
New Formalized Results on the Meta-Theory of a
Paraconsistent Logic
Anders Schlichtkrull
DTU Compute - Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Richard Petersens Plads, Building 324,
DK-2800 Kongens Lyngby, Denmark
andschl@dtu.dk

Abstract
Classical logics are explosive, meaning that everything follows from a contradiction. Paraconsistent
logics are logics that are not explosive. This paper presents the meta-theory of a paraconsistent
infinite-valued logic, in particular new results showing that while the question of validity for a given
formula can be reduced to a consideration of only finitely many truth values, this does not mean
that the logic collapses to a finite-valued logic. All definitions and theorems are formalized in the
Isabelle/HOL proof assistant.

2012 ACM Subject Classification Theory of computation→ Logic; Theory of computation→ Logic
and verification; Theory of computation → Higher order logic; Theory of computation → Logic and
databases

Keywords and phrases Paraconsistent logic, Many-valued logic, Formalization, Isabelle proof assist-
ant, Paraconsistency

Digital Object Identifier 10.4230/LIPIcs.TYPES.2018.5

Related Version An earlier version of the present paper appears as a chapter in my PhD thesis
(http://matryoshka.gforge.inria.fr/pubs/schlichtkrull_phd_thesis.pdf) [15].

Acknowledgements Jørgen Villadsen, Jasmin Christian Blanchette and John Bruntse Larsen provided
valuable feedback on the paper and the formalization. Thanks to Freek Wiedijk for discussions.
Thanks to the anonymous reviewers for many constructive comments.

1 Introduction

Classical logics are by design explosive – everything follows from a contradiction. This is mostly
uncontroversial, but it seems problematic for certain kinds of reasoning. In paraconsistent
logics, everything does not follow from a contradiction. Non-classical logics should also
enjoy the benefits of formalization, and therefore this paper presents a formalization of a
paraconsistent infinite-valued propositional logic.

The entry on paraconsistent logic in the Stanford Encyclopedia of Philosophy [13]
thoroughly motivates paraconsistent logics by arguing that some domains do contain incon-
sistencies, but this should not make meaningful reasoning impossible. An example from
computer science is that in large knowledge bases an inconsistency can easily occur if just
one data point is entered wrong. A reasoning system based on such a database needs a
meaningful way to deal with the inconsistency. Many other examples are mentioned from
philosophy, linguistics, automated reasoning and mathematics. A recent book [1] looks at
paraconsistency in the domain of engineering. There is no one paraconsistent logic to rule
them all – there are many logics which can be used in different contexts. The encyclopedia
gives a taxonomy of paraconsistent logics consisting of discussive logics, non-adjunctive
systems, preservationism, adaptive logics, logics of formal inconsistency, relevant logics and
many-valued logics.

© Anders Schlichtkrull;
licensed under Creative Commons License CC-BY

24th International Conference on Types for Proofs and Programs (TYPES 2018).
Editors: Peter Dybjer, José Espírito Santo, and Luís Pinto; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9212-6150
mailto:andschl@dtu.dk
https://doi.org/10.4230/LIPIcs.TYPES.2018.5
http://matryoshka.gforge.inria.fr/pubs/schlichtkrull_phd_thesis.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

Table 1 This table shows where the results of this paper have been conjectured and where their
formal and informal proofs have previously been presented.

Results in Conjecture Formal proof Informal proof
Section 4 Jensen and Villadsen [10] Villadsen and me [23, 24] the present paper
Section 5 Jensen and Villadsen [10] the present paper the present paper
Section 6 Villadsen and me [23, 24] the present paper the present paper

The logic considered here is the propositional fragment of a paraconsistent infinite-valued
higher-order logic by Villadsen [19, 21, 20, 22] and more recently Jensen and Villadsen in an
extended abstract [10]. The propositional logic, here called V, has a semantics with the two
classical truth values and countably infinitely many non-classical truth values. When U is a
subset of the non-classical truth values, VU is the logic defined the same as V except for the
restriction that its non-classical truth values are only those in U . This does not require any
change of the semantics of V’s logical operators because they are defined in a way such that
when their domain is restricted then their range is similarly restricted. In VU with a finite
U , one can find out whether a formula p is valid by enumerating enough interpretations that
they cover all possible assignments of the propositional symbols in p. This approach does
not work in V since there are infinitely many such interpretations. This paper shows that it
is enough to consider the models in VU for a finite U , but that the size of U depends on the
formula considered.

The contents of this paper are as follows:
Section 2 defines and formalizes V. It gives an example of paraconsistency in the logic.
Section 3 defines and formalizes VU .
Section 4 proves and formalizes that for any formula p there is a finite U such that if p is
valid in VU , it is also valid in V. This allows the question of validity in V to be solved by
a finite enumeration of interpretations.
Section 5 proves and formalizes the new result that if |U | = |W |, then VU and VW

consider the same formulas valid.
Section 6 shows the new result that, to answer the question of validity in V, one cannot
fix a finite valued VU once and for all because there exists a formula π|U | that is valid in
this logic but not in V. In other words, despite the result in Section 4, V is a different
logic than any finite valued VU .

