
FPT Inapproximability of Directed Cut and
Connectivity Problems
Rajesh Chitnis
School of Computer Science, University of Birmingham, UK
rajeshchitnis@gmail.com

Andreas Emil Feldmann
Charles University, Czechia
feldmann.a.e@gmail.com

Abstract
Cut problems and connectivity problems on digraphs are two well-studied classes of problems

from the viewpoint of parameterized complexity. After a series of papers over the last decade, we now
have (almost) tight bounds for the running time of several standard variants of these problems para-
meterized by two parameters: the number k of terminals and the size p of the solution. When there is
evidence of FPT intractability, then the next natural alternative is to consider FPT approximations.
In this paper, we show two types of results for directed cut and connectivity problems, building on
existing results from the literature: first is to circumvent the hardness results for these problems by
designing FPT approximation algorithms, or alternatively strengthen the existing hardness results by
creating “gap-instances” under stronger hypotheses such as the (Gap-)Exponential Time Hypothesis
(ETH). Formally, we show the following results:
Cutting paths between a set of terminal pairs, i.e., Directed Multicut: Pilipczuk and Wahlstrom

[TOCT ’18] showed that Directed Multicut is W[1]-hard when parameterized by p if k = 4.
We complement this by showing the following two results:

Directed Multicut has a k/2-approximation in 2O(p2) · nO(1) time (i.e., a 2-approximation
if k = 4),
Under Gap-ETH, Directed Multicut does not admit an (59

58−ε)-approximation in f(p)·nO(1)

time, for any computable function f , even if k = 4.
Connecting a set of terminal pairs, i.e., Directed Steiner Network (DSN): The DSN problem on

general graphs is known to be W[1]-hard parameterized by p+ k due to Guo et al. [SIDMA ’11].
Dinur and Manurangsi [ITCS ’18] further showed that there is no FPT k1/4−o(1)-approximation
algorithm parameterized by k, under Gap-ETH. Chitnis et al. [SODA ’14] considered the
restriction to special graph classes, but unfortunately this does not lead to FPT algorithms
either: DSN on planar graphs is W[1]-hard parameterized by k. In this paper we consider the
DSNPlanar problem which is an intermediate version: the graph is general, but we want to find
a solution whose cost is at most that of an optimal planar solution (if one exists). We show the
following lower bounds for DSNPlanar:

DSNPlanar has no (2− ε)-approximation in FPT time parameterized by k, under Gap-ETH.
This answers in the negative a question of Chitnis et al. [ESA ’18].
DSNPlanar is W[1]-hard parameterized by k + p. Moreover, under ETH, there is no (1 + ε)-
approximation for DSNPlanar in f(k, p, ε) · no(k+

√
p+1/ε) time for any computable function f .

Pairwise connecting a set of terminals, i.e., Strongly Connected Steiner Subgraph (SCSS):
Guo et al. [SIDMA ’11] showed that SCSS is W[1]-hard parameterized by p+ k, while Chitnis
et al. [SODA ’14] showed that SCSS remains W[1]-hard parameterized by p, even if the input
graph is planar. In this paper we consider the SCSSPlanar problem which is an intermediate
version: the graph is general, but we want to find a solution whose cost is at most that of an
optimal planar solution (if one exists). We show the following lower bounds for SCSSPlanar:

SCSSPlanar is W[1]-hard parameterized by k + p. Moreover, under ETH, there is no (1 + ε)-
approximation for SCSSPlanar in f(k, p, ε) · no(

√
k+p+ 1

ε
) time for any computable function f .

Previously, the only known FPT approximation results for SCSS applied to general graphs para-
meterized by k: a 2-approximation by Chitnis et al. [IPEC ’13], and a matching (2− ε)-hardness
under Gap-ETH by Chitnis et al. [ESA ’18].

© Rajesh Chitnis and Andreas Emil Feldmann;
licensed under Creative Commons License CC-BY

th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rajeshchitnis@gmail.com
mailto:feldmann.a.e@gmail.com
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 FPT Inapproximability of Directed Cut and Connectivity Problems

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Directed graphs, cuts, connectivity, Steiner problems, FPT inapproximability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.8

Related Version Full version of the paper is available at http://arxiv.org/abs/1910.01934.

Funding Rajesh Chitnis: Work done while at University of Warwick, UK and supported by ERC
grant 2014-CoG 647557.
Andreas Emil Feldmann: Supported by the Czech Science Foundation GAČR (grant #19-27871X),
and by the Center for Foundations of Modern Computer Science (Charles Univ. project UNCE/S-
CI/004).

Acknowledgements We thank Pasin Manurangsi for helpful discussions.

1 Introduction

Given a weighted directed graph G = (V,E) with two terminal vertices s, t the problems of
finding a minimum weight s t cut and a minimum weight s t path can both be famously
solved in polynomial time. There are two natural generalizations when we consider more
than two terminals: either we look for connectivity/cuts between all terminals of a given set,
or we look for connectivity/cuts between a given set of terminal pairs. This leads to the four
problems of Directed Multiway Cut, Directed Multicut, Strongly Connected
Steiner Subgraph and Directed Steiner Network:

Cutting all paths between a set of terminals: In the Directed Multiway Cut
problem, we are given a set of terminals T = {t1, t2, . . . , tk} and the goal is to find a
minimum weight subset X ⊆ V such that G\X has no ti tj path for any 1 ≤ i 6= j ≤ k.
Cutting paths between a set of terminal pairs: In the Directed Multicut
problem, we are given a set of terminal pairs T = {(si, ti)}ki=1 and the goal is to find a
minimum weight subset X ⊆ V such that G \X has no si ti path for any 1 ≤ i ≤ k.
Connecting all terminals of a given set: In the Strongly Connected Steiner
Subgraph (SCSS) problem, we are given a set of terminals T = {t1, t2, . . . , tk} and the
goal is to find a minimum weight subset X ⊆ V such that G[X] has a ti tj path for
every 1 ≤ i 6= j ≤ k.
Connecting a set of terminal pairs: In the Directed Steiner Network (DSN)
problem, we are given a set of terminal pairs T = {(si, ti)}ki=1 and the goal is to find a
minimum weight subset X ⊆ V such that G[X] has an si ti path for every 1 ≤ i ≤ k.

All four of the aforementioned problems are known to be NP-hard, even for small values
of k. One way to cope with NP-hardness is to try to design polynomial time approximation
algorithms with small approximation ratio. However, apart from Directed Multiway Cut,
which admits a 2-approximation in polynomial time [35], all the other three problems are
known to have strong lower bounds (functions of n) on the approximation ratio of polynomial
time algorithms [16, 19, 25]. Another way to cope with NP-hardness is to try to design FPT
algorithms. However, apart from Directed Multiway Cut which has an FPT algorithm
parameterized by the size p of the cutset, all the other three problems are known to be
W[1]-hard (and hence fixed-parameter intractable) parameterized by size p of the solution X
plus the number k of terminals/terminal pairs. When neither of the paradigms of polynomial
time approximation algorithms nor (exact) FPT algorithm seem to be successful, the next
natural alternative is to try to design FPT approximation algorithms or show hardness of
FPT approximation results.

https://doi.org/10.4230/LIPIcs.IPEC.2019.8
http://arxiv.org/abs/1910.01934

R. Chitnis and A. E. Feldmann 8:3

In this paper, we consider the remaining three problems of Directed Multicut,
Strongly Connected Steiner Subgraph and Directed Steiner Network, for which
strong approximation and parameterized lower bounds exist, from the viewpoint of FPT
approximation algorithms. We obtain two types of results for these three problems: the first
is to circumvent the W[1]-hardness and polynomial-time inapproximability results for these
problems by designing FPT approximation algorithms, and the second is to strengthen the ex-
isting W[1]-hardness by creating “gap-instances” under stronger hypotheses than FPT 6= W[1]
such as (Gap-) Exponential Time Hypothesis (ETH). Throughout, we use k to denote number
of terminals or terminal pairs and p to denote size of the solution. First, in Section 1.1, we give
a brief overview of the current state-of-the-art results for each the three problems from the
lens of polynomial time approximation algorithms, FPT algorithms, and FPT approximation
algorithms followed by the formal statements of our results. Then, in Section 1.2 we describe
the recent flux of results which have set up the framework of FPT hardness of approximation
under (Gap-)ETH, and how we use it obtain our hardness results in this paper.

