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Abstract
We study the complexity of graph modification problems with respect to homomorphism-based
colouring properties of edge-coloured graphs. A homomorphism from an edge-coloured graph G to an
edge-coloured graph H is a vertex-mapping from G to H that preserves adjacencies and edge-colours.
We consider the property of having a homomorphism to a fixed edge-coloured graph H, which
generalises the classic vertex-colourability property. The question we are interested in is the following:
given an edge-coloured graph G, can we perform k graph operations so that the resulting graph
admits a homomorphism to H? The operations we consider are vertex-deletion, edge-deletion and
switching (an operation that permutes the colours of the edges incident to a given vertex). Switching
plays an important role in the theory of signed graphs, that are 2-edge-coloured graphs whose colours
are the signs + and −. We denote the corresponding problems (parameterized by k) by Vertex
Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. These
problems generalise the extensively studied H-Colouring problem (where one has to decide if an
input graph admits a homomorphism to a fixed target H). For 2-edge-coloured H, it is known that
H-Colouring already captures the complexity of all fixed-target Constraint Satisfaction Problems.

Our main focus is on the case where H is an edge-coloured graph of order at most 2, a case
that is already interesting since it includes standard problems such as Vertex Cover, Odd Cycle
Transversal and Edge Bipartization. For such a graph H, we give a PTime/NP-complete com-
plexity dichotomy for all three Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring
and Switching-H-Colouring problems. Then, we address their parameterized complexity. We
show that all Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring problems for
such H are FPT. This is in contrast with the fact that already for some H of order 3, unless PTime
= NP, none of the three considered problems is in XP, since 3-Colouring is NP-complete. We show
that the situation is different for Switching-H-Colouring: there are three 2-edge-coloured graphs
H of order 2 for which Switching-H-Colouring is W[1]-hard, and assuming the ETH, admits no
algorithm in time f(k)no(k) for inputs of size n and for any computable function f . For the other
cases, Switching-H-Colouring is FPT.
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1 Introduction

Graph colouring problems such as k-Colouring are among the most fundamental problems
in algorithmic graph theory. ProblemH-Colouring is a homomorphism-based generalisation
of k-Colouring that is extensively studied [8, 14, 18, 25]. Considering a fixed graph H,
in H-Colouring one asks whether an input graph G admits a homomorphism (an edge-
preserving vertex-mapping) to H. k-Colouring is the same problem as Kk-Colouring,
where Kk is the complete graph of order k (the order of a graph is its number of vertices).

We will consider parameterized variants of H-Colouring where H is an edge-coloured
graph. We say that a graph is t-edge-coloured if its edges are coloured with at most t colours.
We allow loops and multiple edges, but multiple edges of the same colour are irrelevant in H.
We sometimes give actual colour names to the colours: red, blue, green. For 2-edge-coloured
graphs, we will use red and blue as the two edge colours. A standard uncoloured graph can
be seen as 1-edge-coloured. For two edge-coloured graphs G and H, a homomorphism from
G to H is a vertex-mapping ϕ : V (G)→ V (H) such that, if xy is an edge of colour i in G,
then ϕ(x)ϕ(y) is an edge of colour i in H. Whenever such a ϕ exists, we say that G maps to
H, and we write G ec−→ H.

The H-Colouring problems are well-studied, see for example [1, 2, 3, 4, 5]. They are
special cases of Constraint Satisfaction Problems (CSPs). A large set of CSPs can be modeled
by homomorphisms of general relational structures to a fixed relational structure H [14].
The corresponding decision problem is noted H-CSP. When H has only binary relations, H
can be seen as an edge-coloured graph (a relation corresponds to the set of edges of a given
colour) and H-CSP is exactly H-Colouring. The complexity of H-CSP has been the
subject of intensive research in the last decades, since Feder and Vardi conjectured in [14] that
H-CSP is either PTime or NP-complete – a statement that became known as the Dichotomy
Conjecture. The latter conjecture was recently solved in [7, 30] independently; the criterion
for H-CSP to be in PTime is based on certain algebraic properties of H. Nevertheless,
determining whether a structure H satisfies this criterion is not an easy task (even for targets
as simple as oriented trees [8]). Thus, the study of more simple and elegant complexity
classifications for relevant special cases is of high importance.

The complexity of H-Colouring when H is uncoloured is well-understood: it is in
PTime if H contains a loop or is bipartite; otherwise it is NP-complete [18]. This was one of
the early dichotomy results in the area. On the other hand, when H is a 2-edge-coloured
graph, it was proved that the class of H-Colouring problems captures the difficulty of the
whole class of H-CSP problems [5], and thus the dichotomy classification for this class of
problems is expected to be much more intricate.

Our goal is to study generalisations of H-Colouring problems for edge-coloured graphs
by enhancing them as modification problems. In this setting, given a graph property P and a
graph operation π, the graph modification problem for P and π asks whether an input graph
G can be made to satisfy property P after applying operation π a given number k of times.
This is a classic setting studied extensively both in the realms of classical and parameterized
complexity, see for example [9, 22, 23, 28]. In this context, the most studied graph operations
are vertex deletion (VD) and edge-deletion (ED), see the seminal papers [23, 28].

https://arxiv.org/abs/1910.01099
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For a fixed graph H, let P(H) denote the property of admitting a homomorphism to H.
Certain standard computational problems can be stated as graph modification problems to
P(H). For example, Vertex Cover is the graph modification problem for property P(K1)
and operation VD. Similarly, Odd Cycle Transversal and Edge Bipartization are
the graph modification problems for P(K2) and VD, and P(K2) and ED, respectively.

