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Abstract
This paper introduces a new technique that generalizes previously known fine-grained reductions
from linear structures to graphs. Least Weight Subsequence (LWS) [30] is a class of highly sequential
optimization problems with form F (j) = mini<j [F (i) + ci,j ] . They can be solved in quadratic
time using dynamic programming, but it is not known whether these problems can be solved faster
than n2−o(1) time. Surprisingly, each such problem is subquadratic time reducible to a highly
parallel, non-dynamic programming problem [36]. In other words, if a “static” problem is faster
than quadratic time, so is an LWS problem. For many instances of LWS, the sequential versions are
equivalent to their static versions by subquadratic time reductions. The previous result applies to
LWS on linear structures, and this paper extends this result to LWS on paths in sparse graphs, the
Least Weight Subpath (LWSP) problems. When the graph is a multitree (i.e. a DAG where any pair
of vertices can have at most one path) or when the graph is a DAG whose underlying undirected
graph has constant treewidth, we show that LWSP on this graph is still subquadratically reducible
to their corresponding static problems. For many instances, the graph versions are still equivalent
to their static versions.

Moreover, this paper shows that if we can decide a property of form ∃x∃yP (x, y) in subquadratic
time, where P is a quickly checkable property on a pair of elements, then on these classes of graphs,
we can also in subquadratic time decide whether there exists a pair x, y in the transitive closure of
the graph that also satisfy P (x, y).
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1 Introduction

1.1 Extending one-dimensional dynamic programming to graphs
Least Weight Subsequence (LWS) [30] is a type of dynamic programming problems: select a
set of elements from a linearly ordered set so that the total cost incurred by the adjacent
pairs of selected elements is optimized. It is defined as follows: Given elements x0, . . . , xn,

1 Now at Google.

© Jiawei Gao;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jiawei@cs.ucsd.edu
https://doi.org/10.4230/LIPIcs.IPEC.2019.16
https://eccc.weizmann.ac.il/report/2019/045/
https://eccc.weizmann.ac.il/report/2019/045/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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and an n× n matrix C of costs ci,j for all pairs of indices i < j, compute F on all elements,
defined by

F (j) =
{

0, for j = 1
min0≤i<j [F (i) + ci,j ], for j = 2, . . . , n

F (j) is the optimal cost value from the first element up to the j-th element. We use the
notation LWSC to define the LWS problem with cost matrix C. The Airplane Refueling
problem [30] is a well known example of LWS: Given the locations of airports on a line,
find a subset of the airports for an airplane to add fuel, that minimizes the total cost. The
cost of flying from the i-th to the j-th airport without stopping is defined by ci,j . Other
LWS examples include finding a longest chain satisfying a certain property, such as Longest
Increasing Subsequence [25] and Longest Subset Chain [36]; breaking a linear structure
into blocks, such as Pretty Printing [34]; variations of Subset Sum such as special versions
of the Coin Change problem and the Knapsack problem[36]. These problems have O(n2)
time algorithms using dynamic programming, and in many special cases it can be improved:
when the cost satisfies the quadrangle inequality or some other properties, there are near
linear time algorithms [50, 46, 26]. But for the general LWS, it is not known whether these
problems can be solved faster than n2−o(1) time.

A general approach to understanding the fine-grained complexity of these problems was
initiated in [36]. Many LWS problems have succinct representations of ci,j . Usually C is
defined implicitly by the data associated to each element, and the size of the data on each
element is relatively small compared to n. Taking problems defined in [36] as examples,
in LowRankLWS, ci,j = 〈µi, σj〉, where µi and σj are boolean vectors of length d � n

associated to each element that are given by the input. The ChainLWS problem has costs
c1, . . . , cn defined by a boolean relation P so that ci,j equals cj if P (i, j) is true, and ∞
otherwise. P is computable by data associated to element i and element j. (For example, in
LongestSubsetChain, P (i, j) is true iff set Si is contained in set Sj , where Si and Sj are sets
associated to elements i and j respectively.) So the goal of the problem becomes finding a
longest chain of elements so that adjacent elements that are to be selected satisfy property
P . When C can be represented succinctly, we can ask whether there exist subquadratic time
algorithms for these problems, or try to find subquadratic time reductions between problems.
[36] showed that in many LWSC problems where C can be succinctly described in the input,
the problem is subquadratic time reducible to a corresponding problem, which is called a
StaticLWSC problem. The problem StaticLWSC is: given elements x1, . . . , xn, a cost matrix C,
and values F (i) on all i ∈ {1, . . . , n/2}, compute F (j) = mini∈{n/2+1,...,n}[F (i) + ci,j ] for all
j ∈ {n+ 1, . . . , 2n}. It is a parallel, batch version (with many values of j rather than a single
one) of the LWS update rule applied sequentially one index at a time in the standard DP
algorithm. The reduction from LWSC to StaticLWSC implies that a highly sequential problem
can be reducible to a highly parallel one. If a StaticLWSC problem can be solved faster
than quadratic time, so can the corresponding LWSC problem. Apart from one-directional
reductions from general LWSC to StaticLWSC , [36] also proved subquadratic time equivalence
between some concrete problems (LowRankLWS is equivalent to MinInnerProduct, NestedBoxes
is equivalent to VectorDomination, LongestSubsetChain is equivalent to OrthogonalVectors, and
ChainLWS, which is a generalization of NestedBoxes and LongestSubsetChain, is equivalent to
Selection, a generalization of VectorDomination and OrthogonalVectors).

