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Abstract
A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the
same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum
size, and in its decision form, a resolving set of size at most some specified integer. This problem is
NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect
to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth.
On the algorithmic side, a polytime algorithm is known for trees, and even for outerplanar graphs,
but the general case of treewidth at most two is open. On the complexity side, no parameterized
hardness is known. This has led several papers on the topic to ask for the parameterized complexity
of Metric Dimension with respect to treewidth.

We provide a first answer to the question. We show that Metric Dimension parameterized by
the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential
Time Hypothesis fails, there is no algorithm solving Metric Dimension in time f(pw)no(pw) on
n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable
function. This is in stark contrast with an FPT algorithm of Belmonte et al. [SIAM J. Discrete
Math. ’17] with respect to the combined parameter tl + ∆, where tl is the tree-length and ∆ the
maximum-degree of the input graph.
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1 Introduction

The Metric Dimension problem has been introduced in the 1970s independently by Slater
[22] and by Harary and Melter [13]. Given a graph G and an integer k, Metric Dimension
asks for a subset S of vertices of G of size at most k such that every vertex of G is uniquely
determined by its distances to the vertices of S. Such a set S is called a resolving set, and a
resolving set of minimum-cardinality is called a metric basis. The metric dimension of graphs
finds application in various areas including network verification [2], chemistry [4], and robot
navigation [18].

Metric Dimension is an entry of the celebrated book on intractability by Garey and
Johnson [12] where the authors show that it is NP-complete. In fact Metric Dimension
remains NP-complete in many restricted classes of graphs such as planar graphs [6], split,
bipartite, co-bipartite graphs, and line graphs of bipartite graphs [9], interval graphs of
diameter two [11], permutation graphs of diameter two [11], and in a subclass of unit disk
graphs [16]. Furthermore Metric Dimension cannot be solved in subexponential-time
unless 3-SAT can [1]. On the positive side, the problem is polynomial-time solvable on
trees [22, 13, 18]. Diaz et al. [6] generalize this result to outerplanar graphs. Fernau et al. [10]
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give a polynomial-time algorithm on chain graphs. Epstein et al. [9] show that Metric
Dimension (and even its vertex-weighted variant) can be solved in polynomial time on
co-graphs and forests augmented by a constant number of edges. Hoffmann et al. [15] obtain
a linear algorithm on cactus block graphs.

Hartung and Nichterlein [14] prove that Metric Dimension is W[2]-complete (paramet-
erized by the size of the solution k) even on subcubic graphs. Therefore an FPT algorithm
solving the problem is unlikely. However Foucaud et al. [11] give an FPT algorithm with
respect to k on interval graphs. This result is later generalized by Belmonte et al. [3] who
obtain an FPT algorithm with respect to tl + ∆ (where tl is the tree-length and ∆ is the
maximum-degree of the input graph), implying one for parameter tl + k. Indeed interval
graphs, and even chordal graphs, have constant tree-length. Hartung and Nichterlein [14]
presents an FPT algorithm parameterized by the vertex cover number, Eppstein [8], by the
max leaf number, and Belmonte et al. [3], by the modular-width (a larger parameter than
clique-width).

The complexity of Metric Dimension parameterized by treewidth is quite elusive. It
is discussed [8] or raised as an open problem in several papers [3, 6]. On the one hand,
it was not known, prior to our paper, if this problem is W[1]-hard. On the other hand,
the complexity of Metric Dimension in graphs of treewidth at most two is still an open
question.

1.1 Our contribution

We settle the parameterized complexity of Metric Dimension with respect to treewidth.
We show that this problem is W[1]-hard, and we rule out, under the Exponential Time
Hypothesis (ETH), an algorithm running in f(tw)|V (G)|o(tw), where G is the input graph, tw
its treewidth, and f any computable function. Our reduction even shows that an algorithm
in time f(pw)|V (G)|o(pw) is unlikely on constant-degree graphs, for the larger parameter
pathwidth pw. This is in stark contrast with the FPT algorithm of Belmonte et al. [3] for
the parameter tl + ∆ where tl is the tree-length and ∆ is the maximum-degree of the graph.
We observe that this readily gives an FPT algorithm for ctw + ∆ where ctw is the connected
treewidth, since ctw > tl. This unravels an interesting behavior of Metric Dimension,
at least on bounded-degree graphs: usual tree-decompositions are not enough for efficient
solving. Instead one needs tree-decompositions with an additional guarantee that the vertices
of a same bag are at a bounded distance from each other.

As our construction is quite technical, we chose to introduce an intermediate problem
dubbed k-Multicolored Resolving Set in the reduction from k-Multicolored Inde-
pendent Set to Metric Dimension. The first half of the reduction, from k-Multicolored
Independent Set to k-Multicolored Resolving Set, follows a generic and standard
recipe to design parameterized hardness with respect to treewidth. The main difficulty is
to design an effective propagation gadget with a constant-size left-right cut. The second
half brings some new local attachments to the produced graph, to bridge the gap between
k-Multicolored Resolving Set and Metric Dimension. Along the way, we introduce
a number of gadgets: edge, propagation, forced set, forced vertex. They are quite stream-
lined and effective. Therefore, we believe these building blocks may help in designing new
reductions for Metric Dimension.
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1.2 Organization of the paper
In Section 2 we introduce the definitions, notations, and terminology used throughout the
paper. In Section 3 we present the high-level ideas to establish our result. We define
the k-Multicolored Resolving Set problem which serves as an intermediate step for
our reduction. In Section 4 we design a parameterized reduction from the W[1]-complete
k-Multicolored Independent Set to k-Multicolored Resolving Set parameter-
ized by treewidth. In Section 5 we show how to transform the produced instances of
k-Multicolored Resolving Set to Metric Dimension-instances (while maintaining
bounded treewidth). Due to space constraints, the proofs of lemmas marked with a star are
deferred to the long version (in appendix).