The formalization in Sections 2 and 3 was previously presented in a book chapter [23] and
a paper [24] by Villadsen and myself. The result in Section 4 had already been conjectured by
Jensen and Villadsen [10], but was, to the best of my knowledge, first proved and formalized
in the mentioned book chapter [23] and paper [24]. The results in Section 5 were also
conjectured by Jensen and Villadsen [10], but the results are, to the best of my knowledge,
proved and formalized in the present paper for the first time. The result in Section 6 was
conjectured by Villadsen and myself [24] and is, to the best of my knowledge, proved and
formalized in the present paper for the first time except for a brief mention in the abstract of
a talk by me [14]. For a summary of the appearances of the results see Table 1. Thus, there
are no previous informal proofs to refer to for these results, and this paper will therefore both
present the formalization of these results and their informal proofs. The full formalization
is available online – 1500 lines of code are already in an Archive of Formal Proofs entry by
Villadsen and myself [17], and the 800 lines corresponding to Sections 5 and 6 [16] will be
added later. To make the paper easier to read, its notation is slightly different from the
formalization.

Anders Schlichtkrull 5:3

2 A Paraconsistent Infinite-Valued Logic

The paraconsistent infinite-valued propositional logic V has two classical truth values, namely
true (•) and false (◦). These are called the determinate truth values. True (•) is the only
designated value. The logic also has countably many different non-classical truth values (p,
pp, ppp, . . .) [10]. These are called the indeterminate truth values. This is represented as a
datatype tv.

datatype tv = Det bool | Indet nat

Det True and Det False represent • and ◦ respectively, and constructor Indet maps each
natural number (0, 1, 2, . . .) to the corresponding indeterminate truth value (p, pp, ppp, . . .).

The propositional symbols of V are strings of a finite alphabet. Here, the symbols are
denoted as p, q, r, Interpretations are functions from propositional symbols into truth
values. The formulas of the logic are built from the propositional symbols and operators
¬, ∧, ⇔ and ↔ as well as a symbol for truth >. To make them distinguishable, the
logical operators in the paraconsistent logic are bold, while Isabelle/HOL’s logical operators
are not (e.g. ¬, ∧, ∨, ←→). ⇔ represents equality whereas ¬, ∧ and ↔ are designed to
be generalizations of their classical counterparts. In the Isabelle/HOL formalization, the
formulas are defined by a datatype fm, with a constructor for atomic formulas consisting
of propositional symbols and with constructors for each of the operators. Additionally, a
number of derived operators are defined:

⊥ ≡ ¬ >
p ∨ q ≡ ¬ (¬ p ∧ ¬ q)
p ⇒ q ≡ p ⇔ (p ∧ q)
p → q ≡ p ↔ (p ∧ q)
� p ≡ p ⇔ >

¬¬ p ≡ � (¬ p)
p ∧∧ q ≡ � (p ∧ q)
p ∨∨ q ≡ � (p ∨ q)
∆ p ≡ (� p) ∨∨ (p ⇔ ⊥)
∇ p ≡ ¬¬ (∆ p)

In the semantics, Villadsen motivated the different cases by equalities of classical logic
that also hold in V [19]. These motivating equalities are shown to the right of their case:

eval i x = i x if x is a propositional symbol
eval i > = •

eval i (¬ p) =

• if eval i p = ◦ > ⇔ ¬ ⊥

◦ if eval i p = • ⊥ ⇔ ¬ >

eval i p otherwise

eval i (p ∧ q) =

eval i p if eval i p = eval i q p ⇔ p ∧ p

eval i q if eval i p = • q ⇔ > ∧ q

eval i p if eval i q = • p ⇔ p ∧ >

◦ otherwise

TYPES 2018

5:4 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

eval i (p ⇔ q) =

 • if eval i p = eval i q

◦ otherwise

eval i (p ↔ q) =

• if eval i p = eval i q > ⇔ p ↔ p

eval i q if eval i p = • q ⇔ > ↔ q

eval i p if eval i q = • p ⇔ p ↔ >

eval i (¬ q) if eval i p = ◦ ¬q ⇔ ⊥ ↔ q

eval i (¬ p) if eval i q = ◦ ¬ p ⇔ p ↔ ⊥

◦ otherwise

Among the derived operators �, ∆ and ∇ are of special interest. � maps • to • and any
other value to ◦. In other words � p states “p is true”. Similarly ∆ p states “p is determinate”
and ∇ p states “p is indeterminate”.

The other operators can be divided in two groups – general operators (¬, ∧, ∨ and ↔)
and purely determinate operators (¬¬, ∧∧, ∨∨ and ⇔). The general operators behave as
expected on determinate values, and this behavior is generalized to indeterminate values.
Consider for example the truth table in V{p,pp} for ∨:

∨ • ◦ p pp

• • • • •
◦ • ◦ p pp
p • p p •
pp • pp • pp

The purely determinate operators also behave as expected on determinate values, and
their behavior generalizes to indeterminate values – however this time in such a way that
they always return a determinate truth value. Consider for example the truth table in V{p,pp}
for ∨∨:

∨∨ • ◦ p pp

• • • • •
◦ • ◦ ◦ ◦
p • ◦ ◦ •
pp • ◦ • ◦

Validity is defined in the usual way, i.e. a formula is valid if it is true in all interpretations.

definition valid :: “ fm ⇒ bool”
where
“ valid p ≡ ∀ i. eval i p = •”

Weber [25] explains that the literature contains two competing views on paraconsistency.
One states that a logic is paraconsistent iff some formulas p and q exists such that p,¬ p 6` q.
Another view states that a logic is paraconsistent iff some formulas p and q exist such that

Anders Schlichtkrull 5:5

` p, ` ¬ p and 6` q. The logic V is paraconsistent with respect to the first of these views.
Note that with this definition, paraconsistency is a property of entailment. Villadsen [21, 19]
instead encodes this as the non-validity of a formula (p ∧ (¬ p)) ⇒ q. This formula is not
valid in V since it has e.g. the counter-model mapping p to p and q to ◦. If one insists on a
notion of entailment it can, for finite sets of formulas, simply be introduced by defining that
p1, . . . , pn ` q iff p1 ∧ . . .∧ pn⇒ q is valid [21, 20]. With this definition it follows that V is
paraconsistent because then the above non-validity implies that there exist formulas p and q
such that p,¬ p 6` q.