Some of the LWS problems can be naturally extended from lines to graphs. For example,
on a road map, we wish to find a path for a vehicle, along which we wish to find a sequence
of cities where the vehicle can rest and add fuel so that the total cost is minimized. The cost
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of traveling between cities x and y without stopping is defined by cost cx,y. Connections
between cities could be a general graph, not just a line. Works about algorithms for special
LWS problems on special classes of graphs include [11, 43, 24, 38].

Using a similar approach as [36], this paper extends the Least Weight Subsequence
problems to the Least Weight Subpath (LWSPC) problem whose objective is to find a least
weight subsequence on a path of a given DAG G = (V,E). Let there be a set V0 containing
vertices that can be the starting point of a subsequence in a path. The optimum value on
each vertex is defined by:

F (v) =
{

min(0,minu v[F (u) + cu,v]), for v ∈ V0

minu v[F (u) + cu,v], for v /∈ v0

where u  v means v is reachable from u. The goal of LWSPC is to compute F (v) for
all vertices v ∈ V . Examples of LWSPC problems will be given in Appendix B. LWSPC
can be solved in time O(|V | · |E|) by doing reversed depth/breadth first search from each
vertex, and update the F value on the vertex accordingly. It is not known whether it has
faster algorithms, even for Longest Increasing Subsequence, which is an LWSC instance
solvable in O(n logn) time on linear structures. If C is succinctly describable in similar
ways as LowRankLWS, NestedBoxes,SubsetChain or ChainLWS, we wish to study if there are
subquadratic time algorithms or subquadratic time reductions between problems.

For the cost matrix C, we consider that every vertex has some additional data so that
cx,y can be computed by the data contained in x and y. Let the size of additional data
associated to each vertex v be its weighted size w(v). The weight of a vertex can be defined
in different ways according to the problems. For example, in LowRankLWS, the weighted size
of an element can be defined as the dimension of its associated vector; and in SubsetChain,
the weighted size of an element is the size of its corresponding subset. We use m = |E| as the
number of graph edges. Let n be the number of vertices. We study the case where the graph
is sparse, i.e. m = n1+o(1). Let the total weighted size of all vertices be N . For LWSC and
other problems without graphs, we use N as the input size. For LWSPC and other problems
on graphs, we use M = max(m,N) as the size of the input.

In this paper we will see that if we can improve the algorithm for StaticLWSC to N2−o(1),
then on some classes of graphs we can solve LWSPC faster than M2−o(1) time.

1.2 Fine-grained complexity preliminaries
Fine-grained complexity studies the exact-time reductions between problems, and the com-
pleteness of problems in classes under exact-time reductions. These reductions have estab-
lished conditional lower bounds for many interesting problems. The Orthogonal Vectors
problem (OV) is a well-studied problem solvable in quadratic time. If the Strong Exponential
Time Hypothesis (SETH) [31, 32] is true, then OV does not have truly subquadratic time
algorithms [47]. The problem OV is defined as follows: Given n boolean vectors of dimension
d = ω(logn), and decide whether there is a pair of vectors whose inner product is zero. The
best algorithm is in time n2−Ω(1/ log(d/ logn)) [7, 23]. The Moderate-dimension OV conjecture
(MDOVC) states that for all ε > 0, there are no O(n2−εpoly(d)) time algorithms that solve
OV with vector dimension d. If this conjecture is true, then many interesting problems
would get lower bounds, including dynamic programming problems such as Longest Common
Subsequence [2, 20], Edit Distance [14, 5], Fréchet distance [18, 21, 22], Local Alignment [9],
CFG Parsing and RNA Folding [1], Regular Expression Matching [15, 19] , and also many
graph problems [42, 8, 16]. There are also conditional hardness results about graph problems
based on the hardness of All Pair Shortest Path [49, 4, 10, 39] and 3SUM [6, 35].
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The fine-grained reduction was introduced in [49], which can preserve polynomial saving
factors in the running time between problems. The statements for fine-grained complexity
are usually like this: if there is some ε2 > 0 such that problem Π2 of input size n is in
TIME((T2(n))1−ε2), then problem Π1 of input size n is in TIME((T1(n))1−ε1) for some ε1. If
T1 and T2 are both O(n2) then this reduction is called a subquadratic reduction. Furthermore,
the exact-complexity reduction is a more strict version that can preserve sub-polynomial
savings factors between problems. We use (Π1, T1(n)) ≤EC (Π2, T2(n)) to denote that there
is a reduction from problem Π1 to problem Π2 so that if problem Π2 is in TIME(T2(n)), then
problem Π1 is in TIME(T1(n)).

1.3 Introducing reachability to first-order model checking

Similar to extending LWSC to paths in graphs, introducing transitive closure to first-order
logic also which makes parallel problems become sequential. The first-order property (or
first-order model checking) problem is to decide whether an input structure satisfies a fixed
first-order logic formula ϕ. Although model checking for input formulas is PSPACE-complete
[44, 45], when ϕ is fixed by the problem, it is solvable in polynomial time. We consider
the class of problems where each problem is the model checking for a fixed formula ϕ.
The sparse version of OV [27] is one of these problems, defined by the formula ∃u∃v∀i ∈
[d](¬One(u, i)∨(¬One(v, i))), where relation One(u, i) is true iff the i-th coordinate of vector
u is one.

