theorem:

I Theorem 14. Given a hypergraph H that satisfies the hyperedge cardinality assumption
and has the vertex degree property it can be decided in time in O(|V (H)|) if pw(GI(H)) ≤ k
and, if this is the case, an extra nice path decomposition (X1, . . . , Xs) of GI(H) with width
at most k and s ∈ O(|V (H)|) can be computed in time in O(|V (H)|).

After the observations in this section we may assume to have an extra nice path decom-
position (X1, . . . , Xs) of GI(H) with s ∈ O(|V (H)|) and width((X1, . . . , Xs)) ≤ k.

IPEC 2019

20:6 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

4 A Linear Time Algorithm for k-CWLA

Using our path decomposition we will dynamically construct a linear arrangement with
bounded cutwidth, working on hypergraphs Hi that grow along the path decomposition and
are contained in H in a certain sense.

I Definition 15. For a hypergraph H and some W ⊆ V (H) and F ⊆ E(H) the trimmed
subhypergraph of H induced by W and F is defined as H[W,F] with vertex set
V (H[W,F]) = W and hyperedge set E(H[W,F]) = {e ∩ W | e ∈ F}. We call a hyper-
graph H ′ trimmed subhypergraph of H if there are W ⊆ V (H) and F ⊆ E(H) such that
H ′ = H[W,F].

I Definition 16. For a linear arrangement ϕ of H = (V,E) and some H ′ = (V ′, E′)
trimmed subhypergraph of H define the restriction of ϕ to H ′ ϕ|H′ to be the unique linear
arrangement of H ′ such that ∀v, w ∈ V (H ′) ϕ(v) ≤ ϕ(w)⇔ ϕ|H′ (v) ≤ ϕ|H′ (w).
Correspondingly, if ψ is a linear arrangement of H = (V,E) and ϕ is the restriction of ψ
to some H ′ = (V ′, E′) where V ′ ⊆ V and E′ = {e ∩ V ′ | e ∈ E′′} where E′′ ⊆ E, then ψ is
an extension of ϕ. For a vertex v ∈ V (H) \ V (H ′) and 1 ≤ p < |V (H ′)|, we say that v is
inserted into position p of ϕ by ψ, if ψ(v) ∈ {ψ(ϕ−1(p)), . . . , ψ(ϕ−1(p+ 1))}, and that v is
inserted into position 0 os ϕ by ψ if ψ(v) < ψ(ϕ−1(1)), and into position |V (H ′)| of ϕ by ψ
if ψ(v) > ψ(ϕ−1(|V (H ′)|)).

I Remark 17. Note that restrictions are indeed well-defined as a linear arrangement of V (H)
infers a unique linear arrangement of any subset of V (H).

We are interested specifically in the following trimmed subhypergraphs of H, along which we
will later iteratively extend our linear arrangement.

I Definition 18. For 1 ≤ i ≤ s define
Hi = H[{u ∈ V (H) | vu ∈

⋃
1≤j≤iXj}, {e ∈ E(H) | ve ∈

⋃
1≤j≤iXj}], and H0 = (∅, ∅).

Assume to be at stage 1 ≤ i ≤ s when traversing the path decomposition, and let ϕ be a
linear arrangement of Hi that we want to extend. The vertices of H that are represented in
Xi, as well as the outermost vertices of (possibly trimmed) hyperedges that are represented
in Xi, are of particular interest. This is due to the fact that, by the properties of a path
decomposition, these are the vertices that may be important in a certain sense, when updating
information about ϕ to extensions that include parts of the hypergraph that are still to
be encountered. We formalise this intuition in the following definition and characterising
remark.

I Definition 19. We say a vertex v ∈ V (Hi) is unimportant after ϕ if
all hyperedges of H, incident to v are considered in E(Hi), i.e. ∀e ∈ E(H) v ∈ e ⇒
e ∩ V (Hi) ∈ E(Hi); and
no hyperedge of H, containing vertices from V (Hi), as well as V (H) \ V (Hi), has any v
as left- or rightmost vertex in ϕ, i.e.
∀e ∈ E(H) e ∩ V (Hi) 6= ∅ ∧ e ∩

(
V (H) \ V (Hi)

)
6= ∅

⇒ argmin
w∈e∩V (Hi)

ϕ(w) 6= v ∧ argmax
w∈e∩V (Hi)

ϕ(w) 6= v.

Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. The set of vertices distinguished by
ϕ is the set {u ∈ V (H) | vu ∈ Xi} ∪ { argmin

u∈e∩V (Hi)
ϕ(u), argmax

u∈e∩V (Hi)
ϕ(u) | ve ∈ Xi}.

T. Hamm 20:7

I Remark 20. Note that by the properties of a path decomposition in particular all vertices in
V (Hi) \ {u ∈ V (H) | vu ∈ Xi} ∪ { argmin

u∈e∩V (Hi)
ϕ(u), argmax

u∈e∩V (Hi)
ϕ(u) | ve ∈ Xi} are unimportant

after ϕ, i.e. all vertices that are not distinguished by ϕ, are unimportant after ϕ.
The properties in the definition of unimportantness are what we will exploit to identify

linear arrangements that we have need to consider at a certain stage, in terms of whether or
not they allow an extension to a complete linear arrangement of H with cutwidth at most
k. In this way we will be able to restrict ourselves to considering at most constantly many
(w.r.t. the size of the hypergraph) linear arrangements at each stage. We give the details in
Section 4.1 and use these results in Section 4.2 to give a linear time algorithm for k-CWLA.

4.1 Identifying Partial Linear Arrangements
We use the same idea as in [11] to give a condition under which two linear arrangements of Hi

for some i ∈ {1, . . . , s} either can both, or can both not be extended to a linear arrangement
of H satisfying the cutwidth bound. More specifically we consider the relative order of
distinguished vertices in such linear arrangements and where exactly, vertices that are yet to
be encountered may be inserted. In certain cases we will be able to shift vertices that are not
distinguished and are strewn between vertices distinguished by ϕ between two distinguished
vertices that are consecutive w.r.t. ϕ without increasing the cutwidth.

I Lemma 21. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Assume there are p and
q ∈ N such that
(i) cw(ϕ, p) = min0≤j≤q cw(ϕ, p+ j) and cw(ϕ, p+ q) = max0≤j≤q cw(ϕ, p+ j); and
(ii) ϕ−1(p+ 1), . . . , ϕ−1(p+ q) are unimportant after ϕ.

Let ψ be a linear arrangement of H that extends ϕ. Obtain ψ′ from ψ by shifting for each
1 ≤ j̄ ≤ q the vertices from in between ϕ−1(p+ j̄) and ϕ−1(p+ j̄ + 1) to in between ϕ−1(p)
and ϕ−1(p+1) and otherwise maintaining the same relative ordering as given by ψ. Formally
the described ψ′ is defined by:

ψ′(v) =

ψ(v)− j̄ if ψ(ϕ−1(p+ j̄)) < ψ(v) < ψ(ϕ−1(p+ j̄ + 1))

for some 1 ≤ j̄ ≤ q
ψ(ϕ−1(p+ q + 1))− (q + 1− j̄) if v = ϕ−1(p+ j̄) for some 1 ≤ j̄ ≤ q
ψ(v) otherwise

Then cw(ψ′) ≤ cw(ψ).

I Remark 22. See Figure 1 for an illustration of how ϕ, ψ and ψ′ relate.

Proof. Note that if j /∈ {ψ(ϕ−1(p+ 1)), . . . , ψ(ϕ−1(p+ q + 1))− 1} by construction of ψ′ it
holds that ∀v ∈ V (H) ψ(v) ≤ j ⇔ ψ′(v) ≤ j. So for all such j we have cw(ψ, j) = cw(ψ′, j).
It remains to consider positions between ψ(ϕ−1(p + 1)) and ψ(ϕ−1(p + q + 1)) − 1. For
j′ ∈ {ψ(ϕ−1(p+1)), . . . , ψ(ϕ−1(p+2))−1} we will find j ∈ N such that cw(ψ′, j′) ≤ cw(ψ, j).
We distinguish two cases according to the cases considered in the definition of the value of
ψ′ at ψ′−1(j′):
Case 1: ψ(ϕ−1(p+ j̄)) < ψ(ψ′−1(j′)) < ψ(ϕ−1(p+ j̄ + 1)) for some 1 ≤ j̄ ≤ q .

One can set j = ψ(ψ′−1(j′))(= j′ + j̄) (see Figure 1, red), and use the fact that
ϕ−1(p+1), . . . , ϕ−1(p+q) are unimportant after ϕ, and the fact that cw(ϕ, p) ≤ cw(ϕ, p+j̄)
to show cw(ψ′, j′) ≤ cw(ψ, j).