1.1 Previous work and our results
The Directed Multicut problem

Garg et al. [23] showed that Directed Multicut is NP-hard even for k = 2. The current
best approximation ratio in terms of n is O(n11/23 · logO(1) n) due to Agarwal et al. [1], and
it is known that Directed Multicut is hard to approximate in polynomial time to within
a factor of 2Ω(log1−ε n) for any constant ε > 0, unless NP ⊆ ZPP [16]. There is a simple
k-approximation in polynomial time obtained by solving each terminal pair as a separate
instance of min s t cut and then taking the union of all the k cuts. Chekuri and Madan [8]
and later Lee [30] showed that this is tight: assuming the Unique Games Conjecture of
Khot [28], it is not possible to approximate Directed Multicut better than factor k in
polynomial time, for any fixed k. On the FPT side, Marx and Razgon [34] showed that
Directed Multicut is W[1]-hard paramterized by p. For the case of bounded k, Chitnis
et al. [14] showed that Directed Multicut is FPT parameterized by p when k = 2, but
Pilipczuk and Wahlstrom [36] showed that the problem remains W[1]-hard parameterized
by p when k = 4. The status of Directed Multicut parameterized by p when k = 3
is an outstanding open question. We first obtain the following FPT approximation for
Directed Multicut parameterized by p, which beats any approximation obtainable when
parameterizing by k (even in XP time) according to [8, 30]:

I Theorem 1. The Directed Multicut problem admits an dk/2e-approximation in
2O(p2) · nO(1) time.

The proof of the above theorem uses the FPT algorithm of Chitnis et al. [14, 12] for
Directed Multiway Cut parameterized by p as a subroutine. Note that Theorem 1
gives an FPT 2-approximation for Directed Multicut With 4 Pairs. We complement
this upper bound with a constant factor lower bound for approximation ratio of any FPT
algorithm for Directed Multicut With 4 Pairs.

I Theorem 2. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(p)·nO(1) time algorithm that computes an (59

58−ε)-approximation for Directed Multicut
With 4 Pairs.

We did not optimize the constant 59/58 in order to keep the analysis simple: we believe
it can be easily improved, but our techniques would not take it close to the upper bound of 2.

IPEC 2019

8:4 FPT Inapproximability of Directed Cut and Connectivity Problems

The Directed Steiner Network (DSN) problem

The DSN problem is known to be NP-hard, and furthermore even computing an O(2log1−ε n)-
approximation is not possible [19] in polynomial time, unless NP ⊆ DTIME(npolylog(n)).
The best known approximation factors for polynomial time algorithms are O(n2/3+ε) and
O(k1/2+ε) [4, 7, 21]. On the FPT side, Feldman and Ruhl [20] designed an nO(k) algorithm
for DSN (cf. [22]). Chitnis et al. [15] showed that the Feldman-Ruhl algorithm is tight:
under ETH, there is no f(k) · no(k) algorithm (for any computable function f) for DSN
even if the input graph is a planar directed acyclic graph. Guo et al. [24] showed that DSN
remains W[1]-hard even when parameterized by the larger parameter k + p. Dinur and
Manurangsi [18] further showed that DSN on general graphs has no FPT approximation
algorithm with ratio k1/4−o(1) when parameterized by k, under Gap-ETH.

Chitnis et al. [11] considered two relaxations of the Directed Steiner Network
problem: the bi-DSN problem where the input graph is bidirected1, and the DSNPlanar
problem where the input graph is general but the goal is to find a solution whose cost is
at most that of an optimal planar solution (if one exists). The main result of Chitnis et
al. [11] is that although bi-DSNPlanar (i.e., the intersection of bi-DSN and DSNPlanar) is
W[1]-hard parameterized by k + p, it admits a parameterized approximation scheme: for any
ε > 0, there is a max{2k2O(1/ε)

, n2O(1/ε)} time algorithm for bi-DSNPlanar which computes
a (1 + ε)-approximation. Such a parameterized approximation is not possible for bi-DSN
as Chitnis et al. [11] showed that under Gap-ETH there is a constant α > 0 such that there
is no FPT α-approximation. They asked whether a parameterized approximation scheme for
the remaining variant of DSN, i.e., the DSNPlanar problem, exists. We answer this question
in the negative with the following lower bound

I Theorem 3. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(k) · nO(1) time algorithm that computes a (2− ε)-approximation for DSNPlanar, even if
the input graph is a directed acyclic graph (DAG).

The W[1]-hardness proof of [15] for DSN on planar graphs parameterized by k does not
give hardness parameterized by p since in that reduction the value of p grows with n. Our next
result shows that the slightly more general problem of DSNPlanar (here the input graph is gen-
eral, but we want to find a solution of cost ≤ p if there is a planar solution of size ≤ p) is indeed
W[1]-hard parameterized by k+p. Also we obtain a lower bound for approximation schemes for
this problem under ETH, i.e., under a weaker assumption than the one used for Theorem 3.2

I Theorem 4. The DSNPlanar problem is W[1]-hard parameterized by p+k, even if the input
graph is a directed acyclic graph (DAG). Moreover, under ETH, for any computable function f

there is no f(k, p) · no(k+√p) time algorithm for DSNPlanar, and
there is no f(k, ε, p) ·no(k+

√
p+1/ε) time algorithm which computes a (1+ε)-approximation

for DSNPlanar for every ε > 0.

Note that just the W[1]-hardness of DSNPlanar parameterized by k + p already follows
from [11] who showed that even the special case of bi-DSNPlanar is W[1]-hard parameterized
by k+p. However, this reduction from [11] was from `-Clique to an instance of bi-DSNPlanar
with k = O(`2) and p = O(`5), whereas Theorem 4 gives a reduction from `-Clique to
DSNPlanar with k = O(`) and p = O(`2). This gives much improved lower bounds on the
running times.

1 Bidirected graphs are directed graphs which have the property that for every edge u → v in G the
reverse edge v → u exists in G as well and moreover has the same weight as u→ v.