2 Preliminaries

We denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X the union of them.

2.1 Graph notations
All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by
V (G), respectively E(G), the set of vertices, respectively of edges, of the graph G. For
S ⊆ V (G), we denote the open neighborhood (or simply neighborhood) of S by NG(S), i.e.,
the set of neighbors of S deprived of S, and the closed neighborhood of S by NG[S], i.e., the
set NG(S)∪S. For singletons, we simplify NG({v}) into NG(v), and NG[{v}] into NG[v]. We
denote by G[S] the subgraph of G induced by S, and G− S := G[V (G) \ S]. For S ⊆ V (G)
we denote by S the complement V (G) \ S. For A,B ⊆ V (G), E(A,B) denotes the set of
edges in E(G) with one endpoint in A and the other one in B.

The length of a path in an unweighted graph is simply the number of edges of the path.
For two vertices u, v ∈ V (G), we denote by distG(u, v), the distance between u and v in G,
that is the length of the shortest path between u and v. The diameter of a graph is the
longest distance between a pair of its vertices. The diameter of a subset S ⊆ V (G), denoted
by diamG(S), is the longest distance between a pair of vertices in S. Note that the distance
is taken in G, not in G[S]. In particular, when G is connected, diamG(S) is finite for every
S. A pendant vertex is a vertex with degree one. A vertex u is pendant to v if v is the only
neighbor of u. Two distinct vertices u, v such that N(u) = N(v) are called false twins, and
true twins if N [u] = N [v]. In particular, true twins are adjacent. In all the above notations
with a subscript, we omit it whenever the graph is implicit from the context.

2.2 Exponential Time Hypothesis, FPT reductions, and W[1]-hardness
The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. [17] asserting
that there is no 2o(n)-time algorithm for 3-SAT on instances with n variables. Lokshtanov
et al. [20] survey conditional lower bounds under the ETH.

A standard use of an FPT reduction is to derive conditional lower bounds: if a problem
(Π, κ) is thought not to admit an FPT algorithm, then an FPT reduction from (Π, κ) to
(Π′, κ′) indicates that (Π′, κ′) is also unlikely to admit an FPT algorithm. We refer the
reader to the textbooks [7, 5] for a formal definition of W[1]-hardness. For the purpose of
this paper, we will just state that W[1]-hard are parameterized problems that are unlikely
to be FPT, and that the following problem is W[1]-complete even when all the Vi have the
same number of elements, say t (see for instance [21]).

IPEC 2019
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k-Multicolored Independent Set (k-MIS) Parameter: k
Input: An undirected graph G, an integer k, and (V1, . . . , Vk) a partition of V (G).
Question: Is there a set I ⊆ V (G) such that |I ∩ Vi| = 1 for every i ∈ [k], and G[I] is
edgeless?

Every parameterized problem that k-Multicolored Independent Set FPT-reduces
to is W[1]-hard. Our paper is thus devoted to designing an FPT reduction from k-
Multicolored Independent Set to Metric Dimension parameterized by tw. Let
us observe that the ETH implies that one (equivalently, every) W[1]-hard problem is not in
the class of problems solvable in FPT time (FPT 6=W[1]). Thus if we admit that there is no
subexponential algorithm solving 3-SAT, then k-Multicolored Independent Set is not
solvable in time f(k)|V (G)|O(1). Actually under this stronger assumption, k-Multicolored
Independent Set is not solvable in time f(k)|V (G)|o(k). A concise proof of that fact can
be found in the survey on the consequences of ETH [20].

2.3 Metric dimension, resolved pairs, distinguished vertices
A pair of vertices {u, v} ⊆ V (G) is said to be resolved by a set S if there is a vertex w ∈ S
such that dist(w, u) 6= dist(w, v). A vertex u is said to be distinguished by a set S if for any
w ∈ V (G) \ {u}, there is a vertex v ∈ S such that dist(v, u) 6= dist(v, w). A resolving set of
a graph G is a set S ⊆ V (G) such that every two distinct vertices u, v ∈ V (G) are resolved
by S. Equivalently, a resolving set is a set S such that every vertex of G is distinguished
by S. Then Metric Dimension asks for a resolving set of size at most some threshold k.
Note that a resolving set of minimum size is sometimes called a metric basis for G.

Metric Dimension (MD) Parameter: tw(G)
Input: An undirected graph G and an integer k.
Question: Does G admit a resolving set of size at most k?

Here we anticipate on the fact that we will mainly consider Metric Dimension paramet-
erized by treewidth. Henceforth we sometimes use the notation Π/tw to emphasize that Π is
not parameterized by the natural parameter (size of the resolving set) but by the treewidth
of the input graph.

3 Outline of the W[1]-hardness proof of Metric Dimension/tw

We will show the following.

I Theorem 1. Unless the ETH fails, there is no computable function f such that Metric
Dimension can be solved in time f(pw)no(pw) on constant-degree n-vertex graphs.

