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Abstract
It is known that FO model-checking is fixed-parameter tractable on Erdős–Rényi graphs G(n, p(n))
if the edge-probability p(n) is sufficiently small [23] (p(n) = O(nε/n) for every ε > 0). A natural
question to ask is whether this result can be extended to bigger probabilities. We show that for
Erdős–Rényi graphs with vertex colors the above stated upper bound by Grohe is the best possible.

More specifically, we show that there is no FO model-checking algorithm with average FPT run
time on vertex-colored Erdős–Rényi graphs G(n, nδ/n) (0 < δ < 1) unless AW[∗] ⊆ FPT/poly. This
might be the first result where parameterized average-case intractability of a natural problem with a
natural probability distribution is linked to worst-case complexity assumptions.

We further provide hardness results for FO model-checking on other random graph models,
including G(n, 1/2) and Chung-Lu graphs, where our intractability results tightly match known
tractability results [13]. We also provide lower bounds on the size of shallow clique minors in certain
Erdős–Rényi and Chung–Lu graphs.
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1 Introduction

Model-checking is an important and well-investigated problem with various applications in
database theory, verification, artificial intelligence and many other areas. The input to the
model-checking problem is a structure and a logical sentence and the question is whether the
structure is a model for the sentence, i.e., if the sentence is true in the model. We consider
the FO model-checking problem on colored graphs. This means that sentences can express
(besides the common rules of first-order logic) adjacency between vertices and whether a
vertex has a given color. This problem is known to be PSPACE-complete [39]. Let G be
a graph class and L be a logic. We are interested in model-checking as a parameterized
problem, which is defined as follows:

p-MC(L,G)
Input: A graph G ∈ G and a logical sentence ϕ ∈ L

Parameter: |ϕ|
Problem: G |= ϕ?
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11:2 Hardness of FO Model-Checking on Random Graphs

We denote the class of all graphs by G. Downey, Fellows, and Taylor showed that
p-MC(FO,G) is AW[∗]-complete and thus very hard on general graphs [15]. However, model-
checking becomes tractable when restricted to special graph classes. Courcelle’s theorem
states that if G is a graph class with bounded treewidth then p-MC(MSO,G) is in FPT [11].
The FO model-checking problem p-MC(FO,G) can be solved in FPT time if G has bounded
expansion [17, 38] or is nowhere-dense [25].

For a graph class G, we define Gcol to be the class of all vertex colorings of G. For most
graph classes G it makes no difference if we consider the model-checking problem on G or
Gcol because colors can be encoded by small gadgets. Given an instance (G,ϕ) with G ∈ Gcol,
for most graph classes G it is easy to construct a new instance (G′, ϕ′) of similar size with
G′ ∈ G, and G |= ϕ iff G′ |= ϕ′. In particular, if G comes from a nowhere-dense class, then
so does G′.

Average-Case Model-Checking

Average-case complexity analyzes the typical run time of algorithms on random instances
(such as random graphs) and is a well-established field of complexity theory [3]. While the
worst-case complexity of the parameterized model-checking problem is well analyzed, much
less is known about its average-case complexity, or parameterized average-case complexity in
general.

We fix a sequence of vertices (ui)i∈N and say a random graph model is a sequence G =
(Gn)n∈N, where Gn is a probability distribution over all graphs G with V (G) = {u1, . . . , un}.
The most well-known random graph model are so called Erdős–Rényi graphs [6]. The
Erdős–Rényi graph G(n, p(n)) consists of n vertices where each edge is added independently
with probability p(n). This very natural model is of great theoretical interest and has been
investigated in many ways. Other models such as the preferential attachment model [2, 5],
the Chung–Lu model [10, 9, 7], or the configuration model [32, 33] were defined to mimic
complex networks that are observed in the real world.

There exist some tractability results for the model-checking problem on random graph
models, including sparse Erdős–Rényi graphs, Chung–Lu graphs and the configuration model,
as we will see later on. We distinguish between the average-case complexity of model-checking
on uncolored graphs (p-MC(FO,G)) and colored graphs (p-MC(FO,Gcol)):

I Definition 1. We say p-MC(FO,G) can be decided on a random graph model G in expected
time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-MC(FO,G) on input
G, ϕ in time tA(G,ϕ) and for all n ∈ N, all FO-sentences ϕ, EG∼Gn

[
tA(G,ϕ)

]
≤ f(|ϕ|, n).

A function C : G → Gcol is called a c-coloring function for c ∈ N if for every G ∈ G,
C(G) is a coloring of G with up to c colors. The colorings do not need to be proper.

I Definition 2. We say p-MC(FO,Gcol) can be decided on a random graph model G in expec-
ted time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-MC(FO,Gcol)
on input G, ϕ in time tA(G,ϕ) and if for all n ∈ N, all FO-sentences ϕ and all |ϕ|-coloring
functions C, EG∼Gn

[
tA(C(G), ϕ)

]
≤ f(|ϕ|, n).

We say p-MC(FO,Gcol) or p-MC(FO,G) can be decided in expected FPT time on a random
graph model if it can be decided in expected time f(|ϕ|)nO(1) for some function f . Clearly,
p-MC(FO,Gcol) is harder than p-MC(FO,G) on random graph models because the model-
checking algorithm has to be efficient for every possible coloring. However, all efficient
average-case model-checking algorithms so far work by placing the random graph model
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with high probability in a tractable graph class (for example low degree [23], or bounded
expansion [13]) and then using well-known model-checking algorithms for such graph classes.
Thus, the algorithms work no matter how the vertices of the random graphs are colored.