3 Paraconsistent Finite-Valued Logics

For any set U of indeterminate truth values, the logic VU is defined as follows: VU is
defined in the same way as V, except that it has a different notion of interpretations. An
interpretation in VU is a function from propositional symbols to the set {•, ◦} ∪U instead of
to the type of all truth values.

A function domain constructs {•, ◦} ∪ U from a set of natural numbers:

definition domain :: “ nat set ⇒ tv set”
where
“ domain U ≡ {Det True, Det False} ∪ Indet ‘ U”

Here, Indet ‘ U denotes the image of Indet on U . Notice that in the formalization, U is a
set of natural numbers rather than a set of indeterminate values. This is only because it
is less tedious to write {0, 1, 2} than {Indet 0, Indet 1, Indet 2} and because being able to
write domain {Indet 0, •} is rather pointless since • is added by domain anyway. For the
same reasons, I will from now on also write e.g. V{0,1,2} rather than V{Indet 0, Indet 1, Indet 2}.
The function is called domain because in the higher-order version of V one can use the truth
values as the domain of discourse.

The notion of being valid in VU is formalized. The expression range i denotes the function
range of i.

definition valid_in :: “ nat set ⇒ fm ⇒ bool”
where
“ valid_in U p ≡ ∀ i. range i ⊆ domain U −→ eval i p = •”

It is clear that validity in V implies validity in any VU .

theorem valid_valid_in: assumes “ valid p” shows “ valid_in U p”

Proof. If p is valid in V, it is true in all interpretations and thus in particular those with the
desired range. Therefore p is valid in VU . J

The set U can be finite or infinite. The former case in particular will be of interest in the
following sections.

4 A Reduction from Validity in V to Validity in VU

When U is finite, one can find out if a formula is valid by considering all the different
cases of what an interpretation might map the formula’s propositional symbols to. As an
example, consider the formula (p ∧ (¬ p)) → q in the logic V∅, which corresponds to classical
propositional logic.

TYPES 2018

5:6 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

proposition “ valid_in ∅ ((p ∧ (¬ p)) → q)”
unfolding valid_in_def

proof (rule; rule)
fix i :: “ id ⇒ tv”
assume “ range i ⊆ domain ∅”
then have

“ i p ∈ {•, ◦}”
“ i q ∈ {•, ◦}”

unfolding domain_def
by auto

then show “ eval i ((p ∧ (¬ p)) → q) = •”
by (cases “ i p” ; cases “ i q”) auto

qed

For V this approach does not work, since there are infinitely many truth values. This
section overcomes the problem by showing that there exists a finite subset of the interpret-
ations in VU that it is enough to enumerate. The idea is that looking at the semantics of
V reveals that there is a lot of symmetry between the indeterminate truth values p, pp, ppp, . . .
Specifically, the indeterminate values are all different and can be told apart using ⇔, but
none of them play any special role compared with the others. Intuitively, this means that
one just needs to consider enough interpretations to ensure that one has considered all
different possibilities of interpreting the different pairs of propositional symbols as either
different or equal indeterminate truth values. Therefore it is only necessary to consider
enough truth values to ensure that this is possible and thus, for any formula p, it should be
sufficient to consider all the interpretations in the logic VU , where |U | is at least the number
of propositional symbols in p.

The first step towards proving this is to prove that interpretations that agree on the
propositional symbols occurring in a formula also evaluate the formula to the same result.
The set of propositional symbols occurring is defined recursively by the following equations:

props > = {}
props x = {x} if x is a propositional symbol
props (¬ p) = props p
props (p ∧ q) = props p ∪ props q
props (p ⇔ q) = props p ∪ props q
props (p ↔ q) = props p ∪ props q

Hereafter, the mentioned property is proved:

lemma relevant_props: assumes “ ∀ s ∈ props p. i1 s = i2 s” shows “ eval i1 p = eval i2 p”

Proof. Follows by induction on the formula and the definitions of props and eval. J

The next step is to consider an interpretation i in V and see that it behaves the same as a
corresponding interpretation in VU . The idea is that i can be changed to an interpretation in
VU by applying a function from nat into U to the indeterminate values that the interpretation
returns.

Given a function f of type nat ⇒ nat and an interpretation, its application f x to a
truth value x is defined as

f x =
{
x if x is determinate
Indet (f n) if x = Indet n

Anders Schlichtkrull 5:7

A function can also be applied to an interpretation:

f i = λs. f (i s)

If f is an injection, then applying f to the result or to the interpretation gives the same
result when evaluating a formula.

lemma eval_change: assumes “ inj f” shows “ eval (f i) p = f (eval i p)”