We first prove that the following generalized version of Metric Dimension is W[1]-hard.

k-Multicolored Resolving Set (k-MRS) Parameter: tw(G)
Input: An undirected graph G, an integer k, a set X of q disjoint subsets of V (G):
X1, . . . , Xq, and a set P of pairs of vertices of G: {x1, y1}, . . . , {xh, yh}.
Question: Is there a set S ⊆ V (G) of size q such that

(i) for every i ∈ [q], |S ∩Xi| = 1, and
(ii) for every p ∈ [h], there is an s ∈ S satisfying distG(s, xp) 6= distG(s, yp)?

In words, in this generalized version the resolving set is made by picking exactly one
vertex in each set of X , and not all the pairs should be resolved but only the ones in a
prescribed set P. We call critical pair a pair of P. In the context of k-Multicolored
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Resolving Set, we call legal set a set which satisfies the former condition, and resolving set
a set which satisfies the latter. Thus a solution for k-Multicolored Resolving Set is a
legal resolving set.

The reduction from k-Multicolored Independent Set starts with a well-established
trick to show parameterized hardness by treewidth. We create m “empty copies” of the
k-MIS-instance (G, k, (V1, . . . , Vk)), where m := |E(G)| and t := |Vi|. We force exactly one
vertex in each color class of each copy to be in the resolving set, using the set X . In each
copy, we introduce an edge gadget for a single (distinct) edge of G. Encoding an edge of
k-MIS in the k-MRS-instance is fairly simple: we build a pair (of P) which is resolved by
every choice but the one selecting both its endpoints in the resolving set. We now need to
force a consistent choice of the vertex chosen in Vi over all the copies. We thus design a
propagation gadget. A crucial property of the propagation gadget, for the pathwidth of the
constructed graph to be bounded, is that it admits a cut of size O(k) disconnecting one copy
from the other. Encoding a choice in Vi in the distances to four special vertices, called gates,
we manage to build such a gadget with constant-size “left-right” separator per color class.
This works by introducing t pairs (of P) which are resolved by the south-west and north-east
gates but not by the south-east and north-west ones. Then we link the vertices of a copy
of Vi in a way that the higher their index, the more pairs they resolve in the propagation
gadget to their left, and the fewer pairs they resolve in the propagation gadget to their right.

We then turn to the actual Metric Dimension problem. We design a gadget which
simulates requirement (i) by forcing a vertex of a specific set X in the resolving set. This
works by introducing two pairs that are only resolved by vertices of X. We attach this new
gadget, called forcing set gadget, to all the k color classes of the m copies. Finally we have to
make sure that a candidate solution resolves all the pairs, and not only the ones prescribed
by P. For that we attach two adjacent “pendant” vertices to strategically chosen vertices.
One of these two vertices have to be in the resolving set since they are true twins, hence not
resolved by any other vertex. Then everything is as if the unique common neighbor v of the
true twins was added to the resolving set. Therefore we can perform this operation as long
as v does not resolve any of the pairs of P.

To facilitate the task of the reader, henceforth we stick to the following conventions:
Index i ∈ [k] ranges over the k rows of the (G)MD-instance or color classes of k-MIS.
Index j ∈ [m] ranges over the m columns of the (G)MD-instance or edges of k-MIS.
Index γ ∈ [t], ranges over the t vertices of a color class.

We invite the reader to look up Table 1 when in doubt about a notation/symbol relative to
the construction.

4 Parameterized hardness of k-Multicolored Resolving Set/tw

In this section, we give an FPT reduction from the W[1]-complete k-Multicolored
Independent Set to k-Multicolored Resolving Set parameterized by treewidth.
More precisely, given a k-Multicolored Independent Set-instance (G, k, (V1, . . . , Vk))
we produce in polynomial-time an equivalent k-Multicolored Resolving Set-instance
(G′, k′,X ,P) where G′ has pathwidth (hence treewidth) O(k).

4.1 Construction
Let (G, k, (V1, . . . , Vk)) be an instance of k-Multicolored Independent Set where
(V1, . . . , Vk) is a partition of V (G) and Vi := {vi,γ | 1 6 γ 6 t}. We arbitrarily number
e1, . . . , ej , . . . , em the m edges of G.

IPEC 2019
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4.1.1 Overall picture

We start with a high-level description of the k-MRS-instance (G′, k′,X ,P). For each color
class Vi, we introduce m copies V 1

i , . . . , V
j
i , . . . , V

m
i of a selector gadget to G′. Each set V ji

is added to X , so a solution has to pick exactly one vertex within each selector gadget. One
can imagine the vertex-sets V 1

i , . . . , V
m
i to be aligned on the i-th row, with V ji occupying

the j-th column (see Figure 1). Each V ji has t vertices denoted by vji,1, v
j
i,2, . . . , v

j
i,t, where

each vji,γ “corresponds” to vi,γ ∈ Vi. We make vji,1v
j
i,2 . . . v

j
i,t a path with t− 1 edges.

For each edge ej ∈ E(G), we insert an edge gadget G(ej) containing a pair of vertices
{cj , c′j} that we add to P. Gadget G(ej) is attached to V ji and V ji′ , where ej ∈ E(Vi, Vi′).
The edge gadget is designed in a way that the only legal sets that do not resolve {cj , c′j}
are the ones that precisely pick vji,γ ∈ V

j
i and vji′,γ′ ∈ V ji′ such that ej = vi,γvi′,γ′ . We add a

propagation gadget P j,j+1
i between two consecutive copies V ji and V j+1

i , where the indices
in the superscript are taken modulo m. The role of the propagation gadget is to ensure that
the choices in each V ji (j ∈ [m]) corresponds to the same vertex in Vi.