If ϕ has k quantifiers (k ≥ 2), then on input structures of n elements and m tuples of
relations, it can be solved in time O(nk−2m) [28]. On dense graphs where k ≥ 9, it can
be solved in time O(nk−3+ω), where ω is the matrix multiplication exponent [48]. Here
we study the case where the input structure is sparse, i.e.m = n1+o(1), and ask whether
a three-quantifier first-order formula can be model checked in time faster than m2−o(1).
The first-order property conjecture (FOPC) states that there exists integer k ≥ 2, so that
first-order model checking for (k + 1)-quantifier formulas cannot be solved in time O(mk−ε)
for any ε > 0. This conjecture is equivalent to MDOVC, since OV is proven to be a complete
problem in the class of first-order model checking problems; in other words, any model
checking problem of 3 quantifier formulas on sparse graphs is subquadratic time reducible to
OV [28]. This means from improved algorithms for OV we can get improved algorithms for
first-order model checking.

The first-order property problems are highly parallelizable. If we introduce the transitive
closure (TC) operation on the relations, then these problems will become sequential. The
transitive closure of a binary relation E can be considered as the reachability relation by
edges of E in a graph. In a sparse structure, the TC of a relation may be dense. So it
can be considered as a dense relation succinctly described in the input. In finite model
theory, adding transitive closure significantly adds to the expressive power of first-order
logic (First discovered by Fagin in 1974 according to [37], and then re-discovered by [12].)
In fine-grained complexity, adding arbitrary transitive closure operations on the formulas
strictly increases the hardness of the model checking problem. More precisely, [27] shows
that SETH on constant depth circuits, which is a weaker conjecture than the SETH (which
concerns k-CNF-SAT), implies the model checking for two-quantifier first-order formulas
with transitive closure operations cannot be solved in time O(m2−ε) for any ε > 0. This
means this problem may stay hard even if the SETH on k-CNF-SAT is refuted.

However, we will see that for a class of three-quantifier formulas with transitive closure,
model checking is no harder than OV under subquadratic time reductions.

We define problem SelectionP to be the decision problem for whether an input structure
satisfies (∃x ∈ X)(∃y ∈ Y )P (x, y). P (x, y) is a fixed property specified by the problem that
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can be decided in time O(w(x) + w(y)), where weighted size w(x) is the size of additional
data on element x. For example, OV is SelectionP where P (x, y) iff x and y are a pair of
orthogonal vectors. In this case w(x) is defined as the length of vector x. (If we work on the
sparse version of OV, the weighted size w(x) is defined by the Hamming weight of x.)

On a directed graph G = (V,E), we define PathP to be the problem of deciding whether
(∃x ∈ V )(∃y ∈ V )[TCE(x, y) ∧ P (x, y)], where TCE is the transitive closure of relation E
and P (x, y) is a property on x, y fixed by the problem. That is, whether there exist two
vertices x,y not only satisfying property P but also y is reachable from x by edges in E. We
will give an example of PathP in Appendix B. Also, we define ListPathP to be the problem
of listing all x ∈ V such that (∃y ∈ V )[TCE(x, y) ∧ P (x, y)].

Considering the model checking problems, we let PathFO3 and ListPathFO3 denote the
class of PathP and ListPathP such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z), where ψ is
a quantifier-free formula in first-order logic. Later we will see that problems in PathFO3 and
ListPathFO3 are no harder than OV. In these model checking problems, the weighted size of
an element is the number of tuples in the input structure that the element is contained in.

Trivially, SelectionP on input size (N1, N2) can be decided in time O(N1N2), where N1
is the total weighted size of elements in X, and N2 is the total weighted size of elements
in Y . PathP and ListPathP on input size M and total vertex weighted size N are solvable
time O(MN) by depth/breadth first search from each vertex, where M is defined to be the
maximum of N and the number of edges m. This paper will show that on some graphs, if
SelectionP is in truly subquadratic time, so is PathP and ListPathP . Interestingly, by applying
the same reduction techniques from PathP to SelectionP , we can get a similar reduction from
a dynamic programming problem on a graph to a static problem.

1.4 Main results
This paper works on two classes of graphs, both having some similarities to trees. The first
class is where the graph G is a multitree. A multitree is a directed acyclic graph where the
set of vertices reachable from any vertex form a tree. Or equivalently a DAG is a multitree if
and only if on all pairs of vertices u, v, there is at most one path from u to v. In different
contexts, multitrees are also called strongly unambiguous graphs, mangroves or diamond-free
posets [29]. These graphs can be used to model computational paths in nondeterministic
algorithms where there is at most one path connecting any two states [13]. The butterfly
network, which is a widely-used model of the network topology in parallel computing, is an
example of multitrees. We also work on multitrees of strongly connected component, which
is a graph that when each strongly connected components are replaced by a single vertex,
the graph becomes a multitree.

The second class of graphs is when we treat G as undirected by replacing all directed
edges by undirected edges, the underlying graph has constant treewidth. Treewidth [40, 41]
is an important parameter of graphs that describes how similar they are to trees. 2 On these
classes of graphs, we have the following theorems.

I Theorem 1 (Reductions between decision problems.). Let t(M) ≥ 2Ω(
√

logM), and let the
graph G = (V,E) satisfy one of the following conditions:

G is a multitree, or
G is a multitree of strongly connected components, or
The underlying undirected graph of G has constant treewidth,

2 Here we consider the undirected treewidth, where both the graph and the decomposition tree are
undirected. It is different from directed treewidth defined for directed graphs by [33].
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then, the following statements are true:
If SelectionP is in time N1N2/t(min(N1, N2)), then PathP is in time M2/t(polyM).3
If PathP is in time M2/t(M), then ListPathP is in time M2/t(polyM).
When P (x, y) is of form ∃zψ(x, y, z) or ∀zψ(x, y, z) where ψ is a quantifier-free first-order
formula, SelectionP is in time N1N2/t(min(N1, N2)) iff PathP is in time M2/t(polyM)
iff ListPathP is in time M2/t(polyM).