When considering edge-coloured graphs with only two edge-colours, another operation of
interest is switching: to switch at a vertex v is to change the colour of all edges incident with
v. (Note that a loop does not change its colour under switching.) This operation is of prime
importance in the context of signed graphs. A signed graph is a 2-edge-coloured graph in
which the two colours are denoted by signs (+ and −). A graph is called balanced if it can
be switched to be all-positive. The concepts of signed graphs, balance and switching, were
introduced and developed in [17, 29] and have many interesting applications, in particular in
social networks and biological dynamical systems (see [19] and the references therein).

The switching operation plays an important role in the study of homomorphisms of signed
graphs, a concept defined in [26] which has many connections to deep questions in structural
graph theory. In their definition, before mapping the vertices, one may perform any number
of switchings. (Note that when switching at a set S of vertices of a signed graph G, the order
does not matter: ultimately, only the edges between S and its complement V (G) \ S change
their sign.) The algorithmic complexity of this problem was studied in [5, 6, 16]. Herein,
we will consider edge-coloured graph modification problems for property P(H) (for fixed
edge-coloured graphs H) and for graph operations VD, ED and SW.

A parameterized problem is a decision problem with a parameter of the input. It is fixed
parameter tractable (FPT) if for any input I with parameter value k, it can be solved in
time O(f(k)|I|c) for a computable function f and integer c. It is in the class XP if it can be
solved in time |I|g(k) for a computable function g. It is W[1]-hard if all problems in the class
W[1] can be reduced in FPT time to it. For more details, see the books [11, 12]. Let us now
formally define the problems of interest to us (the parameter is always k).

Vertex Deletion-(resp. Edge Deletion)-H-Colouring Parameter: k.
Input: An edge-coloured graph G, an integer k.
Question: Is there a set S of k vertices (resp. edges) of G such that (G− S) ec−→ H?

Switching-H-Colouring Parameter: k.
Input: A 2-edge-coloured graph G, an integer k.
Question: Is there a set S of k vertices of G such that the 2-edge-coloured graph G′
obtained from G by switching at every vertex of S satisfies G′ ec−→ H?
In the study of the three above problems, one may assume that H is a core (that is, H

does not have a homomorphism to a proper subgraph of itself). Indeed, it is well-known that
for any subgraph H ′ of H with H ec−→ H ′, we have G ec−→ H if and only if G ec−→ H ′ [3].

Of course, whenever H-Colouring is NP-complete, all three above problems are NP-
complete, even when k = 0, and so they are not in XP (unless PTime = NP). This is for
example the case when H is a monochromatic triangle: then we have 3-Colouring. Thus,
from the point of view of parameterized complexity, it is of primary interest to consider these
problems for edge-coloured graphs H such that H-Colouring is in PTime. (In that case
a simple brute-force algorithm iterating over all k-subsets of vertices of G implies that the
three problems are in XP.) For classic graphs, the only cores H for which H-Colouring
is in PTime are the three connected graphs with at most one edge (a single vertex with
no edge, a single vertex with a loop, two vertices joined by an edge), so in that case the
interest of these problems is limited. However, for many interesting families of edge-coloured
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graphs H, the problem H-Colouring is in PTime, and the class of such graphs H is not
very well-understood, see [2, 3, 4]. Even when H is a 2-edge-coloured cycle, tree or complete
graph, there are infinitely many H with H-Colouring NP-complete and infinitely many H
where it is in PTime [2].

Recall that when H is a single vertex with no loop, Vertex Deletion-H-Colouring
is exactly Vertex Cover. If H has a single edge, Vertex Deletion-H-Colouring and
Edge Deletion-H-Colouring are Odd Cycle Transversal and Edge Bipartization,
respectively. For H consisting of a single (blue) loop, Switching-H-Colouring for
k = |V (G)| consists in checking whether the given 2-edge-coloured graph G is balanced (a
problem that is in PTime [5]). More generally, Switching-H-Colouring for 2-edge-coloured
graphs H and k = |V (G)| is exactly the problem Signed H-Colouring studied in [5, 6, 16].

Related work. Several works address the parameterized complexity of graph colouring
problems. In [25], the vertex-deletion variant of H-List-Colouring is studied. Graph
modification problems for Colouring in specific graph classes and for operations VD and
ED are considered, for example in [10] (bipartite graphs, split graphs) and [27] (comparability
graphs). Graph colouring problems parameterized by structural parameters are considered
in [20]. Algorithmic problems relative to the operation of Seidel switching have been
considered. Given a (classic) graph G, the Seidel switching operation performed at a vertex
exchanges all adjacencies and non-adjacencies of v. This can be seen as performing a switching
operation in a 2-edge-coloured complete graph, where blue edges are the actual edges of G,
and red edges are its non-edges. In [13, 21], the complexity of graph modification problems
with respect to the Seidel switching operation and the property of being a member of certain
graph classes has been studied. Our work on Switching-H-Colouring problems can be
seen as a variation of these problems, generalised to arbitrary 2-edge-coloured graphs.