The following tractability results are known: Let p(n) be a function with p(n) = O(nε/n)
for all ε > 0. Grohe showed that one can solve p-MC(FO,Gcol) on G(n, p(n)) in expected
time f(|ϕ|, δ)n1+δ for every δ > 0 [23]. Later Demaine et al. proved that p-MC(FO,Gcol) can
be solved in expected FPT linear time on Chung–Lu and configuration graphs whose degrees
follow a power law distribution with exponent α > 3 and maximal degree at most n1/α [13].

Average-Case Intractability

A natural question to ask next is: For which graphs does model-checking become intractable?
For the worst-case complexity of monotone graph classes (classes which are closed under
subgraphs) this question is settled: FO model-checking is in FPT if and only if the graph
class is nowhere-dense [25]. For non-monotone classes and especially random graph models
the question is more difficult.

Ideally, positive algorithmic results should be accompanied by lower bounds that show
that the result is the best possible. Very often such matching lower bounds are the triumphant
last step in completely answering a question that has had a long history of incremental
partial results. The best example is the theory of NP-completeness, but there are many other
nice examples from parameterized complexity: ETH-based lower bounds, non-existence of
polynomial kernels, and in the area of FO model-checking the fact that p-MC(FO,G) ∈ FPT
for some monotone somewhere-dense graph class G implies AW[∗] = FPT.

On the other hand, the situation does not look as good in the area of average-case
complexity. While we know that FO model-checking on G(n, d/n) can be decided in expected
FPT time if d is constant or grows slower than nε for every ε > 0, we do not have any lower
bounds for a larger d.

The lack of lower bounds of average-case runtimes is not restricted to random graphs
and the model-checking problem. At this point of time we still do not know techniques
to prove good lower bounds in that area. While it is certainly possible to reduce between
problems preserving bounds on the expected running time, there are virtually no results
linking average- to worst-case complexity. What we are missing in particular are results of
this kind: If we can solve parameterized problem X fast on average then some unexpected
consequence holds in the world of worst-case complexity (such as P = NP).

There has been some work on average-case complexity of parameterized problems. Foun-
toulakis, Friedrich, and Hermelin showed that parameterized clique can be decided efficiently
on Erdős–Rényi graphs with arbitrary density [18] and Friedrich and Krohmer proved the
same result for certain scale free random graphs where the degree sequence follows a power
law with exponent α > 2 [19]. However, there exist some artificial, computable distributions
for which the problem is distW[1]-complete [18], where distW[1] is an average-complexity
class, which is assumed to be hard. This means that parameterized clique cannot be decided
efficiently on average on that distribution unless every problem in distW[1] can be decided
efficiently on average. This promising result identifies distW[1] as a possible corner stone
for an average-case parameterized complexity theory. There is, however, no link between
average-case and worst-case complexity and no lower bounds for more natural probability
distributions.

Hardness results on less artificial distributions are known if one considers counting
problems instead of decision problems. Müller presented a counting problem on matrices
that is hard on average on certain uniform distributions unless W[1] ⊆ paraNP-BPFPT [35],
thereby linking parameterized average-case complexity and classical parameterized complexity.

IPEC 2019



11:4 Hardness of FO Model-Checking on Random Graphs

Our main result is a lower bound for FO model-checking on certain vertex-colored random
graph models, in particular certain Erdős–Rényi and Chung–Lu graphs. If for every coloring
function we can solve FO model-checking on such a random graph in expected FPT time, then
AW[∗] ⊆ FPT/poly, which is quite unexpected because i.a. every level of the W-hierarchy is
contained in AW[∗]. While the hardness results hold for many random graph models (see
Theorem 14) the following theorem shows three examples:

I Theorem 3. If p-MC(FO,Gcol) can be decided in expected FPT time on any of the following
random graph models, then AW[∗] ⊆ FPT/poly:

G(n, 1/2),
G(n, p(n)) with p(n) = nδ/n for some 0 < δ < 1, δ ∈ Q,
Chung–Lu graphs with exponent 2.5 ≤ α < 3, α ∈ Q.

This might be the first result where parameterized average-case hardness of a natural
problem with a natural probability distribution is linked to classical complexity assumptions.
For a more complete list of hard random graph models see Section 3.3. Our intractability
results tightly match known tractability results:

I Corollary 4. Assume that AW[∗] 6⊆ FPT/poly and let p : N → [0, 1
2 ] be monotone and

computable in polynomial time. Then p-MC(FO,Gcol) can be decided on Erdős–Rényi graphs
G(n, p(n)) in expected FPT time if and only if p(n) = O(nε/n) for every ε > 0.

In Theorem 3 and Corollary 4 we mention expected FPT time which is not closed under
invoking polynomial subroutines. Our hardness results also hold for more permissive measures
of parameterized tractability, similar to average polynomial run time [31], as introduced by
Levin (see Theorem 8 and 9).

The drawback of this result is the usage of colored graphs, which turns out to be
instrumental in the proof and it seems that colorings introduce a bit of worst-case behavior
into the otherwise random sampling of a graph. In the past every positive result about
model-checking on graphs worked for colored and uncolored graphs alike, but it is not clear
whether something similar is true in the world of average-case complexity. The big open
question that remains is whether we can prove a similar lower bound on uncolored random
graphs and this paper is merely trying to contribute in the building of tools to reach this
goal. A next step could be to show lower bounds under more restricted colorings.

There are examples for other lower bounds, which were shown first on colored graphs. One
example is Kreutzer’s proof that a graph class whose tree-width is not bounded, but grows at
least moderately, has no efficient MSO model-checking algorithm. One of the conditions on
the graph class was closure under colorings [29]. This lower bound complements Courcelle’s
theorem [11], which states that MSO model-checking can be done in linear time on graph
classes with bounded tree-width (with or without colors). Later Kreutzer and Tazari could
replace closure under colorings by closure under subgraphs, which is less restrictive [30].
Ganian et al. reintroduced closure under (vertex-)colorings to prove a similar result for MSO1
model-checking [22]. These examples show that lower bounds are sometimes easier to prove
in the presence of colorings.