2 In the following, o(f(k, p, ε)) means any function g(f(k, p, ε)) such that g(x) ∈ o(x).

R. Chitnis and A. E. Feldmann 8:5

The Strongly Connected Steiner Subgraph (SCSS) problem

The SCSS problem is NP-hard, and the best known approximation ratio in polynomial time
for SCSS is kε for any ε > 0 [6]. A result of Halperin and Krauthgamer [25] implies SCSS
has no Ω(log2−ε n)-approximation for any ε > 0, unless NP has quasi-polynomial Las Vegas
algorithms. On the FPT side, Feldman and Ruhl [20] designed an nO(k) algorithm for SCSS
(cf. [22]). Chitnis et al. [15] showed that the Feldman-Ruhl algorithm is almost optimal:
under ETH, there is no f(k) ·no(k/ log k) algorithm (for any computable function f) for SCSS.
Guo et al. [24] showed that SCSS remains W[1]-hard even when parameterized by the larger
parameter k + p. Chitnis et al. [11] showed that the SCSS problem restricted to bidirected
graphs remains NP-hard, but is FPT parameterized by k. The SCSS problem admits a
square-root phenomenon on planar graphs: Chitnis et al. [15] showed that SCSS on planar
graphs has an 2O(k log k) · nO(

√
k) algorithm, and under ETH there is a tight lower bound of

f(k) · no(
√
k) for any computable function f . The W[1]-hardness proof of [15] for SCSS on

planar graphs parameterized by k does not give hardness parameterized by p, since in that
reduction the value of p grows with n. Our next result shows that the slightly more general
problem of SCSSPlanar (here the input graph is general, but we want to find a solution of
cost ≤ p if there is a planar solution of size ≤ p) is indeed W[1]-hard parameterized by k + p.
We also obtain a lower bound for approximation schemes for this problem under ETH:

I Theorem 5. The SCSSPlanar problem is W[1]-hard parameterized by p + k. Moreover,
under ETH, for any computable function f

there is no f(k, p) · no(
√
k+p) time algorithm for SCSSPlanar, and

there is no f(k, ε, p)·no(
√
k+p+1/ε) time algorithm which computes an (1+ε)-approximation

for SCSSPlanar for every ε > 0.

To the best of our knowledge, the only known FPT approximation results for SCSS
applied to general graphs parameterized by k: a simple FPT 2-approximation due to Chitnis
et al. [13], and a matching (2− ε)-hardness (for any constant ε > 0) under Gap-ETH due
to Chitnis et al. [11].

1.2 FPT inapproximability results under (Gap-)ETH
A standard hypothesis for showing lower bounds for running times of FPT and exact exponen-
tial time algorithms is the Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [26].

I Hypothesis 6. Exponential Time Hypothesis (ETH): There exists a constant δ > 0
such that no algorithm can decide whether any given 3-CNF formula is satisfiable in time
O(2δm) where m denotes the number of clauses.

The original conjecture stated the lower bound as exponential in terms of the number of
variables not clauses, but the above statement follows from the Sparsification Lemma of [27].
The Exponential Time Hypothesis has been used extensively to show a variety of lower
bounds including those for FPT algorithms, exact exponential time algorithms, hardness of
polynomial time approximation, and hardness of FPT approximation. We refer the interested
reader to [31] for a survey on lower bounds based on ETH.

To show the W[1]-hardness of DSNPlanar (Theorem 4) and SCSSPlanar (Theorem 5)
parameterized by k + p we design parameterized reductions from `-Clique to these problems
such that max{k, p} is upper bounded by a function of `. Furthermore, by choosing ε to be
small enough such that computing an (1 + ε)-approximation is the same as computing the

IPEC 2019

8:6 FPT Inapproximability of Directed Cut and Connectivity Problems

optimal solution, we also obtain runtime lower bounds for (1 + ε)-approximations for these
two problems by translating the f(`) · no(`) lower bound for `-Clique [9] under ETH (for any
computable function f).

Recently, a gap version of the ETH was proposed:

I Hypothesis 7. Gap-ETH [17, 32]: There exists a constant δ > 0 such that, given a 3CNF
formula Φ on n variables, no 2o(n)-time algorithm can distinguish between the following two
cases correctly with probability at least 2/3:

Φ is satisfiable.
Every assignment to the variables violates at least a δ-fraction of the clauses of Φ.

It is known [5, 2] that Gap-ETH follows from ETH given other standard conjectures,
such as the existence of linear sized PCPs or exponentially-hard locally-computable one-way
functions. We refer the interested reader to [17, 5] for a discussion on why Gap-ETH is
a plausible assumption. In a breakthrough result, Chalermsook et al. [5] used Gap-ETH
to show that the two famous parameterized intractable problems of Clique and Set Cover
are completely inapproximable in FPT time parameterized by the size of the solution. In
this paper, we obtain two hardness of approximation results (Theorem 2 and Theorem 3)
based on Gap-ETH. The starting point of our hardness of approximation results are based
on the recent results on parameterized inapproximability of the Densest k-Subgraph
problem. Recall that, in the Densest k-Subgraph (DkS) problem [29], we are given an
undirected graph G = (V,E) and an integer k and the goal is to find a subset S ⊆ V of size
` that induces as many edges in G as possible. Chalermsook et al. [5] showed that, under
randomized Gap-ETH, there is no FPT approximation (parameterized by k) with ratio ko(1).
This was improved recently by Dinur and Manurangsi [18] who showed better hardness and
under deterministic Gap-ETH. We state their result formally3:

I Theorem 8 ([18, Theorem 2]). Under Gap-ETH, for any function h(`) = o(1), there is
no f(`) · nO(1)-time algorithm that, given a graph G on n vertices and an integer k, can
distinguish between the following two cases:

(YES) G contains at least one `-clique as a subgraph.
(NO) Every `-subgraph of G contains less than `h(`)−1 ·

(
`
2
)
edges.

Note that this result is essentially tight: there is a simple O(`) approximation since the
number of edges induced by a `-vertex subgraph is at most

(
`
2
)
and at least b`/2c (without

loss of generality, we can assume there are no isolated vertices). Instead of working with
DkS, we will reduce from a “colored” version of the problem called Maximum Colored
Subgraph Isomorphism, which can be defined as follows.

Maximum Colored Subgraph Isomorphism (MCSI)
Input : An instance Γ of MCSI consists of three components:

An undirected graph G = (VG, EG),
A partition of vertex set VG into disjoint subsets V1, . . . , V`,
An undirected graph H = (VH = {1, . . . , `}, EH).

Goal: Find an assignment φ : VH → VG where φ(i) ∈ Vi for every i ∈ [`] that
maximizes the number of edges i− j ∈ EH such that φ(i)− φ(j) ∈ EG.

3 Dinur and Manurangsi [18] actually state their result for 2-CSPs

R. Chitnis and A. E. Feldmann 8:7

This problem is referred to as Label Cover in the hardness of approximation liter-
ature [3]. However, Chitnis et al. [11] used the name Maximum Colored Subgraph
Isomorphism to be consistent with the naming conventions in the FPT community: this
problem is an optimization version of Colored Subgraph Isomorphism [33]. The graph
H is sometimes referred to as the supergraph of Γ. Similarly, the vertices and edges of H
are called supernodes and superedges of Γ. Moreover, the size of Γ is defined as n = |VG|, the
number of vertices of G. Additionally, for each assignment φ, we define its value val(φ) to be
the fraction of superedges i− j ∈ EH such that φ(i)− φ(j) ∈ EG; such superedges are said
to be covered by φ. The objective of MCSI is now to find an assignment φ with maximum
value. We denote the value of the optimal assignment by val(Γ), i.e., val(Γ) = maxφ val(φ).

