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—— Abstract

Probabilistic logic programming is increasingly important in artificial intelligence and related fields
as a formalism to reason about uncertainty. It generalises logic programming with the possibility of
annotating clauses with probabilities. This paper proposes a coalgebraic perspective on probabilistic
logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics
are given in terms of cofree coalgebras. First, the cofree F-coalgebra yields a semantics in terms
of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain
a “possible worlds” interpretation of programs, from which one may recover the usual distribution
semantics of probabilistic logic programming.
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1 Introduction

Probabilistic logic programming (PLP) [23, 5, 25] is a family of approaches extending the
declarative paradigm of logic programming with the possibility of reasoning about uncer-
tainty. This has been proven useful in various applications, including bioinformatics [6, 22],
robotics [27] and the semantic web [29].

The most common version of PLP — on which for instance ProblLog is based [6], the
probabilistic analogue of Prolog — is defined by letting clauses in programs to be annotated
with mutually independent probabilities. As for the interpretation, distribution semantics [25]
is typically used as a benchmark for the various implementations of pLpP, such as pD, PRISM
and ProblLog [24]. In this semantics, the probability of refuting a goal in a program is
obtained as a sum of the probabilities of the possible worlds (sets of clauses) in which the goal
is refutable. The distribution semantics is particularly interesting because it is compatible
with the encoding of Bayesian networks as probabilistic logic programs [24], thus indicating
that pLP can be effectively employed for Bayesian reasoning.

The main goal of this work is to present a coalgebraic perspective on pLP and its distribution
semantics. We first consider the case of ground programs, that is, those without variables.
Our approach is based on the observation — inspired by the coalgebraic treatment of “pure”
logic programming [16] — that ground programs are in 1-1 correspondence with coalgebras
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10:2 A Coalgebraic Perspective on Probabilistic Logic Programming

for the functor M, P, where M, is the finite multiset functor on [0, 1] and Py is the finite

powerset functor. We then provide two coalgebraic semantics for ground PLP.
The first interpretation [—] is in terms of execution trees called stochastic derivation trees,
which represent parallel SLD-derivations of a program on a goal. Stochastic derivation
trees are the elements of the cofree M, P¢-coalgebra on a given set of atoms At, meaning
that any goal A € At can be given a semantics in terms of the corresponding stochastic
derivation tree by the universal property map [—] to the cofree coalgebra.
The second interpretation ((—)) recovers the usual distribution semantics of pLp. This
requires some work, as expressing probability distributions on the possible worlds needs a
different coalgebra type. We introduce distribution trees, a tree-like representation of the
distribution semantics, as the elements of the cofree D, P;Ps-coalgebra on At, where
D, is the sub-probability distribution monad. In order to characterise ((—)) as the map
given by universal property of distribution trees, we need a canonical extension of pLP
to the setting of D.,PyPs-coalgebras. This is achieved via a “possible worlds” natural
transformation M, Py = D, P;Py.

In the second part of the paper we recover the same framework for arbitrary probabilistic
logic programs, possibly including variables. The encoding of programs as coalgebras is
subtler. The space of atoms is now a presheaf indexed by a “Lawvere theory” of terms
and substitutions. The coalgebra map can be defined in different ways, depending on the
substitution mechanism on which one wants to base resolution. For pure logic programs,
the definition by term matching is the best studied, with [17] observing that moving from
sets to posets is required in order for the corresponding coalgebra map to be well-defined
as a natural transformation between presheaves. A different route is taken in [3], where
the problem of naturality is neutralised via “saturation”, a categorical construction which
amounts to defining resolution by unification instead of term-matching.

In developing a coalgebraic treatment of PLP with variables, we follow the saturation route,
as it also allows to recover the term-matching approach, via “desaturation” [3]. This provides
a cofree coalgebra semantics [—] for arbitrary pLP programs, as a rather straightforward
generalisation of the saturated semantics of pure logic programs. On the other hand, extending
the ground distribution semantics {(—)) to arbitrary PLP programs poses some challenges: we
need to ensure that, in computing the distribution over possible worlds associated to each
sub-goal in the computation, each clause of the program is “counted” only once. This is
solved by tweaking the coalgebra type of the distribution trees for arbitrary pLP programs,
so that some nodes are labelled with clauses of the program. Thanks to this additional
information, the term-matching distribution semantics of an arbitrary pPLP goal is computable
from its distribution tree.

In light of the coalgebraic treatment of pure logic programming [16, 17, 2, 3], the
generalisation to PLP may not appear so surprising. In fact, we believe its importance is
two-fold. First, whereas the derivation semantics [—] is a straight generalisation of the pure
setting, the distribution semantics ((—)) is genuinely novel, and does not have counterparts
in pure logic programming. Second, a paper dedicated to establishing the foundations of
coalgebraic PLP is a necessary preliminary step for a number of interesting applications:

as mentioned, reasoning in Bayesian networks can be seen as a particular case of PLP,

equipped with the distribution semantics. Our coalgebraic perspective thus readily applies

to Bayesian reasoning, paving the way for combination with recent works [11, 12, 4]

modelling belief revision, causal inference and other Bayesian tasks in algebraic terms.

the combination of logic programming and probabilities comes in different flavours [24]:

the more abstract viewpoint offered by coalgebra may provide a unifying perspective on
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these approaches, as well as a formal connection with seemingly related languages such
as weighted logic programming [8] and Bayesian logic programming [13].

the coalgebraic treatment of pure logic programming has been used as a formal justific-
ation [19, 14] for coinductive logic programming [15, 9]. Coinduction in the context of
probabilistic logic programs is, to the best of our knowledge, a completely unexplored
field, for which the current paper establishes semantic foundations.

We leave the exploration of these venues as follow-up work.

2 Preliminaries

Signature, Terms, and Categories. A signature Y is a set of function symbols, each
equipped with a fixed finite arity. Throughout this paper we fix a signature X, and a
countably infinite set of variables Var = {1, x2,...}. The X-terms over Var are defined as
usual. A context is a finite set of variables {x1,x2,...,2,}. With some abuse of notation,
we shall often use n to denote this context. We say a X-term t is compatible with context n
if the variables appearing in ¢ are all contained in {x1,...,2,}.

We are going to reason about Y-terms categorically using Lawvere theories. First, we
will use Ob(C) to denote the set of objects and C[C, D] for the set of morphisms C' — D in
a category C. A C-indexed presheaf is a functor F: C — Sets. C-indexed presheaves and
natural transformations between them form a category Sets®. Recall that the (opposite)
Lawvere Theory of ¥ is the category LY with objects the natural numbers and morphisms
Ly’ [n,m] the n-tuples (t1,...,t,), where each ¢; is a X-term in context m. For modelling
logic programming, it is convenient to think of each n € Ob(L3’) as representing the context
(x1,...,2n), and a morphism (¢1,...,t,) : n — m as the substitution transforming ¥-terms
in context n to X-terms in context m by replacing each z; with ¢;. We shall also refer to LY
morphisms simply as substitutions (notation 6, 7,0,...).

