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Abstract
We are given an instance (G, I, σ) with a graph G = (V,E), a set I of items, and a function
σ : V → 2I . For a subset X of V , let G[X] denote the subgraph induced from G by X, and Iσ(X)
denote the common item set over X. A subset X of V such that G[X] is connected is called a
connector if, for any vertex v ∈ V \X, G[X ∪ {v}] is not connected or Iσ(X ∪ {v}) is a proper subset
of Iσ(X).

In this paper, we present the first polynomial-delay algorithm for enumerating all connectors.
For this, we first extend the problem of enumerating connectors to a general setting so that the
connectivity condition on X in G can be specified in a more flexible way. We next design a new
algorithm for enumerating all solutions in the general setting, which leads to a polynomial-delay
algorithm for enumerating all connectors for several connectivity conditions on X in G, such as the
biconnectivity of G[X] or the k-edge-connectivity among vertices in X in G.
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1 Introduction

In this paper, we consider enumeration of subgraphs in a given attributed graph, that is, a
graph in which vertices are given items. The subgraphs should be connected, and at the
same time, be maximal with respect to the common item set.

Formally, we are given an instance (G, I, σ) with a graph G = (V,E), a set I of items, and
a function σ : V → 2I . For a subset X ⊆ V , let G[X] denote the subgraph induced from G

by X, and Iσ(X) denote the common item set
⋂
u∈X σ(u). A subset X ⊆ V such that G[X]

is connected is called a connector, if for any vertex v ∈ V \X, G[X ∪{v}] is not connected or
Iσ(X ∪ {v}) ( Iσ(X); i.e., there is no proper superset Y of X such that G[Y ] is connected
and Iσ(Y ) = Iσ(X). We show a brief example of an instance in Figure 1(a). Note that we
admit a connector whose common item set is empty. In the figure, it is {v1, v2, v3, v4}. If
such a connector exists, then it is a connected component of the graph, but the converse
does not necessarily hold.
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3:2 Enumeration of Connectors

v11,2,3 v2 1,3

v32,3 v4 1

v1, v2, v3, v4

v1, v2, v3 v1, v3, v4 v2, v3, v4

v1, v2 v1, v3 v2, v3 v3, v4

v1 v2 v3 v4

(a) (b)

Figure 1 (a) An instance that has connectors {v1}, {v4}, {v1, v2}, {v1, v3}, {v1, v2, v3}, and
{v1, v2, v3, v4}, where an item is represented by an integer; (b) Hasse diagram of the transitive
system (V, CG) of the instance in (a), where solutions are indicated by shade.

We consider the problem of enumerating connectors. The problem is a generalization of
the frequent item set mining problem, a well-known problem in data mining, such that G is a
clique and a vertex corresponds to a transaction.

Let us introduce an application example of the problem from [11]. Suppose a biological
network such that a vertex corresponds to a gene and an edge represents a protein-protein
interaction between genes. A gene produces RNAs under a certain condition, and the
phenomenon is called gene expression. A condition at which gene expression occurs is given
to a vertex as an item. A biologist is particularly interested in a large-sized connector with
a large common item set, that is, a large connected set of genes that make expressions
simultaneously under common (possibly complex) conditions. Enumeration of connectors is
a basic problem for discovering such meaningful gene sets.

Let us review related studies. For a usual graph (i.e., a non-attributed graph), there
are some studies on enumeration of connected subgraphs. Avis and Fukuda [3] showed
that all connected induced subgraphs are enumerable in output-polynomial time and in
polynomial space, by means of reverse search. Nutov [7] showed that minimal undirected
Steiner networks, and minimal k-connected and k-outconnected spanning subgraphs are
enumerable in incremental polynomial time.

For an attributed graph, the frequent subgraph mining problem [5] is among significant
graph mining issues. This problem asks to enumerate all subgraphs that appear in a given set
of attributed graphs frequently, where the graph isomorphism is defined by taking into account
the items. For the problem, gSpan [15] should be one of the most successful algorithms.

When it comes to the connector enumeration problem, Sese et al. [12] proposed the first
algorithm, named COPINE, which explores the search space by utilizing the similar search
tree as gSpan. Okuno et al. [9, 10] and Okuno [8] studied the parallelization of COPINE.
Haraguchi et al. [4] proposed the first output-polynomial algorithm, named COOMA, which
enumerates connectors by means of dynamic programming rather than a search tree.

In this paper, we present the first polynomial-delay algorithm for enumerating all con-
nectors. For this, we first extend the problem of enumerating connectors to a general setting
so that the connectivity condition on a vertex subset X in G can be specified in a more
flexible way. Concretely, we introduce a new notion of a family of sets, called a “transitive
system,” which is a generalization of the family of all vertex subsets that induce connected
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subgraphs. The notion of connector is also extended to the transitive system and it will
be called a solution. We then design a new algorithm for enumerating all solutions in the
transitive system, which leads to a polynomial-delay algorithm for enumerating all connectors
for several connectivity conditions on X in G, such as the biconnectivity of G[X] or the
k-edge-connectivity among vertices in X in G. The proposed algorithm enumerates the
solutions by traversing a family tree. Traversal of a family tree is a frequently used technique
in various enumeration algorithms (e.g., [6]).

The paper is organized as follows. After we make preparations in Section 2, we explain
the structure of the family tree in Section 3. Then in Section 4, we provide an algorithm that
enumerates all the solutions by traversing the family tree, which yields a polynomial-delay
algorithm for the connector enumeration problem. In Section 5, we explain how we deal with
various notions of edge- and vertex-connectivity in the enumeration algorithm, followed by
concluding remarks in Section 6. For some proofs, details are included in the appendix.

2 Preliminaries

For two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b. For two
subsets J = {j1, j2, . . . , j|J|} and K = {k1, k2, . . . , k|K|} of a set A with a total order, where
j1 < j2 < · · · < j|J| and k1 < k2 < · · · < k|K|, we denote by J ≺ K if J = {ki | 1 ≤ i ≤ j} for
some j < |K| or the sequence (j1, j2, . . . , j|J|) is lexicographically smaller than the sequence
(k1, k2, . . . , k|K|). We denote J � K if J ≺ K or J = K.

A system (V, C) consists of a finite set V and a family C ⊆ 2V , where an element in V is
called a vertex, and a set in C is called a component. A system (V, C) (or C) is called transitive
if any tuple of Z,X, Y ∈ C with Z ⊆ X ∩ Y implies X ∪ Y ∈ C. For a subset X ⊆ V , a
component Z ∈ C with Z ⊆ X is called X-maximal if no other component W ∈ C satisfies
Z (W ⊆ X. Let Cmax(X) denote the family of all X-maximal components.