Proof. The proof is by induction on the formula. In each inductive case the formula consists
of one of the (non-derived) logical constructors and a number of immediate subformulas.
Now look at how the semantics for that logical constructor was defined. For each operator,
consider the different cases of what the subformulas could evaluate to under i as specified
in the semantics. Doing this generates all in all 17 different cases. Consider for instance
the semantics’ “otherwise”-case for p ↔ q. Here, it is the case that eval i p 6= eval i q
and that there exists a natural number n such that eval i p = Indet n and some m such
that eval i q = Indet m. Hence Indet n 6= Indet m and therefore n 6= m. Since f is
injective, also f n 6= f m and Indet (f n) 6= Indet (f m). The induction hypotheses are
eval (f i) p = f (eval i p) and eval (f i) q = f (eval i q). Consider the first one. Here it is the
case that eval (f i) p = f (eval i p) = f (Indet n) = Indet (f n). Likewise from the second
it follows that eval (f i) q = f (eval i q) = f (Indet m) = Indet (f m). This implies that
eval (f i) p 6= eval (f i) q. From this and the semantics of ↔ follows eval (f i) (p ↔ q) = ◦.
Likewise, from eval i p 6= eval i q and the semantics of ↔ follows eval i (p ↔ q) = ◦. These
two facts allow us to establish eval (f i) (p ↔ q) = ◦ = f ◦ = f (eval i (p ↔ q)). And this
part of the proof is done. This was just one out of the 17 cases mentioned above. For the
rest I refer to the formalization. J

Writing out all 17 cases mentioned above would be tedious and checking all of them by hand
requires discipline. Therefore, there is always the danger of overlooking a needed argument,
because one case looked similar to another but really was not. Formalization enforces this
discipline.

Now it is time to prove that if there are at least as many indeterminate truth values in U
as the number of propositional symbols in p, then the validity of p in VU implies the validity
of p in V. The lemma is expressed using Isabelle/HOL’s card function, which for finite sets
returns their cardinality and for infinite sets returns 0.

theorem valid_in_valid:
assumes “ card U ≥ card (props p)”
assumes “ valid_in U p”
shows “ valid p”

Proof. p is proved valid by fixing an arbitrary interpretation i: First, obtain an injection f
of type nat ⇒ nat such that f maps any value in i ‘ (props p) to a value in domain U . This
is possible because |domain U | ≥ |props p|.

Now define the following interpretation:

i′ s =
{

(f i) s if s ∈ props p
• otherwise

From the properties of f and definition of i′ it follows that range i′ ⊆ domain U and then by
the validity of p in U it follows that eval i′ p = •. Furthermore, i′ and f i coincide on all

TYPES 2018

5:8 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

symbols in p, and therefore, by the lemma relevant_props, it also follows that eval (f i) p = •.
Now from eval_change follows that f (eval i p) = •. By definition of the application of a
nat ⇒ nat to a truth-value it is the case that eval i p = •. Thus any interpretation evaluates
to • and therefore the formula is valid. J

theorem valid_iff_valid_in:
assumes “ card U ≥ card (props p)”
shows “ valid p ←→ valid_in U p”

Proof. Follows from valid_valid_in and valid_in_valid. J

5 Sets of Equal Cardinality Define the Same Logic

Recall that while the indeterminate values are all different and can be told apart using ⇔,
none of them play any special role compared to the others. Therefore one would expect VU

and VW to be the same when U and W have the same cardinality. In the same way, consider
what happens when |U | < |W |. In this case one can think of VU as being VW with some
truth values, and thus interpretations, removed. Removing interpretations only makes it
easier for a formula to be valid and thus any formula that is valid in VW should also be valid
in VU .

Isabelle/HOL defines inj_on such that inj_on f A expresses that f is an injection
from A into the return type of f . In order to be able to talk about one set having smaller
cardinality than another, it is useful to also define the notion of an injection from a set into
another set.

definition inj_from_to :: “ (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set ⇒ bool” where
“ inj_from_to f X Y ≡ inj_on f X ∧ f ‘ X ⊆ Y”

The lemma eval_change is generalized from the type nat to sets of nats.

lemma eval_change_inj_on:
assumes “ inj_on f U”
assumes “ range i ⊆ domain U”
shows “ eval (f i) p = f (eval i p)”

Proof. The proof is analogous to that of eval_change. J

This is enough to prove the following lemma:

lemma inj_from_to_valid_in:
assumes “ inj_from_to f W U”
assumes “ valid_in U p”
shows “ valid_in W p”

Proof. The plan is to fix an arbitrary interpretation in VW and prove that it makes p true.
First, realize that range (f i) ⊆ domain U ; this follows from the fact that for any x it is the
case that (f i) x = f (i x) and here the application of i will give an element in domain W

and then the application of f will give an element in domain U . Therefore eval (f i) p = •
by the validity of p in VU . Then use eval_change_inj_on to get that f (eval i p) = • and
then from the definition of the application of f to a truth value that eval i p = •. J

It is now time to prove that if U and W have equal cardinality, they define the same
logic.

Anders Schlichtkrull 5:9

lemma bij_betw_valid_in:
assumes “ bij_betw f U W”
shows “ valid_in U p ←→ valid_in W p”

Proof. f is an injection from U into W . f− is an injection from W into U . The lemma
therefore follows from inj_from_to_valid_in. J

6 The Difference Between V and VU for a Finite U

Section 4 showed that the question of the validity of p in V can be reduced to the question
of its validity in V{0..<|prop p|}, where {n..<m} = {k | n ≤ k < m} for any n and m. This
section shows that this does not mean that V collapses to a finite valued VU . The approach
is to demonstrate a formula that is true in V0..n but false in V. The formula is called the
pigeonhole formula. For n = 3 the pigeonhole formula π3 is

π3 = ∇x0∧∧∇x1∧∧∇x2 ⇒ (x0⇔x1)∨∨(x0⇔x2)∨∨(x0⇔x1).