Case 2: ψ′−1(j′) = ϕ−1(p+ j̄) for some 1 ≤ j̄ ≤ q. One can set j = ψ(ϕ−1(p+q)) (see
Figure 1, blue), and use the fact that ϕ−1(p+ 1), . . . , ϕ−1(p+ q) are unimportant after
ϕ, and the fact that cw(ϕ, p+ j̄) ≤ cw(ϕ, p+ q) to show cw(ψ′, j′) ≤ cw(ψ, j). J

IPEC 2019

20:8 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

ϕ . . .
ϕ−1(p) ϕ−1(p+ 1)

. . .
ϕ−1(p+ q − 1) ϕ−1(p+ q)

. . .

j jψ . . .
ϕ−1(p) ϕ−1(p+ 1)

. . .
ϕ−1(p+ q − 1) ϕ−1(p+ q)

. . .

j′ j′ψ′ . . .
ϕ−1(p)

. . .
ϕ−1(p+ q)ϕ−1(p+ 1)

. . .
ϕ−1(p+ q − 1)

. . .

Figure 1 Illustrations of the situation in Lemma 21 and its proof – vertices in V (Hi) are filled,
exemplary positions at which cutwidths are compared in Case 1 red and Case 2 blue.

One can show an analogous result for the smallest cutwidth being at the largest position:

I Lemma 23. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Assume there are p and
q ∈ N such that
(i) cw(ϕ, p+ q) = min0≤j≤q cw(ϕ, p+ j) and cw(ϕ, p) = max0≤j≤q cw(ϕ, p+ j); and
(ii) ϕ−1(p+ 1), . . . , ϕ−1(p+ q) are unimportant after ϕ.

Let ψ be a linear arrangement of H that extends ϕ. Obtain ψ′ from ψ by shifting for each
0 ≤ j̄ ≤ q − 1 the vertices from in between ϕ−1(p + j̄) and ϕ−1(p + j̄ + 1) to in between
ϕ−1(p+ q) and ϕ−1(p+ q+ 1) and otherwise maintaining the same relative ordering as given
by ψ. Then cw(ψ′) ≤ cw(ψ).

Lemma 21 and Lemma 23 yield:

I Lemma 24. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi.
1. If p ∈ {1, . . . , |V (Hi)| − 1} is a position, ϕ−1(p+ 1) is not a vertex distinguished by ϕ,

and cw(ϕ, p) = cw(ϕ, p+ 1), then there is a linear arrangement ψ′ of H that extends ϕ
such that cw(ψ′) = min

ψ extension of
ϕ to H

cw(ψ), and no vertex is inserted into position p+ 1 of ϕ

by ψ′.
2. If q ≥ 2 and p ∈ {1, . . . , |V (Hi)|−1− q} is a position, for all 1 ≤ j ≤ q, ϕ−1(p+ j) is not

a vertex distinguished by ϕ, and min0≤j≤q cw(ϕ, p+j) = cw(ϕ, p) and max0≤j≤q cw(ϕ, p+
j) = cw(ϕ, p+ q) or vice versa, then there is a linear arrangement ψ′ of H that extends ϕ
such that cw(ψ′) = min

ψ extension of
ϕ to H

cw(ψ), and no vertex is inserted into any of the positions

p+ 1, . . . , p+ q − 1 of ϕ by ψ′.

Proof. Apply Lemma 21 or Lemma 23 to ψ and the relevant positions, where ψ is any linear
arrangement of H that extends ϕ and achieves minimal cutwidth among these. J

This immediately relates to so called typical sequences. Such sequences were introduced
and studied in [2] (and implicitly in [5]) where it was shown that there are boundedly many
as well as that they have bounded length. These bounds will be important for us later on.

I Definition 25. For a sequence of natural numbers n1 . . . nt its typical sequence,
τ (n1 . . . nt), arises from n1 . . . nt by performing the following operations until neither of
them is applicable anymore:

Removing consecutive repetitions of entries; or
removing subsequences ni2 . . . niu−1 , with u ≥ 3
and min1≤j≤u nij = ni1 and max1≤j≤u nij = niu or vice versa.

A sequence of natural numbers is typical if it is the typical sequence of some sequence.