Structural Sparsity and Average-Case Model-Checking

For monotone graph classes, model-checking is tractable if the graph class is nowhere-dense
and intractable if it is somewhere-dense [25]. For random graph models, even for sparse
random graph models, the situation is more complicated. We say a random graph model G
is asymptotically almost surely (a.a.s.) somewhere-dense if there exists a somewhere-dense
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graph class H such that for n→∞, a graph sampled from Gn belongs with probability one
to H. We similarly define a.a.s. nowhere-dense. Erdős–Rényi graphs, Chung–Lu graphs, the
configuration model, and preferential attachment graphs have been classified with respect to
a.a.s. somewhere- and nowhere-density [36, 13]. However, it is important to note that a.a.s.
somewhere-density is neither necessary nor sufficient for intractability:

There exist a.a.s. somewhere-dense random graph models for which p-MC(FO,Gcol) is
fixed parameter tractable.
There exist a.a.s. nowhere-dense random graph models for which p-MC(FO,G) is not
fixed parameter tractable (under some assumptions).

We state why: On the one hand, there exist trivial dense random graph models for which
p-MC(FO,Gcol) is tractable, such as the complete graph. In an upcoming work, we want
to show that p-MC(FO,Gcol) even is decidable on the a.a.s. somewhere-dense preferential
attachment model in expected FPT time. On the other hand, Fountoulakis, Friedrich, and
Hermelin showed that under the hypothesis distW[1] 6⊆ avgFPT ∪ typFPT there exists a
random graph model H for which the parameterized clique problem is not tractable [18]. We
construct a random graph model G as follows: With probability 1/ log(n), Gn is distributed
according to Hn and with probability 1− 1/ log(n), Gn is an independent set of size n. Now
G is a.a.s. sparse. If p-MC(FO,G) could be solved on G in expected FPT time then it could
also be solved on H in expected FPT time, which contradicts our hypothesis.

Connections to Shallow Topological Clique Minors

A byproduct of our work is a polynomial lower bound on the size of subdivided cliques in
sufficiently dense random graphs, and polynomial time algorithms to find them. Let ε > 0.
Dvořák [16] and Jiang [26] showed independently (using a slightly different formulation)
that there exists a sequence (`n,ε)n∈N with limn→∞ `n,ε = ∞ and an integer cε such that
every graph G with n vertices and at least n1+ε edges contains a cε-subdivision of a clique
of size `n,ε. Jiang further showed that one can choose cε = 10/ε. Both authors did not give
a lower bound on `n,ε.

A simple application of Chernoff bounds together with this result yields that G(n, nε/n)
contains a.a.s. a cε/2-subdivided clique of size `n,ε/2 with limn→∞ `n,ε =∞. To obtain good
lower bounds for the model-checking problem we need the clique size `n,ε to be polynomial
in n. Therefore we show that G(n, nε/n) contains a.a.s. a 6/ε-subdivided clique of size
nε/5 (Lemma 15). We also show that the Chung–Lu random graph model with exponent
2.5 ≤ α < 3 contains a.a.s. a one-subdivided clique of polynomial size (Lemma 18). We
further show that these shallow clique minors can be found in polynomial time.

It is left as an open question whether ln,ε grows polynomially in n for general graphs. If
affirmative then the result is probably not easy to prove: Kostochka and Pyber showed that
a graph with n vertices and at least 4t2n1+ε edges contains a subdivision of Kt with at most
7t2 ln(t)/ε (principal and non-principal) vertices [28]. Even with such weaker requirements
the bound on t is smaller than logn and leaves an exponential gap to be filled.

Our Techniques

We use colorings and so called FO-interpretations on random graphs. An FO-interpretation
a translates a graph G into another graph G′ with the help of an FO-formula ψ(x, y): The
graph G′ contains an edge (x, y) iff G |= ψ(x, y). FO-interpretations are a standard tool in
logic and have lately been used in the context of model-checking (for example [20, 21]).

IPEC 2019
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We use FO-interpretations to establish a reduction framework. Let X and Y be two
random graph models. We say Y polynomially FO-interprets to X (X 4 Y ) if an interpreta-
tion of a coloring of a graph G is nearly distributed like X assuming that G is distributed
like Y (Definition 11). We further say that X polynomially FO-interprets to G (G 4 X)
if an arbitrary graph H ∈ G can be encoded into X using colorings and interpretations
(Definition 7). In both cases, we require the interpretations to change the size of the graph
at most polynomially. We show that p-MC(FO,Gcol) is not tractable on any random graph
model X with G 4 X (Theorem 9) and that 4 propagates hardness (Lemma 12, 13), yielding
a way to prove intractability of p-MC(FO,Gcol) on random graphs by means of reductions.

Let G be a random graph model with G 4 G. Let H be a graph and ϕ an FO-sentence.
We sample a graph G from Gn for some n = |H|O(1) and use colorings and FO-interpretations
to encode H with sufficiently high probability into G. Then one can solve the model-checking
problem on H by solving it on the coloring of G instead. If p-MC(FO,Gcol) can be decided
on G in expected FPT time then one can also solve the model-checking problem on every
graph H in expected FPT time. The result is a link between worst-case and average-case
complexity.

2 Preliminaries

2.1 Graph Notation
We use common graph theory notation [14]. In this work we obtain results for undirected
colored graphs [24]. A colored graph is a tuple G = (V (G), E(G), C1(G), . . . , Cl(G)) with
Ci ⊆ V (G). We call C1(G), . . . , Cl(G) the colors of G. Vertices may have multiple colors.
We say a vertex v is colored with color Ci if v ∈ Ci. All notion for graphs extends to
colored graphs as expected. We define G to be the class of all graphs and Gcol to be the
class of all colored graphs. A coloring of an uncolored graph G is a colored graph G′ with
(V (G′), E(G′)) = G. We define the order of a graph G to be |G| = |V (G)|.