For example, any Sperner family [13], a family of subsets such that none is contained
in another subset, is a transitive system. Also the family CG of vertex subsets X ∈ 2V in a
graph G = (V,E) such that G[X] is connected is transitive, where G[X] with |X| = 1 (resp.,
X = ∅) is connected (resp., disconnected). We illustrate the Hasse diagram of a transitive
system CG in Figure 1(b).

We define an instance to be a tuple (V, C, I, σ) of a set V of n ≥ 1 vertices, a family
C ⊆ 2V , a set I of q ≥ 1 items and a function σ : V → 2I . For each subset X ⊆ V , let
Iσ(X) ⊆ I denote the common item set over σ(v), v ∈ X; i.e., Iσ(X) =

⋂
v∈X σ(v). A

solution is defined to be a component X ∈ C such that any component Y ∈ C with Y ) X

satisfies Iσ(Y ) ( Iσ(X). Let S denote the family of all solutions to the instance. Our aim
is to design an algorithm for enumerating all solutions in S when C is transitive. When an
instance (V, C, I, σ) is given, we assume that C is implicitly given as two oracles L1 and L2
such that

given non-empty subsets X ⊆ Y ⊆ V , L1(X,Y ) returns a component Z ∈ Cmax(Y ) with
X ⊆ Z (or ∅ if no such Z exists) in θ1,t time and θ1,s space; and
given a non-empty subset Y ⊆ V , L2(Y ) returns Cmax(Y ) in θ2,t time and θ2,s space.

We also denote by δ(Y ) an upper bound on |Cmax(Y )|, where we assume that δ is a non-
decreasing function in the sense that δ(X) ≤ δ(Y ) if X ⊆ Y . For the example of family CG
of vertex subsets X such that G[X] is connected in a graph G with n vertices and m edges,
we see that θi,t = O(n+m), i = 1, 2, θi,s = O(n+m), i = 1, 2, and δ(Y ) = O(|Y |). We will
show that the time delay of our algorithm is polynomial with respect to the input size, θ1,t,
θ2,t and δ(V ).

ISAAC 2019
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To facilitate our aim, we introduce a total order over the items in I by representing I as
a set [1, q] = {1, 2, . . . , q} of integers. For each subset X ⊆ V , let min Iσ(X) ∈ [0, q] denote
the minimum item in Iσ(X), where min Iσ(X) , 0 for Iσ(X) = ∅. For each i ∈ [0, q], define
Si , {X ∈ S | min Iσ(X) = i}, where we see that S is a disjoint union of Si, i ∈ [0, q]. We
design an algorithm that enumerates all solutions in Sk for any specified k ∈ [0, q].

We observe an important property on a transitive family of components.

I Lemma 1. Let (V, C) be a transitive system. For a component X ∈ C and a superset
Y ⊇ X, there is exactly one component C ∈ Cmax(Y ) that contains X.

Proof. Since X ⊆ Y , Cmax(Y ) contains a Y -maximal component C that contains X. For any
componentW ∈ C withW 6= C and X ⊆W ⊆ Y , the transitivity of C and X ⊆ C∩W imply
C ∪W ∈ C, where C ∪W = C must hold by the Y -maximality of C. Hence C is unique. J

For a component X ∈ C and a superset Y ⊇ X, we denote by C(X;Y ) the component
C ∈ Cmax(Y ) that contains X.

3 Defining Family Tree

To generate all solutions in S efficiently, we use the idea of family tree. Our tasks to establish
an enumeration algorithm are as follows:

Define the roots, called “bases,” over all solutions in S (Section 3.1);
Define the “parent” π(S) ∈ S of each non-base solution S ∈ S, where S is called a “child”
of T = π(S) (Section 3.2);
Design an algorithm A that, given S ∈ S, returns π(S) (Algorithm 1 in Section 3.2); and
Design an algorithm B that, given a solution T ∈ S, generates a set X of components
X ∈ C such that X contains all children of T (Algorithm 2 in Section 3.3). For each
component X ∈ X , we construct π(X) by algorithm A to see if X is a child of T (i.e.,
π(X) is equal to T ).

Starting from each base, we recursively generate the children of a solution. The complexity
of delay-time of the entire algorithm is the time complexity of algorithms A and B, where
|X | is bounded from above by the time complexity of algorithm B.

3.1 Defining Base
Let (V, C, I = [1, q], σ) be an instance on a transitive system. We define V〈0〉 , V and
V〈i〉 , {v ∈ V | i ∈ σ(v)}, i ∈ I. For each non-empty subset J ⊆ I, define V〈J〉 ,

⋂
i∈J V〈i〉.

For J = ∅, define V〈J〉 , V . Define Bi , {X ∈ Cmax(V〈i〉) | min Iσ(X) = i} for each i ∈ [0, q],
and B ,

⋃
i∈[0,q] Bi. We call a component in B a base.

I Lemma 2. Let (V, C, I = [1, q], σ) be an instance on a transitive system.
(i) For each non-empty set J ⊆ [1, q] or J = {0}, it holds that Cmax(V〈J〉) ⊆ S;
(ii) For each i ∈ [0, q], a solution S ∈ Si is contained in a base in Bi; and
(iii) S0 = B0 and Sq = Bq.

Proof.
(i) Let X be a component in Cmax(V〈J〉), where J ⊆ Iσ(X). When J = {0} (i.e., V〈J〉 = V ),

no proper superset of X is a component, and X is a solution. Consider the case of
∅ 6= J ⊆ [1, q]. To derive a contradiction, assume that X is not a solution; i.e., there is
a proper superset Y of X such that Iσ(Y ) = Iσ(X). Since ∅ 6= J ⊆ Iσ(X) = Iσ(Y ), we
see that V〈J〉 ⊇ Y . This, however, contradicts the V〈J〉-maximality of X. This proves
that X is a solution.
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Algorithm 1 Parent(S): Finding the lex-min solution of a solution S.

Input :An instance (V, C, I = [1, q], σ) on a transitive system, an item
k ∈ [1, q − 1], and a non-base solution S ∈ Sk \ Bk, where k = min Iσ(S)

Output :The lex-min solution T ∈ Sk of S
1 Let {k, i1, i2, . . . , ip} := Iσ(S), where k < i1 < i2 < · · · < ip;
2 J := {k}; /* C(S; k) ) S by S 6∈ Bk */
3 for j = 1, 2, . . . , p do
4 if C(S; J ∪ {ij}) 6= S then J := J ∪ {ij} /* J = Iσ(T ) holds */

5 Return T := C(S; J)

(ii) We prove that each solution S ∈ Si is contained in a base in Bi, where i = min Iσ(S).
By Lemma 1, S is a subset of the component C(S;V〈i〉) ∈ Cmax(V〈i〉), where Iσ(S) ⊇
Iσ(C(S;V〈i〉)). Since i ∈ Iσ(C(S;V〈i〉)) for i ≥ 1 (resp., Iσ(C(S;V〈i〉)) = ∅ for i = 0), we
see that min Iσ(S) = i = min Iσ(C(S;V〈i〉)). This proves that C(S;V〈i〉) is a base in Bi.