Our results. We study the classic and parameterized complexities of the three problems
Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-
Colouring. Our focus is on t-edge-coloured graphs H of order at most 2 with t an integer
(t = 2 for Switching-H-Colouring). Despite having just two vertices, H-Colouring for
such H is interesting and nontrivial; it is proved to be in PTime by two different nontrivial
methods, see [1, 4]. Thus, the three considered problems are in XP for such H. (Recall that
for suitable 1-edge-coloured graphs H of order 1 or 2, Vertex Deletion-H-Colouring and
Edge Deletion-H-Colouring include Vertex Cover and Odd Cycle Transversal.)

We completely classify the classical complexity of Vertex Deletion-H-Colouring
when H is a t-edge-coloured graph of arbitrary order: it is either trivially in PTime or
NP-complete. It turns out that all Vertex Deletion-H-Colouring problems are FPT
when H has order at most 2. To prove this, we extend a method from [4] and reduce the
problem to an FPT variant of 2-Sat.

For Edge Deletion-H-Colouring, a classical complexity dichotomy seems more
difficult to obtain, as there are nontrivial PTime cases. We perform such a classification when
H is a t-edge-coloured graph of order at most 2. Similar 2-Sat-based arguments as for Vertex
Deletion-H-Colouring give a FPT algorithm for Edge Deletion-H-Colouring when
H has order at most 2.

For Switching-H-Colouring when H is a 2-edge-coloured graph, the classical dicho-
tomy is again more difficult to obtain. We perform such a classification by using some
characteristics of the switch operation and by giving some reductions to well-known NP-
complete problems. In contrast to the two previous cases for the parameterized complexity,
we show that for three graphs H of order 2, Switching-H-Colouring is already W[1]-hard
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Table 1 Overview of our main results, sorted by problem and by type of classification.

Problem Vertex-Del.-H-Col. Edge-Del.-H-Col. Switching-H-Col.

P vs NP Dichotomy for
all graphs (Cor. 7)

Dichotomy when
|V (H)| ≤ 2 (Th. 8)

Dichotomy when
|V (H)| ≤ 2 (Th. 9)

FPT vs W-hard
when |V (H)| ≤ 2 All FPT (Th. 12) All FPT (Th. 12) Dichotomy (Th. 13 and 14)

(and cannot be solved in time f(k)|G|o(k) for any function f , assuming the ETH1). For all
other 2-edge-coloured graphs of order 2, we prove that Switching-H-Colouring is FPT.
Table 1 presents a brief overview of our results.

Our paper is structured as follows. In Section 2, we state some definitions and make some
preliminary observations in relation with the literature. In Section 3, we study the classical
complexity of the three considered problems. We address their parameterized complexity in
Section 4. Finally, we conclude in Section 5.

2 Preliminaries and known results

2.1 Some known complexity dichotomies
Recall that whenever H-Colouring is NP-complete, Vertex Deletion-H-Colouring,
Edge Deletion-H-Colouring and Switching-H-Colouring are NP-complete (even for
k = 0), and thus are not in XP, unless PTime = NP. For example, this is the case when H is a
monochromatic triangle. When Signed H-Colouring (this is Switching-H-Colouring
for k = |V (G)|, see [5]) is NP-complete, then Switching-H-Colouring is NP-complete
(but could still be in XP or FPT).

On the other hand, when H-Colouring is in PTime, all three problems are in XP
for parameter k (by a brute-force algorithm iterating over all k-subsets of vertices of G,
performing the operation on these k vertices, and then solving H-Colouring):

I Proposition 1. Let H be an edge-coloured graph such that H-Colouring is in PTime.
Then, Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-
H-Colouring can be solved in time |G|O(k).

When k = 0 and H is 1-coloured, we have the following classic theorem.

I Theorem 2 (Hell and Nešetřil [18]). Let H be a 1-edge-coloured graph. H-Colouring is in
PTime if the core of H has at most one edge (H is bipartite or has a loop), and NP-complete
otherwise.

There is no analogue of Theorem 2 for edge-coloured graphs. In fact, it is proved in [5] that
a dichotomy classification for H-Colouring restricted to 2-edge-coloured H would imply a
dichotomy for all fixed-target CSP problems. Thus, no simple combinatorial classification is
expected to exist. In fact, even for trees, cycles or complete graphs, such classifications are
not easy to come by [2]. However, some classifications exist for certain classes of graphs H,
such as those of order at most 2 [1, 4] or paths [3].

1 The Exponential Time Hypothesis, ETH, postulates that 3-SAT cannot be solved in time 2o(n)(n + m)c,
where n and m are the input’s number of variables and clauses, and c is any integer [24].
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For Switching-H-Colouring with k = |V (G)|, (that is, Signed H-Colouring), we
have the following (where the switching core of a 2-edge-coloured graph is a notion of core
where an arbitrary number of switchings can be performed before the self-mapping):

I Theorem 3 (Brewster et al. [5, 6]). Let H be a signed graph. Signed H-Colouring is
in PTime if the switching core of H has at most two edges, and NP-complete otherwise.

Note that 2-edge-coloured graphs where the switching core has at most two edges either
have one vertex (with zero loop, one loop or two loops of different colours), or two vertices
(with either one edge or two parallel edges of different colours joining them) [5]. (If there
are two vertices joined by one edge and a loop at one of the vertices, we can switch at the
non-loop vertex if necessary to obtain one edge-colour, and then retract the whole graph to
the loop-vertex, so this is not a core.)