I.e. it states that, assuming that x0, x1 and x2 refer to indeterminate values, two of them will
be the same. This is of course not true in an interpretation where they map to three different
values, but if one only considers two indeterminate values there are no such interpretations.
Therefore the formula is not valid in general but it is valid in V{p, pp}. Propositions x0 and x1
and x2 can be thought of as pigeons and the values p and pp as pigeonholes.

In order to define the formula for any n, first define the conjunction and disjunction of
any list [p1, . . . , pn] of formulas:

[∧∧][p1, . . . , pn] = p1∧∧ · · ·∧∧pn

[∨∨][p1, . . . , pn] = p1∨∨ · · ·∨∨pn

Extend ∇to a symbol that characterizes lists of indeterminate values:

[∇][p1, . . . , pn] = [∧∧][∇p1, . . . ,∇pn]

Given two sets S1 and S2, the concept of their cartesian product S1 × S2 is well known.
Their off-diagonal product is defined as

S1 ×off-diag S2 = {(s1, s2) ∈ S1 × S2 | s1 6= s2}

Isabelle/HOL offers the function List.product of type ′a list⇒ ′a list⇒ (′a× ′a) list, which
implements the cartesian product on lists representing sets. From this the list off-diagonal
product is defined:

L1 ×off-diag L2 = filter (λ(x, y). x 6= y) (List.product L1L2)

The list off-diagonal product is used to introduce equivalence existence, which given a list of
formulas expresses that two of the formulas in the list are equivalent.

[∃ =][p1, . . . , pn] = [∨∨]([=]((p1, . . . , pn)×off-diag (p1, . . . , pn)))

where

[=][(p11, p12), . . . , (pn1, pn2)] = p11⇔p12, . . . , pn1⇔pn2

Let x0, x1, x2, ... be a sequence of different variables. These will form the pigeonholes.
Implication, ∇, equivalence existence and the pigeonholes are combined to form the pigeonhole
formula:

πn = [∇][x0, · · · , xn−1]⇒[∃ =][x0, · · · , xn−1]

TYPES 2018

5:10 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

6.1 πn is not valid in V
In order to prove that the pigeonhole formula is not valid, a counter-model for it is demon-
strated. This counter-model is in V{0..<n} and is thus also a counter-model for the validity of
the pigeonhole formula in V{0..<n}. The counter-model for pigeonhole formula number n is

cn(y) =
{

Indet i if y = xi and i < n

• otherwise

In order to prove that it indeed is a counter-model of the pigeonhole formula, a number
of lemmas are introduced that characterize the semantics of the formula’s components:

lemma cla_false_Imp:
assumes “ eval i a = •”
assumes “ eval i b = ◦”
shows “ eval i (a ⇒ b) = ◦”

Proof. Follows directly from the involved definitions. J

lemma eval_CON :
“ eval i ([∧∧] ps) = Det (∀ p ∈ set ps. eval i p = •)”

Proof. Note that set ps denotes the set of members in the list ps. The lemma follows by
induction on the list ps from the involved definitions. J

lemma eval_DIS :
“ eval i ([∨∨] ps) = Det (∃ p ∈ set ps. eval i p = •)”

Proof. Follows by induction on the list ps from the involved definitions. J

lemma eval_ExiEql:
“ eval i ([∃ =] ps) = Det (∃ (p1, p2)∈(set ps ×off-diag set ps). eval i p1 = eval i p2)”

Proof. Follows from the definition of [∃ =], the definition of ×off-diag and eval_DIS . J

is_indet t is defined to be true iff t is indeterminate. Likewise is_det t is true iff t is
determinate.

lemma eval_Nab: “ eval i (∇ p) = Det (is_indet (eval i p))”

Proof. Follows directly from the involved definitions. J

lemma eval_NAB:
“ eval i ([∇] ps) = Det (∀ p ∈ set ps. is_indet (eval i p))”

Proof. Follows from the definition of [∇], eval_CON and eval_Nab. J

With this one can prove that the pigeonhole formula is false under the cn counter-model.

lemma interp_of_id_pigeonhole_fm_False: “ eval cn πn = ◦”

Proof. The lemma cla_false_Imp states that an implication can be proved false by prov-
ing its antecedent true and conclusion false. Start by proving the antecedent true: The
antecedent is [∇][x0, . . . , xn−1], and this means that all the variables in x0, . . . , xn−1 should
refer to indeterminate values, which indeed they do by the definition of cn. The conclusion
[∃ =][x0, . . . , xn−1] is proved false using eval_ExiEql, which reduces the problem to proving
that no pair of different symbols among x0, . . . , xn−1 evaluate to the same. That follows from
how cn is defined. J

Anders Schlichtkrull 5:11

From this follows that the pigeonhole formula is not valid:

theorem not_valid_pigeonhole_fm: “¬ valid πn”

Proof. Follows from interp_of_id_pigeonhole_fm_False. J

It follows that the pigeonhole formula is not valid in U{0..<n}:

theorem not_valid_in_n_pigeonhole_fm: “¬ valid_in {0 ..<n} πn”

Proof. From cn’s definition follows that range cn ⊆ domain {0..<n}. It follows that πn is
not valid in U{0..<n} by interp_of_id_pigeonhole_fm_False and the definition of validity
in U{0..<n} J

6.2 πn is valid in V{0..<m} for m < n

In order to prove that πn is valid in V{0..<m} for m < n, a new lemma on the semantics of
an implication is needed:

lemma cla_imp_I :
assumes “ is_det (eval i a)”
assumes “ is_det (eval i b)”
assumes “ eval i a = • =⇒ eval i b = •”
shows “ eval i (a ⇒ b) = •”