T. Hamm 20:9

Note that for a sequence n1 . . . nt, its typical sequence can be computed by going through
the sequence repeatedly and performing the two operations until no longer possible. As the
operations necessarily shorten the sequence, this can be done in time in O(t2).

I Lemma 26 ([2, Lemma 3.5]). There are no more than 8
3 22k different typical sequences

whose entries are bounded by k.

I Lemma 27 ([2, Lemma 3.3(ii)]). A typical sequence whose entries are bounded by k has
length at most 2k − 1.

By iterating Lemma 21 and Lemma 23 and making the additional observation that we
never shift vertices into a position of ϕ whose cutwidth is removed in the typical sequences
of the cutwidths between distinguished vertces, we can refine Lemma 24 to:

I Lemma 28. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Then there is a linear
arrangement ψ′ of H that extends ϕ such that cw(ψ′) = min

ψ extension of
ϕ to H

cw(ψ), and for q ≥ 1 and

a position p ∈ {1, . . . , |V (Hi)| − 1− q} such that ϕ−1(p) and ϕ−1(p+ q+ 1) are distinguished
by ϕ, all ϕ−1(p+ j) are not distinguished by ϕ, no vertex is inserted into any position p′ of
ϕ such that cw(ϕ, p′) is removed in τ(cw(ϕ, p) . . . cw(ϕ, p+ q)) by ψ′.

I Definition 29. For a linear arrangement ϕ of Hi with 1 ≤ i ≤ s, p ∈ {1, . . . , |V (Hi)| − 1}
is a typical insertion position of ϕ, if it is a position into which an extension of ϕ
to H as described in Lemma 28 inserts vertices. 0 and |Vi| are always typical inser-
tion positions of ϕ. I.e. p is a typical insertion position of ϕ if p is not removed in
τ(cw(ϕ, max

p′≤p∧ϕ−1(p′) is
distinguished by ϕ

p′) . . . cw(ϕ, min
p′>p∧ϕ−1(p′) is
distinguished by ϕ

p′)). We define insertion-typical lin-

ear arrangements inductively: The empty linear arrangement of H0 is insertion-typical. for
1 ≤ i+ 1 ≤ s, a linear arrangement is a insertion-typical linear arrangement of Hi+1 if it
arises from an insertion-typical linear arrangement of Hi by insertion of the at most one
introduced vertex into a typical insertion position of this linear arrangement.

I Remark 30. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Because, by definition,
there is always a maximum value entry of n1 . . . nt in τ(n1 . . . nt), there is a typical
insertion position p ∈ {1, . . . , |V (Hi)| − 1} such that cw(ϕ) = cw(ϕ, p).
I Remark 31. An insertion-typical linear arrangement with cutsidth at most k has at most
(2k − 1)2 ∈ O(k2) typical insertion positions. This follows from the fact that at most 2k
vertices are distinguished by a linear arrangement between every two consecutive of which, by
Lemma 27, the cutwidths at typical insertion positions form a sequence of length ≤ 2k − 1.
I Remark 32. Let 1 ≤ i ≤ s and ϕ be an insertion-typical linear arrangement of Hi with a
typical insertion position p of ϕ. Then p′ = max{q ∈ {0, . . . , |V (Hi−1)| | ϕ(ϕ|−1

Hi−1
(q)) ≤ p}

is a typical insertion position of ϕ|Hi−1
. Otherwise, assume cw(ϕ|Hi−1

, p′) to be removed in
the typical sequence of the cutwidths among which the cutwidth at p′ is considered. Because
vertices in V (Hi) \ V (Hi−1) are only inserted into typical insertion positions of ϕ|Hi−1

by
ϕ, and hyperedges that are considered in Hi but not in Hi−1 only contain vertices that are
distinguished by ϕ|Hi−1

, the cutwidth increase is uniform for the cutwidths among which
the cutwidth at p′ is considered when moving from ϕ|Hi−1

to ϕ. This contradicts p being a
typical insertion position of ϕ.

I Theorem 33. If cw(H) ≤ k, then there is an insertion-typical linear arrangement ψ of H
such that cw(ϕ) ≤ k.