2.2 Homomorphism dualities and FPT time
For a t-edge-coloured graph H, we say that H has the duality property if there is a set F(H)
of t-edge-coloured graphs such that, for any t-edge-coloured graph G, G ec−→ H if and only
if no graph F of F(H) satisfies F ec−→ G. If F(H) is finite, we say that H has the finite
duality property. If checking whether any graph F in F(H) satisfies F ec−→ G (for an input
edge-coloured graph G) is in PTime, we say that H has the polynomial duality property. This
is in particular the case when F(H) is finite. For such H, H-Colouring is in PTime. This
topic is explored in detail for edge-coloured graphs in [1]. By a simple bounded search tree
argument, we get the following:

I Proposition 4. Let H be an edge-coloured graph with the finite duality property. Then,
Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-
Colouring are FPT.

Proof. First, we search for all appearances of homomorphic images of graphs in F(H)
(there are at most f(F(H)) such images for some exponential function f), which we call
obstructions. This takes time at most f(F(H))nmv , where mv = max{|V (F )|, F ∈ F(H)}.
Then, we need to get rid of each obstruction. For Vertex Deletion-H-Colouring (resp.
Edge Deletion-H-Colouring), we need to delete at least one vertex (resp. edge) in
each obstruction, thus we can branch on all mv (resp. m2

v) possibilities. For Switching-
H-Colouring, we need to switch at least one of the vertices of the obstruction (but then
update the list of obstructions, as we may have created a new one). In all cases, this gives a
search tree of height k and degree bounded by a function of F(H), which is FPT. J

3 PTime/NP-complete complexity dichotomies

In this section, we prove some results about the classical complexity of Vertex Deletion-
H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. We first
adapt a general method from [23] to show that Vertex Deletion-H-Colouring is either
trivial, or NP-complete in Section 3.1.

For Edge Deletion-H-Colouring and Switching-H-Colouring, we cannot use
this technique (in fact there exist nontrivial PTime cases). Thus, we turn our attention
to edge-coloured graphs of order 2 (note that for every edge-coloured graph H of order
at most 2, H-Colouring is in PTime [1, 4]). Recall that Switching-H-Colouring is
defined only on 2-edge-coloured graphs, so our focus is on this case (but for Edge Deletion-
H-Colouring our results hold for any number of colours). In Section 3.2, we prove a
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dichotomy result for graphs of order at most 2 for the Edge Deletion-H-Colouring
problem. The Switching-H-Colouring problem is treated in Section 3.3, where we also
prove a dichotomy result.

The twelve 2-edge-coloured graphs of order at most 2 that are cores (up to symmetries
of the colours) are depicted in Figure 1. The two colours are red (dashed edges) and blue
(solid edges). We use the terminology of [1]: for α ∈ {−, r, b, rb}, the 2-edge-coloured graph
H1
α is the graph of order 1 with no loop, a red loop, a blue loop, and both kinds of loops,

respectively. Similarly, for α ∈ {−, r, b, rb} and β, γ ∈ {−, r, b}, the graph H2α
β,γ denotes the

graph of order 2 with vertex set {0, 1}. The string α indicates the presence of an edge between
0 and 1: no edge, a red edge, a blue edge and both edges for −, r, b and rb, respectively.
Similarly, β and γ denote the presence of a loop at vertices 0 and 1, respectively (− for no
loop, r for a red loop, b for a blue loop).

H1
rb H1

b H1
− H2−

r,b

H2b
−,− H2b

r,b H2b
r,− H2b

r,r

H2rb
−,− H2rb

r,b H2rb
r,− H2rb

r,r

Figure 1 The twelve 2-edge-coloured cores of order at most 2 considered in this paper.

3.1 Dichotomy for Vertex Deletion-H-Colouring

Graph modification problems for operations VD and ED have been studied extensively. For
a graph property P , we denote by Vertex Deletion-P the graph modification problem for
property P and operation VD. Lewis and Yannakakis [23] defined a non-trivial property P
on graphs as a property true for infinitely many graphs and false for infinitely many graphs.
They showed the following general result:

I Theorem 5 (Lewis and Yannakakis [23]). The Vertex Deletion-P problem for nontrivial
graph-properties P that are hereditary on induced subgraphs is NP-hard.

By modifying the proof of Theorem 5, we can prove the two following results (the proof
is omitted due to space restrictions and is included in the full version of the manuscript).

I Theorem 6. Let P be a nontrivial property of loopless edge-coloured graphs that is hereditary
for induced subgraphs and true for all independent sets. Then, Vertex Deletion-P is
NP-hard.

For a t-edge-coloured graph, the only case where the property of mapping to H is trivial
(in this case, always true) is when H has a vertex with all t kinds of loops attached (in which
case the core of H is that vertex). Thus we obtain the following dichotomy.

I Corollary 7. Let H be a t-edge-coloured graph. Vertex Deletion-H-Colouring is in
PTime if H contains a vertex having all t kinds of loops, and NP-complete otherwise.

IPEC 2019
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3.2 Dichotomy for Edge Deletion-H-Colouring when H has order 2

No analogue of Theorem 5 for operation ED exists nor is expected to exist [28]. We thus
restrict our attention to the case of edge-coloured graphs H of order at most 2. For this case
we classify the complexity of Edge Deletion-H-Colouring. Since multiple edges of the
same colour are irrelevant, if H has order 2, for each edge-colour there are three possible
edges.

I Theorem 8. Let H be an edge-coloured core of order at most 2. If each colour of H
contains only loops or contains all three possible edges, then Edge Deletion-H-Colouring
is in PTime; otherwise it is NP-complete.