A r-subdivision1 of a graph H is a graph H ′ obtained by replacing edges with disjoint
paths of length at least 2 and at most r + 1. The principal vertices of H ′ are those vertices
which are in H. We say a graph G contains an r-subdivided induced clique of size k if an r-
subdivision of Kk is an induced subgraph of G. We say a graph G contains an one-subdivided
half-induced clique of size k if there exist k vertices v1, . . . , vk ⊆ V (G) such that for every
1 ≤ i < j ≤ k there exists a vertex wi,j ∈ V (G) with N(wi,j) ∩ {v1, . . . , vk} = {vi, vj}. We
call v1, . . . , vk the principal vertices and wi,j the bridge between vi and vj .

2.2 Probabilities and Random Graph Models
We denote probabilities by Pr[∗] and expectation by E[∗]. We consider a random graph model
to be a sequence of probability distributions. A random graph model describes for every
n ∈ N a probability distribution on graphs with n vertices. In order to speak of probability
distributions over graphs we fix a sequence of vertices (ui)i≥1 and require that a graph with n
vertices has the vertex set {u1, . . . , un}. A random graph model is a sequence G = (Gn)n∈N,
where Gn is a probability distribution over all graphs G with V (G) = {u1, . . . , un}. We write
G ∼ Gn if a graph G is is distributed as Gn. In slight abuse of notation, we sometimes treat
a probability distribution Gn as a random variable itself. For example the random variable
E(Gn) stands for E(G) with G ∼ Gn. We say a property of a random graph model holds
a.a.s. if the probability that the property holds in Gn converges to one for n→∞.

1 Usually, in an r-subdivision paths have length exactly r+ 1 but this definition is more convenient for us.



J. Dreier and P. Rossmanith 11:7

Erdős–Rényi graphs [6] with edge probability p(n) are denoted by G(n, p(n)). The Chung–
Lu model [10, 9, 7] has been proposed to generate random graphs that fit a certain degree
sequence. For a given n ∈ N let Wn = (w1, . . . , wn) be a sequence of weights. The Chung–Lu
random graph to Wn is a random graph Gn with V (Gn) = {u1, . . . , un} such that each edge
uiuj with 1 ≤ i, j ≤ n occurs in Gn independently with probability wiwj/

∑n
k=1 wk. Let

α > 2. We say G is the Chung–Lu random graph model with exponent α if for every n ∈ N,
Gn is the Chung–Lu random graph to Wn = {w1, . . . , wn} with wi = c · (n/i)1/(α−1) where c
is a constant depending on α.

We say a random graph model G is expected polynomial time samplable if there exists
a randomized algorithm which runs on input n ∈ N in expected time polynomial in n and
creates an output which is distributed like Gn. This excludes for example Erdős–Rényi graphs
where p(n) is not computable.

2.3 First-Order Logic
We consider only first-order logic over colored graphs. We interpret a colored graph G =
(V,E,C1, . . . , Cl), as a structure over the universe V with signate (E,C1, . . . , Cl). The binary
relation E expresses adjacency between vertices and the unary relations C1, . . . , Cl indicate
the colors of the vertices. Other structures can be easily converted into colored graphs. We
write ϕ(x1, . . . , xk) to indicate that a formula ϕ has free variables x1, . . . , xk. Furthermore,
|ϕ| is the number of symbols in ϕ.

An FO interpretation is a pair I = (ν(x), ψ(x, y)) of FO formulas (with one and two
free variables, respectively). For a colored graph G, this defines an uncolored graph I(G)
with V (I(G)) = {v | G |= ν(v)}, E(I(G)) = {uv | G |= ψ(u, v)}. For an FO sentence ϕ,
the interpretation I defines an FO sentence ϕI as follows: Every occurrence of E(x, y) is
replaced with ψ(x, y) ∨ ψ(y, x). Every occurrence of ∃xψ is replaced with ∃xν(x) ∧ ψ and
every occurrence of ∀xψ is replaced with ∀xν(x)→ ψ. Then G |= ϕI ⇐⇒ I(G) |= ϕ.

2.4 Parameterized Complexity
The classes paraNP-BPFPT and FPT/poly are parameterized analogues of BPP and P/poly.

I Definition 5. [34] paraNP-BPFPT is the class of parameterized problems that can be
decided by a randomized Turing machine with two-sided error 1/n (where n is the size of
the input). The run time of the Turing machine on every input of size n and parameter k
needs to be at most f(k)nO(1) for some computable function f .

I Definition 6. [12] FPT/poly is the class of all parameterized problems Q for which there
exists a parameterized problem Q′ ∈ FPT and a constant c such that for each (n, k) ∈ N×N
there exists some α(n, k) ∈ Σ∗ of size nc, with the property that for all instances 〈x, k〉 with
|x| = n, it holds that 〈x, k〉 ∈ Q if and only if 〈(x, α(|x|, k)), k〉 ∈ Q′.

The complexity class AW[∗] can be defined as the class of all parameterized problems that
can be reduced to p-MC(FO,G) by fpt-reductions and contains the whole W-hierarchy. In
summary

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · ⊆ AW[∗] ⊆ XP,

paraNP-BPFPT = FPT ⇐⇒ BPP = P (see [35]).

It is widely believed that BPP = P.