Proof. Not surprisingly, it follows directly from the involved definitions. J

∇ and [∃ =] returning determinate values is also needed.

lemma is_det_NAB: “ is_det (eval i ([∇] ps))”

Proof. The lemma follows from eval_NAB. J

lemma is_det_ExiEql: “ is_det (eval i ([∃ =] ps))”

Proof. The lemma follows from eval_ExiEql. J

Moreover the pigeonhole principle is needed. This theorem is part of Isabelle/HOL in the
following formulation:

lemma pigeonhole: “ card A > card (f ‘ A) =⇒ ¬ inj_on f A”

It states that if the image of f on A is of smaller cardinality than A, then f cannot be
an injection. From this follows a more specific formulation of the principle, which will be
applied:

lemma pigeon_hole_nat_set:
assumes “ f ‘ {0 ..<n} ⊆ {0 ..<m}”
assumes “m < (n :: nat)”
shows “ ∃ j1∈{0 ..<n}. ∃ j2∈{0 ..<n}. j1 6= j2 ∧ f j1 = f j2”

Proof. From the assumptions follows that card {0..<n} > card {0..<m} ≥ card (f ‘ {0..<n}).
Therefore pigeonhole is applicable and the conclusion follows immediately. J

The pigeonhole formula will evaluate to true in any interpretation with truth values in
V{0..m} where m < n− 1:

TYPES 2018

5:12 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

lemma eval_true_in_lt_n_pigeonhole_fm:
assumes “m < n”
assumes “ range i ⊆ domain {0 ..<m}”
shows “ eval i πn = •”

Proof. Apply cla_imp_I to break down the conclusion. The two first assumptions of
cla_imp_I follow from is_det_NAB and is_det_ExiEql, and then what remains is to
prove that the antecedent of πn implies the conclusion of πn. Therefore, assume that the
antecedent, [∇][x0, . . . , xn−1], evaluates to true. From this and eval_NAB follows that
x0, . . . , xn−1 all evaluate to indeterminate values. This, together with the fact that the range
of i is domain {0..<m}, means that i must map any xl where l ∈ {0..<n} to Indet k for
some k ∈ {0..<m}. Therefore, by pigeonhole_nat_set there are j1 < n and j2 < n such that
xj1 and xj2 are different but i evaluates them to the same value. This is by eval_ExiEql
exactly what is required for the conclusion [∃ =][x0, . . . , xn−1] to evaluate to true. J

Therefore the pigeonhole formula must be valid in V{0..<m}.

theorem valid_in_lt_n_pigeonhole_fm:
assumes “m<n”
shows “ valid_in {0 ..<m} (pigeonhole_fm n)”

Proof. Follows immediately from eval_true_in_lt_n_pigeonhole_fm. J

There are many other finite sets than {0..<m}. It is therefore desirable to extend the theorem
to claim that πn is valid in any VU where |U | < n. This can be done using the result from
Section 5:

theorem valid_in_pigeonhole_fm_n_gt_card:
assumes “ finite U”
assumes “ card U < n”
shows “ valid_in U (pigeonhole_fm n)”

Proof. Follows from valid_in_lt_n_pigeonhole_fm and bij_betw_valid_in J

6.3 V is different from VU where U is finite
The previous subsection demonstrated that πn is valid in e.g. VU where |U | = n but not in
V. Therefore the logics are different:

theorem extend: “ valid 6= valid_in U” if “ finite U”

Proof. Follows from valid_in_pigeonhole_fm_n_gt_card and not_valid_pigeonhole_fm.
J

This can be seen as a justification of the infinitely many values in the logic – they cannot
once and for all be replaced by a finite subset. The reduction in Section 4 only worked
because there the size of U depended on the considered formula.

7 Discussion and Related Work

My previous paper with Villadsen [24] contains a thorough discussion of related work giving
an overview of various many-valued logics that have been formalized in Isabelle/HOL. I will
refrain from repeating the section here and mention again only the most pertinent works
namely by Marcos [12] and Steen and Benzmüller [18]. Marcos developed an ML program

Anders Schlichtkrull 5:13

that can generate proof tactics; these tactics implement tableaux that can prove theorems in
various finitely many-valued logics. Steen and Benzmüller defined a shallow embedding of the
many-valued SIXTEEN logic into classical HOL. That the embedding is shallow means that
the authors give formulas in SIXTEEN meaning by translating them to logical expressions of
classical HOL. The authors can then use a theorem prover for HOL to prove these formulas.
Benzmüller and Woltzenlogel Paleo [5] used the same approach to embed several higher-order
modal logics and also showed the approach applied to a sketch of a paraconsistent logic.
Several other logics have been embedded in HOL in this way, including conditional logics by
Benzmüller, Gabbay, Genovese and Rispoli [2], quantified multimodal logics by Benzmüller
and Paulson [3], first-order nominal logic by Steen and Wisniewski [26] and free logic by
Benzmüller and Scott [4]. In contrast, the formalization in this paper is a deep – rather than
shallow – embedding of V i.e. formulas in the logic are expressed as values in HOL and a
semantics is formalized that gives meaning to these formulas. This formalization thus defines
datatypes for formulas and a semantics rather than a tableau or a translation.