Logic programming. We now recall the basics of (pure) logic programming, and refer the
reader to [20] for a more systematic exposition. An alphabet A consists of a signature 3,
a set of variables Var, and a set of predicate symbols { Py, Py, ...}, each with a fixed arity.
Given an n-ary predicate symbol P in A, and 3-terms ty,...,t,, P(t1---t,) is called an
atom over A. We use A, B,... to denote atoms. Given an atom A in context n, and a
substitution § = (t1,...,¢,) : n — m, we write A6 for substitution instance of A obtained by
replacing each appearance of x; with ¢; in A. For convenience, we also use {B,..., Bx}0
as a shorthand for {B16,..., Bixf}. Given two atoms A and B (over A), a unifier of A and
B is a pair (o, 7) of substitutions such that Ac = B7. Term matching is a special case of
unification, where o is the identity substitution. In this case we say that 7 matches B with
Aif A= Br.

A (pure) logic program L consists of a finite set of clauses C in the form H « By, ..., By,
where H, By, ..., By are atoms. H is called the head of C, and By, ..., By form the body of
C. We denote H by Head(C), and {Bs, ..., B} by Body(C). A goal is simply an atom. Since
one can regard a clause H <+ By, ..., By as the logic formula By A --- A By — H, we say
that a goal G is derivable in L if there exists a derivation of G with empty assumption using
the clauses in L.

The central task of logic programming is to check whether a goal G is provable (or
refutable as in some literature) in a program L, in the sense that some substitution instance
of G is derivable in L. The key algorithm for this task is SLD-resolution, see e.g. [20]. We
use the notation L - G to mean that G is provable in L.
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Probabilistic logic programming. We now recall the basics of PLP; the reader may consult [7,
6] for a more comprehensive introduction. A probabilistic logic program P based on a logic
program LL assigns a probability label r to each clause C in L, denoted as Label(C). One may
also regard P as a set of probabilistic clauses of the form r :: C, where C is a clause in L, and
each clause C is assigned a unique probability label r in P. We also refer to r :: C simply as
clauses.

» Example 1. As our leading example we introduce the following probabilistic logic program
P+'. It models the scenario of Mary’s house alarm, which is supposed to detect burglars, but
it may be accidentally triggered by an earthquake. Mary may hear the alarm if she is awake,
but even if the alarm is not sounding, in case she experiences an auditory hallucination
(paracusia). The language of P+ includes 0-ary predicates Alarm, Eearthquake, Burglary, and
l-ary predicates Wake(—), Hear_alarm(—) and Paracusia(—), and signature ¥, = {Mary®}
consisting of a constant. We do not have variables here, so P* is a ground program. For
readability we abbreviate Mary as M in the program.

0.01 ::  Earthquake <« 0.01 ::  Paracusia(M) —
0.2:: Burglary «— 0.6 ::  Wake(M) —
0.5::  Alarm < Earthquake | 0.8:: Hear_alarm(M) <« Alarm, Wake(M)
0.9:: Alarm < Burglary 0.3::  Hear_alarm(M) < Paracusia(M)

As a generalisation of the pure case, in probabilistic logic programming one is interested
in the probability of a goal G being refutable in a program P. There are potentially multiple
ways to define such probability — in this paper we focus on the distribution semantics [7].

The probability of refuting a goal is computed in the distribution semantics as follows.
Given a probabilistic logic program P = {p; :: C1,...,pn :: Cp}, let |P| be its underlying
pure logic program, namely |P| = {C1,...,Cn}. A sub-program L of |P| is a logic program
consisting of a subset of the clauses in |P|. This justifies using P(|P|) to denote the set of
all sub-programs of |P|, and using L. C |P| to denote that L is a sub-program of P. The
central concept of the distribution semantics is that P determines a distribution pp over the
sub-programs P(|P|): for any L € P(|P[), up(L) = [Ic,er. Pi [Ic,epp(1 — pj)- The value
up(LL) is called the probability of the sub-program LL. For an arbitrary goal G € At, the success
probability Prp(G) of G w.r.t. program P is then defined as the sum of the probabilities of
all the sub-programs of P in which G is refutable:

Pe(G) = 3. @)= > ([[w [ C—p) (1)

[PIDLFG [PIDLFG C;eL  C;e|P|\L

Intuitively one can regard every clause in [P as an event, then every sub-program L can be
seen as a possible world, and pp is a distribution over the possible worlds.

» Example 2. For the program P*, consider the goal Hear__alarm(M). By definition (1), we
can compute its success probability Prp. (Hear_alarm(M)), and the result is 0.091102896.

3 Ground case

In this section we introduce a coalgebraic semantics for ground probabilistic logic program-
ming, i.e. for those programs where no variable appears. Our approach consists of two parts.
First, in Subsection 3.1, we represent PLP logic programs as coalgebras and their executions
as a final coalgebra semantics (Subsection 3.2) — this is a straight generalisation of the
coalgebraic treatment of pure logic programs given in [16]. Next, in Subsection 3.3 we show
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how to represent the distribution semantics in terms as a final coalgebra, via a transformation
of the coalgebra type of logic programs. Appendix A shows how the probability of a goal is
effectively computable from the above representation.

3.1 Coalgebraic Representation of pLp

A ground program will be represented as a coalgebra for the composite M, Ps: Sets —
Sets of the finite probability functor M,,: Sets — Sets and the finite powerset functor
P;: Sets — Sets. The definition of M, deserves some further explanation. It can be
seen as the finite multiset functor based on the commutative monoid ([0, 1],0,V), where
aVb:=1—(1—a)(1—0b). That is to say, on objects, M, (A) is the set of all finite probability
assignments p: A — [0, 1] with a finite support supp(¢) = {a € A | p(a) # 0}. For ¢ with
support {ay,...,ar} and values ¢(a;) = r;, it will often be convenient to use the standard
notation ¢ = Ele 7ia; Or ¢ =1r1a1 + -+ - + rgag, where the purely formal “+” here should
not be confused with the addition in R. On morphisms, M, (h: A — B) maps Zle r;a; to
Zle rih(ag).

Fix a ground probabilistic logic program P on a set of ground atoms At. The definition of
P can be encoded as an M, Ps-coalgebra p: At — M,,,.(Py(At)), as follows. Given A € At,

p(A4):  Pr(At) = [0,1]

r ifr: A+ Bi,...,B, is aclause in P

0 otherwise.

{B1,...,B,} — {

Or, equivalently, p(A) = > r{Bi,...,Bn}.