(iii) Let k ∈ {0, q}. We see from (i) that Cmax(V〈k〉) ⊆ S, which implies that Bk = {X ∈
Cmax(V〈k〉) | min Iσ(X) = k} ⊆ {X ∈ S | min Iσ(X) = k} = Sk. We prove that any
solution S ∈ Sk is a base in Bk. By (ii), there is a base X ∈ Bk such that S ⊆ X, which
implies that Iσ(S) ⊇ Iσ(X), min Iσ(S) ≤ min Iσ(X). We see that Iσ(S) = Iσ(X), since
∅ = Iσ(S) ⊇ Iσ(X) for k = 0, and q = min Iσ(S) ≤ min Iσ(X) ≤ q for k = q. Hence
S ( X would contradict that S is a solution. Therefore S = X ∈ Bk, as required. J

By Lemma 2(iii), we can find all solutions in S0 ∪ Sq by calling oracle L2(Y ) for Y =
V〈0〉 = V and Y = V〈q〉. In the following, we consider how to generate all solutions in Sk
with 1 ≤ k ≤ q − 1.

For a notational convenience, we denote by C(X; i) the component C(X;V〈i〉) with
i ∈ Iσ(X) and by C(X; J) the component C(X;V〈J〉) with J ⊆ Iσ(X).

I Lemma 3. Let (V, C, I = [1, q], σ) be an instance on a transitive system. Let S, T ∈ S be
solutions such that S ⊆ T . It holds that T = C(S; Iσ(T )).

We omit the proof (Appendix A).

3.2 Defining Parent
This subsection defines the “parent” of a non-base solution. For two solutions S, T ∈ S,
we say that T is a superset solution of S if T ) S and S, T ∈ Si for some i ∈ [1, q − 1]. A
superset solution T of S is called minimal if no proper subset Z ( T is a superset solution of
S. Let S be a non-base solution in Sk \Bk, k ∈ [1, q− 1]. We call a minimal superset solution
T of S the lex-min solution of S if Iσ(T ) � Iσ(T ′) for all minimal superset solutions T ′ of S.
For example, in Figure 1(b), {v1, v2}, {v1, v3}, {v1, v2, v3} and {v1, v2, v3, v4} are superset
solutions of {v1}, whereas {v4} has no superset solution. The solution {v1} has two minimal
superset solutions, that is {v1, v2} and {v1, v3}, where {v1, v2} is its lex-min solution.

I Lemma 4. Let (V, C, I = [1, q], σ) be an instance on a transitive system. For a non-base
solution S ∈ Sk \ Bk with k ∈ [1, q − 1], let Iσ(S) = {k, i1, i2, . . . , ip}, where k < i1 < i2 <

· · · < ip, and let T denote the lex-min solution of S.
(i) For an integer j ∈ [1, p], let J = Iσ(T ) ∩ {k, i1, i2, . . . , ij−1}. Then ij ∈ Iσ(T ) if and

only if C(S; J ∪ {ij}) ) S; and
(ii) Given S, algorithm Parent(S) in Algorithm 1 correctly delivers the lex-min solution

of S in O(q(n+ θ1,t)) time and O(q + n+ θ1,s) space.

ISAAC 2019
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Proof.
(i) By Lemma 2(i) and min Iσ(S) = k, we see that C(S; J ∪ {ij}) ∈ Sk.

Case 1. C(S; J ∪ {ij}) = S: For any set J ′ ⊆ {ij+1, ij+2, . . . , ip}, the component
C(S; J ∪ {ij} ∪ J ′) is equal to S and cannot be a minimal superset solution of S. This
implies that ij 6∈ Iσ(T ).
Case 2. C(S; J ∪ {ij}) ) S: Then C = C(S; J ∪ {ij}) is a solution by Lemma 2(i).
Observe that k ∈ J ∪ {ij} ⊆ Iσ(C) ⊆ Iσ(S) and min Iσ(C) = k, implying that
C ∈ Sk is a superset solution of S. Then C contains a minimal superset solution
T ∗ ∈ Sk of S, where Iσ(T ∗) ∩ [1, ij−1] = Iσ(T ∗) ∩ {k, i1, i2, . . . , ij−1} ⊇ J = Iσ(T ) ∩
{k, i1, i2, . . . , ij−1} = Iσ(T ) ∩ [1, ij−1] and ij ∈ Iσ(T ∗). If Iσ(T ∗) ∩ [1, ij−1] ) J or
ij 6∈ Iσ(T ), then Iσ(T ∗) ≺ Iσ(T ) would hold, contradicting that T is the lex-min
solution of S. Hence Iσ(T ) ∩ [1, ij−1] = J = Iσ(T ∗) ∩ [1, ij−1] and ij ∈ Iσ(T ).

(ii) Based on (i), we can obtain the solution T as follows. First we find the item set Iσ(T ) by
applying (i) to each j ∈ [1, p], where we construct subsets J0 ⊆ J1 ⊆ · · · ⊆ Jp ⊆ Iσ(S)
such that J0 = {k} and

Jj =
{
Jj−1 ∪ {ij} if C(S; Jj−1 ∪ {ij}) ) S,

Jj−1 otherwise.

Each Jj can be obtained from Jj−1 by testing whether C(S; Jj−1 ∪ {ij}) ) S holds or
not, where C(S; Jj−1 ∪ {ij}) is computable by calling the oracle L1. By (i), we have
Jj = Iσ(T ) ∩ {k, i1, . . . , ij}, and in particular, Jp = Iσ(T ) holds. Next we compute
C(S; Jp) by calling the oracle L1(S, V〈Jp〉), where C(S; Jp) is equal to the solution T by
Lemma 3. The above algorithm is described as algorithm Parent(S) in Algorithm 1.
We omit the complexity analysis (Appendix B). J

For each non-base solution in Sk \ Bk, k ∈ [1, q− 1], the parent π(S) of S is defined to be
the lex-min solution of S. For a solution T ∈ Sk, each non-base solution S ∈ Sk \ Bk such
that π(S) = T is called a child of T .

3.3 Generating Children
This subsection shows how to construct a family X of components so that all children of a
solution T are included in X .