Proof. The NP-completeness proofs are by reductions from Vertex Cover, based on
vertex- and edge-gadgets constructed using obstructions to the corresponding homomorphisms
from [1]. They are available in the full version of the manuscript. We now present the PTime
part.

First note that if colour i has all three possible edges in H, we can simply ignore this
colour by removing it from H and G without decreasing the parameter, as it does not provide
any constraint on the homomorphisms.

We can therefore suppose that H contains only loops. If two colours induce the same
subgraph of H, then we can identify these two colours in both G and H as they give the
same constraints.

If G has colours that H does not have, then remove each edge with this colour and
decrease the parameter for each removed edge. If it goes below zero then we reject.

We can now assume that H has only loops and G has the same colours as H. We are left
with only a few cases, as H is a core (there is no vertex whose set of loops is included in the
set of loops of the other).

H has a single loop. Then, G ec−→ H as G has the same colours as H.
H contains two non-incident loops with different colours and two non-incident loops of a
third colour. Up to symmetry, suppose that H has one blue loop and one green loop on
the first vertex and has one red loop and one green loop on the second vertex. We will
reduce to the problem where we have removed the green loops. We construct G′ from
G by replacing each green edge by a blue edge and a red edge. We claim that Edge
Deletion-H-Colouring with parameter k and input G is true if and only if Edge
Deletion-H2−

r,b -Colouring with parameter k plus the number of green edges of G on
input G′ is true. (See full version of the article for details.) Using this method we can
reduce the problem to Edge Deletion-H2−

r,b -Colouring, which is our last case.
H contains two non-incident loops with different colours; then H = H2−

r,b . Indeed if
there were any other kind of loop, then we would be in the previous case or we could
identify two colours. Note that a 2-edge-coloured graph maps to H2−

r,b if and only if it has
no red edge incident to a blue edge. Thus, solving Edge Deletion-H2−

r,b -Colouring
amounts to splitting G into disconnecting red and blue connected components. This can
be done by constructing the following bipartite graph: put a vertex for each edge of G;
two are adjacent if the corresponding edges in G are adjacent and of different colours.
Solving Edge Deletion-H2−

r,b -Colouring is the same as solving Vertex Cover on
this bipartite graph, which is PTime.

There is no other case as otherwise the set of loops of one vertex would be included in the
set of loops of the other. J
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3.3 Dichotomy for Switching-H-Colouring when H has order 2

I Theorem 9. Let H be a 2-edge-coloured graph from Figure 1. If H is one of H2b
r,b, H2b

r,−,
H2rb
r,b , H2rb

r,− or H2rb
r,r , then Switching-H-Colouring is NP-complete. Otherwise, it is in

PTime.

Proof. We begin with the PTime cases.
Every 2-edge-coloured graph maps to H1

rb, thus Switching-H1
rb-Colouring is trivially

in PTime.
No graph with an edge can be mapped to H1

− (regardless of switchings).
For H1

b , we need to test if the graph can be switched to an all-blue graph in less than
k switchings. There are only two sets of switchings that achieve this signature (one is
the complement of the other). It is in PTime to test if the graph can be switched to
an all-blue graph (see [5, Proposition 2.1]). Doing that also gives us one of the two
switching sets; we then need to check if its size is at most k or at least |V (G)| − k. So,
Switching-H1

b -Colouring is in PTime.
For H2−

r,b , we just apply the algorithm for H1
b and H1

r to each connected component, one
of the two must accept for each of them.
For H2br

−,−, a graph G is a YES-instance if and only if G (without considering edge-colours)
is bipartite, which is PTime testable.
For H2b

−,− a graph G is a YES-instance if and only if it is bipartite and maps to H1
b . We

just need to check the two properties, which are both PTime.
For H2b

r,r, a graph G maps to H2b
r,r if and only if it has no cycles with an odd number of

blue edges [1]. This property is preserved under the switching operation. Thus, switching
the graph does not impact the nature of the instance. It is thus in PTime (we can test
with k = 0) since H2b

r,r-Colouring is in PTime [1, 4].

We now consider the NP-complete cases. For every H, Switching-H-Colouring clearly
lies in NP. NP-hardness follows from the above-stated Theorem 3 (proved in [5, 6]) in all
but one case: indeed, the switching cores of H2b

r,b, H2rb
r,b , H2rb

r,− and H2rb
r,r have at least three

edges, and thus when H is one of these, Switching-H-Colouring is NP-complete (even
with k = |V (G)|).

The last case is H2b
r,−. We give a reduction from Vertex Cover to Switching-H2b

r,−-
Colouring. Given instance G of Vertex Cover, we construct an all-red copy G′ of G,
and we attach to each vertex v of G a blue edge vv′, with a red loop on v′ (see Figure 2).

u v w

u′ v′ w′

G . . .

Figure 2 Reduction from Vertex Cover to Switching-H2b
r,−-Colouring.