IPEC 2019

20:10 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

Proof. Let ψ witness cw(H) ≤ k. ψ|H0
is trivially insertion-typical. By applying Lemma 28

to ψ|H0
and ψ we can modify ψ in a way that ψ|H1

is insertion-typical while maintaining the
same restriction to H0 and the cutwidth bound of k. (This first step is somewhat pathological,
since no actual modification is needed.)
Similarly we can use Lemma 28 on the restriction of this modified ψ to H1 and this modified ψ
to obtain a ψ with an insertion-typical restriction to H2 while maintaining the same restriction
to H1, and hence also to H0, and the cutwidth bound of k. Iterating this procedure up to s
proved the statement. J

4.2 The Dynamic Programming Procedure
Theorem 33 allows us to consider only insertion-typical linear arrangements along the
path decomposition. In the following, we describe a dynamic program to construct linear
arrangements of the trimmed subhypergraphs induced by the extra nice path decomposition
while enforcing a bound of k on their cutwidth. As is usual for algorithms processing path
decompositions, we first define our records (i.e. the information stored about each partial
solution), what they look like for the initial (empty) stage and how to infer a complete
solution from the record at the last stage. Then we describe how to update these records
when encountering introduce- and forget bags respectively.

The records. For 1 ≤ i ≤ s our record consists of the following for each insertion-typical
linear arrangement ϕ of Hi with cutwidth at most k:

The working information, which is the weak order <ϕ on {u ∈ V (H) | vu ∈ Xi} ∪
{(e, left), (e, right) | e ∈ E(H)∧ ve ∈ Xi} and the cutwidths of ϕ at each typical insertion
position, that is given in the following way:

for v, w ∈ {u ∈ V (H) | vu ∈ Xi}, v <ϕ w, iff ϕ(v) < ϕ(w);
for v ∈ {u ∈ V (H) | vu ∈ Xi}, v <ϕ (e, left), iff ϕ(v) < minw∈e∩V (Hi) ϕ(w) (analog-
ously for (e, right) and maxw∈e∩V (Hi) ϕ(w));
for v ∈ {u ∈ V (H) | vu ∈ Xi} and a typical insertion position p ∈ {1, . . . , |V (Hi)| − 1},
v <ϕ cw(ϕ, p), iff ϕ(v) < p;
for (e, left) and a typical insertion position p ∈ {1, . . . , |V (Hi)| − 1}, v <ϕ cw(ϕ, p), iff
minw∈e∩V (Hi) ϕ(w) < p (analogously for (e, right) and maxw∈e∩V (Hi) ϕ(w)); and
for typical insertion positions p and q, cw(ϕ, p) <ϕ cw(ϕ, q), iff p < q.

The solution information, which in turn consists of
a map pos : (cw(ϕ, p))p a typical insertion position of ϕ → {0, . . . , |V (Hi)|}, that associates
each cutwidth value which is stored in the working information to the typical insertion
position at which it is attained;
a pointer prec to the entry in the record at the preceding stage, that corresponds to
ϕ|Hi−1

;
and, if Xi introduces vu for some u ∈ V (H), the solution information also specifies
ins ∈ {0, . . . , |V (Hi−1)|} to be cw(ϕ|Hi−1

, p) where p is the typical insertion position of
ϕ|Hi−1

which u is inserted into by ϕ.

Then the initial record (for i = 0) is given by a single cutwidth value 0 as working information,
and the single cutwidth value 0 in the working information is mapped to position 1 by pos.
If the record at stage s is empty then there is no insertion-typical linear arrangement of
Hs = H with cutwidth at most k. In this case we output that no linear arrangement of
H satisfying cutwidth bound k exists. By Theorem 33 this means cw(H) > k. Otherwise
there is an entry in the record at stage s which corresponds to an insertion-typical linear

T. Hamm 20:11

arrangement of H with (using Remark 30) cutwidth at most k, hence in particular a solution
to k-CWLA. We can retrace this linear arrangement using the solution information: Starting
the entry in the record at stage i, iteratively traverse the entries corresponding to the
restriction at the preceding stage by using the prec-pointers in every step. Concurrently save
all encountered ins in reverse order. By definition, the j-th element of the resulting sequence
π = π1 . . . π|V (H)| describes the position of the vertex u ∈ V (H) such that vu is the j-th of
{vw | w ∈ V (H)} that is introduced in our path decomposition, relative to the j − 1 first
such vertices. This allows us to reconstruct the linear arrangement, e.g. as a linked list of
vertices of H, representing the order in which it enumerates V (H): For j = 1, . . . , |V (H)|
Set the j-th introduced vertex to be between the πj-th and (πj + 1)-th element of the list
constructed so far. As inserting into a linked list, takes constant time, the construction runs
in time linear in the number of bags of the path decomposition, which in turn is linear in the
size of the incidence graph because it is nice.

