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—— Abstract

We study online multidimensional variants of the generalized assignment problem which are used to

model prominent real-world applications, such as the assignment of virtual machines with multiple
resource requirements to physical infrastructure in cloud computing. These problems can be seen
as an extension of the well known secretary problem and thus the standard online worst-case
model cannot provide any performance guarantee. The prevailing model in this case is the random-
order model, which provides a useful realistic and robust alternative. Using this model, we study
the d-dimensional generalized assignment problem, where we introduce a novel technique that
achieves an O(d)-competitive algorithms and prove a matching lower bound of (d). Furthermore,
our algorithm improves upon the best-known competitive-ratio for the online (one-dimensional)
generalized assignment problem and the online knapsack problem.
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1 Introduction

Online multidimensional packing problems appear in a wide verity of real-world applica-
tions [8]. A recent relevant example is the assignment of virtual elements to the physical
infrastructure in Network Function Virtualization (NFV) and cloud computing (see [20, 21]
for example). Typically, in these problems, we are given a set of bins, each with a certain
capacity profile, then, items arrive one-by-one in an online fashion, each with a certain
size and profit. Upon each arrival, one has to decide immediately and irrevocably whether
and where to pack the current item. The goal is to find an assignment that maximizes the
total profit without exceeding the capacity of any bin. These problems can be viewed as
generalizations of the well-known secretary problem, in which we have a single bin, and
every secretary consumes the capacity of the whole bin (see [6] for a formal definition of the
secretary problem).

The common way of analyzing online algorithms is to use the worst-case model, where an
adversary picks an instance along with the order in which items are revealed to the online
algorithm. Despite its prevalence in the analysis of online algorithms, this setting is too
pessimistic for the problem at hand. Indeed, no online algorithm can achieve any non-trivial
worst-case competitive-ratio, even for the simple case of the secretary problem, as shown
by Aggarwal et al. [1]. A more realistic model is the random-order model in which the
power of choosing the arrival order of items is taken away from the adversary, instead, the
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arrival order is chosen uniformly at random. In this model, we say that an algorithm ALG is
c-competitive if for every input instance Z it holds that, ¢- EJALG(Z)] > OPT(Z), where the
expectation is taken over the random arrival orders and the randomness of the algorithm.!

Kesselheim et al. [13, 14] generalized the known optimal algorithm for the secretary
problem to various packing problems in the random-order model. The outline of the generic
algorithmic framework is as follows: it starts with a sampling phase in which the algorithm
only observes the arriving items. Then, at every subsequent online round, the algorithm
computes a local solution for the sub-instance consisting of all the items that arrived so far.
If the bin in which the current item is packed in this local solution has enough free capacity
(i.e., an assignment of the current item in this bin is feasible) the algorithm carries it out,
otherwise, it leaves the item unpacked. Using this framework, Kesselheim et al. [14] presented
an algorithm for the online generalized assignment problem (GAP) with the best-known
competitive-ratio (prior to this work).

In GAP we have a set of bins and a set of items. Each bin has a certain non-negative
capacity and each item has several packing options, one for each bin. Each packing option
is associated with a certain consumption from the capacity of the bin and a certain profit
it provides. The goal is to pack the items in the bins where each item can be packed at
most once, maximizing the total profit without exceeding the capacity of any bin. A major
challenge in online packing problems, and online GAP in particular, is to handle both items
with high consumption of resources compared to a bin capacity, as well as items with low
consumption. Kesselheim et al. handle this challenge by partitioning a GAP instance into
two sub-instances: the first contains all “heavy” packing options of items, that is, packing
options that occupy more than half of a bin capacity, the second is the complementary
sub-instance that contains all “light” packing options. Their algorithm makes an initial
random choice to operate on one of the sub-instances exclusively. Although it achieves the
best-known results, this behaviour is undesirable for most applications, since it always leaves
one type of items unpacked.