IPEC 2019
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3 Results

3.1 Hardness
In this section we define a property of random graph models (denoted by G 4 G, see
Definition 7) and then show that p-MC(FO,Gcol) is not tractable on average on random graph
models with this property. We base our results either on the assumption AW[∗] 6⊆ FPT/poly or
on AW[∗] 6⊆ paraNP-BPFPT. As discussed in Section 2.4, these are well-funded assumptions
of parameterized worst-case complexity. In the following definition we characterize those
random graph models which have enough structure such that an arbitrary graph can with
high probability be embedded using FO-interpretations and colorings.

I Definition 7. Let G be a random graph model. We say G polynomially FO-interprets
to G (short: G 4 G) if G is expected polynomial time samplable and there exists an FO
interpretation I, a polynomial p, a constant c and a randomized algorithm B which gets
as input G,H ∈ G with |G| = p(|H|) and runs in polynomial time in |H|. Either the
algorithm fails and B(G,H) is a special failure symbol ⊥ or B(G,H) is a coloring of G with
I(B(G,H)) = H. Furthermore for every H, Pr(B(Gp(|H|), H) 6= ⊥) ≥ 1/|H|c.

Our notion of tractability (as used in the following two theorems) is similar to the well-
known notion of average polynomial time (for example [3, Definition 3]): Let D = {Dn}n∈N
be a sequence of distributions. A deterministic algorithm with run time t(x) on input x runs
in average polynomial time on D if there exists an ε > 0 and a polynomial p such that for every
n and t, Prx∼Dn

[t(x) ≥ t] ≤ p(n)/tε. Average polynomial time is closed under polynomial
subroutines and implies polynomial expected time. We show that if one can solve the
model-checking problem with adversary colorings efficiently then AW[∗] ⊆ paraNP-BPFPT.

I Theorem 8. Let G be a random graph model with G 4 G. If there exists a function f , a
polynomial p, an ε > 0 and a deterministic algorithm A which decides p-MC(FO,Gcol) on
input G, ϕ in time tA(G,ϕ) such that for all n, t ∈ N, all FO-sentences ϕ and all |ϕ|-coloring
functions C it holds that

Pr
[
tA
(
C(Gn), ϕ

)
≥ t
]
≤ f(|ϕ|)p(n)/tε,

then AW[∗] ⊆ paraNP-BPFPT. Moreover, then there exists a randomized algorithm which
gets as input a graph H ∈ G and a FO-sentence ϕ and returns whether G |= ϕ or ⊥, whereas
⊥ is returned with probability at most 1/2. The algorithm always runs in time g(|ϕ|)|H|O(1)

for some function g and uses only |H|O(1) random bits.

Proof. It is known that p-MC(FO,G) is AW[∗]-complete [15]. We assume G 4 G with
interpretation I, polynomial q and algorithm B. Let H be a graph with |H| = n and ϕ be a
FO-sentence. Consider the following procedure: We sample a graph G with G ∼ Gq(n). We
then compute B(G,H), which is either a coloring of G or ⊥. If B(G,H) = ⊥, we return ⊥.
If not then I(B(G,H)) = H. This means H |= ϕ ⇐⇒ B(G,H) |= ϕI . In this case, we use
A to compute whether B(G,H) |= ϕI .

Let us analyze this procedure: Since Pr(B(Gq(n), H) 6= ⊥) ≥ 1/nc for some constant
c, the probability that the procedure returns ⊥ is at most 1 − 1/nc. Let C be a |ϕI |-
coloring function such that for every graph G′ ∈ G, C(G′) is a coloring of G′ with |ϕI |
colors maximizing tA(C(G′), ϕI). We can assume that A immediately returns ⊥ on a
malformed input ⊥, thus tA(B(G,H), ϕI) ≤ tA(C(G), ϕI). Therefore for every t ∈ N,
Pr
[
tA(B(H,Gq(n)), ϕI) ≥ t

]
≤ Pr

[
tA(C(Gq(n)), ϕI) ≥ t

]
. Let g(|ϕ|) = f(|ϕI |)1/ε. By our
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assumption, we have Pr
[
tA(C(Gq(n)), ϕI) ≥ g(|ϕ|)t

]
≤ p(q(n))/tε. Thus, for every t ∈ N, A

does not terminate on (B(G,H), ϕI) after g(|ϕ|)t steps with probability at most p(q(n))/tε.
We choose t = nO(1) such that p(q(n))/tε ≤ 1/4nc, run A for g(|ϕI |)t steps, and then abort
it. The probability that it was aborted is at most 1/4nc. The graph G ∼ Gq(n) is sampled in
expected polynomial time. We also abort the sampling procedure after nO(1) steps such that
the probability that it was aborted is at most 1/4nc. In total, the procedure was aborted
with probability at most 1/2nc and returns ⊥ with probability at most 1− 1/nc, leaving a
probability of at least 1/2nc to not be aborted and to not return ⊥. Therefore, we compute
whether H |= ϕ with probability at least 1/2nc and always run in FPT time. We repeat this
nO(1) times to amplify the probability. Altogether we needed randomness to sample from Gn
and to run B for a polynomial number of steps, which results in the usage of polynomially
many random bits. J

Adleman’s theorem states that BPP ⊆ P/poly [1, Theorem 7.17]. The following proof is
very similar to its proof, thus we are brief.

I Theorem 9. Let G be a random graph model with G 4 G. If there exists a function f , a
polynomial p, an ε > 0 and a deterministic algorithm A which decides p-MC(FO,Gcol) on
input G, ϕ in time tA(G,ϕ) such that for all n, t ∈ N, all FO-sentences ϕ and all |ϕ|-coloring
functions C

Pr
[
tA
(
C(Gn), ϕ

)
≥ t
]
≤ f(|ϕ|)p(n)/tε,

then AW[∗] ⊆ FPT/poly.