In the following we describe how to update records when encountering introduce- and
forget bags respectively. Proofs for correctness can be given by technical, but straightforward
inductions on the stage, using the properties of a nice path decomposition and Remarks 30
and 32. It is also easy to check, using the bound from Remark 31 that the runtime of each
of the given procedures lies in O(k3).

Introduce bag. Let 1 ≤ i ≤ s, assume to have the record for stage i and that Xi+1 is a bag
that introduces v ∈ GI(H). We do a case distinction on the type of v:

v = vw for some w ∈ V (H). A insertion-typical linear arrangement of Hi+1 arises from an
insertion-typical linear arrangement of Hi by inserting w into a typical insertion position
of that linear arrangement. By induction hypothesis, there is an entry in the record at
stage i for such a linear arrangement ϕ which also contains all cutwidths at typical insertion
positions of ϕ in form of the dom(<ϕ) \ V (Hi). So, for every entry of the record at stage i
which corresponds to some ϕ, and for each element c ∈ dom(<ϕ) \ V (Hi), create an entry
of the record at stage i + 1 that corresponds to the linear arrangement ϕ′ arising from ϕ

by inserting w into position pos(c) of ϕ. The working- and solution information for this
entry can be obtained in the following way: Obviously prec points to the entry for ϕ and
ins = pos(c).
Define <ϕ′ on dom(<ϕ) \ {c} ∪ {cleft, cright, w} by setting x <ϕ′ y whenever x, y ∈ dom(<ϕ)
and x <ϕ y; x <ϕ′ y if x ∈ {cleft, cright, w}, y ∈ dom(<ϕ) and c <ϕ y; and cleft <ϕ′ w <ϕ′

cright. – Intuitively, in this way we fix the correct relative position of w in ϕ. The position
corresponding to c is split up by the insertion of w into that position.
For every e ∈ {f ∈ E(H) | vf ∈ Xi+1}(= {f ∈ E(H) | vf ∈ Xi}), if w ∈ e and w <ϕ′ (e, left),
increment every cutwidth value d with w <ϕ′ d <ϕ′ (e, left) by one, and set (e, left) <ϕ′ x iff
w <ϕ′ x(, i.e. ‘(e, left) =ϕ′ w’). Similarly, if w ∈ e and (e, right) <ϕ′ w, we increment every
cutwidth value d with (e, right) <ϕ′ d <ϕ′ w by one , and set (e, right) <ϕ′ x iff w <ϕ′ x(, i.e.
‘(e, right) =ϕ′ w’). – Intuitively, in this way we increment the cutwidth values at positions at
which a hyperedge contributes to the cutwidth value only after taking w into account. If, at
any point, we surpass k by these incrementations, we abort and do not add the entry to the
record, as it corresponds to a linear arrangement violating the cutwidth bound.
For every d ∈ dom(<ϕ′) \ V (Hi+1) \ {cleft, cright}, pos remains the same, if d <ϕ′ cleft, and is
increased by one otherwise. We also set pos(cleft) to be the evaluation of the old pos of c and
pos(cright) = pos(cleft) + 1. – Intuitively this means we shift the positions in a way to make
space for the newly split position, that was created by the insertion of w.
Finally, note that after these modifications our information might include cutwidths at
positions that are no longer typical insertion positions (e.g. because the cutwidth values
around a position changed). To amend this, we can apply the typical sequence operator τ to