V 1
1 V 2

1 V 3
1 V 4

1 V 5
1 V 6

1

V 1
2 V 2

2 V 3
2 V 4

2 V 5
2 V 6

2

V 1
3 V 2

3 V 3
3 V 4

3 V 5
3 V 6

3

P 1,2
1 P 2,3

1 P 3,4
1 P 4,5

1 P 5,6
1

P 1,2
2 P 2,3

2 P 3,4
2 P 4,5

2 P 5,6
2

P 1,2
3 P 2,3

3 P 3,4
3 P 4,5

3 P 5,6
3

P 6,1
1

P 6,1
2

P 6,1
3

G(e1) G(e2) G(e3) G(e4) G(e5) G(e6)

Figure 1 The overall picture with k = 3 color classes, t = 5 vertices per color class, m = 6 edges,
e1 = v1,3v2,4, e2 = v1,4v2,1, e3 = v1,5v3,1, etc. The dashed lines on the left and right symbolize that
the construction is cylindrical.

The intuitive idea of the reduction is the following. We say that a vertex of G′ is selected
if it is put in the resolving set of G′, a tentative solution. The propagation gadget P j,j+1

i

ensures a consistent choice among the m copies V 1
i , . . . , V

m
i . The edge gadget ensures that

the selected vertices of G′ correspond to an independent set in the original graph G. If both
the endpoints of an edge ej are selected, then the pair {cj , c′j} is not resolved. We now detail
the construction.
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4.1.2 Selector gadget
For each i ∈ [k] and j ∈ [m], we add to G′ a path on t− 1 edges vji,1, v

j
i,2, . . . , v

j
i,t, and denote

this set of vertices by V ji . Each vji,γ corresponds to vi,γ ∈ Vi. We call j-th column the set⋃
i∈[k] V

j
i , and i-th row, the set

⋃
j∈[m] V

j
i . We set X := {V ji }i∈[k],j∈[m]. By definition of

k-Multicolored Resolving Set, a solution S has to satisfy that for every i ∈ [k], j ∈ [m],
|S ∩ V ji | = 1. We call legal set a set S of size k′ = km that satisfies this property. We call
consistent set a legal set S which takes the “same” vertex in each row, that is, for every
i ∈ [k], for every pair (vji,γ , v

j′

i,γ′) ∈ (S ∩ V ji )× (S ∩ V j
′

i ), then γ = γ′.

4.1.3 Edge gadget
For each edge ej = vi,γvi′,γ′ ∈ E(G), we add an edge gadget G(ej) in the j-th column of G′.
G(ej) consists of a path on three vertices: cjgjc′j . The pair {cj , c′j} is added to the list of
critical pairs P. We link both vji,γ and vji′,γ′ to gj by a private path1 of length t + 2. We
link the at least two and at most four vertices vji,γ−1, v

j
i,γ+1, v

j
i′,γ′−1, v

j
i′,γ′+1 (whenever they

exist) to cj by a private path of length t+ 2. This defines at most six paths from V ji ∪ V
j
i′ to

G(ej). Let us denote by Wj the at most six endpoints of these paths in V ji ∪ V
j
i′ . For each

v ∈Wj , we denote by P (v, j) the path from v to G(ej). We set Eji :=
⋃
v∈Wj∩V j

i
P (v, j) and

Eji′ :=
⋃
v∈Wj∩V j

i′
P (v, j). We denote by Xj the set of the at most six neighbors of Wj on

the paths to G(ej). Henceforth we may refer to the vertices in some Xj as the cyan vertices.
Individually we denote by eji,γ the cyan vertex neighbor of vji,γ in P (vji,γ , j). We observe that
for fixed i and j, eji,γ exists for at most three values of γ. We add an edge between two cyan
vertices if their respective neighbors in V ji are also linked by an edge (or equivalently, if they
have consecutive “indices γ”). These extra edges are useless in the k-MRS-instance, but will
turn out useful in the MD-instance. See Figure 2 for an illustration of the edge gadget.

The rest of the construction will preserve that for every v ∈ (V ji ∪ V
j
i′ ) \ {v

j
i,γ , v

j
i′,γ′},

dist(v, c′j) = dist(v, cj) + 2, and for each v ∈ {vji,γ , v
j
i′,γ′}, dist(v, cj) = dist(v, gj) + 1 =

dist(v, c′j). In other words, the only two vertices of V ji ∪ V
j
i′ not resolving the critical pair

{cj , c′j} are v
j
i,γ and vji′,γ′ , corresponding to the endpoints of ej .

4.1.4 Propagation gadget
Between each pair (V ji , V

j+1
i ), where j + 1 is taken modulo m, we insert an identical copy of

the propagation gadget, and we denote it by P j,j+1
i . It ensures that if the vertex vji,γ is in

a legal resolving set S, then the vertex of S ∩ V j+1
i should be some vj+1

i,γ′ with γ 6 γ′. The
cylindricity of the construction and the fact that exactly one vertex of V ji is selected, will
therefore impose that the set S is consistent.