We use a similar algorithmic framework to design an online algorithm for the d-dimensional
generalization of online GAP, or online Vector Generalized Assignment Problem (VGAP), in
which the capacity profile of each bin, as well as the consumption of items from each bin,
is described by a d-dimensional vector. The goal remains to maximize the profit, while the
capacity of each bin must not be exceeded in any of its d dimensions. To the best of our
knowledge, this is the first time the online version of this problem is studied. Our algorithm
offers a preferable behaviour and improves upon the best-known competitive-ratio for online
GAP. To achieve this, we take a different approach to overcome the challenge: instead of
limiting the algorithm to either “heavy” or “light” packing options, our algorithm considers
them both. It operates in three phases: a sampling phase, a phase for “heavy” packing
options, and a phase for “light” packing options. To compute the tentative assignments, our
algorithm in the second phase uses maximum-weight bipartite matching, and in the third
phase, it uses an optimal fractional solution for the LP-relaxation of the local problem, and
randomized rounding.

We also apply our technique to the {0,1}-VGAP in which every packing option of an
item in every dimension must consume either the whole capacity of the bin or non of it. In
one-dimension this problem is identical to weighted bipartite matching. For {0,1}-VGAP
we partition the instance by a different criterion: the number of non-zero entries in the
consumption vector of a packing option.

L We follow the definition used in [4, 5, 13] although it is also common to refer to such algorithm as
1/c-competitive.
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Another interesting special case of VGAP is the Vector Multiple Knapsack Problem
(VMKP), in which all bins are identical, and the packing options of each item are identical
for all bins. That is, regardless of the bin’s identity, the item consumes the same amount
of capacity and raises the same profit. For instances of VMKP with at least two bins, we
describe a simpler algorithm that avoids partitioning the instance. Here, our algorithm uses a
fractional solution for the LP-relaxation of the local problem only to make a binary decision
whether to pack the current item or not. For the actual packing, it exploits the fact that all
packing options are identical and uses greedy First Fit approach, typically used for the Bin
Packing problem.

Finally, we prove a lower bound for the online vector knapsack problem in the random-
order model, which also applies to VMKP and VGAP, and indicates that our algorithms are
asymptotically optimal. This lower bound is inspired by the work of Babaioff et al. [5] on
the matroid secretary problem, which is based solely on the inherent uncertainty due to the
online nature of the problem without any complexity assumptions.

Our main contributions are:

1. We describe an algorithm for online VGAP with a competitive-ratio of /e (4d + 2) =
5.14d + 2.57, where d is the dimension. For the VMKP with at least two bins we describe
a (4d + 2)-competitive algorithm. To the best of our knowledge, these problems are
studied for the first time.

2. We prove a matching lower bound of ©(d) which is valid both for VGAP and VMKP.

3. Our method improves upon the best-known competitive-ratio for (one-dimensional) GAP
from 8.1 to 6.99 (which is also the best-known competitive-ratio for online knapsack).

2 Related Work

Online packing problems in the random-order model have been studied extensively in recent
years, most of them are generalizations of the secretary problem which has an optimal e-
competitive algorithm [10, 17]. An immediate generalization is the multiple-choice secretary
problem, in which one is allowed to pick up to k secretaries. It was studied by Kleinberg [15],

where he presented an asymptotically optimal \k/E -competitive algorithm. Another related

problem is the weighted-matching problem which has an optimal e-competitive algorithm by
Kesselheim et al. [13].

The online knapsack problem, which generalizes the multiple-secretary problem, was
studied by Babaioff et al. [4] who presented an 10e-competitive algorithm. It was later
improved by the work of Kesselheim et al. [14] on online GAP, which generalizes all of the
above problems. They presented an 8.1-competitive algorithm which is the best-known
competitive-ratio for online GAP and the online knapsack problem. Our result for VGAP
improves on that.

In their work, Kesselheim et al. also studied the online packing LPs problem with column
sparsity d. The general online packing LPs problem was studied before by [2, 11, 19]. In this
problem, there is a set of resources and a set of requests. Each request has several options
to be served and each option is associated with a profit and a certain demand from each
resource. For column sparsity d, each request may have a demand from at most d of the
resources. This problem generalizes VGAP studied in this paper, however, to the best of our
knowledge, the only known competitive online algorithms for this problem are for the special
case of B > 2, where B is the capacity ratio, i.e., the minimal ratio between the capacity
of a resource and the maximum demand for this resource. For this case they presented an
O (d*/B=1))-competitive algorithm which in case B = Q (logd/e?) is (1 + €)-competitive.