IPEC 2019

20:12 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

sequences of cutwidth values that are between the remaining elements of dom(<ϕ′) ∩ ({u ∈
V (H) | vu ∈ Xi} ∪ {(e, left), (e, right) | e ∈ E(H) ∧ ve ∈ Xi}) and delete the cutwidths
removed by this operation from the domains of <ϕ′ and pos. C

v = ve for some e ∈ E(H). An insertion-typical linear arrangement of Hi+1 is by definition
also an insertion-typical linear arrangement of Hi. So, for every entry of the record at
stage i which corresponds to some ϕ we create an entry of the record at stage i + 1 also
corresponding to ϕ. We need to adapt the working- and solution information to take e into
account in the cutwidths of ϕ: Let prec point to the entry corresponding to ϕ in the record
at stage i. Because of the extra niceness of our path decomposition there is at least one
vertex of e represented in Xi+1. Let v be the <ϕ-minimal, and v′ to be the <ϕ-maximal
w ∈ e ∩ {w ∈ V (H) | vw ∈ Xi+1} (v = v′ is possible). Set (e, left) <ϕ′ x iff v <ϕ′ x(, i.e.
‘(e, left) =ϕ′ v’) and set (e, right) <ϕ′ x iff v′ <ϕ′ x(, i.e. ‘(e, right) =ϕ′ v

′’). – Intuitively, we
find the outermost vertices of e and set the markers (e, left) and (e, right) correspondingly.
Leave <ϕ and pos unchanged.
Increment all cutwidth values c ∈ dom(<ϕ′) with (e, left) <ϕ′ c <ϕ′ (e, right) by one. –
Intuitively this corresponds to counting e in all cutwidth values, to which it contributes when
it is considered. If we surpass k as a cutwidth value by these incrementations, we abort and
do not add the entry to the record, as it corresponds to a linear arrangement violating the
cutwidth bound. Because this incrementation actually only changes the cutwidth values
uniformly for a sequence of cutwidths between distinguished vertices, the typical insertion
positions remain unchanged by the consideration of e. C

Forget bag. Let 1 ≤ i ≤ s, assume to have the record for stage i and that Xi+1 is a bag that
forgets v ∈ GI(H). By definition, in this situation, an insertion-typical linear arrangement
of Hi+1 is also an insertion-typical linear arrangement of Hi. Moreover the cutwidth values
of any such linear arrangement do not change when moving from Hi to Hi+1. Thus, we
only have to remove elements from the domain of <ϕ after forgetting v and make exactly
the same amends described in the last paragraph of the case of a bag introducing vw with
w ∈ V (H), because the removal of certain distinguished vertices might lead to fewer typical
insertion positions. For the first step, we remove w from the domain of <ϕ, if v = vw, and
remove (e, left) and (e, right) from the domain of <ϕ, if v = ve.

As presented, the dynamic program solves k-CWLA, given a path decomposition of
width at most k, in time in O(|V (H)| · b · k4), where b is a bound on the largest number
of insertion-typical linear arrangements with cutwidth at most k at a stage. However, at
closer inspection, we realise that during the dynamic program solution information is only
used to update solution information, and never working information. What is more, solution
information is never used to check the cutwidth bound, i.e. to exclude potential linear
arrangements, but solely to reconstruct a solution, after a successful traversal of the path
decomposition. This implies that actually two insertion-typical linear arrangements with
cutwidth at most k can be either both or both not be extended to such a linear arrangement
of H if they imply the same solution information. Thus during the algorithm, we only need
to add an entry to a record at stage i, if there is no entry with the same solution information
already. With this additional argument the runtime of the algorithm lies in O(|V (H)| ·w ·k3),
where w is the number of possibilities for working information of an insertion-typical linear
arrangement with cutwidth at most k. We can bound w by (2k)! ·(8

3 22k)2k−1 using Lemma 26
and the bounded width of the path decomposition.

T. Hamm 20:13

Thus we obtain a linear time algorithm for k-CWLA, by first checking the vertex degree
property, in case of a positive answer computing an extra nice tree decomposition and, in
case of success applying the described dynamic program, and outputting cw(H) > k if any
stage fails.

I Theorem 34. k-CWLA can be solved in time in O(|V (H)|) and O∗(2O(k2)).

5 Future Work – Using a Tree Decomposition of the Incidence Graph

One can show that the cutwidth of a hypergraph is equal to the product of its maximum
vertex degree and the pathwidth of its incidence graph. Hence our algorithm immediately
infers an algorithm for solving the Minimum Cut Linear Arrangement Problem in
FPT-time parameterised by the maximum vertex degree and the pathwidth of its incidence
graph. Reductions in literature show that dropping the restriction on the incidence pathwidth
results in NP-hardness [9, Corollary 2.10], and can easily be modified to show the same for
dropping the restriction on the maximum vertex degree [9, slight modification of the proof of
Lemma 2.4]. (It is not difficult to see that graphs of bounded path- or treewidth also have
bounded incidence path- or treewidth respectively.) In this sense, the algorithm is tight.