Denote by x the vertex of H2b
r,− with a loop, and by y the other one. Assume that G has

a vertex cover C of size at most k. Denote by G′′ the graph obtained from G′ by switching
at the vertices of C. We map every vertex v′ to x, every vertex of C to x and the remaining
ones to y. Since C is a vertex cover, each red edge of G′′ is either a loop on some vertex v′, an
edge vv′ with v ∈ C or an edge uv with u, v ∈ C. In each case, both endpoints are mapped
on x. The blue edges of G′′ are then either vv′ with v /∈ C or uv with u ∈ C and v /∈ C. In
both cases, the two endpoints are mapped to different vertices of H2b

r,−; thus, G′′
ec−→ H2b

r,−.
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Conversely, assume that we can switch G′ at vertices from a set S such that the resulting
graph G′′ maps to H2b

r,−. Let C be the set of vertices v of G such that v or v′ lies in S. Note
that C has size at most |S|. We claim that C is a vertex cover of G. Assume that there is
an edge uv in G with u, v /∈ C. By construction, u, u′, v, v′ /∈ S, so uu′, vv′ are blue in G′′,
and uv is red. Thus, u, v have to be mapped to x, and u′, v′ to y, a contradiction since u′
has a incident red loop in G′′. Therefore C is a vertex cover of G. J

4 Parameterized complexity results

4.1 Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring
For many edge-coloured graphs H of order at most 2, we can show that Vertex Deletion-
H-Colouring and Edge Deletion-H-Colouring are FPT by giving ad-hoc reductions
to Vertex Cover, Odd Cycle Transversal or a combination of both. However, a more
powerful method is to generalise a technique from [4] used to prove that H-Colouring is in
PTime by reduction to 2-Sat (see also [2]):

I Theorem 10 (Brewster et al. [4]). Let H be an edge-coloured graph of order at most 2.
Then, for each instance G of H-Colouring, there exists a PTime computable 2-Sat formula
F (G) that is satisfiable if and only if G ec−→ H. Thus, H-Colouring is in PTime.

The formula F (G) from Theorem 10 contains a variable xv for each vertex v of G, and
for each edge uv, a set of clauses that depends on H. The idea is to see the two vertices of
H as “true” and “false”, and for each edge uv of a certain colour, to express the possible
assignments of xu and xv based on the edges of that colour that are present in H.

We will show how to generalise this idea to Vertex Deletion-H-Colouring and Edge
Deletion-H-Colouring. We will need the following parameterized variant of 2-Sat:

Variable Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F , an integer k.
Question: Is there a set of k variables that can be deleted from F (together with the
clauses containing them) so that the resulting formula is satisfiable?

Variable Deletion Almost 2-Sat and another similar variant, Clause Deletion
Almost 2-Sat (where instead of k variables, k clauses may be deleted), are known to be
FPT (see [11, Chapter 3.4]). We need to introduce a more general variant, that we call
Group Deletion Almost 2-Sat, defined as follows.

Group Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F , an integer k, and a partition of the clauses of F
into groups such that each group has a variable which is present in all of its clauses.
Question: Is there a set of k groups of clauses that can be deleted from F so that the
resulting formula is satisfiable?
By a generalisation of [11, Exercise 3.21] for Clause Deletion Almost 2-Sat, we

obtain the following complexity result for Group Deletion Almost 2-Sat. Its proof is
included in the full version of the paper.

I Proposition 11. Group Deletion Almost 2-Sat is FPT.

We are now able to prove the following theorem.

I Theorem 12. For every edge-coloured graph H of order at most 2, Vertex Deletion-
H-Colouring and Edge Deletion-H-Colouring are FPT.
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Proof. For an instance G, k of Vertex Deletion-H-Colouring or Edge Deletion-H-
Colouring, we consider the formula F (G) from Theorem 10 (see [4]). In F (G), to each
vertex of G corresponds a variable xv. Deleting v from G when mapping G to H has the same
effect as deleting xv when satisfying F (G). Thus, this is an FPT reduction from Vertex
Deletion-H-Colouring to Variable Deletion Almost 2-Sat.

Moreover, each edge uv of G corresponds to one or two clauses of F (G). This naturally
defines the groups of Group Deletion Almost 2-Sat by grouping the clauses corresponding
to the same edge. Removing an edge is equivalent to remove its corresponding group. To
finish, we have to make sure that we can have one variable common to all the clauses of each
group. This is the case in the reduction in [4] for every case except when Ei(H) (the set
of edges of colour i in H) is just a loop. Assume without loss of generality that the loop is
on vertex 1 (the other loop can be treated the same way). Suppose uv has colour i in G;
then uv must be mapped to the loop on vertex 1. The original reduction added the clauses
(xu)(xv); we modify this part and add instead the clauses (c+ xu)(c+ xv)(c) where c is a
new variable. This is now a valid and equivalent instance of Group Deletion Almost
2-Sat, which is FPT by Proposition 11. J

4.2 Switching-H-Colouring: FPT cases
We now consider the parameterized complexity of Switching-H-Colouring. By Theorem 9,
there are five 2-edge-coloured graphs H of order at most 2 with Switching-H-Colouring
NP-complete. We first show that two of them are FPT:

I Theorem 13. Switching-H2b
r,b-Colouring and Switching-H2b

r,−-Colouring are FPT.

Proof. The graph H2b
r,b has the finite duality property by [1], which implies FPT time for

Switching-H2b
r,b-Colouring by a simple bounded search tree algorithm (Proposition 4).

For the graph H2b
r,−, the duality set F(H) discovered in [1] is composed of paths of the

form RB2p−1R (where R is a red edge, B a blue edge and p ≥ 1 is an integer) and of cycles
with an odd number of blue edges. As seen before, if the graph G has such a cycle then
switching will not remove it, thus we can reject.

If the graph has a RB2p−1R path and is a positive instance, then we claim that we need
to switch one of the four vertices of the red edges. Indeed, if we switch only at the vertices
inside the blue path (those not incident with one of the red edges) then the parity of the
number of blue edges will not change and we will still have some maximal odd blue subpath,
the two edges next to the extremities being red. Thus we would still have a RB2q−1R path.