Theorems stating that a logic cannot be characterized by finite-valued matrices are
quite common in the literature on non-classical logics. For instance, Gödel [8] proved
that intuitionistic logic cannot be characterized by finite-valued matrices and Dugundji [7]
proved that neither can any of the modal logics S1-S5. Carnielli, Coniglio and Marcos [6]
characterize the logics of formal inconsistency which are paraconsistent logics that have a
so-called consistency operator, such as the ∆ operator of V. The authors also prove that a
number of these logics cannot be characterized by finite-valued matrices.

A noteworthy characteristic of the present formalization is that all proofs were built from
the ground up in the proof assistant – they were not based on any preexisting proofs. Proof
assistants make it very clear when a proof is finished, and one does not have to reread it over
and over to see if everything adds up. Furthermore, in the development I tried out different
definitions of the implication used in the pigeonhole formula and the proof assistant was very
helpful in checking that the changes did not break any proofs. Proof assistants of course
ensure correctness of proofs. Many times I stated lemmas and proved them directly in the
proof assistant. Other times the insurance of correctness was a hindrance in that on the
way to a correct proof it was helpful to state lemmas that were “mostly correct” and whose
expressions “mostly type checked”, i.e. I abstracted away from some of the details. This was
often better done on a piece of paper than in the proof assistant. However, after this process
was done, it was definitely worth returning to the proof assistant to see if the “mostly correct”
proof held up to the challenge of being formalized and thus turned into a correct proof.

The propositional fragment of a paraconsistent infinite-valued higher-order logic has now
been formalized. The formalization only considers the case where the logic has a countably
infinite set of indeterminate truth values. It could also be interesting to prove and formalize
theorems about what happens in case an uncountably infinite type of indeterminate truth
values is allowed. This could be done by replacing nat in the definition of tv with some
uncountably infinite type T . Another way would be to replace nat with a type variable
that could then be instantiated with nat or T . With this in place, I conjecture it would
be possible to prove that the formulas that are valid with respect to nat are the same as
those that are valid with respect to an uncountably infinite type T . My argument in the
one direction is that if the formula is valid in T then it must also be valid in nat since there
is an injection from nat to T , and thus it should be possible to make a generalization of
inj_from_to_valid_in that covers the case of uncountable infinity. In the other direction I
would argue that since the cardinality of T is larger than any props p one should be able to
reuse the proof of valid_in_valid to prove that if p is valid with respect to T then it is also
valid with respect to nat.

TYPES 2018

5:14 New Formalized Results on the Meta-Theory of a Paraconsistent Logic

Another obvious next step would be to formalize the whole paraconsistent higher-order
logic. The basis of such an endeavor could be the formalizations of HOL Light in HOL
Light and HOL4 by respectively Harrison [9] and Kumar et al. [11]. The challenge is to
give a semantics to the language. In the formalization in HOL4 this is done by abstractly
specifying set theory in HOL. The same specification could be used for giving a semantics to
the paraconsistent higher-order logic.

8 Conclusion

This paper formalizes Villadsen’s paraconsistent infinite-valued logic V and the |U |-valued
logics VU as well as proves and formalizes several meta-theorems of the logic. One meta-
theorem shows that, for any formula, the question of its validity in V can be reduced to the
question of its validity in VU for a large enough finite U . The other meta-theorems, to my
knowledge not previously proved or formalized, characterize how the number of truth-values
affects truths of the logic. One of them shows that when |U | = |W | then VU has the same
truths as VW . Another shows that for any finite U it is the case that V and VU are different
logics. The theory was developed in parallel with its formalization. This illustrates that
proof assistants can be used as tools, not only for formalizing established results, but also for
developing new results – in this case the meta-theory of a logic.

References
1 Seiki Akama, editor. Towards Paraconsistent Engineering, volume 110 of Intelligent Systems

Reference Library. Springer, 2016.
2 Christoph Benzmüller, Dov Gabbay, Valerio Genovese, and Daniele Rispoli. Embedding and

automating conditional logics in classical higher-order logic. Annals of Mathematics and
Artificial Intelligence, 66(1):257–271, 2012.

3 Christoph Benzmüller and Lawrence C. Paulson. Quantified Multimodal Logics in Simple
Type Theory. Logica Universalis, 7(1):7–20, 2013.

4 Christoph Benzmüller and Dana S. Scott. Automating Free Logic in HOL, with an Experimental
Application in Category Theory. Journal of Automated Reasoning, January 2019.

5 Christoph Benzmüller and Bruno Woltzenlogel Paleo. Higher-Order Modal Logics: Automation
and Applications. In Wolfgang Faber and Adrian Paschke, editors, Reasoning Web (RW),
volume 9203 of LNCS, pages 32–74. Springer, 2015.

6 Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Logics of Formal Inconsistency.
In D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, pages 1–93.
Springer, 2007.

7 James Dugundji. Note on a Property of Matrices for Lewis and Langford’s Calculi of
Propositions. J. Symbolic Logic, 5(4):150–151, December 1940.

8 Kurt Gödel. Zum intuitionistischen Aussagenkalkül. Akademie der Wissenschaften in Wien,
69:65–66, 1932.

9 John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach and Natarajan
Shankar, editors, International Joint Conference on Automated Reasoning (IJCAR), volume
4130 of LNCS, pages 177–191. Springer, 2006.

10 Andreas Schmidt Jensen and Jørgen Villadsen. Paraconsistent Computational Logic. In
P. Blackburn, K. F. Jørgensen, N. Jones, and E. Palmgren, editors, 8th Scandinavian Logic
Symposium: Abstracts, pages 59–61. Roskilde University, 2012.