P j,j+1
i, comprises four vertices swji , se

j
i , nw

j
i , ne

j
i , called gates, and a set Aji of 2t vertices

aji,1, . . . , a
j
i,t, α

j
i,1, . . . , α

j
i,t. We make both aji,1a

j
i,2 . . . a

j
i,t and α

j
i,1α

j
i,2 . . . α

j
i,t a path with t− 1

edges. For each γ ∈ [t], we add the pair {aji,γ , α
j
i,γ} to the set of critical pairs P. Removing

the gates disconnects Aji from the rest of the graph.
We now describe how we link the gates to V ji , V

j+1
i , and Aji . We link vji,1 (the “top”

vertex of V ji ) to swji and vji,t (the “bottom” vertex of V ji ) to nwji both by a path of length 2.

1 We use the expression private path to emphasize that the different sources get a pairwise internally
vertex-disjoint path to the target.
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V 4
1

V 4
2

V 4
3

v4
1,1
v4

1,2
v4

1,3
v4

1,4
v4

1,5

e4
1,4

e4
1,5

g4

c4

c′4
G(e4)

6

6

6

6

6

Figure 2 The edge gadget G(e4) with e4 = v1,5v3,3. Weighted edges are short-hands for subdivi-
sions of the corresponding length. The edges between the cyan vertices will not be useful for the
k-MRS-instance, but will later simplify the construction of the MD-instance.

We also link vj+1
i,1 to seji by a path of length 3, and vj+1

i,t to neji by a path of length 2. Then
we make nwji adjacent to a

j
i,1 and αji,1, while we make neji adjacent to α

j
i,1 only. We make

seji adjacent to aji,t and α
j
i,t, while we make swji adjacent to aji,t only. Finally, we add an

edge between neji and nwji , and between swji and seji . See Figure 3 for an illustration of the
propagation gadget P j,j+1

i with t = 5.

vji,1

vji,2

vji,3

vji,4

vji,5

vj+1
i,1

vj+1
i,2

vj+1
i,3

vj+1
i,4

vj+1
i,5

V ji V j+1
i

swji seji

nwji neji

6|7

7|8

6|7

5|6

4|5

6|6

7|7

7|7

6|6

5|5

aji,1 αji,1

aji,2 αji,2

aji,3 αji,3

aji,4 αji,4

aji,5 αji,5

2

32

2

Figure 3 The propagation gadget P j,j+1
i . The critical pairs {aji,γ , α

j
i,γ} are surrounded by thin

dashed lines. The blue (resp. red) integer on a vertex of Aji is its distance to the blue (resp. red)
vertex in V ji (resp. V j+1

i ). Note that the blue vertex distinguishes the critical pairs below it, while
the red vertex distinguishes critical pairs at its level or above.
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Let us motivate the gadget P j,j+1
i . One can observe that the gates neji and swji resolve

the critical pairs of the propagation gadget, while the gates nwji and seji do not. Consider
that the vertex added to the resolving set in V ji is vji,γ . Its shortest paths to critical pairs
below it (that is, with index γ′ > γ) go through the gate swji , whereas its shortest paths to
critical pairs at its level or above (that is, with index γ′ 6 γ) go through the gate nwji . Thus
vji,γ only resolves the critical pairs {aji,γ′ , αi,γ′} with γ′ > γ. On the contrary, the vertex of
the resolving set in V j+1

i only resolves the critical pairs {aji,γ′ , α
j
i,γ′} at its level or above.

This will force that its level is γ or below. Hence the vertices of the resolving in V ji and
V j+1
i should be such that γ′ > γ. Since there is also a propagation gadget between V mi and
V 1
i , this circular chain of inequalities forces a global equality.

4.1.5 Wrapping up
We put the pieces together as described in the previous subsections. At this point, it is
convenient to give names to the neighbors of V ji in the propagation gadgets P j−1,j

i and
P j,j+1
i . We may refer to them as blue vertices (as they appear in Figure 4). We denote by

tlji the neighbor of vji,1 in P j−1,j
i , trji , the neighbor of vji,1 in P j,j+1

i , blji , the neighbor of vji,t
in P j−1,j

i , and brji , the neighbor of vji,t in P
j,j+1
i . We add the following edges and paths.

For any pair i, j such that the edge ej has an endpoint in Vi, the vertices tlji , tr
j
i ,bl

j
i ,br

j
i

are linked to gj by a private path of length the distance of their unique neighbor in V ji to
cj . We add an edge between seji and sej+1

i , and between nwji and nwj+1
i (where j + 1 is

modulo m). Finally, for every ej ∈ E(Vi, Vi′), we add four paths between seji , se
j
i′ ,nw

j
i ,nw

j
i′

and gj ∈ G(ej). More precisely, for each i′′ ∈ {i, i′}, we add a path from gj to seji′′ of length
dist(gj , swji′′)− 4, and a path from gj to nwji′′ of length dist(gj ,nwji′′)− 4. These distances
are taken in the graph before we introduced the new paths, and one can observe that the
length of these paths is at least t. This finishes the construction.

4.2 Correctness of the reduction
We now check that the reduction is correct. We start with the following technical lemma. If
a set X contains a pair that no vertex of N(X) (that is N [X] \X) resolves, then no vertex
outside X can distinguish the pair.

I Lemma 2. Let X be a subset of vertices, and a, b ∈ X be two distinct vertices. If for every
vertex v ∈ N(X), dist(v, a) = dist(v, b), then for every vertex v /∈ X, dist(v, a) = dist(v, b).