(r::A<By,...,Bp) € P
» Example 3. Consider program P* from Example 1. The set of ground atoms At,; is
{Alarm, Earthquake, Burgary, Wake(M), Paracusia(M), Hear__alarm(M)}. Here are some values
of the corresponding coalgebra pq;: Ata — Mp, PrAty:

pai(Hear _alarm(M)) = 0.8{Alarm, Wake(M)} + 0.3{Paracusia(M)} pq:(Earthquake) = 0.01{}

» Remark 4. One might wonder why not simply adopt Ps(Ps(—) x [0, 1]) as the coalgebra
type for pLp. Note that this encoding would not have 1 — 1 correspondence with ground pLP
programs: a clause C € Py(At) may be associated with different probabilities in [0, 1], which
violates the standard definition of PLP programs.

3.2 Derivation Semantics

In this section we are going to construct the final At x My, Ps(—)-coalgebra, thus providing
a semantic interpretation for probabilistic logic programs based on At.

Before the technical developments, we give an intuitive view on the semantics that the
final coalgebra is going to provide. We shall represent each goal as a stochastic derivation
tree in the final coalgebra. These trees are the probabilistic version of and-or derivation trees,
which represent parallel SLD-resolutions in pure logic programming [10].

» Definition 5 (Stochastic derivation trees). Given a ground pLP program P and a ground

atom A, the stochastic derivation tree for A in P is the possibly infinite tree T such that:

1. Every node is either an atom-node (labelled with an atom A’ € At) or a clause-node
(labelled with e). They appear alternatingly in depth, in this order. The root is an
atom-node labelled with A.

10:5
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2. Fach edge from an atom-node to its (clause-)children is labelled with a probability value.

3. Suppose s is an atom-node with label A’. Then for every clause r :: A’ < B1,..., By in
P, s has exactly one child t, the edge s — t is labelled with v, and t has exactly k children
labelled with By, ..., By, respectively.

The final coalgebra semantics [—], for a program P will map a goal A to the stochastic
derivation tree representing all possible SLD-resolutions of A in P.

» Example 6. Continuing Example 1, [Hear_alarm(M)], , is the stochastic derivation
tree below. The subtree highlighted in red represents one of the successful refutations
of Hear_alarm(M) in p,;: indeed, note that a single child is selected for each atom-node
A (corresponding to a clause matching A), all children of any clause-node are selected
(corresponding to the atoms in the body of the clause), and the subtree has clause-nodes as
leaves (all atoms are proven).

o.g Hear_Alarm(M) .
< \ °
!

Wake(M) Paracusia(M)

Alarm

0-5 0.9 0.6 | 0.01 (2)
[ ] [ ] [} [}
\ \
Earthquake Burglary
0.01 | 0.2]
[ ] [ ]

Any such subtree describes a refutation, but does not yield a probability value to be associated
to a goal — this is the remit of the distribution semantics, see Example 10 below.

In the remaining part of the section, we construct the cofree coalgebra for M, Py via
a so-called terminal sequence [28], and obtain [—], from the resulting universal property.
We report the steps of the terminal sequence as they are instrumental in showing that the
elements of the cofree coalgebra can be seen as stochastic derivation trees.

» Construction 7. The terminal sequence for the functor At x M, P;(—) : Sets — Sets
consists of sequences of objects { X, }acora and arrows {(53‘: Xo = X3} p<acord constructed
by the following inductive definitions:

1 CMZLB:O

At @=0 idae X My Py (6571 B1=¢+2
I X r = =
Xo = Atx My, Pp(Xe) a=¢&+1  65:=4 7770 ¢

the limit projections « is limit, 8 < «
lim{d} [ £ < x <a} «is limit Pro) 8

universal map to Xg fis limit,a =5+1

» Proposition 8. The terminal sequence for the functor At x M, Pr(—) converges to a limit
X, such that X, = X, 1.

Proof. We need to verify the assumptions of [28, Corollary 3.3]. It is well-known that
P; is w-accessible, and M,, has the same property, see e.g. [26, Prop. 6.1.2]. Because
accessibility is defined in terms of colimit preservation, it is clearly preserved by composition,
and thus M, Py is also accessible. It remains to check that it preserves monics. For M,,,
given any monomorphism ¢ : C — D in Sets, suppose M, (7)(¢) = M, (¢)(¢’) for some
0, ¢ € Mp(C). Then for any d € D, M, (i)(¢)(d) = Mp-(1)(¢’)(d). If we focus on the
image i[C], then there is an inverse function i~! : i[C] — C, and M,,.(i)(¢) = M, (i)(¢")
implies that p(i~1(d)) = ¢'(i71(d)) for any d € i[C]. But this simply means that ¢ = ¢’. As
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the same is true for Py and the property is preserved by composition, we have that M, Py
preserves monics. We can then conclude by [28, Corollary 3.3] that the terminal sequence for
At x M, Py converges to the cofree M, Ps-coalgebra on At. <

Note that X.41 is defined as At x M,,Ps(X,), and the above isomorphism makes
Xy — At x M, Py(X,) the final At x M, Ps-coalgebra — or, in other words, cofree My, Py-
coalgebra on At. As for the tree representation of the elements of X, recall that elements of
the cofree Py Ps-coalgebra on At can be seen as and-or trees [16]. By replacing the first Py
with M., effectively one adds probability values to the edges from and-nodes to or-nodes
(which are edges from atom-nodes to or-nodes in our stochastic derivation trees), as in (2).
Thus stochastic derivation trees as in Definition 5 are elements of X,. The action of the
coalgebra map =: X, — At x M, P(X,) is best seen with an example: the tree 7 in
(2) (an element of X ) is mapped to the pair (Hear_alarm(M), ), where ¢ is the function
Ps(Xy) — [0, 1] assigning 0.8 to the set consisting of the subtrees of 7 with root Alarm and
with root Wake(M), 0.3 to the singleton consisting to the subtree of 7 with root Paracusia(M),
and 0 to any other finite set of trees.

With all the definitions at hand, it is straightforward to check that [—], mapping A € At
to its stochastic derivation tree in p makes the following diagram commute

\L<id,p>
At x M,,Ps(At)

and thus by uniqueness it coincides with the At x M,,Ps-coalgebra map provided by the
universal property of the final At x M, Ps-coalgebra X, — At x M, Pr(X,).

3.3 Distribution Semantics

This section gives a coalgebraic definition of the usual distribution semantics of probabilistic
logic programming. As in the previous section, before the technical developments we gather
some preliminary intuition. Recall from Section 2 that the core of the distribution semantics
is the probability distribution over the sub-programs (sets of clauses) of a given program P.
These sub-programs are also called (possible) worlds, and the distribution semantics of a
goal is the sum of the probabilities of all the worlds in which it is refutable.

In order to code this information as elements of a final coalgebra, we need to present it
in tree-shape. Roughly speaking, we form a distribution over the sub-programs along the
execution tree. This justifies the following notion of distribution trees.

» Definition 9 (Distribution trees). Given a PLP program P and an atom A, the distribution

tree for A in P is the possibly infinite tree T satisfying the following properties:

1. Every node is exactly one of the three kinds: atom-node (labelled with an atom A € At),
world-node (labelled with o), clause-node (labelled with e). They appear alternatingly in
this order in depth. The root is an atom-node labelled with A.