11 Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. Self-Formalisation
of Higher-Order Logic: Semantics, Soundness, and a Verified Implementation. Journal of
Automated Reasoning, 56(3):221–259, 2016.

Anders Schlichtkrull 5:15

12 João Marcos. Automatic Generation of Proof Tactics for Finite-Valued Logics. In Ian
Mackie and Anamaria Martins Moreira, editors, Tenth International Workshop on Rule-Based
Programming, Proceedings, volume 21 of Electronic Proceedings in Theoretical Computer
Science, pages 91–98. Open Publishing Association, 2010.

13 Graham Priest, Koji Tanaka, and Zach Weber. Paraconsistent Logic. In Edward N. Zalta,
editor, Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, summer 2018 edition, 2018. URL: https://plato.stanford.edu/archives/sum2018/
entries/logic-paraconsistent/.

14 Anders Schlichtkrull. Formalization of a Paraconsistent Infinite-Valued Logic (short abstract).
Automated Reasoning in Quantified Non-Classical Logics – 3rd International Workshop –
Program, 2018. URL: https://easychair.org/smart-program/FLoC2018/ARQNL-program.
html.

15 Anders Schlichtkrull. Formalization of Logic in the Isabelle Proof Assistant. PhD thesis,
Technical University of Denmark, 2018. URL: http://matryoshka.gforge.inria.fr/pubs/
schlichtkrull_phd_thesis.pdf.

16 Anders Schlichtkrull and Jørgen Villadsen. IsaFoL: Paraconsistency. https://bitbucket.
org/isafol/isafol/src/master/Paraconsistency/.

17 Anders Schlichtkrull and Jørgen Villadsen. Paraconsistency. Archive of Formal Proofs, Decem-
ber 2016. , Formal proof development. URL: http://isa-afp.org/entries/Paraconsistency.
html.

18 Alexander Steen and Christoph Benzmüller. Sweet SIXTEEN: Automation via Embedding
into Classical Higher-Order Logic. Logic and Logical Philosophy, 25(4):535–554, 2016.

19 Jørgen Villadsen. Combinators for Paraconsistent Attitudes. In P. de Groote, G. Morrill,
and C. Retoré, editors, Logical Aspects of Computational Linguistics (LACL), volume 2099 of
LNCS, pages 261–278. Springer, 2001.

20 Jørgen Villadsen. A Paraconsistent Higher Order Logic. In B. Buchberger and J. A. Campbell,
editors, Artificial Intelligence and Symbolic Computation (AISC), volume 3249 of LNCS, pages
38–51. Springer, 2004.

21 Jørgen Villadsen. Paraconsistent Assertions. In G. Lindemann, J. Denzinger, I. J. Timm, and
R. Unland, editors, Multi-Agent System Technologies (MATES), volume 3187 of LNCS, pages
99–113, 2004.

22 Jørgen Villadsen. Supra-logic: Using Transfinite Type Theory with Type Variables for
Paraconsistency. Logical Approaches to Paraconsistency, Journal of Applied Non-Classical
Logics, 15(1):45–58, 2005.

23 Jørgen Villadsen and Anders Schlichtkrull. Formalization of Many-Valued Logics. In H. Chris-
tiansen, M.D. Jiménez-López, R. Loukanova, and L.S. Moss, editors, Partiality and Un-
derspecification in Information, Languages, and Knowledge, chapter 7. Cambridge Scholars
Publishing, 2017.

24 Jørgen Villadsen and Anders Schlichtkrull. Formalizing a Paraconsistent Logic in the Isabelle
Proof Assistant. In Abdelkader Hameurlain, Josef Küng, Roland Wagner, and Hendrik Decker,
editors, Transactions on Large-Scale Data- and Knowledge-Centered Systems (TLDKS), volume
10620 of LNCS, pages 92–122. Springer, 2017.

25 Zach Weber. Paraconsistent Logic, 2019. URL: https://www.iep.utm.edu/para-log/.
26 Max Wisniewski and Alexander Steen. Embedding of Quantified Higher-Order Nominal Modal

Logic into Classical Higher-Order Logic. In Christoph Benzmüller and Jens Otten, editors,
ARQNL 2014. Automated Reasoning in Quantified Non-Classical Logics, volume 33 of EPiC
Series in Computing, pages 59–64. EasyChair, 2015. doi:10.29007/dzc2.

TYPES 2018

https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/
https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/
https://easychair.org/smart-program/FLoC2018/ARQNL-program.html
https://easychair.org/smart-program/FLoC2018/ARQNL-program.html
http://matryoshka.gforge.inria.fr/pubs/schlichtkrull_phd_thesis.pdf
http://matryoshka.gforge.inria.fr/pubs/schlichtkrull_phd_thesis.pdf
https://bitbucket.org/isafol/isafol/src/master/Paraconsistency/
https://bitbucket.org/isafol/isafol/src/master/Paraconsistency/
http://isa-afp.org/entries/Paraconsistency.html
http://isa-afp.org/entries/Paraconsistency.html
https://www.iep.utm.edu/para-log/
https://doi.org/10.29007/dzc2

	Introduction
	A Paraconsistent Infinite-Valued Logic
	Paraconsistent Finite-Valued Logics
	A Reduction from Validity in V to Validity in V_U
	Sets of Equal Cardinality Define the Same Logic
	The Difference Between V and V_U for a Finite U
	pigeonsymbol_n is not valid in V
	pigeonsymbol_n is valid in V_{0..<m} for m<n
	V is different from V_U where U is finite

	Discussion and Related Work
	Conclusion