Proof. Let v be a vertex outside of X. We further assume that v is not in N(X), otherwise
we can already conclude that it does not distinguish {a, b}. A shortest path from v to
a, has to go through N(X). Let wa be the first vertex of N(X) met in this shortest
path from v to a. Similarly, let wb be the first vertex of N(X) met in a shortest path
from v to b. Since wa, wb ∈ N(X), they satisfy dist(wa, a) = dist(wa, b) and dist(wb, a) =
dist(wb, b). Then, dist(v, a) 6 dist(v, wb) + dist(wb, a) = dist(v, wb) + dist(wb, b) = dist(v, b),
and dist(v, b) 6 dist(v, wa) + dist(wa, b) = dist(v, wa) + dist(wa, a) = dist(v, a). Thus
dist(v, a) = dist(v, b). J

We use the previous lemma to show that every vertex of a V ji only resolves critical pairs
in gadgets it is attached to. This will be useful in the two subsequent lemmas.

I Lemma 3 (?). For any i ∈ [k], j ∈ [m], and v ∈ V ji , v does not resolve any critical pair
outside of P j−1,j

i , P j,j+1
i (where indices in the superscript are taken modulo m), and {cj , c′j}.

Furthermore, if ej ∈ E(G) has no endpoint in Vi ⊆ V (G), then v does not resolve {cj , c′j}.
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The two following lemmas show the equivalences relative to the expected use of the edge
and propagation gadgets. They will be useful in Sections 4.2.1 and 4.2.2.

I Lemma 4 (?). A legal set S resolves the critical pair {cj , c′j} with ej = vi,γvi′,γ′ if and
only if the vertex vji,γi

in V ji ∩ S and the vertex vji′,γi′ in V ji′ ∩ S satisfy (γ, γ′) 6= (γi, γi′).

I Lemma 5 (?). A legal set S resolves all the critical pairs of P j,j+1
i if and only if the vertex

vji,γ in V ji ∩ S and the vertex vj+1
i,γ′ in V j+1

i ∩ S satisfy γ 6 γ′.

We can now prove the correctness of the reduction. The construction can be computed
in polynomial time in |V (G)|, and G′ itself has size bounded by a polynomial in |V (G)|. We
postpone checking that the pathwidth is bounded by O(k) to the end of the second step,
where we produce an instance of MD whose graph G′′ admits G′ as an induced subgraph.

4.2.1 k-Multicolored Independent Set in G ⇒ legal resolving set in G′

Let {v1,γ1 , . . . , vk,γk
} be a k-multicolored independent set in G. We claim that S :=⋃

j∈[m]{v
j
1,γ1

, . . . , vjk,γk
} is a legal resolving set in G′ (of size km). The set S is legal by

construction. Since for every i ∈ [k], and j ∈ [m], vji,γi
and vj+1

i,γi
are in S (j + 1 is modulo

m), all the critical pairs in the propagation gadgets are resolved by S, by Lemma 5. Since
{v1,γ1 , . . . , vk,γk

} is an independent set in G, there is no ej = vi,γvi′,γ′ ∈ E(G), such that
(γ, γ′) = (γi, γi′). Thus every critical pair {cj , c′j} is resolved by S, by Lemma 4.

4.2.2 Legal resolving set in G′ ⇒ k-Multicolored Independent Set in G

Assume that there is a legal resolving set S in G′. For every i ∈ [k], for every j ∈ [m], the
vertex vji,γ(i,j) in V

j
i ∩S and the vertex vj+1

i,γ(i,j+1) in V
j+1
i ∩S (j+1 is modulom) are such that

γ(i, j) 6 γ(i, j+1), by Lemma 5. Thus γ(i, 1) 6 γ(i, 2) 6 . . . 6 γ(i,m−1) 6 γ(i,m) 6 γ(i, 1),
and γi := γ(i, 1) = γ(i, 2) = . . . = γ(i,m− 1) = γ(i,m). We claim that {v1,γ1 , . . . , vk,γk

} is a
k-multicolored independent set in G. Indeed, there cannot be an edge ej = vi,γi

vi′,γi′ ∈ E(G),
since otherwise the critical pair {cj , c′j} is not resolved, by Lemma 4.

5 Parameterized hardness of Metric Dimension/tw

In this section, we produce in polynomial time an instance (G′′, k′′) of Metric Dimension
equivalent to (G′,X , km,P) of k-Multicolored Resolving Set. The graph G′′ has also
pathwidth O(k). Now, an instance is just a graph and an integer. There is no longer X and
P to constrain and respectively loosen the “resolving set” at our convenience. This creates
two issues: (1) the vertices outside the former set X can now be put in the resolving set,
potentially yielding undesired solutions2 and (2) our candidate solution (when there is a
k-multicolored independent set in G) may not distinguish all the vertices.

5.1 Construction
5.1.1 Forced set gadget
To deal with the issue (1), we introduce two new pairs of vertices for each V ji . The intention
is that the only vertices resolving both these pairs simultaneously are precisely the vertices

2 Also, it is now possible to put two or more vertices of the same V ji in the resolving set S
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of V ji . For any i ∈ [k] and j ∈ [m], we add to G′ two pairs of vertices {pji , q
j
i } and {r

j
i , s

j
i},

and two gates πji and ρji . Vertex π
j
i is adjacent to pji and qji , and vertex ρji is adjacent to rji

and sji .
We link vji,1 to pji , and vji,t to r

j
i , each by a path of length t. It introduces two new

neighbors of vji,1 and vji,t (the brown vertices in Figure 4). We denote them by tbji and bbji ,
respectively. The blue and brown vertices are linked to πji and ρji in the following way. We
link tlji and trji to π

j
i by a private path of length t, and to ρji by a private path of length 2t−1.