2. Every edge from an atom-node to its (world-)children is labelled with a probability value,
and they sum up to one.

3. Suppose s is an atom-node labelled with A’, and C = {Cy,...,Cp} is the set of all the
clauses in P whose head is A’. Then s has 2™ children, each standing for a subset
X of C. If a child t stands for X, then the edge s — t is labelled with probability
[Tcex Label(C) - [Terec x (1 — Label(C)) — recall that Label(C) is the probability labelling

10:7
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C. Also, t has exactly | X| children, each standing for a clause C € X. If a child u stands
forC=r: A"+ By,...,By, then u has k children, labelled with By, ..., By respectively.

Comparing distribution trees with stochastic derivation trees (Definition 5) , one can
observe the addition of another class of nodes, representing possible worlds. Moreover, the
possible worlds associated with an atom-node (a goal) must form a probability distribution —
as opposed to stochastic derivation trees, in which probabilities labelling parallel edges do
not need to share any relationship. An example of the distribution tree associated with a
goal is provided in the continuation of our leading example (Examples 1 and 6).

» Example 10. In the context of Example 1, the distribution tree of Hear_alarm(M) is
depicted below, where we use grey shades to emphasise sets of edges expressing a probability
distribution. Also, note the os with no children, standing for empty worlds.

Hear_alarm(M

m Paracusia(M

Alarm Wake(M Paracusia(M Alarm Wake 0.99 001

0. 06 0.99/\0.01 06
040 0.05

Earthquake Burglary Burglary Earthquake Burglary  Earthquake Burglary

0.99/. ?01 UO/ 0.2 ooo/ u()m 08/ ioz 0.99/ %}01 08/ ioz 0.99/ iom 08/ EUQ

In the literature, the distribution semantics usually associates with a goal a single probability
value (1), rather than a whole tree. However, given the distribution tree it is straightforward
to compute such probability. The subtree highlighted in red above describes a refutation of
Hear_alarm(M) with probability 0.000001296 ( = the product of all the probabilities in the
subtree). The sum of all the probabilities associated to such “refutation” subtrees yields the
usual distribution semantics (1) — the computation is shown in detail in Appendix A.

In the remainder of this section, we focus on the coalgebraic characterisation of distribution
trees and the associated semantics map. Our strategy will be to introduce a novel coalgebra
type D.,P;Py, such that distribution trees can be seen as elements of the cofree coalgebra.
Then, we will provide a natural transformation M,, = D, Py, which can be used to
transforms stochastic derivation trees into distribution trees. Finally, composing the universal
properties of these cofree coalgebras will yield the desired distribution semantics.

We begin with the definition of D.,Py. This is simply the composite D., Py : Sets — Sets,
where D, is the sub-probability distribution functor. Recall that D., maps X to the set of
sub-probability distributions with finite supports on X (i.e., convex combinations of elements
of X whose sum is less or equal to 1), and acts component-wise on functions.

» Remark 11. Note that we cannot work with full probabilities here, since a goal may not
match any clause. In such a case there is no world in which the goal is refutable and its
probability in the program is 0.

The next step is to recover distribution trees as the elements of the D, PsPs-cofree
coalgebra on At. This goes via a terminal sequence, similarly to the case of M, P in the
previous section. The terminal sequence for At x D,P;Ps(—) : Sets — Sets is constructed
as the one for At x M, Ps(—) : Sets — Sets (Construction 7), with D, Py replacing M,,,.
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» Proposition 12. The terminal sequence of At x D, P¢Ps(—) converges at some limit
ordinal x, and (N7 1Yy — At x Do, PrPsYy is the final At x D, PfPy coalgebra.

Proof. As for Proposition 8, by [28, Cor. 3.3] it suffices to show that D_, Py is accessible and
preserves monos. Both are simple exercises; in particular, see [1] for accessibility of D.,. <«

The association of distribution trees with elements of Y, is suggested by the type
At x Do, P;Py. Indeed, At x D, is the layer of atom-nodes, labelled with elements of At and
with outgoing edges forming a sub-probability distribution; the first P is the layer of world-
nodes; the second Py is the layer of clause-nodes. The coalgebra map Y, — At x Do, P;P;Y,
associates a goal to subtrees of its distribution trees, analogously to the coalgebra structure
on stochastic derivation trees in the previous section.

The last ingredient we need is a translation of stochastic derivation trees into distribution
trees. We formalise this as a natural transformation pw : My, = D.,Ps. The naturality of
pw can be checked with a simple calculation.

» Definition 13. The “possible worlds” natural transformation pw: My, = D, Py is

defined by pw . : p Zygsupp(w) ryY, where eachry =[] cy go(y).Hy’ESUpp(Lp)\Y(l_QD(y/)).
In particular, when supp(p) is empty, pwx (¢) = 0.

Now we have all the ingredients to characterise the distribution semantics coalgebraically,
as the morphism ((—)),: At — Y, defined by the following diagram, which maps A € At to
its distribution tree in p.

- -1 T~
AT - s X - - - - — - — — o =9
l<idApp> lu 3)
idpe X MprP ¢ ([-1p)
At X My PpAt ————> At X M, P X, o
\LidAt XPWD . (At) lidAt xpwp Xy
idat XD <1 PPy ([=1p) idatXD<1 PpPr(l)

At x DSIPfPfAt — > At X 'Dglpf'PfX,y At x DﬁlprfYX

Note the use of pw to extend probabilistic logic programs and stochastic derivation trees

to the same coalgebra type as distribution trees. Then the distribution semantics {—)),
is uniquely defined by the universal property of the final At x D.,P;Ps-coalgebra. By
uniqueness, it can also be computed as the composite ! o [—],, that is, first one derives
the semantics [—],, then applies the translation pw to each level of the resulting stochastic
derivation tree, in order to turn it into a distribution tree.

4 General Case

We now generalise our coalgebraic treatment to arbitrary probabilistic logic programs and
goals, possibly including variables. The section has the same structure as the one devoted to
the ground case. First, in Subsection 4.2, we give a coalgebraic representation for general pLP,
and equip it with a final coalgebra semantics in terms of stochastic derivation trees. Next, in
Subsection 4.3, we study the coalgebraic representation of the distribution semantics. We
begin by introducing our leading example — an extension of Example 1.

» Example 14. We tweak the ground program of Example 1. Now it is not just Mary that
may hear the alarm, but also her neighbours. There is a small probability that the alarm
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rings because someone passes too close to Mary’s house. However, we can only estimate the
possibility of paracusia and being awake for Mary, not the neighbours. The revised program,
which by abuse of notation we also call P, is based on an extension of the language in
Example 1: we add a new l-ary function symbol Neigh1 to the signature X, and a new
1-ary predicate PassBy(—) to the alphabet. Note the appearance of a variable x.