I Lemma 5. Let (V, C, I = [1, q], σ) be an instance on a transitive system. For an item
k ∈ [1, q − 1], let T ∈ Sk be a solution.
(i) For each child S ∈ Sk \ Bk of T , it holds that [k + 1, q] ∩ (Iσ(S) \ Iσ(T )) 6= ∅ and

S ∈ Cmax(T ∩ V〈j〉) for any j ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T )).
(ii) The set of all children of T can be constructed in O

(
qθ2,t + q2(n+ θ1,t)δ(T )

)
time and

O(q + n+ θ1,s + θ2,s) space.

Proof.
(i) Note that [0, k] ∩ Iσ(S) = [0, k] ∩ Iσ(T ) = {k} since S, T ∈ Sk. Since S ⊆ T are

both solutions, Iσ(S) ) Iσ(T ). Hence [k + 1, q] ∩ (Iσ(S) \ Iσ(T )) 6= ∅. Let j ∈
[k+ 1, q]∩ (Iσ(S) \ Iσ(T )). Since S ⊆ T ∩V〈j〉, there is a (T ∩V〈j〉)-maximal component
C ∈ Cmax(T ∩ V〈j〉) with S ⊆ C, where S ⊆ C ⊆ T and Iσ(S) ⊇ Iσ(C) ⊇ Iσ(T ). Then
k = min Iσ(S) = min Iσ(T ) implies min Iσ(C) = k.
We show that C ∈ S, which implies C ∈ Sk. Note that j ∈ Iσ(C) \ Iσ(T ), and C ( T .
Assume that C is not a solution; i.e., there is a solution C∗ ∈ S such that C ( C∗ and
Iσ(C) = Iσ(C∗), where j ∈ Iσ(C) = Iσ(C∗) means that C∗ ⊆ V〈j〉. Hence C∗ \ T 6= ∅
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Algorithm 2 Children(T, k): Generating all children.

Input :An instance (V, C, I, σ), k ∈ [1, q − 1] and a solution T ∈ Sk
Output :All children of T , each of which is output whenever it is generated

1 for each j ∈ [k + 1, q] \ Iσ(T ) do
2 Compute Cmax(T ∩ V〈j〉);
3 for each S ∈ Cmax(T ∩ V〈j〉) do
4 if k = min Iσ(S) and j = min{i | i ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T ))} then
5 if T =Parent(S) (i.e., S is a child of T ) then
6 Output S as one of the children of T

by the (T ∩ V〈j〉)-maximality of C. Since C,C∗, T ∈ C and C ⊆ C∗ ∩ T , we have
C∗ ∪ T ∈ C by the transitivity. We also see that Iσ(C∗ ∪ T ) = Iσ(C∗) ∩ Iσ(T ) =
Iσ(C) ∩ Iσ(T ) = Iσ(T ). This, however, contradicts that T is a solution, proving that
C ∈ Sk. If S ( C, then S ( C ( T would hold for S,C, T ∈ Sk, contradicting that T
is a minimal superset solution of S. Therefore S = C.

(ii) By (i), the union of families Cmax(T ∩V〈j〉) with j ∈ [k+1, q]\Iσ(T ) contains all children
of T . Whether a set S is a child of T or not can be tested by checking if Parent(S) is
equal to T or not. However, for two items j, j′ ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T )), the same
child S can be generated from the different families Cmax(T ∩ V〈j〉) and Cmax(T ∩ V〈j′〉).
To avoid this, we output a child S of T when S ∈ Cmax(T ∩ V〈j〉) for the minimum
item j in the item set [k + 1, q] ∩ (Iσ(S) \ Iσ(T )). In other words, we discard any set
S ∈ Cmax(T∩V〈j〉) if j is not the minimum item in [k+1, q]∩(Iσ(S)\Iσ(T )). Algorithm 2
formally describes this procedure. We omit the complexity analysis (Appendix C). J

4 Traversing Family Tree

We are ready to describe an entire algorithm for enumerating solutions in Sk for a given
k ∈ [0, q]. We first compute Cmax(V〈k〉). We next compute the set Bk (⊆ Cmax(V〈k〉)) of bases
by testing whether k = min Iσ(T ) or not, where Bk ⊆ Sk. When k = 0 or q, we are done with
Bk = Sk by Lemma 2(iii). Let k ∈ [1, q − 1]. Suppose that we are given a solution T ∈ Sk,
we find all the children of T by Children(T, k) in Algorithm 2. By applying Algorithm 2 to
a newly found child recursively, we can find all solutions in Sk.

When no child is found to a given solution T ∈ Sk, we may need to go up to an ancestor
by traversing recursive calls O(n) times before we generate the next solution. This would
result in O(nα) time delay, where α denotes the time complexity required for a single run of
Children(T, k). To improve the delay to O(α), we employ the alternative output method [14],
where we output the children of T after (resp., before) generating all descendants when the
depth of the recursive call to T is an even (resp., odd) integer.

The entire enumeration algorithm is described in Algorithms 3 and 4. The following
theorem summarizes the complexity of the enumeration algorithm. We omit the proof
(Appendix D).

I Theorem 6. Let (V, C, I = [1, q], σ) be an instance on a transitive system. For each
k ∈ [0, q], the set Sk of solutions can be enumerated in O

(
qθ2,t + q2(n+ θ1,t)δ(V〈k〉)

)
time

delay and in O
(
(q + n+ θ1,s + θ2,s)n

)
space.
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3:8 Enumeration of Connectors

Algorithm 3 An algorithm to enumerate solutions in Sk for a given k ∈ [0, q].

Input :An instance (V, C, I = [1, q], σ) on a transitive system, and an item k ∈ [0, q]
Output :The set Sk of solutions to (V, C, I, σ)

1 Compute Cmax(V〈k〉); d := 1;
2 for each T ∈ Cmax(V〈k〉) do
3 if k = min Iσ(T ) (i.e., T ∈ Bk) then
4 Output T ;
5 if k ∈ [1, q − 1] then Descendants(T, k, d+ 1)

Algorithm 4 Descendants(T, k, d): Generating all descendants.

Input :An instance (V, C, I, σ), k ∈ [1, q − 1], a solution T ∈ Sk, and the current
depth d of recursive call of Descendants

Output :All descendants of T in Sk
1 for each j ∈ [k + 1, q] \ Iσ(T ) do
2 Compute Cmax(T ∩ V〈j〉);
3 for each S ∈ Cmax(T ∩ V〈j〉) do
4 if k = min Iσ(S) and j = min{i | i ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T ))} then
5 if T =Parent(S) (i.e., S is a child of T ) then
6 if d is odd then
7 Output S
8 Descendants(S, k, d+ 1);
9 if d is even then

10 Output S

It is worthwhile to mention that the enumeration task can be parallelized by running the
algorithm for each item k ∈ I independently.