Proof. It is known that p-MC(FO,G) is AW[∗]-complete [15]. If we assume that the
preconditions of this theorem are fulfilled then by Theorem 8 there is a randomized algorithm
that can decide for a graph G ∈ G with |G| = n and FO-sentence ϕ whether G |= ϕ in FPT
time with probability at least 1/2 and that returns ⊥ otherwise. Moreover, that algorithm
uses only nO(1) random bits.

We can run that algorithm n3 times and the probability that we get at least once the
answer to G |= ϕ is then at least 1− 2−n3 . There are at most 2n2 graphs with a fixed vertex
set of size n. For each of these at most 2n2 possible input graphs G there is a fraction of at
most 2−n3 of possible random bit strings that cause the amplified algorithm to fail on G.
The total fraction of random bit strings that cause the algorithm to fail on at least one G
is then at most 2−n3 · 2n2

< 1 and there must be at least one choice of random bits that
causes the algorithm to give the right answer on every colored graph G of order n. Feeding
the randomized algorithm this fixed string of bits instead of using true random bits yields a
deterministic FPT algorithm that needs for each n an advice string of polynomial length,
which places the problem in FPT/poly. J

A simple application of the Markov bound yields the following more compact statement.

I Corollary 10. Let G be a random graph model with G 4 G. If p-MC(FO,Gcol) can be
solved on G in expected FPT time then AW[∗] ⊆ FPT/poly.

3.2 Reductions
In this section we use colorings and FO-interpretations to define reductions between random
graph models (Definition 11) and show that these reductions are transitive and propagate
hardness (Lemma 12 and 13). For two random graph models X and Y we say Y polynomially
FO-interprets to X (X 4 Y ) if an interpretation of a coloring of a graph G is nearly
distributed like X, assuming G is distributed like Y . This section is a technical necessity,
but contains no surprising results.
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I Definition 11. Let X and Y be random graph models. We say Y polynomially FO-
interprets to X (X 4 Y ) if Y is expected polynomial time samplable and there exists an
interpretation I, a polynomial p, a constant c and a randomized algorithm C which gets
as input an uncolored graph G, runs in polynomial time in |G| and returns C(G). Either
the algorithm fails and C(G) equals a special failure symbol ⊥ or C(G) is a coloring of G.
Furthermore for every x in the support of Xn, PrG∼Yp(n) [I(C(G)) = x] ≥ PrG∼Xn [G = x]/nc.

I Lemma 12. Let X and Y be random graph models. If G 4 X and X 4 Y then G 4 Y .

Proof. Assume X 4 Y with algorithm C1, interpretation I1, polynomial p1 and constant
c1. and G 4 X with algorithm B2, interpretation I2, polynomial p2 and constant c2. Let I
be the interpretation obtained by applying I1 and then I2. By Definition 11, Y is expected
polynomial time samplable. It is sufficient to construct a randomized algorithm B which gets
as input G,H ∈ G with |G| = p2(p1(|H|)) and B(G,H) is either ⊥ or a coloring of G with
I(B(G,H)) = H, and for every H ∈ G, PrG∼Yp1(p2(|H|))(B(G,H) 6= ⊥) ≥ 1/|H|c for some c.

This algorithm proceeds as follows: At first, we compute C1(G). If G′ = I1(C1(G)) is ⊥ or
no graph of order p2(n) we return ⊥. Then we compute B2(G′, H). Again, if B2(G′, H) = ⊥
we return ⊥. With at least polynomial probability no ⊥ was returned, since

PrG∼Yp1(p2(|H|)) [B2(G′, H) 6= ⊥] =
∑
G′

PrG∼Yp1(p2(|H|)) [I1(C1(G)) = G′, B2(G′, H) 6= ⊥]

≥ PrG′∼Xp2(|H|) [B2(G′, H) 6= ⊥]/p2(|H|)c1 ≥ 1/(p2(|H|)c1 |H|c2) ≥ 1/|H|c,

for some constant c. If no ⊥ was returned, we know that I2(B2(I1(C1(G)), H)) = H. This
means H can be obtained from G by first putting colors on it via C1, then interpreting it via
I1, then again putting colors on it via B2 and again interpreting it via I2. The same result
can be obtained by putting all colors directly on G and then applying I1 and I2. Let G∗ be
the coloring of G which contains the colors of C(G) and the lifted colors of B2(G′, H). The
algorithm returns B(G,H) = G∗. Then I(G∗) = I2(I1(G∗)) = H. J

With the same techniques as in the lemma before one can show that 4 is transitive. Since
the proof is straightforward, we leave it out.

I Lemma 13. Let X, Y , and Z be random graph models. If X 4 Y and Y 4 Z then X 4 Z.

3.3 Hard Random Graph Models

In this section we prove intractability of p-MC(FO,Gcol) for certain random graph models.
As a side result, we obtain polynomial lower bounds on the size of shallow clique minors in
Erdős–Rényi graphs (Lemma 15) and Chung–Lu graphs (Lemma 18). The main results are
summarized in the following theorem.

I Theorem 14. The following list of random graph models polynomially FO-interpret to G

(for 0 < ε < 1):
(i) every Erdős–Rényi random graph model G(n, p(n)) with nε/n ≤ p(n) ≤ 1− nε/n that

is expected polynomial time samplable,
(ii) every Chung–Lu random graph model with exponent α ∈ Q with 2.5 ≤ α < 3,
(iii) every expected polynomial time samplable random graph model G such that in Gn

every edge is independent and has an individual probability p with nε/n ≤ p ≤ 1/nε.
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Proof. The second and third case correspond to Lemma 19 and16 respectively. For the
first case, the interval [nε/n, 1 − nε/n] can be broken into three parts: [nε/n, n−1/2],
[n−1/2, 1− n−1/2], [1− n−1/2, 1− nε/n]. The first interval corresponds to Lemma 16. The
third interval can be reduced to the first interval using the complement graph. The missing
region is filled by Lemma 17. J

I Lemma 15. Let ε > 0. Let G be a random graph model such that in Gn every edge is
independent and has an individual probability p with nε/n ≤ p ≤ 1/nε. There exists a
deterministic polynomial time algorithm which gets a graph with n vertices and either returns
⊥ or an induced 6/ε-subdivided clique of size bnε/5c. If the input is distributed according to
G then a.a.s. the algorithm does not return ⊥.