Thus, since we need to switch at one of these four vertices, we branch on this configuration
using the classic bounded search tree technique. This is an FPT algorithm. J

4.3 Switching-H-Colouring: W[1]-hard cases
The remaining cases, H2rb

r,b , H2rb
r,− and H2rb

r,r , yield W[1]-hard Switching-H-Colouring
problems, even for input graphs of large girth (recall that the girth of a graph is the smallest
length of one of its cycles, and by the girth of an edge-coloured graph we mean the girth of
its underlying uncoloured graph):

I Theorem 14. Let x ∈ {r, b,−}. Then for any integer q ≥ 3, the problem Switching-
H2br
r,x -Colouring is W[1]-hard, even for graphs G′ with girth at least q. Under the same

conditions, Switching-H2br
r,x -Colouring cannot be solved in time f(k)|G|o(k) for any

function f , assuming the ETH.
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We will prove Theorem 14 by three reductions from Multicoloured Independent
Set, which is W[1]-complete [15]:

Multicoloured Independent Set Parameter: k.
Input: A graph G, an integer k and a partition of V (G) into k sets V1,. . . ,Vk.
Question: Is there a set S of exactly k vertices of G, such that each Vi contains exactly
one element of S, that forms an independent set of G?
Our three reductions (one for each possible choice of x) follow the same pattern. In

Section 4.3.1, we describe this idea, together with the required properties of the gadgets. In
Sections 4.3.2, 4.3.3 and 4.3.4, we show how to construct the gadgets. Since the reduction
preserves the parameter and is actually polynomial, the ETH-based lower bound follows.

4.3.1 Generic reduction
Let (G, k) be an instance of Multicoloured Independent Set, and denote by V1, . . . , Vk
the partition of G. We begin by replacing each Vi by a partition gadget Gi. This gadget must
have |Vi| special vertices, in order to associate a vertex of Gi to each vertex of Vi. Moreover,
Gi must satisfy the following:
(P 1) We do not have Gi

ec−→ H2rb
r,x .

(P 2) If we switch Gi at exactly one vertex v, then the obtained graph maps to H2rb
r,x (without

switching) if and only if v is one of the special vertices of Gi.
(P 3) Gi has girth at least q.

Let uv be an edge of G. Recall that u and v can be seen as vertices of G′. We then add
an edge gadget Guv between u and v. This gadget must satisfy the following:
(E1) Let H be the graph obtained from Guv by switching at a subset S of {u, v}. Then,

H
ec−→ H2rb

r,x if S 6= {u, v}.
(E2) Assume that u ∈ Vi and v ∈ Vj and let H be the graph obtained from Guv ∪Gi ∪Gj

by switching u and v. Then, we do not have H ec−→ H2rb
r,x .

(E3) Ge has girth at least q.
(E4) In Ge, u and v are at distance at least q.

Let G′ be the graph obtained from G by replacing each Vi by a partition gadget Gi, and
each edge uv by an edge gadget Guv such that for every u ∈ Vi and v such that uv is an edge,
we identify the special vertex u in Gi with the special vertex u in Guv. (Note in particular
that every vertex of G is present in G′.)

We say that a set S of vertices of G is valid if, when seen in G′, it contains at most one
special vertex in each edge gadget. We need a last condition about G′:
(SP ) If, after switching a valid set in G′, the obtained graph does not map to H2rb

r,x , then
this is because a partition gadget or an edge gadget does not map to H2rb

r,x (that is, each
minimal obstruction is entirely contained in an edge gadget or a partition gadget).

With this Property (SP ), we can prove that (G, k) 7→ (G′, k) is a valid reduction.

I Proposition 15. (G′, k) is a positive instance of Switching-H2rb
r,x -Colouring if and

only if (G, k) is a positive instance of Multicoloured Independent Set.

Proof. Assume we can switch at most k vertices of G′ such that the obtained graph maps
to H2rb

r,x . Let S be the set of those vertices. We claim that S is a valid set of G′. First note
that, due to (P1), S must contain at least one vertex in each Vi. This enforces |S| = k, thus
S contains exactly one vertex vi in each Vi. By (P2), each of these vi has to be one of the
special vertices of Gi. This means that S contains only vertices that are present in G.
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We claim that S induces an independent set in G. Assume by contradiction that there is
an edge uv in G with u, v ∈ S. Then, by construction, there is an edge gadget whose special
vertices are u and v, such that the edge gadget and the two partition gadgets associated
with u and v map to H2rb

r,x when we switch only at u and v, contradicting (E2). (Note that
S does not contain any other vertex of the edge gadget nor any other vertex of the partition
gadgets.) Therefore, G has an independent set of size k containing exactly one vertex in each
set Vi.

Conversely, assume that G has an independent set S intersecting each Vi at one vertex.
Then, we denote byH the graph obtained by switching all vertices of S in G′. By construction,
this is a valid set, hence by (SP ) every obstruction for mapping to H2rb

r,x in H is actually
contained in some gadget. However, it cannot be contained in a partition gadget due to (P2),
nor in an edge gadget due to (E1). Therefore, we have H ec−→ H2rb

r,x . J

Observe moreover that, due to (P3), (E3) and (E4), G′ has girth at least q. Thus to
prove Theorem 14 it suffices to construct the gadgets.