For the connector enumeration problem, it is natural to assume that the item set σ(v) is
given as a list for each v ∈ V , and that every i ∈ I appears in at least one list. Then the
input size is Ω(n+m+ q). Theorem 6 yields a strongly polynomial-delay algorithm for the
connector enumeration problem as follows.

I Theorem 7. Given an instance (G = (V,E), I, σ), we can enumerate all connectors in
O(q2(n+m)n) time delay and in O((q+n+m)n) space, where n = |V |, m = |E| and q = |I|.

Proof. The connector enumeration problem for (G, I, σ) is solved by enumerating all solutions
for the instance (V, CG, I, σ), where CG denotes the family of connected components that
was introduced in Section 2. For the transitive system (V, CG), we see that θi,t = O(n+m),
i = 1, 2, θi,s = O(n + m), i = 1, 2, and δ(Y ) = O(|Y |) = O(n). By Theorem 6, we can
enumerate all solutions in S in O(q2(n+m)n) time delay and in O((q+ n+m)n) space. J

5 Connectors under Various Connectivity Conditions

We consider enumerating connectors under various connectivity conditions such as the edge-
or vertex-connectivity. To treat this issue universally, we present a general method of
constructing a transitive system from a graph and a weight function on elements in the graph.
We assume that a given graph is undirected, but all the discussons can be extended to a
mixed graph (i.e., a graph containing directed edges as well as undirected edges).
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5.1 Transitive System Based on k-Connectivity
Let R+ denote the set of non-negative reals. For a function f : A→ R+ and a subset B ⊆ A,
we let f(B) denote

∑
a∈B f(a).

We assume that the graph G = (V,E) may have multiple edges but no self-loops. For two
vertices u, v ∈ V , let E(u, v) denote the set of edges between u and v. For two non-empty
subsets X,Y ⊆ V , let E(X;Y ) ,

⋃
u∈X,v∈Y E(u, v). For two vertices s, t ∈ V , an s, t-cut

C is defined to be an ordered pair (S, T ) of disjoint subsets S, T ⊆ V such that s ∈ S and
t ∈ T , and the element set ε(C) of C (ε(S, T ) of (S, T )) is defined to be a union F ∪ R of
the edge subset F = E(S, T ) and the vertex subset R = V \ (S ∪ T ), where R = ∅ is allowed.

We define a meta-weight function on G to be ω : 2V × (V ∪ E) → R+. For each
subset X ∈ 2V , we denote w(X, a), a ∈ V ∪ E as a function ωX : V ∪ E → R+ such that
ωX(a) = ω(X, a) for each a ∈ V ∪ E. We call ω monotone if, for any subsets X ⊆ Y ⊆ V ,
ωY (a) ≥ ωX(a) holds for any a ∈ V ∪ E.

For two vertices s, t ∈ V and a subset X ⊆ V , define µ(s, t;X) , min{ωX(ε(C)) |
s, t-cuts C = (S, T ) in G}. We call a vertex subset X ⊆ V k-connected if |X| = 1 or
µ(u, v;X) ≥ k for each pair of vertices u, v ∈ X.

I Lemma 8. Let (G,ω) be an undirected mixed graph with a monotone meta-weight function,
and k ≥ 0. For two k-connected subsets X,Y ⊆ V such that ωX∩Y (X ∩ Y ) ≥ k, the subset
X ∪ Y is k-connected.

Proof. To derive a contradiction, assume that X ∪ Y is not k-connected; i.e., |X ∪ Y | ≥ 2
and some vertices s, t ∈ X ∪ Y admits an s, t-cut C = (S, T ) with ωX∪Y (ε(C)) < k. By
the monotonicity of ω, it holds that ωX∪Y (a) ≥ ωX(a), ωY (a) for any element a ∈ V ∪ E.
Hence ωX∪Y (ε(C)) < k implies ωX(ε(C)) < k and ωY (ε(C)) < k. Since each of X and Y is
k-connected, we see that neither of s, t ∈ X and s, t ∈ Y occurs. Without loss of generality
assume that s ∈ X \ Y and t ∈ Y \ X. If a vertex v ∈ X ∩ Y belongs to T (resp., S),
then C would be an s, v-cut with s, v ∈ X (resp., v, t-cut with v, t ∈ Y ), contradicting the
k-connectivity of X (resp., Y ). Hence for the set R = V \(S∪T ), it holds X∩Y ⊆ R. By the
assumption of X ∩ Y , we have k ≤ ωX∩Y (X ∩ Y ) ≤ ωX∩Y (R) ≤ ωX∪Y (R) ≤ ωX∪Y (ε(C)).
This, however, contradicts ωX∪Y (ε(C)) < k. J

For a graph (G,ω) with a meta-weight function and a real k ≥ 0, let C(G,ω, k) ⊆ 2V
denote the family of k-connected subsets X ⊆ V with ωX(X) ≥ k.

I Lemma 9. For an undirected graph (G,ω) with a monotone meta-weight function and a
real k ≥ 0, let C = C(G,ω, k). Then C is transitive.

Proof. Let Z,X, Y ∈ C such that Z ⊆ X∩Y , where ωX∪Y (X∪Y ) ≥ ωX∪Y (Z) ≥ ωZ(Z) ≥ k.
By ωZ(Z) ≥ k and Lemma 8, X ∪ Y is k-connected. Since ωX∪Y (X ∪ Y ) ≥ k, it holds that
X ∪ Y ∈ C. Therefore C is transitive. J

5.2 Construction of Monotone Meta-weight Functions
For a graph G = (V,E), let w : V ∪ E → R+ be a weight function. We define a coefficient
function to be γ = (α, β) that consists of functions α : E → R+ and β : V ∪ E → R+. We
call γ monotone if 1 ≥ α(e) ≥ β(e) for each edge e ∈ E and 1 ≥ β(v) for each vertex v ∈ V .
We call a tuple (G,w, γ) a system, and define a meta-weight function ω : 2V × (V ∪E)→ R+
to the system so that, for each subset X ⊆ V , ωX : V ∪ E → R+ is given by
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ωX(v) =
{

w(v) if v ∈ X,
β(v)w(v) if v ∈ V \X, ωX(e) =


w(e) if e ∈ E(X;X),

α(e)w(e) if e ∈ E(X;V \X),
β(e)w(e) if e ∈ E(V \X;V \X).

We call a system (G,w, γ) monotone if γ is monotone.

I Lemma 10. For a monotone system (G,w, γ), the corresponding meta-weight function
ω : 2V × (V ∪ E)→ R+ is monotone.

We omit the proof (Appendix E).
For a system (G,w, γ) on a graph G with n vertices and m edges and a real k ≥ 0, let

τ(n,m, k) and σ(n,m, k) denote the time and space complexities for testing if µ(u, v;X) < k

holds or not for two vertices u, v ∈ V and a subset X ⊆ V .