However the natural question arises, whether incidence pathwidth can be generalised to
incidence treewidth. This has been successfully achieved for the analogous algorithm for
k-CWLA restricted to graphs [12], and also seems possible for hypergraphs. The idea is,
to extend the given dynamic program to also be able to handle tree decompositions of the
incidence graph, by specifying the behaviour at join bags. In this situation partial linear
arrangements for each trimmed subhypergraph corresponding to a bag immediately below the
join bag have to “interleave”. The number of possibilities for them to do so, is linear in the size
of the hypergraph, however we can argue as in Section 4.1 that only interleaving at typical
insertion positions of the respective partial linear arrangements needs to be considered.

References

1 Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM Journal on Computing, 25:1305–1317, December 1996. doi:10.1137/
S0097539793251219.

2 Hans L. Bodlaender and Ton Kloks. Efficient and Constructive Algorithms for the Pathwidth
and Treewidth of Graphs. Journal of Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.
1996.0049.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

4 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of
matroids. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1695–1704, 2016.
doi:10.1137/1.9781611974331.ch116.

5 Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite con-
gruence. In Javier Leach Albert, Burkhard Monien, and Mario Rodríguez Artalejo, editors,
Automata, Languages and Programming, pages 532–543, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg.

6 Fillia Makedon and Ivan Hal Sudborough. On Minimizing Width in Linear Layouts. Discrete
Appl. Math., 23(3):243–265, June 1989. doi:10.1016/0166-218X(89)90016-4.

IPEC 2019

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1137/1.9781611974331.ch116
https://doi.org/10.1016/0166-218X(89)90016-4

20:14 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

7 Fillia S. Makedon, Christos H. Papadimitriou, and Ivan H. Sudborough. Topological bandwidth.
In Giorgio Ausiello and Marco Protasi, editors, CAAP’83, pages 317–331, Berlin, Heidelberg,
1983. Springer Berlin Heidelberg.

8 Zevi Miller and Ivan Hal Sudborough. A Polynomial Algorithm for Recognizing Bounded
Cutwidth in Hypergraphs. Mathematical Systems Theory, 24(1):11–40, 1991. doi:10.1007/
BF02090388.

9 Burkhard Monien and Ivan Hal Sudborough. Min Cut is NP-Complete for Edge Weighted
Treees. Theor. Comput. Sci., 58:209–229, 1988.

10 Neil Robertson and P.D. Seymour. Graph minors. I. Excluding a forest. Journal of Combinat-
orial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

11 Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.2004.
12.001.

12 Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms
for partial w-trees of bounded degree. Journal of Algorithms, 56(1):25–49, 2005. doi:
10.1016/j.jalgor.2004.12.003.

13 René van Bevern. Fixed-parameter linear-time algorithms for NP-hard graph and hypergraph
problems arising in industrial applications. PhD thesis, Berlin Institute of Technology, 2014.
URL: http://d-nb.info/1058974750.

14 René van Bevern, Rodney G. Downey, Michael R. Fellows, Serge Gaspers, and Frances A.
Rosamond. Myhill-Nerode Methods for Hypergraphs. Algorithmica, 73(4):696–729, December
2015. doi:10.1007/s00453-015-9977-x.

15 Dong Wang, Edmund M. Clarke, Yunshan Zhu, and James H. Kukula. Using cutwidth to
improve symbolic simulation and Boolean satisfiability. In Proceedings of the Sixth IEEE
International High-Level Design Validation and Test Workshop 2001, Monterey, California,
USA, November 7-9, 2001, pages 165–170, 2001. doi:10.1109/HLDVT.2001.972824.

https://doi.org/10.1007/BF02090388
https://doi.org/10.1007/BF02090388
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.003
https://doi.org/10.1016/j.jalgor.2004.12.003
http://d-nb.info/1058974750
https://doi.org/10.1007/s00453-015-9977-x
https://doi.org/10.1109/HLDVT.2001.972824

	Overview
	Formal Introduction and Preliminary Observations
	Known Results
	The Vertex Degree Property

	Path Decompositions of Incidence Graphs
	A Linear Time Algorithm for k-CWLA
	Identifying Partial Linear Arrangements
	The Dynamic Programming Procedure

	Future Work – Using a Tree Decomposition of the Incidence Graph