Proof. Let n ∈ N and k = bnε/5c. We fix k principal vertices v1, . . . , vk. Each edge in Gn
occurs with probability at least nε/n. Thus, the expected degree of each principal vertex
is at least nε = Θ(k5). The degree of a vertex is a sum of independent Bernoulli variables.
According to the Chernoff Bound, a.a.s., each principal vertex has degree at least k2. We
assume that this is the case. This means, there are k2 distinct nodes wij (1 ≤ i, j ≤ k) such
that wij is adjacent to vi.

We choose k2 disjoint subsets Si,j (1 ≤ i, j ≤ k) of size N = dn/k3e such that Si,j
contains wji and wij but none of the vertices v1, . . . , vk. Each subgraph Gn[Si,j ] can be
interpreted as a random graph of order N where edges have independent probability at least
n/nε = Θ(N/Nε/3). It is known that the diameter of a graph G(n, p(n)) is a.a.s. at most
dlog(n)/ log(np(n))e [8, Theorem 2] (also [27, 4, 37]). By the argument above, Gn[Si,j ] a.a.s.
has diameter at most dlog(N)/ log(Nε/3)e = d3/εe ≤ 4/ε. While not explicitly mentioned in
the references, this holds with sufficiently high probability to guarantee that that a.a.s. each
subgraph Gn[Si,j ] (1 ≤ i, j ≤ k) has diameter at most 4/ε. We again assume that this is the
case. Then for each pair of vertices wji , wij we compute a path pi,j in Si,j of length at most
4/ε connecting them. All paths pi,j are disjoint. Therefore, the principal vertices v1, . . . , vj
together with the paths pi,j span a 4/ε+ 2-subdivided clique.

At last, we need to show that this subdivided clique is a.a.s. an induced subdivided clique.
The subdivided clique consists of at most O(k2) vertices. Thus, there is a set F of at most
O(k4) = O(nε4/5) possible edges whose presence would mean that the subdivided clique is
no induced subdivided clique. Let A be the event that the degree of all principal vertices is
at least k2 and that each subgraph Gn[Si,j ] (1 ≤ i, j ≤ k) has diameter at most 4/ε. Now we
need to show that with high probability no edge from F is present, assuming that A holds.
Earlier, we showed that A holds a.a.s. Thus, there exists n0 such that for n ≥ n0, P [A] ≥ 1/2.
For every event B and n ≥ n0 holds Pr[B̄ | A] ≤ Pr[B̄]/Pr[A] ≤ 2Pr[B̄]. Thus if a.a.s. no
edge from F is present, then also a.a.s. no edge from F is present under the assumption that
A holds. Each edge occurs with probability at most n−ε. Thus, the probability that none of
these edges in F is present is at least

(
1− n−ε

)O(nε4/5) which converges to one. J

I Lemma 16. Let ε > 0. Let G be an expected polynomial time samplable random graph
model such that in Gn every edge is independent and has an individual probability p with
nε/n ≤ p ≤ 1/nε. Then G 4 G.

Proof. LetH be a graph with |H| = n andG ∼ Gdn5/εe. We use the algorithm from Lemma 15
on G to a.a.s. compute an induced 6/ε-subdivided clique of size n. If the algorithm from
Lemma 15 returns ⊥, we set B(G,H) = ⊥, which a.a.s. never happens. Otherwise, we
proceed as follows: Let v1, . . . , vn be the principal vertices of the induced clique and let pi,j
(1 ≤ i < j ≤ k) be the disjoint paths of length at most 6/ε connecting vi and vj . Each
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path pi,j is adjacent to exactly two principal vertices and no other path. The final output
B(G,H) is constructed by adding colors C1 and C2 to G: We define C1 = {v1, . . . , vn} and
C2 =

⋃
ij∈E(H) V (pmin(i,j),max(i,j)). Now i and j are adjacent in H if and only if vi and vj

have a connecting path of length at most 6/ε in G which is colored completely with C2.
Let further I = (ν(x), ψ(x, y)) be the interpretation such that ν(x) = C1(x) and ψ(x, y)

is the formula which checks if x and y have a connecting path of length at most 6/ε which is
colored completely with C2. The length of ψ(x, y) depends on ε, which is a constant. Now if
B(G,H) 6= ⊥ then B(G,H) is a coloring of G with I(B(G,H)) = H and the probability of
B(G,H) = ⊥ is sufficiently low. Therefore G 4 G. J

I Lemma 17. Let G(n, p(n)) be an expected polynomial time samplable Erdős–Rényi random
graph model with n−1/2 ≤ p(n) ≤ 1− n−1/2. Then G 4 G(n, p(n)).

Proof. By Lemma 16 and Lemma 12, it is sufficient to prove G(n, b
√
nc/n) 4 G(n, p(n)).