I Lemma 11. For a monotone tuple (G,w, γ), let ω be the corresponding monotone meta-
weight function.
(i) τ(n,m, k) = O(mn logn) and σ(n,m, k) = O(n+m); and
(ii) Let X ⊆ Y ⊆ V be non-empty subsets such that ωX(X) ≥ k and µ(u, u′;Y ) ≥ k for all

vertices u, u′ ∈ X. Given a vertex t ∈ Y \X, whether there is a vertex u ∈ X such that
µ(u, t;Y ) < k or not can be tested in τ(n,m, k) time and σ(n,m, k) space.

We omit the proof (Appendix F).
We denote by C(G,w, γ, k) the family of k-connected sets X with ωX(X) ≥ k in a system

(G,w, γ). We consider how to construct oracles L1 and L2 to the system. For two non-empty
subsets X ⊆ Y ⊆ V , let Cmax(Y ) denote the family of maximal subsets Z ∈ C(G,w, γ, k)
such that Z ⊆ Y , and let Ck(X;Y ) denote a maximal set X∗ ∈ Cmax(Y ) such that X ⊆ X∗;
and Ck(X;Y ) , ∅ if no such set X∗ exists.

I Lemma 12. For a monotone system (G,w, γ), let ω denote the corresponding monotone
meta-weight function. Let X ⊆ Y ⊆ V be non-empty subsets such that ωX(X) ≥ k. Then
(i) Ck(X;Y ) is uniquely determined;
(ii) If there are vertices u ∈ X and v ∈ Y such that µ(u, v;Y ) < k, then v 6∈ X∗;
(iii) Assume that µ(u, v;Y ) ≥ k for all vertices u ∈ X and v ∈ Y \X. Then Ck(X;Y ) = Y

if µ(u, u′;Y ) ≥ k for all vertices u, u′ ∈ X; and Ck(X;Y ) = ∅ otherwise; and
(iv) Finding Ck(X;Y ) can be done in O(|Y |2τ(n,m, k)) time and O(σ(n,m, k) + |Y |) space.

Proof. We omit the proofs for (i) to (iii) (Appendix G). For (iv), we can find Ck(X;Y )
as follows. Based on (ii), we first remove the set Z of all vertices v ∈ Y \ X such that
µ(u, v;Y ) < k for some vertex u ∈ X so that Ck(X;Y ) = Ck(X;Y ′) for Y ′ = Y \ Z. For a
fixed vertex t ∈ Y \X, we can test if there is a vertex u ∈ X such that µ(u, t;Y ) < k or
not in O(τ(n,m, k)) time and O(σ(n,m, k)) space by Lemma 11(ii). Hence finding such a
set Z takes O(|Y \X|τ(n,m, k)) time and O(σ(n,m, k) + |Z|) space. We repeat the above
procedure until there is no pair of vertices u ∈ X and v ∈ Y ′ \X after executing at most
|Y \X| repetitions taking O(|Y \X|2τ(n,m, k)) time and O(σ(n,m, k) + |Y \X|) space.

Based on (iii), we finally conclude that Ck(X;Y ) = Y ′ (Ck(X;Y ) = ∅) if there is no pair of
vertices u, u′ ∈ X such that µ(u, u′;Y ′) < k (resp., otherwise), which takes O(|X|2τ(n,m, k))
time and O(σ(n,m, k)) space by Lemma 11(i).

An entire algorithm is described in Algorithm 5. The time and space complexities are
then O(|Y |2τ(n,m, k)) time and O(σ(n,m, k) + |Y |), respectively. J
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Algorithm 5 Maximal(X;Y ): Finding the maximal set in C(G,w, γ, k) that contains a
specified set.

Input :A monotone system (G,w, γ), a real k ≥ 0, and non-empty subsets
X ⊆ Y ⊆ V such that ωX(X) ≥ k

Output :Ck(X;Y )
1 Y ′ := Y ;
2 while there are vertices u ∈ X and t ∈ Y ′ \X such that µ(u, t;Y ′) < k do
3 Z := {t ∈ Y ′ \X | µ(u, t;Y ′) < k for some u ∈ X};
4 Y ′ := Y ′ \ Z
5 if µ(u, u′;Y ′) ≥ k for all vertices u, u′ ∈ X then
6 Output Y ′ as Ck(X;Y )
7 else
8 Output ∅ as Ck(X;Y )

By the lemma, oracle L1(X;Y ) to a monotone system (G,w, γ) runs in θ1,t = O(|Y |2τ(n,
m, k)) time and θ1,s = O(σ(n,m, k) + |Y |) space.

For a system (G,w, γ), we define a k-core of a subset Y ⊆ V to be a subset Z of Y such
that ωZ(Z) ≥ k and any proper subset Z ′ of Z satisfies ωZ′(Z ′) < k.

I Lemma 13. Let (G,w, γ) be a monotone system, and Y be a subset of V . For the
family K of all k-cores of Y , it holds that Cmax(Y ) =

⋃
Z∈K{Ck(Z;Y )} and |Cmax(Y )| ≤

|K|. Given K, Cmax(Y ) can be obtained in O(|K|(|Y |2τ(n,m, k) + |Y | log |K|)) time and
O(σ(n,m, k) + |K| · |Y |) space.

Proof. Clearly each set X ∈ Cmax(Y ) satisfies ωX(X) ≥ k and contains a k-core Z ∈ K,
where Ck(Z;Y ) 6= ∅ and Ck(Z;Y ) = X holds by the uniqueness in Lemma 12(i). Therefore
Cmax(Y ) =

⋃
Z∈K{Ck(Z;Y )}, from which |Cmax(Y )| ≤ |K| follows. Given K, we compute

Ck(Z;Y ) for each set Z ∈ K taking O(|Y |2τ(n,m, k)) time and O(σ(n,m, k) + |Y |) space
by Lemma 12(iv). We can test if the same set X ∈ Cmax(Y ) has been generated or
not in O(|Y | log |K|) time and O(|K| · |Y |) space. Therefore X can be constructed in
O(|K|(|Y |2τ(n,m, k) + |Y | log |K|)) time and O(σ(n,m, k) + |K| · |Y |) space. J

By the lemma, oracle L2(Y ) to a monotone system (G,w, γ) runs in θ2,t = O(|K|(|Y |2τ(n,
m, k) + |Y | log |K|)) time and θ2,s = O(σ(n,m, k) + |K| · |Y |) space, where we assume that
the family K of k-cores of Y is given as input.