0.01 ::  Earthquake — 0.5:: Alarm + Earthquake
0.2:: Burglary — 0.9:: Alarm <+ Burglary
0.6 ::  Wake(Mary) — 0.1:: Alarm <+ PassBy(x)

0.01:: Paracusia(Mary) <« 0.3:: Hear_alarm(x) <« Paracusia(x)

0.8 ::  Wake(Neigh(x)) <« Wake(x) | 0.8:: Hear_alarm(x) <« Alarm, Wake(x)

As we want to maintain our approach a direct generalisation of the coalgebraic semantics [3]
of pure logic programs, the derivation semantics [—] for pLP will represent resolution by
unification. This means that, at each step of the computation, given a goal A, one seeks
substitutions 6,7 such that A9 = Hr for some head H of a clause in the program. As
a roadmap, we anticipate the way this computation is represented in terms of stochastic
derivation trees (Definition 20 below), with a continuation of our leading example.

» Example 15. In the context of Example 14, the tree for [Hear_alarm(x)]pa: is (partially)
depicted below. Compared to the ground case (Example 6), now substitutions applied on
the goal side appear explicitly as labels. We abbreviate Neigh as N and Mary as M.

Hear alarm(x]

Wake(N Paracusm
Alarm Wake Paracursua(M) (4)

X

0.5

Earthquake Burglary PassBy(y) PassBy(M)  PassBy(N(M))  PassBy(N(x))

Resolution by unification as above will be implemented in two stages. The first step is
devising a map for term-matching. Assuming that the substitution instance A# of a goal A
is already given, we define p performing term-matching of Af in a given program P:

r (r:H+ Bi,...,Bg) € Pand
p(A8): {Bi7,...,BkTiticicn I contains all 7 s.t. A = HT; (5)

0 otherwise.

Intuitively, one application of such map is represented in a tree structure as Example 15
by the first two layers of the subtree rooted at 6. The reason why the domain of p(A) is
a countable set {B17;, ..., BiTitiercn of instances of the same body Bi, ..., By is that the
same clause may match a goal with countably many different substitutions 7;. For example
in the bottom part of (4) there are countably infinite substitutions 7; matching the head of
Alarm < PassBy(x) to the goal Alarm, substituting = with Mary, Neigh(Mary), Neigh(x), . ...
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This will be reflected in the coalgebraic representation of pLp (see (7) below) by the use of
the countable powset functor P,.

In order to model arbitrary unification, the second step is considering all substitutions
f on the goal A such that a term-matcher for A6 exists. There is an elegant categorical
construction [3] packing together these two steps into a single coalgebra map. We will
present it in subsection 4.1, and then use it to present the derivation semantics anticipated
by Example 15 (Section 4.2). Finally we will give a coalgebraic view on the distribution
semantics for pLP (Section 4.3).

4.1 Coalgebraic Representation of pLp

Towards a categorification of general pLP, the first concern is to account for the presence of
variables in atoms. This is standardly done by letting the space of atoms on an alphabet A
be a presheaf At: LY — Sets rather than a set. Here the index category LY is the opposite
Lawvere Theory of ¥ (see Section 2). For each n € Ob(LyY), At(n) is defined as the set of
A-atoms in context n. Given a n-tuple 6 = (t1,...,t,) € LY [n,m] of X-terms in context m,

At(0): At(n) — At(m) is defined by substitution, namely At(0)(A) = A, for any A € At(n).

As observed in [17] for pure logic programs, if we naively try to model our specification
(5) for p as a coalgebra on At, we run into problems: indeed p is not a natural transformation,
thus not a morphism between presheaves. Intuitively, this is because the existence of a
term-matching for a goal A does not necessarily imply the existence of a term-matching
for its substitution instance Ac. For pure logic programs, this problem can be solved in at
least two ways. First, [17] relaxes naturality by changing the base category of presheaves
from Sets to Poset. We take here the second route, namely give a “saturated” coalgebraic
treatment of pLP, generalising the modelling of pure logic programs proposed in [3]. This
approach has the advantage of letting us work with Sets-based presheaves, and be still able
to recover term-matching via a “desaturation” operation — see [3] and Appendix B.

The Saturation Adjunction. To this aim, we briefly recall the saturated approach from [3].

The central piece is the adjunction U« - IC on presheaf categories, as on the left below.

u LY |——Lg
Sets™s’ 1 Sets/L='l Fi (6)
~_ K(F)
K Sets

Here |L$P| is the discretisation of LyY, i.e. all the arrows but the identities are dropped. The
left adjoint U is the forgetful functor, given by precomposition with the obvious inclusion
v |LYP] — LY. U has a right adjoint £ = Ranc: Sets!™®’| — Sets™® , which sends every
presheaf F: |[LYY| — Sets to its right Kan extension along ¢, as in the rightmost diagram
in (6). The definition of K can be computed [21] as follows:
on objects F € Ob(Sets"s), the presheaf K(F): LYY — Sets is defined by letting KC(F)(n)
be the product K(F)(n) = HHGL;p in,m) F (M), where m ranges over Ob(Ly). Intuitively,
every element in IC(F)(n) is a tuple with index set |, ,cop (L) LY [n, m], and its component
at index 6: n — m is an element in F(m). We follow the convention of [3] and write
2,9, ... for such tuples, and 4(0) for the component of & at index 6.
With this convention, given an arrow o € L [n,n'], K(F)(o) is defined by pointwise
substitution as the mapping of the tuple & to the tuple (£(00))y. ../ -
On arrows, given a morphism a: F — G in Sets/™s’|| K(a) is a natural transformation
K(F) — K(G) defined pointwisely as K(a)(n): @ — {c,(£(0)))

0: n—m"
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It is also useful to record the unit n: 1 — KU of the adjunction &4 -+ K. Given a
presheaf F: LYY — Sets, np: F — KUF is a natural transformation defined by ng(n): z —

(FO)(@))g. psm-

Saturation in PLP. 'We now come back to the question of the coalgebra structure on the
presheaf At modelling pLp. First, we are now able to represent p in (5) as a coalgebra map.
The aforementioned naturality issue is solved by defining it as a morphism in Sets!™s| rather
than in SetsLOEp, thus making naturality trivial. The coalgebra p will have the following type

p: UAt — M, PP UAL (7)

where (+) is the obvious extension of Sets-endofunctors to Sets' lendofunctors, defined by

functor precomposition. With respect to the ground case, note the insertion of 73\0, the lifting
of the countable powerset functor, in order to account for the countably many instances of a
clause that may match the given goal (¢f. the discussion below (5)).

» Example 16. Our program P (Example 14) is based on Aty: Ly — Sets. Some
of its values are At (0) = {Mary, Neigh(Mary), Neigh(Neigh(Mary)),...} and Aty (1) =
{x, Mary, Neigh(x), Neigh(Mary), ... }. Part of the coalgebra p,; modelling the program P* is
as follows (cf. the tree (4)).