10:3
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Dean et al. [9] showed that under the assumption of NP # ZPP, the packing integer
programs problem (PIP, also known as vector knapsack) which is a special case of VMKP,
cannot be approximated in polynomial time to within d'~¢ for any ¢ > 0 even in the offline
settings. Under the same assumptions, Chekuri et al. [7] showed that the {0, 1}-case cannot
be approximated to within d'/2=¢ for any e > 0. Their results are also applicable for the
offline VMKP, VGAP and the {0,1}-VGAP. By using the results of Zuckerman [22], the
same hardness result can be proved under the weaker assumption of P # NP instead. As
opposed to these results, our lower bound holds with no complexity assumptions, and applies
even for algorithms with unbounded computational power.

Some related problems have competitive algorithms in the worst-case model too. One
example is the AdWords problem which is a special case of GAP in which the profit of each
item is equal to its size. Under the assumption that items are small compared to the capacity
of the bins, Metha et al. [18] presented an optimal —“g-competitive algorithm. Without this
assumption, the best known competitive-ratio is 2 [16]. Another example is the online vector

bin packing problem, in which items arrive one-by-one, and the goal is to pack them all in
the minimum number of unit sized d-dimensional bins. This problem was studied by Garey
et al. [12] who showed that the First Fit algorithm has a worst-case competitive-ratio of
(d+0.7). More recently, Azar et al. [3] showed that this algorithm is asymptotically optimal
by proving a lower bound of 2 (dl_g).

3 Vector Generalized Assignment Problem

In the d-dimensional Generalized Assignment Problem (VGAP), we have a set of m d-
dimensional bins and a set of n d-dimensional items that may be packed in the bins. Each

bin j has a capacity b; = (b]l, ceey b;l) € Rio. Packing item ¢ in bin j consumes an amount
of w; ; = (wi{j7 e ,ng) € R%O from bin’s j capacity and provides a profit of p; ; > 0. Each

item may be packed in at most one of the bins and the capacity of each bin must not be
exceeded in any of its d dimensions. The goal is to find a feasible packing that maximizes
the total profit. We use the following LP-formulation:

max E pi)j.’lﬁi)j

i€[n],j€[m]

s.t. Z wf’jxi,j < b;, j€[m],teld
i€[n]

Z i 5 <1, 1€ [n]

J€[m]

x;; € {0,1}, i€ln],j€m].

We consider the online version of the problem in which the set of bins and their capacities
are initially known, as well as the total number of items n. The items, however, arrive
one by one in a random order. When item ¢ arrives, we learn its packing options, i.e.,
its consumption on every bin w;1,...,W; , (which we also call the weight vectors of 7)
along with the corresponding profits p; 1,...,pim. After every arrival, an immediate and
irrevocable decision must be made: Assign the item to one of the available bins or leave the
item unpacked.

Our algorithm is based on the technique presented by the authors of [14] with several
critical improvements (see Algorithm 1). We call the packing option of item 4 in bin j light

if wf ; <b%/2, Vt € [d], otherwise, we call it heavy. Given a GAP instance T we partition it
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into two sub-instances Zpeqvy and Zyigne, both consist of the original items and bins, however,
ZTheavy consists only of the heavy packing options of every item, while Zy;45; consists only of
the light ones. In contrast to the algorithm presented in [14] that makes a random choice
whether to operate on Zpequy Or Zisgne exclusively, our algorithm considers them both. It is
based on the intuition that heavy options may need a chance to be packed first, since any
other packing decision might prevent them from being packed, while light options are more
likely to fit in. Our algorithm operates in three phases: the sampling phase in which it only
observes the arriving items, the heavy phase in which it considers only heavy options, and
the light phase in which it considers only light options. In the heavy phase, our algorithm
uses a matching in a weighted bipartite graph to make packing decisions, to this end, given
an instance Z we define a weighted bipartite graph G (Z) = (L, R, E), where L is the set of
items of Z, R is the set of bins of Z, and there exists an edge (¢, j) € E of weight p; ; if item
i can be packed in bin j (i.e., wfj < b;, Vt € [d]). Each phase takes place in a continuous
fraction of the online rounds. To partition the rounds into phases, we use two parameters
q1 and ¢ that will be defined thereafter. For convenience of presentation and analysis, we
represent a packing by a set P C [n] x [m] such that P = {(4, j) : ¢ is packed in bin j}. We
also define p; o = 0, Vi € [n]. For an instance Z and a subset S of its items, we denote by
T|s the sub-instance that consists only of the items in S.