For s, t ∈ V , we denote by λ(s, t;G) denote the minimum size |F | of a subset F ⊆ E

so that the graph G− F obtained from G by removing edges in F has no path between s
and t. A graph G is called k-edge-connected if |V (G)| ≥ 1 and λ(u, v;G) ≥ k for any two
vertices u, v ∈ X. Below we describe how we enumerate connnectors X such that G[X] is
k-edge-connected. We can apply our framework to enumeration of connectors under other
connectivity conditions (e.g., k-vertex-connectivity) in the same way.

I Theorem 14. Let (G, I, σ) be an instance and k ≥ 0 be an integer, where G = (V,E) is
either a digraph or an undirected graph, n = |V |, m = |E|, and q = |I|. We can enumerate all
connectors such that the induced subgraphs are k-edge-connected in O(min{k + 1, n}q2n3m)
time delay and in O(qn+ n3) space.

ISAAC 2019



3:12 Enumeration of Connectors

Proof. Let (G,w, γ, k) be a system that consists of a graph G, a weight function w and a
coefficient function γ = (α, β) such that α(e) := 0, e ∈ E(G), and β(a) := 0, a ∈ V (G)∪E(G).
We see that γ is monotone and the family C(G,w, γ, k) is transitive by Lemmas 9 and 10.
Set w so that w(e) := 1, e ∈ E(G) and w(v) := k, v ∈ V (G). Then we see that C(G,w, γ, k)
is identical to the family of connectors X such that G[X] is k-edge-connected.

Whether µ(s, t;X) ≥ k or not can be tested in O(min{k, n}m) time [1, 2]. By
Lemma 12(iv), L1(X;Y ) runs in O(|Y |2 min{k + 1, n}m) time and O(n2) space. The family
K of k-cores Z ⊆ Y is {{v} | v ∈ Y }. By Lemma 13, |Cmax(Y )| ≤ |K| ≤ |Y | and L2(Y ) runs
in O(|Y |3 min{k + 1, n}m) time and O(n2) space.

By Lemma 12(iv) and Lemma 13, we have θ1,t = O(min{k+ 1, n}n2m), θ2,t = O(min{k+
1, n}n3m), and θ1,s = θ2,s = O(n2), where we can set δ(Y ) = n for any Y ⊆ V . The time
delay and space complexity follow by Theorem 6. J

6 Concluding Remarks

In this paper, we proposed a polynomial delay algorithm for the connector enumeration
problem. We treated the problem on what we call a transitive system and proposed an
algorithm for enumerating all solutions in the system (Algorithms 3 and 4 in Section 4). We
also presented how to treat connectors that satisfy various connectivity conditions.
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A Proof of Lemma 3

Proof. Let T ′ = C(S; Iσ(T )) ∈ Cmax(V〈Iσ(T )〉), where S ⊆ T ⊆ V〈Iσ(T )〉. The uniqueness
of maximal component T ′ = C(S; Iσ(T )) by Lemma 1 indicates T ⊆ T ′. To derive a
contradiction, assume that T ( T ′. By Lemma 2(i), T ′ ∈ Cmax(V〈Iσ(T )〉) is a solution. Since
T and T ′ are solutions with T ( T ′, it must hold that Iσ(T ) ) Iσ(T ′), implying that
V〈Iσ(T )〉 6⊇ T ′, a contradiction. Therefore we have T = T ′. J

B Complexity Analysis of Lemma 4 (ii)

Proof. Let us mention critical parts in terms of time complexity analysis. In line 1, it takes
O(qn) time to compute Iσ(S). The for-loop from line 3 to 4 is repeated O(q) times. In
line 4, the oracle L1(S, V〈J∪{ij}〉) is called to obtain a component Z = C(S; J ∪ {ij}) and
whether S = Z or not is tested. This takes O(θ1,t + n) time. The overall running time is
O(q(n+ θ1,t)). It takes O(q) space to store Iσ(S) and J , and O(n) space to store S and Z.
An additional O(θ1,s) space is needed for the oracle L1. J

C Complexity Analysis of Lemma 5 (ii)

Proof. Now we analyze the time and space complexities of the algorithm. Note that T
may have no children. The outer for-loop is repeated O(q) times. Computing C(T ∩ V〈j〉)
in line 2 takes θ2,t time by calling the oracle L2. The inner for-loop is repeated at most
δ(T ∩ V〈j〉) times for each j, and the most time-consuming part of the inner for-loop is
algorithm Parent(S) in line 5, which takes O(q(n + θ1,t)) time by Lemma 4(ii). Recall
that δ is a non-decreasing function. Then the running time of algorithm Children(T, k) is
evaluated by

O
(
qθ2,t + q(n+ θ1,t)

∑
j∈[k+1,q]\Iσ(T )

δ(T ∩ V〈j〉)
)

= O
(
qθ2,t + q2(n+ θ1,t)δ(T )

)
.

For the space complexity, we do not need to share the space between iterations of the
outer for-loop. In each iteration, we use the oracle L2 and algorithm Parent(S), whose
space complexity is O(q + n+ θ1,s) by Lemma 4(ii). Then algorithm Children(T, k) uses
O(q + n+ θ1,s + θ2,s) space. J
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D Proof of Theorem 6

Proof. First we analyze the time delay. Let α denote the time complexity required for a single
run of Children(T, k). By Lemma 5(ii) and δ(T ) ≤ δ(V〈k〉), we have α = O

(
qθ2,t + q2(n+

θ1,t)δ(V〈k〉)
)
. Hence we see that the time complexity of Algorithm 3 and Descendants

without including recursive calls is O(α).
From Algorithm 3 and Descendants, we observe:

(i) When d is odd, the solution S for any call Descendants(S, k, d+ 1) is output immedi-
ately before Descendants(S, k, d+ 1) is executed; and

(ii) When d is even, the solution S for any call Descendants(S, k, d + 1) is output
immediately after Descendants(S, k, d+ 1) is executed.

Letm denote the number of all calls of Descendants during a whole execution of Algorithm 3.
Let d1 = 1, d2, . . . , dm denote the sequence of depths d in each Descendants(S, k, d + 1)
of the m calls. Note that d = di satisfies (i) when di+1 is odd and di+1 = di + 1, whereas
d = di satisfies (ii) when di+1 is even and di+1 = di − 1. Therefore we easily see that during
three consecutive calls with depth di, di+1 and di+2, at least one solution will be output.
This implies that the time delay for outputting a solution is O(α).