We link blji and brji to πji by a private path of length 2t− 1, and to ρji by a private path of
length t. (Let us clarify that the names of the blue vertices blji and brji are for “bottom-left”
and “bottom-right”, and not for “blue” and “brown”.) We link tbji (neighbor of v

j
i,1) to ρ

j
i

by a private path of length 2t − 1. We link bbji (neighbor of vji,t) to π
j
i by a private path

of length 2t− 1. Note that the general rule to set the path length is to match the distance
between the neighbor in V ji and pji (resp. r

j
i ). With that in mind we link, if it exists, the top

cyan vertex tcji (the one with smallest index γ) neighboring V ji to πji with a path of length
dist(vji,γ , p

j
i ) = t+ γ − 1 where vji,γ is the unique vertex in N(tcji ) ∩ V

j
i . Observe that with

the notations of the previous section tcji = eji,γ . We also link, if it exists, the bottom cyan
vertex bcji (the one with largest index γ) to ρji with a path of length dist(v, rji ) where v is
again the unique neighbor of bcji in V

j
i .

It can be observed that we only have two paths (and not all six) from the at most three
cyan vertices to the gates πji and ρji . This is where the edges between the cyan vertices will
become relevant. See Figure 4 for an illustration of the forced vertex gadget, keeping in mind
that, for the sake of legibility, four paths to {πji , ρ

j
i} are not represented.

5.1.2 Forced vertex gadget
We now deal with the issue (2). By we add (or attach) a forced vertex to an already present
vertex v, we mean that we add two adjacent neighbors to v, and that these two vertices
remain of degree 2 in the whole graph G′′. Hence one of the two neighbors will have to be
selected in the resolving set since they are true twins. We call forced vertex one of these two
vertices (picking arbitrarily).

For every i ∈ [k] and j ∈ [m], we add a forced vertex to the gates nwji and seji of P j,j+1
i .

We also add a forced vertex to each vertex in N({πji , ρ
j
i}) \ {p

j
i , q

j
i , r

j
i , s

j
i}. This represents a

total of 12 vertices (6 neighbors of πji and 6 neighbors of ρji ). For every j ∈ [m], we attach a
forced vertex to each vertex in N(gj) \ {cj , c′j}. This constitutes 14 neighbors (hence 14 new
forced vertices). Therefore we set k′′ := km+ 12km+ 2km+ 14m = 15km+ 14m.

5.1.3 Finishing touches and useful notations
We use the convention that P (u, v) denotes the path from u to v which was specifically
built from u to v. In other words, for P (u, v) to make sense, there should be a point in the
construction where we say that we add a (private) path between u and v. For the sake of
legibility, P (u, v) may denote either the set of vertices or the induced subgraph. We also
denote by ν(u, v) the neighbor of u in the path P (u, v). Observe that P (u, v) is a symmetric
notation but not ν(u, v).

We add a path of length dist(ν(πji , tr
j
i ), sw

j
i ) = t between ν(πji , tr

j
i ) and seji , and a path

of length dist(ν(πji ,bl
j
i ),ne

j−1
i ) = 2t− 1 between ν(πji ,bl

j
i ) and nwj−1

i . Similarly, we add a
path of length dist(ν(ρji , tr

j
i ), sw

j
i ) = 2t− 1 between ν(ρji , tr

j
i ) and seji , and a path of length

dist(ν(ρji ,bl
j
i ),ne

j−1
i ) = t between ν(ρji ,bl

j
i ) and nwj−1

i . We added these four paths so that
no forced vertex resolves any critical pair in the propagation gadgets P j−1,j

i and P j,j+1
i .
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V ji
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j
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j
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j
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j
i
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Figure 4 Vertices tlji , tr
j
i , bl

j
i , br

j
i (blue vertices) are linked to πji , ρ

j
i by paths of appropriate

lengths (see Section 5.1.1). Vertex tbji is linked by a path to ρji , while bbji is linked by a path to πji .
To avoid cluttering the figure, we did not represent four paths: from tlji and bcji to ρ

j
i , and from

blji and tcji to πji . We also did not represent the paths already in the k-MRS-instance from the
blue vertices to gj . Black vertices are forced vertices. Gray edges are the edges in the propagation
gadgets already depicted in Figure 3. Not represented on the figure, we add a forced vertex to
each neighbor of the red vertices, except pji , q

j
i , r

j
i , s

j
i , cj , c

′
j . Finally we add four more paths and

potentially two edges (see Section 5.1.3).

Finally we add an edge between ν(gj ,nwji ) and ν(cj ,bcji ) whenever V
j
i have exactly three

cyan vertices. We do that to resolve the pair {ν(cj , tcji ), ν(cj ,bcji )}, and more generally
every pair {x, y} ∈ P (cj , tcji ) × P (cj ,bcji ) such that dist(cj , x) = dist(cj , y). This finishes
the construction of the instance (G′′, k′′ := 15km+ 14m) of Metric Dimension.

5.2 Correctness of the reduction
The two next lemmas will be crucial in Section 5.2.1. The first lemma shows how the forcing
set gadget simulates the action of former set X .