This theorem implies that OV is hard for classes PathFO3 and ListPathFO3 . By the
improved algorithm for OV [7, 23], we get improved algorithms for PathFO3 and ListPathFO3 :

I Corollary 2 (Improved algorithms.). Let the graph G be a multitree, or multitree of strongly
connected components, or a DAG whose underlying undirected graph has constant treewidth.
Then PathFO3 and ListPathFO3 are in time M2/2Ω(

√
logM).

Next, we consider the dynamic programming problems. If the cost matrix C in LWSPC
is succinctly describable, we get the following reduction from LWSPC to StaticLWSC .

I Theorem 3 (Reductions between optimization problems.). On a multitree graph, or a DAG
whose underlying undirected graph has constant treewidth, let t(N) ≥ 2Ω(

√
logN), then,

1. if StaticLWSC of input size N is in time N2/t(N), then LWSPC on input size M is in
time M2/t(poly(M)).

2. if LWSPC is in time M2/t(M), then LWSC is in time N2/t(poly(N)).

If there is a reduction from a concrete StaticLWSC problem to its corresponding LWSC prob-
lem (e.g. there are reductions from MinInnerProduct to LowRankLWS, from VectorDomination
to NestedBoxes and from OV to LongestSubsetChain [36]), then the corresponding LWSC ,
StaticLWSC and LWSPC problems are subquadratic-time equivalent. From the algorithm for
OV [23] and SparseOV [28], we get improved algorithm for problem LongestSubsetChain:

I Corollary 4 (Improved algorithm). On a multitree or a DAG whose underlying undirected
graph has constant treewidth, LongestSubsetChain is in time M2/2Ω(

√
logM).

The reduction uses a technique that decomposes multitrees into sub-structures where it
is easy to decide whether vertices are reachable. So we also get reachability oracles using
subquadratic space, that can answer reachability queries in sublinear time.

I Theorem 5 (Reachability oracle). On a multitree of strongly connected components, there
exists a reachability oracle with subquadratic preprocessing time and space that has sublinear
query time. On a multitree, the preprocessing time and space is O(m5/3), and the query time
is O(m2/3).

1.5 Organization
In Section 2 we prove the first part of Theorem 1, by reduction from PathP to SelectionP
on multitrees. The case for bounded treewidth DAGs will be presented in the full version.
Section 3 proves Theorem 3 by presenting a reduction from LWSPC to StaticLWSC , and the
proof of correctness will be in the full version. Section 4 discusses about open problems.

3 This reduction also applies to optimization versions of these two problems. Let PathF be a problem to
compute minx,y∈V,x y F (x, y) and SelectionF be a problem to compute minx∈X,y∈Y F (x, y), where F
is a function on x, y, instead of a boolean property. Then the same technique gives us a reduction from
PathF to SelectionF .
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Appendix A lists the definitions of problems, and Appendix B shows some concrete problems
as examples.

Due to space restrictions, several proofs had to be deferred to the full version, including
the rest of Theorem 1, the subquadratic equivalence of SelectionP , PathP and ListPathP when
P is a first-order property, and the reachability oracle for multitrees.

2 From sequential problems to parallel problems, on multitrees

We will prove the first part of Theorem 1 by showing that if t(M) ≥ 2Ω(
√

logM), then
(PathP ,M2/t(polyM)) ≤EC (SelectionP , N1N2/t(min(N1, N2))). This section gives the re-
duction for multitrees and multitrees of strongly connected components. For constant
treewidth graphs, the reduction will be shown in the full version.

2.1 The recursive algorithm

The algorithm uses a divide-and-conquer strategy. We will consider each strongly connected
component as a single vertex, whose weighted size equals the total weighted size of the
component. In the following algorithm, whenever querying SelectionP or exhaustively
enumerating pairs of reachable vertices and testing P on them, we can extract all the vertices
from a strongly connected component. Thus we will be working on a multitree, instead of
a multitree of strongly connected components. Testing P on a pair of vertices (or strongly
connected components) of total weighted sizes N1, N2 is in time O(N1N2).

Let CutPathP be a variation of PathP . It is the property testing problem for (∃x ∈
S)(∃y ∈ T )[TCE(x, y) ∧ ϕ(x, y)], where (S, T ) is a cut in the graph, such that all the edges
between S and T are directed from S to T . CutPathP on input size M and total vertex
weighted size N can be solved in time O(MN) if P (x, y) is decidable in time O(w(x) +w(y)):
start from each vertex and do depth/breadth first search, and on each pair of reachable
vertices decide if P is satisfied.

I Lemma 6. For t(M) ≥ 2Ω(
√

logM), if SelectionP (N,N) is in time N2/t(N) and
CutPathP (M) is in time M2/t(M), then PathP (M) is in time M2/t(poly(M)).