(pai)o(Hear__alarm(Mary)) = 0.8{{Alarm, Wake(Mary)}} + 0.3{{Parasusia(Mary)}}
(pai)1(Alarm) = 0.5{{Earthquake}} + 0.9{{Burglary}}
+ 0.1{{PassBy(Mary)}, {PassBy(Neigh(Mary))}, {PassBy(Neigh(x))}, ... }

The universal property of the adjunction (6) gives a canonical “lifting” of p to a
KM, P.PrlU-coalgebra p* on At, performing unification rather than just term-matching:

Pt = At 28 KUAL BB KM, PP UAL (8)
where 7 is the unit of the adjunction, as defined above. Spelling it out, p* is the mapping

phoo A e At(n) = (pn(A0))

0: n—m*

Intuitively, pf, retrieves all the unifiers (6, 7) of A and head H in PP: first, we have A6 € At(m)
as a component of the saturation of A by nat; then we term-match H with A6 by Kp,,.

» Remark 17. Note that the parameter n € Ob(Ly’) in the natural transformation p* fixes
the pool {z1,...,x,} of variables appearing in the atoms (and relative substitutions) that are
considered in the computation. Analogously to the case of pure logic programs [17, 3], it is
intended that such n can always be chosen “big enough” so that all the relevant substitution
instances of the current goal and clauses in the program are covered — note the variables
occurring therein always form a finite set, included in {z1,...,2,,} for some m € N.

4.2 Derivation Semantics

Once we have identified our coalgebra type, the construction leading to the derivation
semantics [—],: for general pLp is completely analogous to the ground case. One can define
the cofree coalgebra for IC/T/l\pﬂ/?\c’ﬁ}Z/{ (=) by terminal sequence, similarly to Construction 7.
For simplicity, henceforth we denote the functor IC/T/l\pﬂ/?\J/);L[ (=) by S.

» Construction 18. The terminal sequence for At x S(—) : Sets™> — Sets™ consists of a
sequence of objects X, and morphisms §2: X5 — X,, for o < B € Ord, defined analogously
to Construction 7, with p* and S replacing p and M, Ps.
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This terminal sequence converges by the following lemma.
» Proposition 19. S is accessible, and preserves monomorphisms.

Proof. Since both properties are preserved by composition, it suffices to show that they
hold for all the component functors. For /T/l\p,«, 7/3: and 75}, they follow from accessibility
and mono-preservation of My, P. and P; (see Proposition 8), as (co)limits in presheaf
categories are computed pointwise. For K and U, these properties are proven in [3]. |

Therefore the terminal sequence for At x S(—) converges at some limit ordinal, say -, yielding

the final At x S(—)-coalgebra X, S A% S (X5). The derivation semantics is then defined
[-],:: At — X, by universal property, as on the right.

[-1,4
At > X,

(") lz (©)
At x S(At) —— At x S(X,)

idat X [[—ﬂpu

A careful inspection of the terminal sequence constructing X allows to infer a representation
of its elements as trees, among which we have those representing computations by unification
of goals in a PLP program. We call these stochastic saturated derivation trees, as they extend
the derivation trees of Definition 5 and are the probabilistic variant of saturated and-or trees
in [3]. Using (9) one can easily verify that [A] is indeed the stochastic saturated derivation
tree for a given goal A. Example 15 provides a pictorial representation of one such tree.

» Definition 20 (Stochastic saturated derivation trees). Given a probabilistic logic program P,
a natural number n and an atom A € At(n). The stochastic saturated derivation tree for A
in P is the possibly infinite tree T satisfying the following properties:

1. There are four kinds of nodes: atom-node (labelled with an atom), substitution-node
(labelled with a substitution), clause-node (labelled with e), instance-node (labelled with
¢ ), appearing alternatively in depth in this order. The root is an atom-node with label A.

2. Each clause-node is labelled with a probability value.

3. Suppose an atom-node s is labelled with A’ € At(n'). For every substitution 6: n' — m/,
s has ezxactly one (substitution-node) child t labelled with 6. For every clause r :: H «
By, ..., By in P such that H matches A'0 (via some substitution), t has exactly one
(clause-)child u, and edge t — w is labelled with r. Then for every substitution T such
that A'0 = Ht and By, ..., B, € At(m’), u has exactly one (instance-)child v. Also
v has exactly |{B17, ..., Bi7}|-many (atom-)children, each labelled with one element in
{By7,...,BpT}.

4.3 Distribution Semantics

In this section we conclude by giving a coalgebraic perspective on the distribution semantics
{(—) for general pLP. Mimicking the ground case (Section 3.3), this will be presented as an
extension of the derivation semantics, via a “possible worlds” natural transformation. Also in
the general case, we want to guarantee that a single probability value is computable for a given
goal A from the corresponding tree ((A)) in the final coalgebra — whenever this probability
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is also computable in the “traditional” way (see (1)) of giving distribution semantics to
PLP. In this respect, the presence of variables and substitutions poses additional challenges,
for which we refer to Appendices A and B. In a nutshell, the issue is that the distribution
semantics counts the use of a clause in the program at most once, independently from how
many times that clause is used again in the computation. To account for this aspect in our
tree representation, we need to give enough information to determine which clause is used at
each step of the computation, so that a second use can be easily detected. Note that neither
our saturated derivation trees, nor a “naive” extension of them to distribution trees, carry
such information: what appears in there is only the instantiated heads and bodies, but in
general one cannot retrieve A from a substitution 6 and the instantiation Af. This is best
illustrated via a simple example.

» Example 21. Consider the following program, based on the signature ¥ = {a"} and two
l-ary predicates P, Q. It consists of two clauses:

051 P(z1) « Q(x1) | 0.5 Par) + Q(x2)

The goal P(a) matches the head of both clauses. However, given the sole information of the
next goal being Q(a), it is impossible to say whether the first clause has been used, instantiated
with z1 — a, or the second clause has been used, instantiated with =1 — a,x2 — a.

This observation motivates, as intermediate step towards the distribution semantics, the
addition of labels to clause-nodes in derivation trees, in order to make explicit which clause
is being applied. From the coalgebraic viewpoint, this just amounts to an extension of the
type of the term-matching coalgebra:

P UAL = M, (PoPUAL x (UAE x UPAL)).

Note the insertion of (—) x (LAt x 1/17/3;At)7 which allows us to indicate at each step the head
(UAtL) and the body (UPAt) of the clause being used, its probability label being already
given by M,,.. More formally, for any n and atom A € At(n), we define

pn(A): ({Bi7iy..., BpTitiezen, (H,{Bi,..., Bi})) — {r (T::H%Bl’ oo By) € Hri = A
0 otherwise
As in the case of p in (7), we can move from term-matching to uniﬁcation by using the
universal property of the adjunction ¢ - K, yielding pt: At — ICMPT (77 PfUAt (L{At
L{PfAt)) For simplicity henceforth we denote the functor ICMW(P PfU( ) x (UAE PfI/{At))
by R.
We are now able to conclude our characterisation of the distribution semantics. The

“possible worlds transformatlon pw: M, = D, P (Definition 13) yields a natural trans-
formation pw: /\/lp,« — D<1’Pf, defined p01ntw1se by pw. We can use pw to translate R into
the functor ICD<177f(77 PfL{( ) x (UAt x PfZ/{At)), abbreviated as O, which is going to give
the type of saturated distribution trees for general PLP programs.