Using Theorem 8 we derive the following two corollaries regarding hardness of approx-
imation for Maximum Colored Subgraph Isomorphism when the supergraph H has
special structure. These corollaries follow quite straightforwardly from Theorem 8 using the
idea of splitters, but we provide proofs in the full version [10] for completeness.

I Corollary 9. [?]4 Assuming Gap-ETH, for any function h(`) = o(1), there is no f(`) ·nO(1)-
time algorithm that, given a MCSI instance Γ of size n such that the supergraph H = K`,
can distinguish between the following two cases:

(YES) val(Γ) = 1.
(NO) val(Γ) < `h(`)−1

I Corollary 10. [?] Assuming Gap-ETH, for any function h(`) = o(1), there is no f(`) ·nO(1)-
time algorithm that, given a MCSI instance Γ of size n such that the supergraph H is the
complete bipartite subgraph K `

2 ,
`
2
, can distinguish between the following two cases:

(YES) val(Γ) = 1.
(NO) val(Γ) < `h(`)−1.

We prove Theorem 2 and Theorem 3 via reductions from Corollary 9 and Corollary 10
resepctively.

2 FPT (In)Approximability of Directed Multicut

In this section we design an FPT 2-approximation for Directed Multicut With 4 Pairs
parameterized by p (Section 2.1) and complement this with a lower bound (Section 2.2)
showing that no FPT algorithm (parameterized by p) for Directed Multicut With 4
Pairs can achieve a ratio of (59

58 − ε) under Gap-ETH.

2.1 FPT approximation algorithm
It is well-known that a k-approximation can be computed in polynomial time by taking union
of min cuts of each of the k terminal pairs. Chekuri and Madan [8] and later Lee [30] showed
that this approximation ratio is best-possible for polynomial time algorithms under the
Unique Games Conjecture of Khot [28]. The same lower bound also applies for any constant k,
i.e., even an XP algorithm parameterized by k cannot compute a better approximation than
a polynomial time algorithm. We now design an FPT dk/2e-approximation for Directed
Multicut. The idea is borrowed from the proof of Chitnis et al. [14] that Directed
Multicut With 2 Pairs is FPT parameterized by p.

4 All proofs labelled with [?] appear in the full version [10]

IPEC 2019

8:8 FPT Inapproximability of Directed Cut and Connectivity Problems

I Theorem 1. The Directed Multicut problem admits a dk/2e-approximation in 2O(p2) ·
nO(1) time. Formally, the algorithm takes an instance (G, T) of Directed Multicut and
in 2O(p2) · nO(1) time either concludes that there is no solution of cost at most p, or produces
a solution of cost at most pdk/2e.

Proof. Let the pairs be T = {(si, ti) : 1 ≤ i ≤ k}, and let OPT be the optimum value for
the instance (G, T) of Directed Multicut. For now, assume that k is even. Introduce
k/2 new vertices rj , qj , for 1 ≤ j ≤ k/2, of weight p+ 1 each, and add the following edges:

rj → s2j−1 and t2j−1 → qj
qj → s2j and t2j → rj

Let the resulting graph be G′, and note that G has an si → ti path for some 1 ≤ i ≤ k if and
only if G′ has a qi/2 → ri/2 or r(i−1)/2 → q(i−1)/2 path (depending on whether i is even or
odd). Since the vertices rj , qj have weight p+ 1 each, it follows that G has a solution of size
at most p for the instance (G, {(s2j−1, t2j−1), (s2j , t2j)}) of Directed Multicut if and only
if G′ has a solution of size at most p for the Directed Multiway Cut instance with input
graph G and terminals rj , qj . We use the algorithm of Chitnis et al. [14, 12] for Directed
Multiway Cut which checks in 2O(p2) ·nO(1) time5 if there is a solution of cost at most p. If
there is no solution of cost at most p between rj and qj in G′ then this implies that G has no
cut of size at most p separating (s2j−1, t2j−1) and (s2j , t2j) and hence OPT > p. Otherwise,
there is a cut Cj in G of cost at most p which separates (s2j−1, t2j−1) and (s2j , t2j).

The output of the algorithm is the cut C =
⋃k/2
j=1 Cj . Clearly, if k is even then C

is a feasible solution for the instance (G, T) of Directed Multicut with cost at most∑k/2
j=1 cost(Cj) ≤ pk/2. In case k is odd we use the above procedure for the terminal pairs

{(si, ti) : 1 ≤ i ≤ k − 1}, and finally add a min cut between the last terminal pair (sk, tk).
This results in the desired dk/2e-approximation. J

2.2 No FPT (59
58 − ε)-approximation under Gap-ETH

With the parameterized hardness of approximating MCSI ready, we can now prove our
hardness results for Directed Multicut with 4 terminal pairs.

I Theorem 2. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(p)·nO(1) time algorithm that computes an (59

58−ε)-approximation for Directed Multicut
With 4 Pairs.

Our proof of the parameterized inapproximability of Directed Multicut With 4
Pairs is based on a reduction from Maximum Colored Subgraph Isomorphism whose
properties are described below.

I Lemma 11. There exists a polynomial time reduction that, given an instance Γ =
(G,K`, V1 ∪ · · · ∪ V`) of MCSI , produces an instance (G′, T ′) of Directed Multicut
With 4 Pairs such that

(Completeness): If val(Γ) = 1, then there exists a solution N ⊆ V (G′) of cost 29`2 for
the instance (G′, T ′) of Directed Multicut With 4 Pairs
(Soundness): If val(Γ) < 1

10 , then every solution N ⊆ V (G′) for the instance (G′, T ′)
of Directed Multicut With 4 Pairs has cost more than 29.5`2.
(Parameter Dependency): The size of the solution is p = O(`2).

5 This is independent of number of the terminals

R. Chitnis and A. E. Feldmann 8:9

In the proof of Lemma 11, we actually use the same reduction as from [36], but with different
weights. We reduce to the vertex-weighted variant of Directed Multicut With 4 Pairs
where we have four different types of weights for the vertices:

light vertices (shown using gray color) which have weight B = `2

(`2)
medium vertices (shown using green color) which have weight 2B
heavy vertices (shown using orange color) which have weight 20`
super-heavy vertices (shown using white color) which have weight 100`2

2.2.1 Construction of the Directed Multicut With 4 Pairs instance
Without loss of generality (by adding isolated vertices if necessary) we can assume that
|Vi| = n for each i ∈ [`]. For each i ∈ [`] let Vi = {vi1, vi2, vi3, . . . , vin}. Then |V (G)| = n`. We
now describe the construction of the (vertex-weighted) Directed Multicut With 4 Pairs
instance (G′, T ′).