We analyze the space complexity. Observe that the number of calls Descendants
whose executions are not finished during an execution of Algorithm 3 is the depth d of the
current call Descendants(S, k, d+ 1). In Algorithm 4, |T |+ d ≤ n+ 1 holds initially, and
Descendants(S, k, d+ 1) is called for a nonempty subset S ( T , where |S| < |T |. Hence
|S|+ d ≤ n+ 1 holds when Descendants(S, k, d+ 1) is called. Then Algorithm 3 can be
implemented to run in O(nβ) space, where β denotes the space required for a single run of
Children(T, k). We have β = O(q+ n+ θ1,s + θ2,s) by Lemma 5(ii). Then the overall space
complexity is O

(
(q + n+ θ1,s + θ2,s)n

)
. J

E Proof of Lemma 10

Proof. Let X ⊆ Y ⊆ V . To prove ωY (A) ≥ ωX(A) for any set A ⊆ V ∪ E, it suffices to
show that ωY (a) ≥ ωX(a) for any element a ∈ V ∪ E. For each vertex v ∈ V , we see that
ωY (v) = ωX(v) + |{v} ∩ (Y \X)|(1− β(v))w(v) ≥ ωX(v). For each edge e ∈ E, we see that
ωY (e) = ωX(e) + ∆|V (e) ∩ (Y \X)|w(e) ≥ ωX(e), where ∆ is one of 1− α(e), α(e)− β(e),
and (1− β(e))/2. J

F Proof of Lemma 11

Proof.
(i) The problem of computing µ(u, v;X) can be formulated as a problem of finding a

maximum flow in a graph (G,ωX) with an edge-capacity ωX(e), e ∈ E and a vertex-
capacity ωX(v), v ∈ V , and µ(u, v;X) can be computed in O(mn logn) time and
O(n + m) space by using the maximum flow algorithm [1, 2]. Hence τ(n,m, k) =
O(mn logn) and σ(n,m, k) = O(n+m).

(ii) Let t ∈ Y \X. To find a vertex u ∈ X with µ(u, t;Y ) < k if any by using (i) only once,
we augment the weighted graph (G,ωY ) into (G∗, ωY ) with a new vertex s∗ and |X|
new directed edges eu = (s∗, u), u ∈ X such that ωY (eu) := k. We denote by V (G)
and V (G∗) the vertex sets of G and G∗, respectively. We claim that µ(s∗, t;Y ) ≥ k if
and only if µ(u, t;Y ) ≥ k, ∀u ∈ X.
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First consider the case of µ(s∗, t;Y ) < k in (G∗, ωY ); i.e., (G∗, ωY ) has an s∗, t-cut
C∗ = (S, T ) with ωY (ε(C∗)) < k, where s∗ ∈ S and t ∈ T . Let R = V (G∗) \ (S ∪ T ),
where R = V (G) \ (S ∪ T ). Note that X ⊆ S ∪ R, since otherwise u ∈ T ∩ X
would mean that eu = (s∗, u) ∈ E(S, T ) and ωY (ε(C∗)) ≥ ωY (eu) = k, contradicting
that ωY (ε(C∗)) < k. Also S ∩ X 6= ∅, since otherwise X ⊆ R would mean that
ωY (ε(C∗)) ≥ ωY (R) ≥ ωX(X) ≥ k, contradicting that ωY (ε(C∗)) < k. Let u ∈ S ∩X.
Then C = (S \ {s∗}, T ) is a u, t-cut in (G,ωY ) with ωY (ε(C)) ≤ ωY (ε(C∗)) < k. This
means that µ(u, t;Y ) < k.
Next consider the case of µ(s∗, t;Y ) ≥ k in (G∗, ωY ). In this case, we show that
µ(u, t;Y ) ≥ k for all u ∈ X. To derive a contradiction, assume that µ(u, t;Y ) < k for
some vertex u ∈ X; i.e., (G,ωY ) has a u, t-cut C = (S, T ) with ωY (ε(C)) < k. Note
that T ∩ X = ∅, since otherwise u′ ∈ T ∩ X would contradict the assumption that
µ(u, u′;Y ) ≥ k holds for u, u′ ∈ X. Then C ′ = (S′ = S ∪ {s∗}, T ) is an s∗, t-cut in
(G∗, ωY ), and satisfies ωY (ε(C ′)) = ωY (ε(C)) < k since T ∩ X = ∅. This, however,
contradicts that µ(s∗, t;Y ) ≥ k holds in (G∗, ωY ).
By the claim, it suffices to test if µ(s∗, t;Y ) ≥ k or not in τ(n,m, k) time and
σ(n,m, k) space. J

G Proof of Lemma 12

Proof.
(i) To derive a contradiction, assume that there are two maximal sets X1, X2 ∈ Cmax(Y )

such that X ⊆ X1∩X2. From this and the monotonicity of ω, it holds that ωX1∪X2(X1∪
X2) ≥ ωX1∩X2(X1 ∩ X2) ≥ ωX(X) ≥ k. From this and Lemma 8, X1 ∪ X2 is also
k-connected and X1 ∪ X2 ∈ Cmax(Y ), contradicting the maximality of X1 and X2.
Therefore Ck(X;Y ) is unique.

(ii) When Ck(X;Y ) = ∅, v 6∈ Ck(X;Y ) is trivial. Assume that Ck(X;Y ) = X∗ ∈ Cmax(Y ).
By the monotonicity of ω and X∗ ⊆ Y , it holds that µ(u, v;X∗) ≤ µ(u, v;Y ) < k.
Hence u, v ∈ X∗ would contradict the k-connectivity of X∗. Since u ∈ X∗, we have
v 6∈ X∗.

(iii) Obviously if µ(u, u′;Y ) < k for some vertices u, u′ ∈ X, then no subset Y ′ of Y with
X ⊆ Y ′ can be k-connected, and Ck(X;Y ) = ∅. Assume that µ(u, u′;Y ) ≥ k for all
vertices u, u′ ∈ X. By the monotonicity of ω and X ⊆ Y , it holds that ωY (Y ) ≥
ωX(X) ≥ k. To prove that Ck(X;Y ) = Y , it suffices to show that µ(u, v;Y ) ≥ k for
all pairs of vertices u, v ∈ Y . By assumption, µ(u, v;Y ) ≥ k for all vertices u ∈ X and
v ∈ Y . To derive a contradiction, assume that there is a pair of vertices s, t ∈ Y \X
with µ(s, t;Y ) < k; i.e., there is an s, t-cut C = (S, T ) with ωY (ε(C)) < k. Let
R = V \ (S ∪ T ). We observe that X ⊆ R, since u ∈ X ∩ S (resp., u ∈ X ∩ T )
would imply that C is a u, t-cut (resp., s, u-cut), contradicting that µ(u, v;Y ) ≥ k

for all vertices v ∈ Y \X. By the monotonicity of ω and X ⊆ R, it would hold that
k ≤ ωX(X) ≤ ωY (R) ≤ ωY (ε(C)) < k, a contradiction. J
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