! As noted in Remark 17, instantiating p to some n € Ob(L) fixes a variable context {z1,...,%»} both
for the goal and the clause labels. In practice, because the set of clauses is always finite, it suffices to
chose n “big enough” so that the variables appearing in the clauses are included in {z1,...,2n}.
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As a simple extension of the developments in Section 4.2, we can construct the cofree
R-coalgebra & = At x R(®P) via a terminal sequence. Similarly, one can obtain the cofree
O-coalgebra ¥ = At x O(¥). By the universal property of U, all these ingredients get
together in the definition of the distribution semantics <<_>>;n for arbitrary pLp programs p*

!
At:::,'ﬁ,,,>¢),,,,,,,“I’,,,,::i\p
i<idAt,;;”> J{N

At x RAt 2R v RO -
iidmxic&v \LidAthp/\;v

At x OAt —2XCU) a0 dnxOCe) At x OT

where !¢ and !y are given by the evident universal properties, and show the role of the cofree
R-coalgebra ® as an intermediate step. The layered construction of final coalgebras ¥ and @,
together with the above characterisation of ((—)};u, allow to conclude that the distribution
semantics for the program p? maps a goal A to its saturated distribution tree ((A));u, as
formally defined below.

» Definition 22 (Saturated distribution tree). The saturated distribution tree for A € At(n)
in P is the possibly infinite T satisfying the following properties based on Definition 20:

1. There are five kinds of nodes: in addition to the atom-, substitution-, clause- and instance-
nodes, there are world-nodes. The world-nodes are children of the substitution-nodes, and
parents of the clause nodes. The root and the order of the rest nodes are the same as in
Definition 20, condition 1. The clause-nodes are now labelled with clauses of P.

2. Suppose s is an atom node labelled with A" € At(n’), and t is a substitution-child of s
labelled with 60: n' — m. Let C be the set of all clauses C such that Head(C) matches A'6.
Then t has 2!€! world-children, each representing a subset X of C. If a child u represents
subset X, then the edge t — u has probability label [].c x Label(C) - [I¢icc x Label(C').
Also u has | X| clause-children, one for each clause C € X, labelled with the corresponding
clause. The rest for clause-nodes and instance-nodes are the same as in Definition 20,
condition 3.

» Remark 23. Note that, in principle, saturated distribution trees could be defined coal-
gebraically without the intermediate step of adding clause labels. This is to be expected:
coalgebra typically captures the one-step, “local” behaviour of a system. On the other hand,
as explained, the need for clause labels is dictated by a computational aspect involving the
depth of distribution trees, that is, a “non-local” dimension of the system.

We conclude with the pictorial representation of the saturated distribution tree of a goal in
our leading example.
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» Example 24. In the context of Example 14, the tree ((Hear alarm(x))) capturing the
distribution semantics of Hear__alarm(x) is (partially) depicted as follows. Note the presence
of clauses labelling the clause-nodes.
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A  Computability of the Distribution Semantics (Ground Case)

Computing with distribution trees. As a justification for our tree representation of the
distribution semantics, we claimed that the probability Prp(A) associated with a goal (see
(1)) can be straightforwardly computed from the corresponding distribution tree ((A})),. This
appendix supplies such an algorithm. Note this serves just as a proof of concept, without
any claim of efficiency compared to pre-existing implementations. In the sequel we fix a
ground pLP program P with atoms At, a goal A € At and the distribution tree 7 for A in P
(Definition 9). First, we may assume that 7 does not contain loop (which implies that T is
finite). Indeed, in the ground case loops only results from multiple appearance of an atom in
some path, which can be easily detected. We can prune the subtrees of 7 rooted by atoms
that already appeared at an earlier stage: this does not affect the computation of Prp(A),
and it makes 7T finite. Next, we introduce the concept of deterministic subtree. Basically a
deterministic subtree selects one world-node at each stage. Recall that every clause-node
in 7T represents a clause in |P|, whose head is the label of its atom-grandparent, and body
consists of the labels of its atom-children.

» Definition 25. A subtree S of T is deterministic if (i) it contains exactly one child
(world-node) for each atom-node and all children for other nodes, and (i) for any distinct
atom-nodes s,t in S with the same label, s and t have their clause-grandchildren representing
the same clauses.

The idea is that S describes a computation in which the choice of a possible world (i.e., a
sub-program of P) associated to any atom B appearing during the resolution is uniquely
determined. Because of this feature, each deterministic subtree uniquely identifies a set of
sub-programs of P, and together the deterministic subtrees of 7 form a partition over the set
of these sub-programs (see Proposition 27 below).

Since 7T is finite, it is clear that we can always provide an enumeration of its deterministic
subtrees. We can now present our algorithm, in two steps. First, Algorithm 1 computes the
probability associated with a deterministic subtree. Second, Algorithm 2 computes Prp(A)
by summing up the probabilities found by Algorithm 1 on all the deterministic subtrees of T
which contains a refutation of A. Below we write label(s — t) for the probability labelling
the edge from s to t.

Algorithm 1 Compute probability of a deterministic subtree.

Input: A deterministic subtree S of T
Output: The probability of S

probList = [ ]
for atom-node s in S do
if s has child then
probList += label(s — child(s))
if probList == [ ] then
return 0
else prob = product of values in probList
return prob
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Algorithm 2 Compute probability of a goal.

Input: The distribution tree 7 of A in P
Output: The success probability Prp(A)

probSuc = 0
for deterministic subtree S of 7 do
if S refutes A then
probSuc += Algorithm 1(S)

return probSuc

The above procedure terminates because 7 is finite and every for-loop is finite. We now
focus on the correctness of the algorithm.

Correctness. As mentioned, a world-node in a deterministic subtree can be seen as a choice
of clauses: one chooses the clauses represented by its clause-children, and discards the clauses
represented by its “complement” world. For correctness, we make this precise, via the
following definition.

» Definition 26. Given a clause C in P, a deterministic subtree S of T, a world-node t and
its atom-parent s in S, we say t accepts C if Head(C) = label(s) and there is a clause-child

of t that represents C; t rejects C if Head(C) = label(s) but no clause-child of t represents C.

We say S accepts (rejects) C if there exists a world-node t in S accepts (rejects) C.

Note that Definition 25, condition (ii) prevents the existence of world-nodes ¢,t' in S such

that ¢ accepts C and t’ rejects C. Thus the notion that S accepts (rejects) C is well-defined.
We denote the set of clauses accepted and rejected by S by Acc(S) and Rej(S), respectively.