Introduce eight terminals, arranged in four terminal pairs as follows:

T ′ = {(sx0→n, tx0→n), (sy0→n, t
y
0→n), (s<n→0, t

<
n→0), (s>n→0, t

>
n→0)}

Each of the 8 terminals is super-heavy.
For every 1 ≤ i ≤ `, we introduce a bidirected path on 2n+ 1 vertices (see Figure 2)

Zi := zi0 ↔ ẑi1 ↔ zi1 ↔ ẑi2 ↔ zi2 ↔ . . .↔ ẑin ↔ zin,

called henceforth the z-path for color class i. For each 0 ≤ a ≤ n the vertex zia is
super-heavy and for each 1 ≤ a ≤ n the vertex ẑia is heavy.
For every pair (i, j) where 1 ≤ i, j ≤ `, i 6= j, we introduce two bidirected paths (see
Figure 2 and Figure 1) on 2n+ 1 vertices

Xi,j := xi,j0 ↔ x̂i,j1 ↔ xi,j1 ↔ x̂i,j2 ↔ xi,j2 ↔ . . .↔ x̂i,jn ↔ xi,jn

and

Yi,j := yi,j0 ↔ ŷi,j1 ↔ yi,j1 ↔ ŷi,j2 ↔ yi,j2 ↔ . . .↔ ŷi,jn ↔ yi,jn

We call these paths the x-path and the y-path for the pair (i, j). For each 0 ≤ a ≤ n the
vertices xi,ja and yi,ja are super-heavy. For each 1 ≤ a ≤ n the vertices x̂i,ja and ŷi,ja are
medium.
For every pair (i, j) with 1 ≤ i, j ≤ `, i 6= j, and every 0 ≤ a ≤ n, we add arcs (xi,ja , zia)
and (zia, yi,ja). See Figure 2 for an illustration.
Furthermore, we attach terminals to the paths as follows: (shown using magenta edges
in Figure 1 and Figure 2)

for every pair (i, j) with 1 ≤ i, j ≤ `, i 6= j, we add arcs (sx0→n, x
i,j
0) and (yi,jn , ty0→n);

for every 1 ≤ i ≤ ` we add arcs (sy0→n, zi0) and (zin, tx0→n);
for every pair (i, j) with 1 ≤ i < j ≤ ` we add arcs (s<n→0, x

i,j
n) and (yi,j0 , t<n→0);

for every pair (i, j) with ` ≥ i > j ≥ 1 we add arcs (s>n→0, x
i,j
n) and (yi,j0 , t>n→0).

For every pair (i, j) with 1 ≤ i < j ≤ ` we introduce an acyclic n × n grid Pi,j with
vertices pi,ja,b for 1 ≤ a, b ≤ n and arcs (pi,ja,b, p

i,j
a+1,b) for every 1 ≤ a < n and 1 ≤ b ≤ n,

as well as (pi,ja,b, p
i,j
a,b+1) for every 1 ≤ a ≤ n and 1 ≤ b < n. We call this grid Pi,j as

the p-grid for the pair (i, j). We set the vertex pi,ja,b to be a light vertex if viav
j
b ∈ E(G),

and super-heavy otherwise. Finally, for every 1 ≤ a ≤ n we introduce the following arcs
(shown as dotted in Figure 1):

(xi,ja , p
i,j
a,1), (pi,ja,n, y

i,j
a−1), (xj,ia , p

i,j
1,a), (pi,jn,a, y

j,i
a−1).

IPEC 2019

8:10 FPT Inapproximability of Directed Cut and Connectivity Problems

sx0→n

s<n→0

t>n→0
ty0→n

t<n→0

s>n→0

xi,jn

xi,j0

yj,i0 yj,in

yi,jn

yi,j0

xj,inxj,i0

x
-p
at
h
fo
r
th
e
pa

ir
(i
,j

)

y-path for the pair (j, i)

y-path
for

the
pair

(i,j)

x-path for the pair (j, i)

Figure 1 Illustration of the reduction for Directed Multicut With 4 Pairs. For 1 ≤ i < j ≤ `,
the grid Pi,j is surrounded by the bidirectional paths Xi,j on the left, Xj,i on the top, Yi,j on the
right and Yj,i on the bottom. Edges incident on terminals are shown in magenta. Green vertices
are medium, orange vertices are heavy and white vertices are super-heavy. A desired solution is
marked by red circles.

R. Chitnis and A. E. Feldmann 8:11

sx0→n sy0→n t<n→0

s<n→0 tx0→n ty0→n

x̂i,ja ẑia ŷi,ja

Figure 2 Illustration of the reduction for Directed Multicut With 4 Pairs. For every
1 ≤ i < j ≤ `, the z-path Zi corresponding to the color class i is surrounded by the bidirectional
paths Xi,j on the left and Yi,j on the right. Edges incident on terminals are shown in magenta.
Green vertices are medium, orange vertices are heavy and white vertices are super-heavy.

IPEC 2019

8:12 FPT Inapproximability of Directed Cut and Connectivity Problems

This concludes the construction of the instance (G′, T ′) of Directed Multicut With
4 Pairs. Note that |V (G′)| = (n+ `)O(1), and also G′ can be constructed in (n+ `)O(1) time.

2.2.2 Completeness of Lemma 11:
val(Γ) = 1⇒ Multicut of cost ≤ 29`2

Suppose that val(Γ) = 1, i.e., G has a `-clique which has exactly one vertex in each Vi for
1 ≤ i ≤ `. Let this clique be given by {viα(i) : 1 ≤ i ≤ `}. Define

X = {x̂i,jα(i), ŷ
i,j
α(i) : 1 ≤ i, j ≤ `, i 6= j} ∪ {ẑiα(i) : 1 ≤ i ≤ `} ∪ {pi,jα(i),α(j) : 1 ≤ i < j ≤ `}.

Note that X consists of exactly ` heavy ẑiα(i) vertices, 4
(
`
2
)
medium x̂i,jα(i) and ŷi,jα(i) vertices,

and
(
`
2
)
light pi,jα(i),α(j) vertices (the fact that pi,jα(i),α(j) is light for every 1 ≤ i < j ≤ ` follows

from the assumption that the vertices viα(i) induce a clique in G). Hence, the weight of X
is exactly ` · 20` +

(
`
2
)
· (4 · 2B) +

(
`
2
)
· B = 20`2 +

(
`
2
)
· 9B = 29`2. As shown in [36], this

set X is a cutset for the instance (G′, T ′) of Directed Multicut With 4 Pairs. The
details are deferred to the full version [10].

2.2.3 Soundness of Lemma 11:
Multicut of cost ≤ 29.5`2 ⇒ val(Γ) ≥ 1

10

Let X be a solution to the instance (G′, T ′) of Directed Multicut With 4 Pairs such
that weight of X is 29.5`2. We now show that val(Γ) ≥ 1

10 .

I Observation 12. Note that every super-heavy vertex has weight 100`2 and hence X cannot
contain any super-heavy vertex.

I Lemma 13. [?] For each i ∈ [`], the solution X contains at least one heavy vertex from Zi.

I Lemma 14. [?] For each 1 ≤ i 6= j ≤ `, the solution X contains at least one medium
vertex from Xi,j and at least one medium vertex from Yi,j.

I Definition 15. An integer i ∈ [`] is good if X contains exactly one heavy vertex from the
z-path for the color class i, i.e., |X ∩ Zi| = 1. In this case, we say that viβi be the unique
vertex from the z-path for class i in the solution X .

I Lemma 16. [?] Let Good = {i ∈ [`] : i is good}. Then |Good| ≥ 37`
40

I Definition 17. Let 1 ≤ i < j ≤ `. We say that the pair (i, j) is great if X contains
exactly one medium vertex from the x-path for the pair (i, j)
exactly one medium vertex from the y-path for the pair (i, j)
exactly one medium vertex from the x-path for the pair (j, i)
exactly one medium vertex from the y-path for the pair (j, i)
exactly one light vertex from the p-grid for the pair (i, j)

Let Good-Pairs = {(i, j) : 1 ≤ i < j ≤ `, i, j ∈ Good}

I Lemma 18. [?] Let 1 ≤ i < j ≤ `. If both i and j are good, and the pair (i, j) is great
then viβi − v

j
βj
∈ E(G).