We assume n > 10. Let m = n14. Let G be the input graph with G ∼ G(m, p(m)). We
shall construct a randomized polynomial time algorithm C and an interpretation I such that
I(C(G)) behaves similar to G(n, b

√
nc/n). For sets N ⊆ V (G) and vertices u, v ∈ V (G) \N

with u 6= v we say u and v have the same N -neighborhood if NG(u) ∩ N = NG(v) ∩ N .
Since G ∼ G(m, p(m)), the probability that u and v have the same N -neighborhood equals
cN (m) :=

(
p(m)2 + (1 − p(m))2)|N |. We compute the minimal value k ∈ N such that

1/n4 ≤
(
p(m)2 + (1− p(m))2)k ≤ 1/n3. Clearly, k exists and is computable in polynomial

time. Furthermore, one can easily show that k ≤ m2/3.
We fix three sets X,Y, Z ⊆ V (G) with X = {v1, . . . , vn}, |Y | = |Z| = k. This yields

1/n4 ≤ cY (m), cZ(m) ≤ 1/n3. We further fix
(
n
2
)
subsets Si,j ⊆ V (G) for 1 ≤ i < j ≤ n with

|Si,j | = n11. Since n+ k +
(
n
2
)
n11 ≤ m, we can assume all these subsets to be disjoint.

If there exist two vertices vi and vj with 1 ≤ i 6= j ≤ n which have the same Y -
neighborhood or the same Z-neighborhood we return ⊥. The probability that this happens
is, by the union bound, at most

(
n
2
)
(cY (m) + cZ(m)) ≤ 1/n. Furthermore, if there exists

1 ≤ i < j ≤ n such that there is no vertex in Si,j which has the same Y -neighborhood as vi
and the same Z-neighborhood as vj , we return ⊥. For fixed i, j, the probability that there is
no vertex in Si,j which has the same Y -neighborhood as vi and the same Z-neighborhood as
vj is at most (1− cY (m)cZ(m))|Si,j | ≤ (1− 1/n8)n11 ≤ 1/n3. Thus, by the union bound, ⊥
is returned with probability at most

(
n
2
)
/n3 ≤ 1/n. In total, ⊥ is a.a.s. never returned.

If the algorithm did not return ⊥, we know that the Y - and Z-neighborhoods of v1, . . . , vn
are distinct and for all 1 ≤ i < j ≤ n there exists a vertex si,j which has the same Y -
neighborhood as vi and the same Z-neighborhood as vj . We construct a set W which
represents the edge set of a random graph G(n, b

√
nc/n) by adding each vertex si,j for

1 ≤ i < j ≤ k independently with probability b
√
nc/n to W . Let the final output C(G)

be the graph G augmented with colors X,Y, Z,W . Let further I = (ν(x), ψ(x, y)) be the
interpretation where ν(x) = X(x) and ψ(a, b) is the FO formula which checks if there exists
a vertex w ∈W which has the same Y -neighborhood as a and the same Z-neighborhood as
b. Now vi and vj with i < j are adjacent in I(C(G)) if and only if si,j ∈ W , which occurs
with probability b

√
nc/n. Therefore under the condition that C(G) 6= ⊥ we have I(C(G)) ∼

G(n, b
√
nc/n). Since a.a.s. I(C(G)) 6= ⊥, we have for every x in the support of G(n, b

√
nc/n)

and n sufficiently large, PrG∼G(m,p(m))[I(C(G)) = x] ≥ PrG∼G(n,b
√
nc/n)[G = x]/2. This

means G(n, b
√
nc/n) 4 G(n, p(n)). J

The threshold 2.5 < α in the following lemma has been chosen to ease the calculations
and can be considerably improved.
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I Lemma 18. Let G be a Chung–Lu random graph model with exponent 2.5 ≤ α < 3. There
exists an ε > 0 such Gn contains a.a.s. a one-subdivided half-induced clique with principal
vertices u1, . . . , udnεe.

Proof. Let n ∈ N and V (Gn) = {u1, . . . , un}. By definition [10], the probability of an edge
uiuj in Gn is wiwj/

∑n
k=1 wk, where wk = Θ(n/k)1/(α−1). One can easily verify that for

α > 2,
∑n
k=1 wk = Θ(n). We choose ε = 1/(α− 1)− 1/2 and get

Pr[uiuj ∈ E(Gn)] = wiwj∑n
k=1 wk

= (n/i)1/(α−1)(n/j)1/(α−1)

Θ(n) = Θ(n2ε(ij)−ε−1/2).

Since 2.5 ≤ α < 3, we have 0 < ε ≤ 1/6. Let k = dnε/2e. We fix a, b ≤ k. For n/2 ≤ x ≤ n
let p(x) be the probability that ux is a bridge between ua and ub. Then

p(x) = Ω
(
n2ε(xa)−ε−1/2n2ε(xb)−ε−1/2) k∏

c=1

(
1−O(n2ε(xc)−ε−1/2)

)
=

Ω(k−2ε−1n2ε−1)
(

1 − O(nε−1/2)
)k

= Ω(k−2n2ε−1) = Ω(nε−1).

The probability that none of the vertices udn/2e, . . . , un are a bridge between ua and ub is at
most

n∏
x=dn/2e

(
1− p(x)

)
=
(

1−Θ(nε−1)
)Θ(n)

= e−Θ(nε).

By the union bound, Gn contains no one-subdivided half-induced clique with principal vertices
u1, . . . , vk with probability at most ke−Θ(nε). Since k = dnε/2e, this converges to zero. J

I Lemma 19. Let G be a Chung–Lu random graph model with exponent 2.5 ≤ α < 3, α ∈ Q.
Then G 4 G.

Proof. The proof is very similar to that of Lemma 16, therefore we merely sketch it. Since
α ∈ Q, we know that G is expected polynomial time samplable (see [1, Lemma 7.14]). Given
a graph G ∼ Gn, by Lemma 18, the first dnεe vertices of G a.a.s. are the principal vertices
of a one-subdivided half-induced clique. If it exists, one can easily find the bridges of said
clique in polynomial time. We color the principal vertices with color C1 and a subset of the
bridges with color C2. We define an FO-interpretation which selects the principal vertices
as nodes and connects them if they are joined by a bridge with color C2. By choosing C2
accordingly, we can construct an arbitrary graph of order dnεe. J
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