Algorithm 1 Online VGAP.

So + 0, Py + 0;
for each item iy that arrives at round ¢ do

Sy +— Sp_1 U {iz};

if ¢ < ¢1n then /* sampling phase */
‘ continue to the next round;
else if g1n+ 1</ < ¢gon then /* heavy phase */

Let (¥ be a maximum-weight matching in G (Zheavylse);
// compute a tentative assignment (ig,j¢)
if i, is matched in ¥ then
‘ Let jy be the bin to which 7, is matched;
else
L je< 0
if j, # 0 and j; is empty in Py_; then
| PrPoy U{(ie, jo)};

Ise // ({>qgn+1) /* light phase */
Let 29 be an optimal fractional solution for the LP-relaxation of Zj;gn|s,;
// compute a tentative assignment (iy,js) by randomized rounding

0

ig,J

0

Choose bin jy randomly where Pr[j, = j] = z;’; and

Prije=0=1- Y z";
J€[m]
if o #0 and Py_1 U{(ip,je)} is feasible then
| PePoy U{(ie, o)}

return P,

We now analyze the performance of Algorithm 1. Let OPT (Z) and ALG (Z) denote
the overall profit of the optimal packing and the overall profit of the packing produced by
Algorithm 1 on instance Z respectively. Let Ry, denote the profit raised by the algorithm

10:5
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at round ¢. In Lemma 1 and Lemma 2 below, we bound the expected profit raised at each
round of the heavy phase and the light phase respectively. Similar claims are presented
in [13] and [14].

» Lemma 1. For gin+1 < < gon, we have E[Re] > 7 - %OPT (Zheavy) -

Proof. Let * be an optimal solution for Zpeqvy, hence, pTz* = OPT (Zheavy), and let z*|g,
denote the projection of z* onto the set of items Sy, i.e., (2*|s,); ; = 27, if i € S and
(2*]s,); ; = 0 otherwise. Observe (by the definition of heavy) that in z*[s, every bin holds
at most d items. Let x} be the solution obtained from x*|g, by leaving only the most
profitable item in each bin. We get pTz} > 1 -p” (z*|s,). Also, since z} is a feasible
matching in G (Zneavys,), we have pTz¥) > pTzt > % -pT (2*|s,). Now since S, C [n] is
a uniformly random subset of size ¢, we have E [pT ($*|sg)] = % - OPT (Zheavy). Also, ig
can be viewed as a uniformly random item of Sy, and since z(*) is a matching we have
E[pi, ] =E [Zje[m] ng’)jp%j] = 1E [pT2]. Combining the results together, we get

Lofr @] < 1pll 7/« 1
= = i 0l el - )
E [plév]é] EE |:p T ] = KE d p (fL‘ |SI{) n- dOPT (Iheavy)

The above expectation is taken only over the random choice of the subset S; C [n] and the
random choice of iy € Sy, while the arrival order of items in previous rounds is irrelevant. We
now bound the probability of successful assignment over the random arrival order of previous
items. The assignment is successful if no item is packed in jy in rounds ¢ n,..., ¢ — 1. At
round ¢ — 1 the algorithm uses a maximum-weight matching in G (Ihem,y|s£71) to compute a
tentative assignment (iy_1, je—1). In that matching at most one item is matched to j,. Since
i¢—1 is a uniformly random item of Sy_1, the probability that i,_; is matched to j, is at most
1/ (€ — 1) regardless of the arrival order of the items in rounds 1, ..., ¢ —2, hence, we can treat
subsequent events as independent and repeat the argument inductively from ¢ — 1 to ¢1n + 1
to get that the probability of successful assignment is at least J[5_" (1—4) = &4

k=qin+1 —1
By combining the expected profit with the probability of successful assignment, we get
the lemma. |