I Lemma 6 (?). For every i ∈ [k] and j ∈ [m],
∀v ∈ V ji , v resolves both pairs {pji , q

j
i } and {rji , s

j
i},

∀v /∈ V ji , v resolves at most one pair of {pji , q
j
i } and {rji , s

j
i},

∀v /∈ V ji ∪ P (vji,1, p
j
i ) ∪ P (vji,t, r

j
i ) ∪ {q

j
i , s

j
i}, v does not resolve {pji , q

j
i } nor {rji , s

j
i}.

For Section 5.2.1, we also need the following lemma, which states that the forced vertices
do not resolve critical pairs.

I Lemma 7 (?). No forced vertex resolves a pair of P.
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5.2.1 MD-instance has a solution ⇒ k-MRS-instance has a solution
Let S be a resolving set for the Metric Dimension-instance. We show that S′ := S ∩⋃
i∈[k],j∈[m] V

j
i is a solution for k-Multicolored Resolving Set. The set S \S′ is made of

14km+14m forced vertices, none of which is in some V ji ∪P (vji,1, p
j
i )∪{q

j
i }∪P (vji,t, r

j
i )∪{s

j
i}.

Thus by Lemma 6, S \ S′ does not resolve any pair {pji , q
j
i } or {r

j
i , s

j
i}. Now S′ is a set of

k′′ − (14km+ 14m) = km vertices resolving all the 2km pairs {pji , q
j
i } and {r

j
i , s

j
i}. Again

by Lemma 6, this is only possible if |S′ ∩ V ji |= 1. Thus S′ is a legal set of size k′ = km. Let
us now check that S′ resolves every pair of P in the graph G′.

By Lemma 7, S \ S′ does not resolve any pair of P in the graph G′′. Thus S′ resolves all
the pairs of P in G′′. Since the distances between V ji and the critical pairs in the edge and
propagation gadgets V ji is attached to are the same in G′ and in G′′, S′ also resolves every
pair of P in G′. Thus S′ is a solution for the k-MRS-instance.

5.2.2 k-MRS-instance has a solution ⇒ MD-instance has a solution
Let S be a solution for k-Multicolored Resolving Set. We show that S′ := S ∪ F ,
where F is the set of forced vertices, is a solution for Metric Dimension.

I Lemma 8 (?). Every vertex in G′′ is distinguished by S′.

The reduction is correct and it takes polynomial-time in |V (G)| to compute G′′. The
maximum degree of G′′ is 16. It is the degree of the vertices gj (nwji and seji have degree at
most 11, πji and ρji have degree 8, and the other vertices have degree at most 5). We use the
pathwidth characterization of Kirousis and Papadimitriou [19], to show:

I Lemma 9 (?). pw(G′′) 6 90k + 83.

Then solving Metric Dimension on constant-degree graphs in time f(pw)no(pw) could be
used to solve k-Multicolored Independent Set in time f(k)no(k), disproving the ETH.
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Table 1 Glossary of the construction.

Symbol/term Definition/action
{aji,γ , α

j
i,γ} critical pair of the propagation gadget P j,j+1

i

Aji set of vertices
⋃
γ∈[t]{a

j
i,γ , α

j
i,γ}

bbji bottom brown vertex, ν(vji,t, r
j
i )

bcji bottom cyan vertex (smallest index γ)
blji neighbor of vji,t in P

j−1,j
i

blue vertex one of the four neighbors of V ji in the propagation gadgets
brji neighbor of vji,t in P

j,j+1
i

brown vertex vertices ν(vji,1, p
j
i ) and ν(vji,t, r

j
i )

{cj , c′j} critical pair of the edge gadget G(ej)
cyan vertex neighbor of V ji in the paths to G(ej)

Eji vertices in the paths from V ji to G(ej)
eji,γ alternative labeling of the cyan vertices, neighbor of vji,γ
F set of all forced vertices
G(ej) edge gadget on {gj , cj , c′j} between V

j
i and V ji′ , where ej ∈ E(Vi, Vi′)

mcji middle cyan vertex (not top nor bottom)
neji north-east gate of P j,j+1

i

nwji north-west gate of P j,j+1
i

neji , sw
j
i resolve the critical pairs of P j,j+1

i

nwji , se
j
i do not resolve the critical pairs of P j,j+1

i

ν(u, v) neighbor of u in the path P (u, v)
P list of critical pairs

{pji , q
j
i } pair only resolved by vertices in V ji ∪ P (vji,1, p

j
i ) ∪ {q

j
i }

πji gate of {pji , q
j
i }, linked by paths to most neighbors of V ji

P j,j+1
i propagation gadget between V ji and V j+1

i

P (u, v) path added in the construction expressly between u and v
{rji , s

j
i} pair only resolved by vertices in V ji ∪ P (vji,t, r

j
i ) ∪ {s

j
i}

ρji gate of {rji , s
j
i}, linked by paths to most neighbors of V ji

seji south-east gate of P j,j+1
i

swji south-west gate of P j,j+1
i

t size of each Vi
tbji top brown vertex, ν(vji,1, p

j
i )

tcji top cyan vertex (largest index γ)
tlji neighbor of vji,1 in P j−1,j

i

trji neighbor of vji,1 in P j,j+1
i

Vi partite set of G
V ji “copy of Vi”, stringed by a path, in G′ and G′′
vji,γ vertex of V ji representing vi,γ ∈ V (G)
Wj endpoints in V ji ∪ V

j
i′ of paths from V ji ∪ V

j
i′ to G(ej)

X set containing all the sets V ji for i ∈ [k] and j ∈ [m]
Xj neighbors of Wj on the paths to G(ej) (cyan vertices)
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