I Definition 19. Let 1 ≤ i < j ≤ `. We define Xi,j = X ∩ (Xi,j ∪Xj,i ∪ Yi,j ∪ Yj,i ∪ Pi,j)

R. Chitnis and A. E. Feldmann 8:13

I Lemma 20. [?] Let 1 ≤ i < j ≤ ` be such that i, j ∈ Good. Then either
the pair (i, j) is great and weight of Xi,j is exactly 9B, or
weight of Xi,j is at least 10B

I Lemma 21. [?] Let E = {1 ≤ i < j ≤ ` : i, j ∈ Good and (i, j) is great}. Then
|E| ≥ 1

10 ·
(
`
2
)

Consider the following `-vertex subgraph C: for each i ∈ [`]
if i ∈ [`] is good then add viβi to C,
otherwise add any vertex from Vi into C.

From Lemma 21 it follows that there are at least 1
10 ·
(
`
2
)
edges in G which have both endpoints

in C, and hence val(Γ) ≥ 1
10

2.3 Finishing the proof of Theorem 2
We again prove by contrapositive. Suppose that, for some constant ε > 0 and for some comput-
able function f(p) independent of n, there exists an f(p) · nO(1)-time (59

58 − ε)-approximation
algorithm for Directed Multicut. Let us call this algorithm A.

We create an algorithm B that can distinguish between the two cases of Corollary 9
with h(`) = 1 − log(10)

log ` = o(1). Our new algorithm B works as follows. Given an instance
(G,H, V1 ∪ · · · ∪ V`) of MCSI where H = K`, the algorithm B uses the reduction from
Lemma 11 to create a Directed Multicut With 4 Pairs instance (G′, T ′) with 4 terminal
pairs. B then runs A on this instance with p = 29`2; if A returns a solution N of cost less
than 29.5`2, then B returns YES. Otherwise, B returns NO.

To see that algorithm B can indeed distinguish between the YES and NO cases, first
observe that, in the YES case the completeness property of Lemma 11 guarantees that the
optimal solution has cost at most 29`2. Since A is a (59

58 − ε)-approximation algorithm, it
returns a solution of cost at most (59

58 − ε) · 29`2 < 29.5`2: this means that B outputs YES.
On the other hand, if (G,H, V1 ∪ · · · ∪ V`) is a NO instance, i..e, val(Γ) < 1

10 = `h(`)−1, then
the soundness property of Lemma 22 guarantees that the optimal solution in G′ has cost
more than 29.5`2 (which is greater than (59

58 − ε) · 29`2) and hence B correctly outputs NO.
Finally, observe that the running time of B is f(p) · |V (G′)|O(1) plus the (|V (G)|+ `)O(1)

time needed to construct G′. Since |V (G′)| = (|V (G) + `|)O(1) and p = O(`2) it follows
that the total running time is g(`) · |V (G)| for some computable function g. Hence, from
Corollary 9, Gap-ETH is violated.

3 FPT inapproximability for DSNPlanar

3.1 (2− ε)-hardness for FPT approximation under Gap-ETH
The goal of this section is to show the following theorem:

I Theorem 3. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(k) · nO(1) time algorithm that computes a (2− ε)-approximation for DSNPlanar.

3.1.1 Reduction from Colored Biclique to DSNPlanar

I Lemma 22. For every constant γ > 0, there exists a polynomial time reduction that, given
an instance Γ = (G,H, V1 ∪ · · · ∪ V`,W1,W2, . . . ,W`) of MCSI where the supergraph H is
K`,`, produces an instance (G′,D′) of DSNPlanar, such that

IPEC 2019

8:14 FPT Inapproximability of Directed Cut and Connectivity Problems

(Completeness) If val(Γ) = 1, then there exists a planar network N ⊆ G′ of cost
2(1 + γ1/5) that satisfies all demands.
(Soundness) If val(Γ) < γ, then every network N ⊆ G′ that satisfies all demands has
cost more than 2(2− 4γ1/5).
(Parameter Dependency) The number of demand pairs k = |D′| is 2`.

Lemma 22 is proven as follows: we construct the DSNPlanar instance in Section 3.1.1.2. The
proofs of completeness and soundness of the reduction are deferred to the full version [10].
First, we construct a “path gadget” which we use repeatedly in our construction.

3.1.1.1 Constructing a directed “path” gadget

For every integer n we define the following gadget Pn which contains 2n vertices (see Figure 3).
Since we need many of these gadgets later on, we will denote vertices of Pn by Pn(v) etc., in
order to be able to distinguish vertices of different gadgets. All edges will have the same weight
B, which we will fix later during the reductions. The gadget Pn is constructed as follows: Pn
has a directed path of one edge corresponding to each i ∈ [n]. This is given by Pn(0i)→ Pn(1i)

Pn(01) Pn(11)

Pn(0i) Pn(1i)

Pn(0n) Pn(1n)

Figure 3 The construction of the path gadget for Pn. Note that the gadget has 2n vertices.
Each edge of Pn has the same weight B.

3.1.1.2 Construction of the DSNPlanar instance

We give a reduction which transforms an instance G = (V,E) of MCSI(K`,`) into an instance
of DSN which has 2` demand pairs and an optimum which is planar. Let the partition of
V into color classes be given by {V1, V2, . . . , V`,W1,W2, . . . ,W`}. Without loss of generality
(by adding isolated vertices if necessary), we can assume that each color class has the same
number of vertices. Let |Vi| = |Wi| = n′ for each 1 ≤ i ≤ `. Then n = |V (G)| = 2n′`. For
each 1 ≤ i, j ≤ ` we denote by Ei,j the set of edges with one end-point in Vi and other in Wj .

We design two types of gadgets: the main gadget and the secondary gadget. The reduction
from MCSI(K`,`) represents each edge set Ei,j with a main gadget Mi,j . This is done as
follows: each main gadget is a copy of the path gadget P|Ei,j | from Section 3.1.1.1 with
B = 2

`2 , i.e., there is a row in Mi,j corresponding to each edge in Ei,j . Each main gadget

R. Chitnis and A. E. Feldmann 8:15

is surrounded by four secondary gadgets: on the top, right, bottom and left. Each of these
gadgets are copies of the path gadget from Section 3.1.1.1 with B = 0:

For each 1 ≤ i ≤ `+ 1, 1 ≤ j ≤ ` the horizontal gadget HSi,j is a copy of P|Wj |

For each 1 ≤ i ≤ `, 1 ≤ j ≤ `+ 1 the vertical gadget V Si,j is a copy of P|Vi|

We refer to Figure 4 (bird’s-eye view) and Figure 5 (zoomed-in view) for an illustration
of the reduction. Fix some 1 ≤ i, j ≤ `. The main gadget Mi,j has four secondary gadgets
surrounding it:

Above Mi,j is the vertical secondary gadget V Si,j+1

On the right of Mi,j is the horizontal secondary gadget HSi+1,j

Below Mi,j is the vertical secondary gadget V Si,j
On the left of Mi,j is the horizontal secondary gadget HSi,j

Hence, there are `(`+ 1) horizontal secondary gadgets and `(`+ 1) vertical secondary gadgets.