» Lemma 2. For { > gon + 1, we have E[R(] > & (1 —2d Zi;;znﬂ %) LOPT (Zyight) -

Proof. Let 2* be an optimal solution for Zjgn:. At round ¢ > ¢gon + 1 the algorithm
uses randomized rounding to determine the tentative assignment of i, from the fractional
LP-solution x(©), therefore, Epi, ] = E [Zje[m] xl(f?jpim] Using this observation, we
can now follow a similar argument to that in the proof of Lemma 1 and get that for
(> gon+ 1, we have E [p;, ;,] = $E[pTz®] > 1E[pT (2*|s,)] = 2OPT (Zyignt) , where the
expectation is taken only over the random choice of the subset S; C [n], the random choice
of iy € Sy and the internal randomness of the algorithm at round ¢. Here too, we bound the
probability of successful assignment over the random arrival order of previous items and
the internal randomness of the algorithm in previous rounds. Let us denote by ¢ (j,t, ) the
total consumption of tentative assignments to bin j in dimension ¢ during the light phase
and before round ¢. At round ¢, the algorithm considers only light options, therefore, the
assignment of iy to jy must be successful if the following conditions hold: (1) no item was
packed in j; during the heavy phase, and (2) for every dimension ¢ € [d], ¢ (j¢, t,¢) < b;z /2.
Let us denote event (1) by Hy, and the events described in (2) by L} for every dimension
t € [d]. We now bound E [¢ (j¢,¢t,£)] for every t € [d]. Fix t € [d], at round k < £ of the
light phase, the algorithm computes a tentative assignment based on a fractional optimal



D. Naori and D. Raz

solution for the LP-relaxation of Zj;gn¢|s, . In that solution, the total consumption of bin j,
in dimension t is at most bz» ,- Since i can be viewed as a uniformly random item of Sk, the
expected consumption of i; from j, in dimension ¢ is at most b;l /k, where the expectation
is taken over the choice of i, € Si and the internal randomness of the algorithm at round
k. Therefore, it is independent of the arrival order of items in rounds 1 ...,k —1, and the
internal randomness used in those rounds. Hence, E [c (j, t, )] < Zk a1 M/k: We have

d

N\ L

t=1

d

>1-Y Pr[-Lj]

t=1

Pr

d
=1-—Pr l\/ﬁLZ

t=1

Zl—zw 1 9d e_zl

- /2
t=1 Je / k=qon1

The first inequality is due to a union bound, and the second is due to Markov’s inequality.

Since this event is independent of the arrival order of items in the heavy phase, we can follow
the argument from the proof of the previous lemma and get that the probability of succesful
assignment is at least

T (1= [1-2 1 _9g S
() (n S 3)-2(-u 5

k=qin+1 k= q2n+1 k=qgan+1

d
Pr lHZ AN L

t=1

We can now combine the results of the expected profit and the success probability to get
the lemma. <

» Theorem 3. For go = 2d/ (2d + 1) and q1 = q2/ /e, Algorithm 1 is /e(4dd+ 2)-competitive.

Proof. The overall profit of the algorithm can be written as E[ALG] = _,_, E[R/]. We
sum over the profit raised in each phase separately. For the heavy phase we have

qzamn qz2m T« 1

Y. BRI Y 77 ZOPT (Zhcavy)

{=q1n+1 L=qin+1
Q1 i qQ g2
= OPT (Znheaw - > OPT (Zheaw In{—=].
( h y e%n ( h y) d <q1>

The first inequality follows from Lemma 1 and the second inequality is due to the fact that
Sl > [ Ldy =1n (q ) For the light phase we have

f an £ = Jgn =

n

Zn: ER]> Y L(1-24 Z OPT(I;ZQM)

l=qan+1 l=qgan+1 92 k= q2n+1

1 q1 " n
= —OPT (Z;; —= 1— n —2d ——1
- (Ziignt) . (1—q2) k:qunﬂ (k )

> OPT (Ziignt) & . ((2d+ 1)(1—qo) —2d1In (qt)) .
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The first inequality is due to Lemma 2 and the second inequality follows from the fact that
Zzzqznﬂ % < f(Zn %dw =1In (q%) Overall we get