Proof. Let γ be a constant satisfying 0 < γ ≤ 1/4. Let TΠ(M) be the running time of
problem Π on a structure of total weighted size M . We show that there exists a constant
c where 0 < c < 1 so that if TPathP

(M ′) is at most M ′2/t(M ′c) for all M ′ < M , then
TPathP

(M) ≤ M2/t(M c). We run the recursive algorithm as shown in Algorithm 1. The
intuition is to divide the graph into a cut S, T , recursively compute PathP on S and T , and
deal with paths from S to T .

It would be good if the difference of total weighted sizes between S and T is at most Mγ .
Otherwise, it means by the topological order, there is a vertex of weighted size at least Mγ

in the middle, adding it to either S or T would make the size difference between S and T
exceed Mγ . In this case, we use letter x to denote the vertex. We will deal with x separately.
We temporarily set aside the time of recursively running SelectionP on x (when x is shrunk
from a strongly connected component) in all the recursive calls, and consider the rest of the
running time.

IPEC 2019
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Algorithm 1 PathP (G) on a DAG

// Reducing PathP to SelectionP and CutPathP
1 if G has only one vertex then return false.
2 Let M be the weighted size of the problem.
3 Topological sort all vertices.
4 Keep adding vertices to S by topological order, until the total weighted size of S

exceeds M/2. Let the rest of vertices be T .
5 if |S| − |T | > Mγ then
6 Let x be the last vertex added to S. Remove x from S.
7 Run PathP on the subgraph induced by S.
8 Run CutPathP (S, T ).
9 if x exists then

10 Run CutPathP (S, x).
11 If x is originally a strongly connected component, run SelectionP on it.
12 Run CutPathP (x, T )
13 Run PathP on the subgraph induced by T .
14 if any one of the above three calls returns true then return true.

Let MS and MT be the sizes of sets S and T respectively. Without loss of generality,
assume MS ≥MT , and let ∆ = MS −MT , which is at most Mγ . Then we have

TPathP
(M) = TPathP

(MS) + TPathP
(MT ) + 3TCutPathP

(M) +O(M)
= TPathP

(MT + ∆) + TPathP
(MT ) + 3TCutPathP

(M) +O(M)
≤ 2TPathP

(M/2 + ∆) + 3TCutPathP
(M) +O(M)

= 2(M/2 + ∆)2/t((M/2 + ∆)c) + 3M2/t(M) +O(M).

Because t(M) < M and is monotonically growing, The term 3M2/t(M) +O(M) is bounded
by 4M2/t(M) ≤ 16(M/2)2/t(M) ≤ 16(M/2 + ∆)2/t((M/2 + ∆)c). Thus the above formula
is bounded 18(M/2 + ∆)2/t((M/2 + ∆)c). By picking small enough constant γ and c, this
sum is less than M2/t(M c).

For the time of running SelectionP on x where x is originally a strongly connected
component, we consider all recursive calls of PathP . Let the size of each such x be Mi. The
total time would be

∑
iM

2
i /t(Mi) < (

∑
iM

2
i )/t(Mγ). Because

∑
iMi ≤M , the sum is at

most M2/t(Mγ), a value subquadratic to M , with M being the input size of the outermost
call of PathP . J

2.2 A special case that can be exhaustively searched
The following lemma shows that if no vertex has both a lot of ancestors and a lot of
descendants, then the total number of reachable pairs of vertices is subquadratic to m. This
lemma holds for any DAG, not just for multitrees. We will use this lemma in the next
subsection to show that in a subgraph where all vertices have few ancestors and descendants,
we can test property P on all pairs of reachable vertices by brute force. Actually, we will use
a weighted version of this lemma, which will be proved in the full version.

I Lemma 7. If in a DAG G = (V,E) of m edges, every vertex has either at most n1
ancestors or at most n2 descendants, then there are at most (m · n1 · n2) pairs of vertices s, t
such that s can reach t.
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In a DAG G = (V,E) of m edges, let S, T be two disjoint sets of vertices where edges
between S and T only direct from S to T . If every vertex has either at most n1 ancestors in
S or at most n2 descendants in T , then there are at most (m · n1 · n2) pairs of vertices s ∈ S
and t ∈ T such that s can reach t.

Proof. We define the ancestors of an edge e ∈ E to be the ancestors (or ancestors in S) of
its incoming vertex, and its descendants to be the descendants (or descendants in T ) of its
outgoing vertex. Let the number of its ancestors and descendants be denoted by anc(e) and
des(e) respectively.

For each edge e, it belongs to exactly one of the following three types:
Type A: If anc(e) ≤ n1 but des(e) > n2, then let count(e) be anc(e).
Type B: If des(e) ≤ n2 but anc(e) > n1, then let count(e) be des(e).
Type C: If anc(e) ≤ n1 and des(e) ≤ n2, then let count(e) be anc(e) · des(e).∑
e∈E count(e) ≤ m · n1 · n2 because the count value on each edge is bounded by n1 · n2. We

will prove that this value upper bounds the number of reachable pairs of vertices.
For each pair of reachable vertices (u, v) (or (u, v) s.t.u ∈ S and v ∈ T ), let (e1, . . . , ep)

be the path from u to v. Along the path, anc does not decrease, and dec does not increase.
A path belongs to exactly one of the following three types:
Type a: Along the path anc(e1) ≤ anc(e2) ≤ · · · ≤ anc(ep) ≤ n1, and des(e1) ≥ des(e2) ≥
· · · ≥ des(ep) > n2. That is, all the edges are Type A.

Type b: Along the path des(ep) ≤ des(ep−1) ≤ · · · ≤ des(e1) ≤ n2, and anc(ep) ≥
anc(ep−1) ≥ · · · ≥ anc(e1) > n1. That is, all the edges are Type B.