Red intra-gadget edges: Fix (i, j) such that 1 ≤ i, j ≤ `. Recall thatMi,j is a copy of P|Ei,j |
with B = 2

`2 and each of the secondary gadgets are copies of Pn′ with B = 0. With slight abuse
of notation, we assume that the rows ofMi,j are indexed by the set {(x, y) : (x, y) ∈ Ei,j , x ∈
Wi, y ∈ Vj}. We add the following edges (in red color) of weight 0: for each (x, y) ∈ Ei,j

Add the edge V Si,j+1(1x)→Mi,j(0(x,y)). These edges are called top-red edges incident
on Mi,j .
Add the edge HSi,j(1y)→Mi,j(0(x,y)). These edges are called left-red edges incident on
Mi,j .
Add the edge Mi,j(1(x,y))→ HSi+1,j(0y). These edges are called right-red edges incident
on Mi,j .
Add the edge Mi,j(1(x,y))→ V Si,j(0x). These edges are called bottom-red edges incident
on Mi,j .

These are called the intra-gadget edges incident on Mi,j .
Introduce the following 4` vertices (which we call border vertices):
a1, a2, . . . , a`

b1, b2, . . . , b`

c1, c2, . . . , c`

d1, d2, . . . , d`

Orange edges: For each i ∈ [`] add the following edges (shown as orange in Figure 4) with
weight 2γ1/5

4` :
ai → V Si,`+1(0v) for each v ∈ Vi. These are called top-orange edges.
V Si,1(1v)→ bi for each v ∈ Vi. These are called bottom-orange edges.
cj → HS1,j(0w) for each w ∈Wj . These are called left-orange edges.
HS`+1,j(1w)→ dj for each w ∈Wj . These are called right-orange edges.

Finally, the set of demand pairs D′ is given by:
Type I: the pairs (ai, bi) for each 1 ≤ i ≤ `.
Type II: the pairs (cj , dj) for each 1 ≤ j ≤ `.

Clearly, the total number of demand pairs is k = |D′| = 2`. Let the final graph constructed
be G′. Note that G′ has size N = (n + `)O(1) and can be constructed in (n + `)O(1) time.
It is also easy to see that G′ is actually a DAG.

IPEC 2019

8:16 FPT Inapproximability of Directed Cut and Connectivity Problems

M1,1

M1,2

M1,3

M2,1

M2,2

M2,3

M3,1

M3,2

M3,3

c1

c2

c3

d1

d2

d3

b1 b2 b3

a1 a2 a3

HS1,1 HS2,1 HS3,1 HS4,1

HS1,2 HS2,2 HS3,2 HS4,2

HS1,3 HS2,3 HS3,3 HS4,3

V S1,1 V S2,1 V S3,1

V S1,2 V S2,2 V S3,2

V S1,3 V S2,3 V S3,3

V S1,4 V S2,4 V S3,4

Figure 4 A bird’s-eye view of the instance of G′ with ` = 3 and n′ = 4 (see Figure 5 for a
zoomed-in view). Additionally we have some red edges between each main gadget and the four
secondary gadgets surrounding it which are omitted in this figure for clarity (they are shown in
Figure 5 which gives a more zoomed-in view).

R. Chitnis and A. E. Feldmann 8:17

HSi,j HSi+1,j

V Si,j

V Si,j+1

Mi,j

Mi,j(0x,y) Mi,j(1x,y)

V Si,j+1(1x)

HSi,j(1y)

V Si,j(0x)

HSi+1,j(0y)

Figure 5 A zoomed-in view of the main gadget Mi,j surrounded by four secondary gadgets:
vertical gadget V Si,j+1 on the top, horizontal gadget HSi,j on the left, vertical gadget V Si,j on
the bottom and horizontal gadget HSi+1,j on the right. Each of the secondary gadgets is a copy of
the uniqueness gadget Un (see Section 3.1.1.1) and the main gadget Mi,j is a copy of the uniqueness
gadget U|Si,j |. The only inter-gadget edges are the red edges: they have one end-point in a main
gadget and the other end-point in a secondary gadget. We have shown four such red edges which
are introduced for every (x, y) ∈ Ei,j .

IPEC 2019

8:18 FPT Inapproximability of Directed Cut and Connectivity Problems

3.1.2 Finishing the proof of Theorem 3
We can now easily prove Theorem 3 by combining Lemma 22 and Corollary 10.

Proof of Theorem 3. We again prove by contrapositive. Suppose that, for some constant
ε > 0 and for some function f(k) independent of n, there exists an f(k) ·NO(1)-time (2− ε)-
approximation algorithm for DSNPlanar where k is the number of terminal pairs and N is
the size of the instance. Let us call this algorithm A.

Given ε > 0, it is easy to see that there exists a sufficiently small γ∗ = γ∗(ε) such that
2(2−4γ∗1/5)

2(1+γ∗1/5) ≥ (2− ε). We create an algorithm B that can distinguish between the two cases
of Corollary 10 with h(`) = 1 − log(1/γ∗)

log ` = o(1). Our new algorithm B works as follows.
Given an instance (G,H, V1 ∪ · · · ∪V`,W1 ∪ · · · ∪W`) of MCSI of size n where H = K`,`, the
algorithm B uses the reduction from Lemma 22 to create in (n+ `)O(1) time a DSNPlanar
instance on the graph G′ with k = 2` terminal pairs and size N = (`+n)O(1). The algorithm
B then runs A on this instance; if A returns a solution N of cost at most 2(2− 4γ∗1/5), then
B returns YES. Otherwise, B returns NO.

We now show that the algorithm B can indeed distinguish between the YES and NO cases
of Corollary 10. In the YES case, i.e., val(Γ) = 1, the completeness property of Lemma 22
guarantees that the optimal planar solution has cost at most 2(1 + γ∗1/5). Since A is a
(2− ε)-approximation algorithm, it returns a solution of cost at most 2(1 + γ∗1/5) · (2− ε) ≤
2(2− 4γ∗1/5) where the inequality comes from our choice of γ∗; this means that B outputs
YES. On the other hand, in the NO case, i.e., val(Γ) < γ, the soundness property of Lemma 22
guarantees that the optimal solution (and hence the planar optimal solution as well, if it
exists) in G′ has cost more than 2(2− 4γ∗1/5), which implies that B outputs NO.

Finally, observe that the running time of B is f(k) · NO(1) + poly(` + n)O(1) which is
bounded by f ′(`) · nO(1) for some computable function f ′ since k = 2` and N = (n+ `)O(1).
Hence, from Corollary 10, Gap-ETH is violated. J

3.2 Lower Bounds for FPT Approximation Schemes for DSNPlanar

We obtain the following result regarding the parameterized complexity of DSNPlanar para-
meterized by k + p.

I Theorem 4. [?] The DSNPlanar problem is W[1]-hard parameterized by p+ k. Moreover,
under ETH, for any computable function f and any ε > 0

There is no f(k, p) · no(k+√p) time algorithm for DSNPlanar, and
There is no f(k, ε, p)·no(k+

√
p+1/ε) time algorithm which computes a (1+ε)-approximation

for DSNPlanar

4 Lower Bounds for FPT Approximation Schemes for SCSSPlanar

We obtain the following result regarding the parameterized complexity of DSNPlanar para-
meterized by k + p.