E[ALG] > OPT (Zhequy) % In <@>

q1

+ OPT (Zyign:) Zi <(2d +1)(1— o) —2dIn (;)) . (1)

For the parameters g = 2d/ (2d + 1), g1 = g2/ /e, we have

q—lln a2 _ 1 2 _ 1
d @ 4¥e2d+1  e(dd+2)

Using the fact that for # >0, In (1 + 2) <z — 322 + 12®, we have

(st (2)) < 1+ 2) - ()

It can be easily verified that (1/4d — 1/12d?) > 1/(4d+2) for d > 1. Now since OPT (Zhequy)+
OPT (Ziignt) > OPT (Z), we get

1

E[ALG| > > TS

(OPT (Zneavy) + OPT (Ziignt)) OPT. <

1
Je(4d + 2)
It is important to note that for d = 1, the competitive-ratio can be improved by choosing
g1 = 0.5256 and g2 = 0.69. Setting these parameters in (1) shows that Algorithm 1 is
6.99-competitive for the (one-dimensional) generalized assignment problem, which improves
upon the best-known competitive-ratio of 8.1 achieved by Kesselheim et al. [14].

» Remark 4. Algorithm 1 can easily be extended to the case where each item has K > 1
different packing options in each bin in a similar way to the algorithm of Kesselheim et
al. [14]. Therefore, the general online packing LPs problem with n requests and m resources
can be viewed as a special case of VGAP with one m-dimensional bin and n items.

3.1 The {0,1}-VGAP

The {0,1}-VGAP is a special case of VGAP in which the consumption of item ¢ from bin j
in dimension ¢ is either 0 or the whole capacity of bin j in dimension ¢. By scaling, we can
assume without loss of generality that b; = 1 for all j € [m], and w; ; € {0, 1}, vi € [n],
Vj € [m].? Note that for d = 1 the problem is identical to weighted bipartite matching.

As for the general VGAP, given an instance Z we partition it into two sub-instances,
however, we make the partition according to the density of the weight vectors: we call the
packing option of item i in bin j dense if [supp (w; ;)| > V/d,otherwise, we call it sparse.’
We denote by Zjense the sub-instance that consists only of the dense packing options of
every item, and by Zsperse the complementary sub-instance that consists only of the sparse
packing options.

Our algorithm for this case, which we call Algorithm 3, is based on the simple observation
that in Zgepse at most V/d items can be packed in every bin, therefore, a maximum weight
matching in G(Zgense) has a weight of at least OPT(Zyense)/ Vd. Algorithm 3 is almost

2 1 denotes the all 1’s vector.
3 supp(-) denotes the set of indices of non-zero entries of a vector.
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identical to Algorithm 1, the only difference is that Zheqvy and Zjign: are replaced with Zgepse
and Zgparse respectively (for a full description see Appendix A.1). The parameters g1 and ¢o
are defined in the analysis. Due to lack of space, we only state the result of our analysis in
Theorem 5 and give the full proof in Appendix A.2.

» Theorem 5. For q» = \/d/ (\/&+ 1) and q1 = qa/+/e, Algorithm 3 is 2\/e (\/§+2)—
competitive.

4 Vector Multiple Knapsack Problem

The Vector Multiple Knapsack Problem (VMKP) is a special case of VGAP in which all bins
have a capacity of 1, every packing option of item ¢ consumes the same amount of capacity
w; € [0, l]d
We study the case where there are at least two bins, i.e., m > 2. For this special case we

and provides the same profit p; > 0, i.e., w; j = Wy, p;j = p;, Vi € [n], Vj € [m].
present an online algorithm that improves upon the competitive-ratio of Algorithm 1.

Algorithm 2 Online VMKP.