Type c: Along the path there is some edge ei so that anc(ei) ≤ n1 and des(ei) ≤ n2. That
is, it has at least one Type C edge.

There will not be other cases, for otherwise if a Type A edge directly connects to a Type B
edge without a Type C edge in the middle, then the vertex joining these two edges would
have more than n1 ancestors and more than n2 descendants.

If a path from u to v is Type a, then its last edge ep is Type A. If it is Type b, then its
first edge e1 is Type B. If it is Type c, then there is some edge ei in the path that is Type C.
This means:
1. For each Type A edge e, count(e) is at least the number of all Type a pairs (u, v) whose

path has e as its last edge.
2. For each Type B edge e, count(e) is at least the number of all Type b pairs (u, v) whose

path has e as its first edge.
3. For each Type C edge e, count(e) is at least the number of all Type c pairs (u, v) whose

path contains e.
Therefore each path is counted at least once by the count(e) of some edge e. J

2.3 Subroutine: reachability across a cut
Now we will show the reduction from CutPathP to SelectionP . The high level idea of CutPathP
is that we think of the reachability relation on S × T as an |S| × |T | boolean matrix whose
one-entries correspond to reachable pairs of vertices. If we could partition the matrix into
all-one combinatorial rectangles, then we can decide all entries within these rectangles by a
query to SelectionP , because in the same rectangle, all pairs are reachable.

B Claim 8. Consider the reachability matrix of on sets S and T . Let MS and MT be the
sizes of S and T . If there is a way to partition the matrix into non-overlapping combinatorial
rectangles (S1, T1), . . . , (Sk, Tk) of sizes (r1, c1), . . . , (rk, ck), and if there is some t so that
computing each subproblem of size (ri, ci) takes time ri · ci/t(min(ri, ci)), and all ri ≥ `, and
all ci ≥ ` for a threshold value `, then all the computation takes total time O(MS ·MT /t(`)).
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Algorithm 2 CutPathP (S, T ) on a multitree

1 Compute the total weighted size of ancestors anc(v) and descendants des(v) for all
vertices.

2 Insert all vertices with at least Mα ancestors and Mα descendants into linked list L.
3 while there exists a vertex v ∈ L do

// we call v a pivot vertex
4 Let A be the set of ancestors of v in S.
5 Let B be the set of descendants of v in T .
6 Add v to A if v ∈ S, otherwise add v to B.
7 Run SelectionP on (A,B). If it returns true then return true.
8 for each a ∈ A do
9 let des(a) = des(a)− |B|.

10 if des(a) < Mα and a ∈ L then remove a from L.
11 for each b ∈ B do
12 let anc(b) = anc(b)− |A|.
13 if anc(b) < Mα and b ∈ L then remove b from L.
14 Remove v from the graph.
15 for each edge (s, t) crossing the cut(S, T ) do
16 Let A be the set of ancestors of s (including s) in S.
17 Let B be the set of descendants of t (including t) in T .
18 On all pairs of vertices (a, b) where a ∈ A, b ∈ B, check property P . If P is true

on any pair of (a, b) then return true.

Proof. Let the minimum of all ri be rmin and the minimum of all ci be cmin. Then the
factor of time saved for computing each combinatorial rectangle is at least t(min(rmin, cmin)),
greater than t(`). So the time spent on all rectangles is at most O((

∑t
i=1 ci)(

∑t
i=1 ri)/t(`)),

also we have (
∑t
i=1 ci)(

∑t
i=1 ri) ≤MS ·MT because the rectangles are contained inside the

matrix of size MS ·MT and they do not overlap. So the total time is O(MS ·MT /t(`)). C

The algorithm CutPathP (S, T ) is shown in Algorithm 2. It tries to cover the one-entries
of the reachability matrix by combinatorial rectangles as many as possible. Finally, for the
one-entries not covered, we go through them by exhaustive search, which takes less than
quadratic time.

In the beginning, we can compute the total weighted size of ancestors (or descendants) of
all vertices in the DAG in O(M) time by going through all vertices by topological order (or
reversed topological order).

In each query to SelectionP (A,B), all vertices in A can reach all vertices in B, because
they all go through v. For any pair of reachable vertices s ∈ S, t ∈ T , if they go through
any pivot vertex, then the pair is queried to SelectionP . Otherwise it is left to the end, and
checked by exhaustive search on all pairs of reachable vertices.

The calls to SelectionP correspond to non-overlapping all-one combinatorial rectangles
in the reachability matrix. This is because the graph G is a multitree. For each call to
SelectionP , the rectangle size is at least Mα×Mα. Thus the total time for all the SelectionP
calls is O(M2/t(Mα)) by Claim 8.

Each time we remove a pivot vertex v, there will be no more paths from set A to set B,
for otherwise there would be two distinct paths connecting the same pair of vertices. Thus,
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removing a v decreases the total number of weighted-pairs4 of reachable vertices by at least
Mα ×Mα. There are M ×M weighted-pairs of vertices, so the total weight (and thus the
total number) of pivot vertices like v is at most (M ×M)/(Mα ×Mα) = M2−2α.

Each time we find a pivot vertex v, we update the total weighted size of descendants for all
its ancestors, and update the total weighted size of ancestors for all its descendants. Because
it has at least Mα ancestors and Mα descendants, the value decrease on each affected vertex
is at least Mα. So each vertex has decreased its ancestors/descendants values for at most
M/Mα = M1−α times. In other words, each vertex can be an ancestor/descendant of at
most M1−α pivot vertices. The total time to deal with all ancestors/descendants of all pivot
vertices in the while loop is in O(M ·M1−α) = O(M2−α).