I Theorem 5. [?] The SCSSPlanar problem is W[1]-hard parameterized by p+ k. Moreover,
under ETH, for any computable function f and any ε > 0

there is no f(k, p) · no(
√
k+p) time algorithm for SCSSPlanar, and

there is no f(k, ε, p)·no(
√
k+p+1/ε) time algorithm which computes an (1+ε)-approximation

for SCSSPlanar.

R. Chitnis and A. E. Feldmann 8:19

References
1 Amit Agarwal, Noga Alon, and Moses Charikar. Improved approximation for directed cut

problems. In STOC, pages 671–680, 2007. doi:10.1145/1250790.1250888.
2 Benny Applebaum. Exponentially-Hard Gap-CSP and Local PRG via Local Hardcore

Functions. In FOCS 2017, pages 836–847, 2017. doi:10.1109/FOCS.2017.82.
3 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The Hardness of Approximate

Optima in Lattices, Codes, and Systems of Linear Equations. J. Comput. Syst. Sci.,
54(2):317–331, 1997. doi:10.1006/jcss.1997.1472.

4 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and Directed Steiner
Forest. Information and Computation, 222:93–107, 2013.

5 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-Inapproximability: Clique,
Dominating Set, and More. In FOCS, pages 743–754, 2017. doi:10.1109/FOCS.2017.74.

6 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation Algorithms for Directed Steiner Problems. J. Algorithms,
33(1):73–91, 1999. doi:10.1006/jagm.1999.1042.

7 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed Steiner network problem. ACM Transactions on
Algorithms, 7(2):18, 2011.

8 Chandra Chekuri and Vivek Madan. Approximating Multicut and the Demand Graph. In
SODA, pages 855–874, 2017. doi:10.1137/1.9781611974782.54.

9 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.

10 Rajesh Chitnis and Andreas Emil Feldmann and. FPT Inapproximability of Directed Cut
and Connectivity Problems. CoRR, abs/1910.01934, 2019. arXiv:1910.01934.

11 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized Approxim-
ation Algorithms for Bidirected Steiner Network Problems. In ESA, pages 20:1–20:16, 2018.
doi:10.4230/LIPIcs.ESA.2018.20.

12 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

13 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz. Fixed-Parameter
and Approximation Algorithms: A New Look. In IPEC 2013, pages 110–122, 2013.
doi:10.1007/978-3-319-03898-8_11.

14 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-Parameter
Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset. SIAM J.
Comput., 42(4):1674–1696, 2013. doi:10.1137/12086217X.

15 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight Bounds
for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and
Extensions). In SODA, pages 1782–1801, 2014. doi:10.1137/1.9781611973402.129.

16 Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed cut
problems. J. ACM, 56(2):6:1–6:28, 2009. doi:10.1145/1502793.1502795.

17 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

18 Irit Dinur and Pasin Manurangsi. ETH-Hardness of Approximating 2-CSPs and Directed
Steiner Network. In ITCS, pages 36:1–36:20, 2018. doi:10.4230/LIPIcs.ITCS.2018.36.

19 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In
STOC 1999, pages 750–759, 1999.

20 Jon Feldman and Matthias Ruhl. The Directed Steiner Network Problem is Tract-
able for a Constant Number of Terminals. SIAM J. Comput., 36(2):543–561, 2006.
doi:10.1137/S0097539704441241.

IPEC 2019

https://doi.org/10.1145/1250790.1250888
https://doi.org/10.1109/FOCS.2017.82
https://doi.org/10.1006/jcss.1997.1472
https://doi.org/10.1109/FOCS.2017.74
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1137/1.9781611974782.54
http://arxiv.org/abs/1910.01934
https://doi.org/10.4230/LIPIcs.ESA.2018.20
https://doi.org/10.1145/2700209
https://doi.org/10.1007/978-3-319-03898-8_11
https://doi.org/10.1137/12086217X
https://doi.org/10.1137/1.9781611973402.129
https://doi.org/10.1145/1502793.1502795
https://doi.org/10.4230/LIPIcs.ITCS.2018.36
https://doi.org/10.1137/S0097539704441241

8:20 FPT Inapproximability of Directed Cut and Connectivity Problems

21 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation al-
gorithms for Directed Steiner Forest. J. Comput. Syst. Sci., 78(1):279–292, 2012.
doi:10.1016/j.jcss.2011.05.009.

22 Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-Parameter
Directed Steiner Network Problems. CoRR, abs/1707.06808, 2017. arXiv:1707.06808.

23 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway Cuts in Directed and
Node Weighted Graphs. In ICALP, pages 487–498, 1994. doi:10.1007/3-540-58201-0_92.

24 Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized Complexity of Arc-Weighted
Directed Steiner Problems. SIAM J. Discrete Math., 25(2):583–599, 2011.

25 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. STOC ’03,
pages 585–594, 2003. doi:10.1145/780542.780628.

26 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

28 Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages 767–775,
2002. doi:10.1145/509907.510017.

29 Guy Kortsarz and David Peleg. On Choosing a Dense Subgraph (Extended Abstract). In
FOCS 1993, pages 692–701, 1993.

30 Euiwoong Lee. Improved Hardness for Cut, Interdiction, and Firefighter Problems. In ICALP,
pages 92:1–92:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.92.

31 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
Exponential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/92.

32 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs. In ICALP, pages 78:1–78:15, 2017.

33 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010.
doi:10.4086/toc.2010.v006a005.

34 Dániel Marx and Igor Razgon. Fixed-Parameter Tractability of Multicut Parameterized by
the Size of the Cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

35 Joseph Naor and Leonid Zosin. A 2-Approximation Algorithm for the Directed Multiway
Cut Problem. SIAM J. Comput., 31(2):477–482, 2001. doi:10.1137/S009753979732147X.

36 Marcin Pilipczuk and Magnus Wahlström. Directed Multicut is W[1]-hard, Even for Four
Terminal Pairs. TOCT, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

https://doi.org/10.1016/j.jcss.2011.05.009
http://arxiv.org/abs/1707.06808
https://doi.org/10.1007/3-540-58201-0_92
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/509907.510017
https://doi.org/10.4230/LIPIcs.ICALP.2017.92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1137/110855247
https://doi.org/10.1137/S009753979732147X
https://doi.org/10.1145/3201775

	Introduction
	Previous work and our results
	FPT inapproximability results under (Gap-)ETH

	FPT (In)Approximability of Directed Multicut
	FPT approximation algorithm
	No FPT (59/58-epsilon)-approximation under Gap-ETH
	Construction of the Directed Multicut With 4 Pairs instance
	Completeness of Lemma 11: val(Gamma)=1 ==> Multicut of cost <= 29 l^2
	Soundness of Lemma 11: Multicut of cost <= 29.5 l^2 ==> val(Gamma)>= 1/10

	Finishing the proof of Theorem 2

	FPT inapproximability for DSN_Planar
	(2-{epsilon})-hardness for FPT approximation under Gap-ETH
	Reduction from Colored Biclique to DSN_Planar
	Finishing the proof of Theorem 3

	Lower Bounds for FPT Approximation Schemes for DSN_Planar

	Lower Bounds for FPT Approximation Schemes for SCSS_Planar