So < 0, Py« 0;
for each item i, that arrives at round ¢ do

Se + Se_1 U {i@};

if £ < gn then /* sampling phase */
‘ continue to the next round;
else // {>qgn+1 /* packing phase */

Let (9 be an optimal fractional solution for the LP-relaxation of Z ls,;
Choose j, randomly where Pr[j, = j] = ng)] and Pr(j,=0]=1- Z 29

ig,57
j€lm]
// First Fit
Let By = {j € [m] : Py U {(ir,7)} is feasible};
if j; #0 and B; # () then
‘ P, Py 1 U {(ig,mint)};

return P,

Algorithm 2 consists of two phases: a sampling phase and a packing phase. The packing
phase is similar to the light phase of Algorithm 1, however, instead of using the LP-solution
to compute a tentative assignment, it uses it only to make a binary decision whether to pack
the current item or not. Still, we keep a randomized rounding step similar to Algorithm 1 in
order to use observations made in Section 3. For the actual packing, Algorithm 2 exploits
the fact that all packing options are identical and uses the First Fit algorithm [12].

We now analyze the performance of Algorithm 2. First we prove a simple observation
due to the nature of First Fit.

» Lemma 6. For ¢ > gn+ 1 and m > 2, if iy cannot be packed in any bin, then
d
Z(i,j)Eszl Zt:1 wf > m/Q.

Proof. Let u (j,t,¢) denote the total consumption of bin j in dimension ¢ before round

£. Since iy cannot be packed in any bin, there is at least one item packed in each bin.

Consider any two bins j' > j, and let 75 be the first item that was packed in j'. i; could
not be packed in bin j, therefore, for some ¢’ € [d] we have u (j,t', k) + wf; > 1. Since
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the consumption is non-decreasing and u (5, ¢, £) > wf; we have u (j, ', 0) +u (j',t',€) > 1,
therefore, Zle u (g, t,€) +u(j’,t,¢) > 1. By summing the last inequality for all consecutive
pairs of bins (j + 1,5) as well as (m,1) we get 22;.”:1 Zle u(j,t,£) > m and hence the
lemma. |

Next, we follow the method of the previous section to bound the expected profit of the
algorithm at each round.

» Lemma 7. For{ >gn+1 and m > 2, we have E[Ry] > (1 —2d Ei;fm_ﬂ %) LOPT.

£ > gn+ 1. We now bound the probability that Z(i ePo Zle w! < m/2, by Lemma 6,
this is a sufficient condition for the assignment of iy to be successful. At round k < ¢ the
algorithm computes a tentative assignment based on an optimal fractional solution z(*) for

the LP-relaxation of Z|s, , therefore, we have >, o Zle Z;”:l acgkj)wf < dm. Since iy is a

Proof. By following a similar argument to that in Lemma 1, we get E [p;, j,] > 1OPT for

uniformly random item of Sy, we have E {Zil > xEllj)wak:l < dm/k, hence,
d -1 d LI
t t k
Bl > D uh|<B| ) D wh)
(4,§)EPp—1 t=1 k=qn+1t=1 j=1
£—1 d m *) /—1 dm
k) ot
SR
k=gqn+1 t=1j=1 k=gn+1

As before, we can now use Markov’s inequality to bound the probability of successful
assignment and get the lemma. |

» Theorem 8. For g =2d/(2d + 1), Algorithm 2 is (4d + 2)-competitive.
Proof. By Lemma 7, the overall profit of the algorithm is bounded by

n

-1
EALG] > Y |1-2d ) % :LOPTZ<(2d+1)(1—q)—2d1n<(1])>OPT.

l=qn+1 k=gn+1

This bound is maximized for ¢ = 2d/ (2d + 1), and for this choice of parameter, using similar
arguments as in the proof of Theorem 3, we get

E[ALG) > <1 ~2dIn (1 4 21d>) OPT 2)
11 1
> (=4 >(—— .
= <4d+12d2>OPT_ <4d+2) OPT <

Note that by setting d = 1 in (2) we get that Algorithm 2 is 5.29-competitive for the
(one-dimensional) multiple knapsack problem with at least two bins.

» Remark 9. For the special case of d = 1, Algorithm 2 can be implemented in a more
efficient way: instead of solving an LP-relaxation at every round of the packing phase, we
can obtain an optimal fractional solution by using a simple greedy algorithm.