Finally, after the while loop, there are no vertices with both more than Mα ancestors
and Mα descendants. In this case, by a weighted version of Lemma 7 (See the full version),
the number of weighted-pairs of reachable vertices is bounded by M ·Mα ·Mα = M1+2α.
So the total time to deal with these paths is O(M1+2α).

Thus the total running time is O(M2/t(Mα) +M2−α +M1+2α). By choosing α and γ
to be appropriate constants, we get subquadratic running time.

If t(M) = M ε, then by choosing α = 1/(2 + ε), we get running time M2−ε/(2+ε).

3 Application to Least Weight Subpath

In this section we will prove Theorem 3. The reduction from LWSPC to StaticLWSC uses the
same structure as the reduction from PathP to SelectionP in the proof of Theorem 1 shown
in Section 2. Because in LWSP we only consider DAGs, there are no strongly connected
components in the graph.

Process LWSPC(G,F0) computes values of F on initial values F0 defined on all vertices of
G. On a given LWSPC problem, we will reduce it to an asymmetric variation of StaticLWSC .
Process StaticLWSC(A,B, FA) computes all the values of function FB defined on domain B,
given all the values of FA defined on domain A, such that FB(b) = mina∈A[FA(s) + ca,b].
Let NA and NB be the total weighted size of A and B respectively. It is easy to see that
if StaticLWSC on |NA| = |NB | is in time N2

A/t(NA), then StaticLWSC on general A,B is in
time O(NA ·NB/t(min(NA, NB))).

We also define process CutLWSPC(S, T, FS), which computes all the values of FT defined
on domain T , given all the values of FS on domain S, where FT (t) = mins∈S,s t[FS(s)+cs,t].

The reduction algorithm is adapted from the reduction from PathP to SelectionP . LWSPC
is analogous to PathP , StaticLWSC is analogous to SelectionP , and CutLWSPC is analogous
to CutPathP . In PathP , we divide the graph into two halves, recursively call PathP on the
subgraphs, and use CutPathP to deal with paths from one side of the graph to the other side.
Similarly in LWSPC , we divide the graph into two halves, recursively compute function F
on the source side of the graph, then based on these values we call CutPathP to compute
the initial values of function F on the sink side of the graph, and finally we recursively call
LWSPC on the sink side of the graph. In CutPathP , we first identify large all-one rectangles
in the reachability matrix, and then use SelectionP to solve them, and finally we go through
all reachable pairs of vertices that are not covered by these rectangles. Similarly, in LWSPC ,
we will use the similar method to identify large all-one rectangles in the reachability matrix
and use StaticLWSC to solve them, and finally we go through all reachable pairs of vertices
and update F on each of them.

4 The number of weighted-pairs is defined to be the sum of w(u) · w(v) for all pairs of reachable vertices
u v.
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Algorithm 3 LWSPC(G = (V, E, V0), F0) on a DAG

1 if G has only one vertex v then
2 if v ∈ V0 then
3 return min(0, F0(v)).
4 return F0 on v.
5 Let M be the weighted size of the problem.
6 Topological sort all vertices.
7 Keep adding vertices to S by topological order, until the total weighted size of S

exceeds M/2. Let the rest of vertices be T .
8 if |S| − |T | > Mγ then
9 Let x be the last vertex added to S. Remove x from S.

10 Compute F on domain S, by F ← LWSPC(GS , F0), where GS is the subgraph of G
induced by S.

11 Let FT ← CutLWSPC(S, T, F ).
12 For each vertex t ∈ T , let F0(t)← min(F0(t), FT (t)).
13 if x exists then
14 Compute Fx ← CutLWSPC(S, x, F ) for vertex x.
15 Compute F on vertex x by F (x)← min(F0(x), Fx(x)).
16 Let F ′T ← CutLWSPC(x, T, F ).
17 For each vertex t ∈ T , let F0(t)← min(F0(t), F ′T (t)).
18 Compute F on domain T , by F ← LWSPC(GT , F0), where GT is the subgraph of G

induced by T .
19 return F on domain V .

The algorithm LWSPC is similar as PathP (Algorithm 1), and is defined in Algorithm 3.
Initially, we let F (v) ← 0 for all v ∈ V0, and let F (v) ← +∞ for all v /∈ V0. We run
LWSPC(G,F0) on the whole graph.

The algorithm CutLWSPC(S, T, FS) is adapted from CutPathP (Algorithm 2), with the
following changes:
1. In the beginning, FT (t) is initialized to ∞ for all t ∈ T .
2. Each query to SelectionP (A,B) in CutPathP is replaced by

a. Compute FB on domain B by StaticLWSC(A,B, FS).
b. For each vertex b in B, let FT (b) be the minimum of the original FT (b) and FB(b).

3. Whenever processing a pair of vertices s, t such that s is can reach t in either the
preprocessing phase or the final exhaustive search phase, we let FT (t)← FS(s) + cs,t if
FS(s) + cs,t < FT (t).

4. In the end, the process returns FT , the target function on domain T .

The proof of correctness will be shown in the full version. The time complexity of this
reduction algorithm follows from the argument of Section 2.