Then we can define the set SubProg(S) of sub-programs represented by S as
SubProg(S) := {IL C |P| | VC € Acc(S),C € L;VC' € Rej(S),C’ ¢ L} (10)

We will prove the correctness of the algorithm through the following basic observations on
the connection between deterministic subtrees and the sub-programs they represent:

Proposition 27. Suppose S is a deterministic subtree of the distribution tree T of A.
. {SubProg(S) | S is deterministic subtree of T} forms a partition of P(P).
. Either L+ A for all L € SubProg(S) or LI/ A for all L € SubProg(S).

. Z]Lesubpmg(s) Prp(L) = [, cs i, where the r;s are all the probability labels appearing in
S (on the atom-node — world-node edges).

W N =YV

Proof.

1. Given any two distinct deterministic subtrees, there is an atom-node s such that the
subtrees include distinct world-child of s. So by (10) the sub-programs they represent do
not share at least one clause. Moreover, given a sub-program LL, one can always identify a
deterministic subtree S such that I € SubProg(S), as follows: given the A-labelled root
of T, select the world-child w of A representing the (possibly empty) set X of all clauses
in . whose head is A; then select the children (if any) of w, and repeat the procedure.

2. Note that a sub-program IL € SubProg(S) refutes the goal A iff S contains a successful
refutation of A, and the latter property is independent of the choice of L.

10:19

CALCO 2019



10:20

A Coalgebraic Perspective on Probabilistic Logic Programming

3. We refer to HT csTi as the probability of the deterministic subtree S. For each sub-
program IL € SubProg(S), its probability can be written as

Pre(L) = [ Label€)- J] (1—Label(C’)-Pre(accure) (L \ Acc(S)) (1)
CeAcc(S) C’'eRej(S)

Note that SubProg(S) can also be written as {X U Acc(S) | X C P\ (Acc(S) URej(S))},
S0

> Pryaceure) (L \ Ace(S)) = 1. (12)
LeSubProg(S)

Applying equation (12) to the sum of (11) over all L € SubProg(S), we get

> PrpL)= [] lLabelc): J] (1 Label(C")) (13)

LeSubProg(S) CeAcc(S) C’eRej(S)

For each world-node ¢ and its atom-parent s, we can use the terminology in Definition 26,
and express label(s — t) (see Definition 9) as

label(s +t) =[] Label(€)- J] (1 Label(C’)). (14)

t accepts C t rejects C’

Applying (14) to the whole deterministic subtree S, we obtain

S P2 [ tabel©)- ] (1-Label(c))

LeSubProg(S) CeAcc(S) C’€Rej(S)
P ] [ [I tebeic)- J] (1 Labeic)]
(world-node t in S) t accepts C t rejects C’
(14) H rs
r€S

If we say two world-nodes ¢ and t' are equivalent if their clause-children represent exactly the
same clauses in P, then the [ (world-node ¢ in §) 11 the above calculation visits every world-node
exactly once modulo equivalence. |

We can now formulate the success probability of A as follows

Pro() = - Prem) TEIYT ST P

|P|DL-A SHAL€eSubProg(S)
SN I abele)- T @ -tabeley)) TV OST I n
SHA CeAce(S) C’ERej(S) SFAT,ES

In words, this is exactly Algorithm 2: we sum up the probabilities of all deterministic subtrees
S of the distribution tree 7 which contain a proof of A.

B Computability of the Distribution Semantics (General Case)

Computability of the distribution semantics for arbitrary pLP programs relies on the substitu-
tion mechanism employed in the resolution. This aspect deserves a preliminary discussion.
Traditionally, logic programming has both the theorem-proving and problem-solving per-
spectives [18]. From the problem-solving perspective, the aim is to find a refutation of the
goal < G, which amounts to finding a proof of some substitution instance of G. From
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the theorem-proving perspective, the aim is to search for a proof of the goal G itself as an
atom. The main difference is in the substitution mechanism of resolution: unification for
the problem-solving and term-matching for the theorem-proving perspective. We will first
explore computability within the theorem-proving perspective. As resolution tehrein is by
term-matching, the probability Prg*(A) of proving a goal A in a pLP program P is formulated

as Prp"(A4) = Y. Prp(L), where L = A means that A is derivable in the sub-program
|P|DL= A
L (not to be confused with L - A, which stands for some substitution instance of A being

derivable in L, see (1)).

In our coalgebraic framework, the distribution semantics for general PLP programs is
represented on “saturated” trees, in which computations are performed by unification.
However, following [3], one can define the TM (Term Matching) distribution tree of a goal
A in a program P by “desaturation” of the saturated distribution tree for A in P. The
coalgebraic definition, for which we refer to [3], applies pointwise on the saturated tree the
counit eyar: UKUAL — UAt of the adjunction U 4 K (¢f. (6)). The TM distribution tree
which results from “desaturation” can be described very simply: at each layer of the starting
saturated distribution tree, one prunes all the subtrees which are not labelled with the identity
substitution id := x1 — 1,23 — Zo,.... In this way, the only remaining computation are
those in which resolution only applies a non-trivial substitution on the clause side, that is, in
which unification is restricted to term-matching.

Computability of term-macthing distribution semantics. One may compute the success
probability Prg"(A) in P from the TM distribution tree of A in P. The computation goes
similarly to Algorithm 2 : the problem amounts to calculating the probabilities of those
deterministic subtrees of the distribution tree which prove the goal. We confine ourselves to
some remarks on the aspects that require extra care, compared to the ground case.

1. The probability Prg*(A) is not computable in whole generality. It depends on whether
one can decide all the proofs of A in the pure logic program |P|, and there are various
heuristics in logic programming for this task.

2. Tt is still possible to decide whether a subtree is deterministic, but the algorithm in the
general case is a bit subtler, as it is now possible that two different goals match the same
clause (instantiated in two different ways).

3. When calculating the probability of a deterministic subtree in the TM distribution tree,
multiple appearances of a single clause (possibly instantiated with different substitutions)
should be counted only once. In order to ensure this one needs to be able to identify
which clause is applied at each step of the computation described by the distribution
trees: this is precisely the reason of the addition of the clause labels in the coalgebra type
of these trees, as discussed in Section 4.3.

We conclude by briefly discussing the problem-solving perspective, in which resolution is
based on arbitrary unification rather than just term-matching. In standard SLD-resolution,
computability relies on the possibly of identifying the most general unifier between a goal and
the head of a given clause. This can be done also within saturated distribution trees, since
saturation supplies all the unifiers, thus in particular the most general one. This means that,
on principle, one may compute the distribution semantics based on most general unification
from the saturated distributed tree associated with a goal, with similar caveats as the ones
we described for the term-matching case. However, the lack of a satisfactory coalgebraic
treatment of most general unifiers [3] makes us privilege the theorem-proving perspective
discussed above, for which desaturation provides an elegant categorical formalisation. This
is also in line with the series of works [17, 19] on coalgebraic (pure) logic programming, all
based on term-matching as substitution mechanism.
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