4.3.2 Gadgets for H2rb
r,r

x0
x1 x2

x3

(a) Partition gadget for Vi = {x0, x1, x2, x3}.

u v

(b) Edge gadget for uv.

Figure 3 Partition and edge gadgets in the H2rb
r,r -reduction when q = 3.

We now describe the gadgets for Switching-H2rb
r,r -Colouring. Note that for every

graph G, we have G ec−→ H2rb
r,r if and only if it does not contain an all-blue odd cycle.

The partition gadget Gi is an all-blue cycle of length 2q if q and |Vi| have the same parity
(resp. 2q + 2 if they do not have the same parity) with a chord of order |Vi| between two
antipodal vertices. The special vertices are those on the chord (see Figure 3a).

Property (P3) directly follows from the construction. Moreover, since Gi contains an
all-blue odd cycle, we have (P1). If we switch Gi at exactly one vertex, then either this
vertex is a special vertex and the obtained graph does not have any all-blue odd cycle (and
thus maps to H2rb

r,r ), or it is not a special vertex and there is still an all-blue odd cycle.
Therefore, property (P2) also holds.

We now consider the edge gadget. It is formed by an all-blue odd cycle of length 2q + 1
where two vertices u, v at distance q have been switched (see Figure 3b). These vertices are
the special vertices of the gadget. By construction, properties (E3) and (E4) hold. Moreover,
consider a set S ⊂ {u, v}. The only way for switching the vertices of S to yield a graph
containing an all-blue odd cycle is to switch both u and v. This proves (E1). If we switch at
both special vertices then we do not have Guv

ec−→ H2rb
r,r , which implies (E2).

It remains to prove Property (SP ). Let S be a valid set, and let H be the graph obtained
from G′ when switching all vertices of S. Assume that H contains an all-blue odd cycle.
Since S is valid set, at most one vertex has been switched in each edge gadget. Therefore, no
all-blue odd cycle of H can contain an edge from an edge gadget. It is thus contained in
some partition gadget, ensuring that (SP ) holds.
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u v

Figure 4 The edge gadget for uv in the H2rb
r,−-reduction when q = 6.

4.3.3 Gadgets for H2rb
r,−

We now describe the gadgets for Switching-H2rb
r,−-Colouring. Note that for every graph

G, we have G ec−→ H2rb
r,− if and only if it does not contain a bad walk, i.e. a walk v0, v1, . . . ,

v2j , v0, v2j+2, . . . , v2p−1, v0 such that all edges v2iv2i+1 are blue [1].
The partition gadget Gi is the same as in the previous case (see Figure 3a).
The edge gadget is an odd path of length at least q, whose edges are all blue except for

the two first and two last ones (see Figure 4).
The proofs of validity for this case can be found in the full version of the paper.

4.3.4 Gadgets for H2rb
r,b

x0 x3x1 x2

(a) Partition gadget for Vi = {x0, x1, x2, x3}.

u v

x

(b) Edge gadget for uv. The vertex x is where
the two alternating cycles were identified.

Figure 5 Partition and edge gadgets in the H2rb
r,b -reduction when q = 3.

We now describe the gadgets for Switching-H2rb
r,b -Colouring. Note that for every

graph G, we have G ec−→ H2rb
r,b if and only if it does not contain another type of bad walks, i.e.

an alternating walk v0, v1, . . . , v2j , v0, v2j+2, . . . , v2p−1, v0 for some integers j and p [1].
The partition gadget Gi is defined by gluing two obstructions with large girth along a

path of length |Vi| (see Figure 5a). More precisely, consider an alternating odd cycle C of
size |Vi| + q (or |Vi| + q + 1). Note that C contains a vertex u adjacent to two red edges.
We attach an alternating odd cycle C ′ of length q (or q + 1) to u, such that the edges of C ′
adjacent to u are blue. To obtain Gi, we take two copies of this obstruction, and glue their
respective largest cycle along a path of length |Vi|. The vertices of this path are the special
vertices of Gi.

The edge gadget is formed by identifying the vertices with monochromatic neighbourhood
of two alternating odd cycles of length 2q + 1, in such a way that the common vertex has
two blue edges in one cycle and two red edges in the other one. To obtain the edge gadget,
we switch this graph at two vertices u, v in the same cycle, at distance q from each other
(see Figure 5b).

The proofs of validity for this case can be found in the full version of the paper.

5 Conclusion and perspectives

We have introduced Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring
and Switching-H-Colouring and characterised their complexity for some small H. The
full complexity landscape still needs to be determined. We have fully classified the classic
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complexity of Vertex Deletion-H-Colouring problems. It remains to do the same for
Edge Deletion-H-Colouring and Switching-H-Colouring.

We proved that both Vertex Deletion-H-Colouring and Edge Deletion-H-
Colouring are FPT when H has order at most 2. However, if H has order 3, for example if
H is a monochromatic triangle, we obtain 3-Colouring, which is not in XP. Switching-H-
Colouring seems particularly interesting, since we obtained an FPT/W[1]-hard dichotomy
when H has order at most 2 (in which case the problem is always in XP). But again for some
H of order 3, Switching-H-Colouring is not in XP. It would be very interesting to obtain
FPT/W[1]/XP trichotomies for Vertex Deletion-H-Colouring, Edge Deletion-H-
Colouring and Switching-H-Colouring.

Finally, we note that it could be interesting to study analogues of Vertex Deletion-H-
Colouring and Edge Deletion-H-Colouring for arbitrary fixed-template CSP problems.
Up to our knowledge this has not been done.
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