4 Open problems

One open problem is to study PathP and LWSPC on general DAGs. Also, we would like to
consider the case where the graph is not sparse, where we can use O(MN) as the baseline
time complexity instead of O(M2).
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It would also be desirable to study the fine-grained complexity of the DAG versions of
other quadratic time solvable dynamic programming problems, e.g. the Longest Common
Subsequence problem.
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A List of problem definitions and class definitions

Here we list the main problems studied in this paper.
LWSC : Given elements x1, . . . , xn and value F (0) = 0, compute F (j) = min0≤i<j [F (i)+ci,j ]

for all j ∈ {1, . . . , n}.
StaticLWSC : Given elements x1, . . . , x2n and values of F (i) on all i ∈ {1, . . . , n}, compute

F (j) = mini∈{1,...,n}[F (i) + ci,j ] for all j ∈ {n+ 1, . . . , 2n}.
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LWSPC : Given graph G = (V,E) and starting vertex set V0 ⊆ V , compute on each v ∈ V ,
the value of F (v), where

F (v) =
{

min(0,minu v[F (u) + cu,v]), for v ∈ V0

minu v[F (u) + cu,v], for v /∈ v0

CutLWSPC : On DAG G with a cut (S, T ) where edges are only directed from S to T , given
the values of function FS on S, for all t ∈ T compute FT (t) = mins∈S,s t[FS(s) + cs,t].

SelectionP : On two sets X,Y , decide whether (∃x ∈ X)(∃y ∈ Y )P (x, y).
PathP : On graph G = (V,E), decide whether (∃x ∈ V )(∃y ∈ V )[TCE(x, y) ∧ P (x, y)].
ListPathP : On graph G = (V,E), for all x ∈ V , decide whether (∃y ∈ V )[TCE(x, y) ∧

P (x, y)].
CutPathP : On graph G = (V,E) with cut (S, T ) where edges only direct from S to T , decide

whether (∃x ∈ S)(∃y ∈ T )[TCE(x, y) ∧ P (x, y)].
PathFO3 : class of PathP problems such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z), where

ψ is a quantifier-free logical formula.
ListPathFO3 : class of ListPathP problems such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z),

where ψ is a quantifier-free logical formula.

B Problem examples

We give a list of problems that can be considered as instances of LWSPC or PathP .

Trip Planning (LWSP version of Airplane Refueling) On a DAG where vertices represent
cities and edges are roads, we wish to find a path for a vehicle, along which we wish
to find a sequence of cities where the vehicle can rest and add fuel so that the cost is
minimized. The cost of traveling between cities x and y is defined by cost cx,y. cx,y
can be defined in multiple ways, e.g. cx,y is cost(y) if dist(x, y) ≤ M and ∞ otherwise.
dist(x, y) is the distance between x, y that can be computed by the positions of x, y. M
is the maximal distance the vehicle can travel without resting. cost(y) is the cost for
resting at position y.

Longest Subset Chain on graphs (LWSP version of Longest Subset Chain) On a DAG
where each vertex corresponds to a set, we want to find a longest chain in a path
of the graph such that each set is a subset of its successor. Here cx,y is −1 if Sx is a
subset of Sy, and ∞ otherwise.

Multi-currency Coin Change (LWSP version of Coin Change) Consider there are two dif-
ferent currencies, so there are two sets of coins. We need to find a way to get value
V1 for currency #1 and value V2 for currency #2, so that the total weight of coins is
minimized. Each pair of values v1 ∈ {0, . . . , V1} and v2 ∈ {0, . . . , V2} can be considered
as a vertex. We connect vertex (v1, v2) to (v′1, v′2) iff v′1 = v1 + 1 or v′2 = v′2 + 1. The
whole graph is a grid, and we wish to find a subsequence of a path from (0, 0) to (V1, V2)
so that the cost is minimized. The cost is defined by C(v1,v2),(v′

1,v2) = w1,v′
1−v1 and

C(v1,v2),(v1,v′
2) = w2,v′

2−v2 , where wi,j is the weight of a coin of value j from currency #i.
Pretty Printing with alternative expressions (LWSP version of Pretty Printing) The

Pretty Printing problem is to break a paragraph into lines, so that each line have
roughly the same length. If a line is too long or too short, then there is some cost
depending on the line length. The goal of the problem is to minimize the cost.
For some text, it is hard to print prettily. For example, if there are long formulas in the
text, then sometimes its line gets too wide, but if we move the formula into the next
line, the original line has too few words. One solution for this issue is to use alternate
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wording for the sentence, to rephrase a part of a sentence to its synonym. These sentences
have different lengths, and formulas in some of them will be displayed better than others.
These different ways can be considered as different paths in a graph, and we wish to find
one sentence that has the minimal Pretty Printing cost.

A PathP instance Say we have a set of words, and we want to find a word chain (a chain of
words so that the last letter of the previous word is the same as the first letter of the
next word) so that the first word and the last word satisfy some properties, e.g. they do
not have similar meanings, they have the same length, they don’t have the same letters
on the same positions, etc. Each word corresponds to a vertex in the graph. For words
that can be consecutive in a word chain, we add an edge to the words.

IPEC 2019


	Introduction
	Extending one-dimensional dynamic programming to graphs
	Fine-grained complexity preliminaries
	Introducing reachability to first-order model checking
	Main results
	Organization

	From sequential problems to parallel problems, on multitrees
	The recursive algorithm
	A special case that can be exhaustively searched
	Subroutine: reachability across a cut

	Application to Least Weight Subpath
	Open problems
	List of problem definitions and class definitions
	Problem examples