» Remark 10. Algorithm 2 can be extended to the case of variable-sized squared bins, that it,
to the case where b; =1 -b;, Vj € [m], under the assumption that every item fits into every
bin, i.e., w! < b; Vi € [n],Vj € [m],Vt € [d], through sorting the bins by their capacity in a
non-increasing order.
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5 Lower bound

We now prove a lower bound of Q(d) for the vector knapsack problem (VMKP with a
single bin). Since it is a special case of VGAP, it shows our O(d)-competitive algorithm for
VGAP from Section 3 is asymptotically optimal. Note that our lower bound holds without
any complexity assumptions. In particular, it also applies to algorithms with unbounded
computational power. The proof is inspired by the work of Babaioff et al. [5].

We construct an instance for the d-dimensional knapsack problem consisting of one bin
of capacity 1 and n = §d®+tV+1 jtems, where 6 € N. The weight vectors of the items are
the columns of the following d x d matrices:

Aj — (1 _ €jdj) . ]_|_€jdj—1 . (11T _ I) , Vj e [6d(6+1)d].

Where I is the d x d identity matrix, and € < 1/ (2nd™). By the choice of € it holds that
ejdi < 1/2,Vj € [6d0+D9),

Observe that for every matrix Aj;, all the items that correspond to its columns fit together
in the bin, that is, A;-1 < 1. Also, every two columns of different matrices cannot be packed

together. This is true because for any two matrices A;, A; where ¢ > j, and any two columns
k, £ € [d], we have

(Aj)k,k + (Ai)k,é > (1 — ejdj) +ead™ >1—ejd +e(j+1)d > 1.

The first inequality follows from the fact that eid'~! < (1 - eidi), and the second inequality
follows from the fact that i > j + 1. Every item is independently assigned a profit of 1 with
probability 1/d°*! and 0 with probability 1 — 1/d%*!.

» Theorem 11. Any online algorithm produces a packing with expected profit of at most
(1 + d%), while OPT = d with probability of at least (1 — 6—15)

Proof. Let us observe the first item that the online algorithm packs. It corresponds to a
column of one matrix A;. All items that correspond to columns of different matrices cannot
be packed along with it. The only items that can be added to the packing are the remaining
columns of A;. There are less than d such items left, each has an expected profit of 1/ UARRS
Since the first item has a profit of at most 1, the expected profit of the packing produced by
the algorithm is at most 14 1/d°.

With regard to the optimal packing, for a given matrix A,, the probability that all items
are of profit 1 is 1/d(®*1D? therefore, the probability that all matrices are of weight less than

(6+1)d
dis (1—1/dC+Da)" 70 < 1 /e, <

Note that Theorem 11 can be easily modified to apply to the case of two identical bins, thus,
it shows that Algorithm 2 for VMKP with at least two bins is also asymptotically optimal.

6 Conclusions

In this paper, we presented simple, asymptotically optimal, online algorithms for multidi-
mensional variants of the generalized assignment problem in the random-order model, which
has vast implications for real-world applications, like resource allocation in cloud computing.

Our bounds for VGAP are translated to a matching lower and upper bounds of Q(m)
and O(m) for the general online packing LPs problem (as mentioned in Remark 4, where m
is the number of resources).
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For the one-dimensional case, the best lower bound for the online GAP is derived from

the lower bound for the secretary problem of e [6]. An interesting open question is to close
the gap between e and the upper bound of 6.99 presented in this paper. It is also very
interesting to understand whether the new theoretical algorithm provides practical value for

cloud resource allocation, where the value of d is a small constant (2 or 3).
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A Omitted Details

A.1 Description of Algorithm 3

Algorithm 3 Online {0,1}-VGAP.

So 0, Py + 0;
for each item i, that arrives at round ¢ do
Sy + S U {’L'g};

if ¢ < ¢1n then /* sampling phase */
‘ continue to the next round;
else if ¢1n+ 1</ <gyn then /* dense phase */

Let 2 be a maximum-weight matching in G (Zaensels,);
// compute a tentative assignment (ig,j,)
if iy is matched in ©) then
‘ Let j; be the bin to which ¢, is matched;
else
L je< 0
if jo # 0 and j; is empty in Py_1 then
L Py < Pro1 U{(ie, je) };

Ise // ({>qon+1) /* sparse phase */
Let 29 be an optimal fractional solution for the LP-relaxation of Zyparsels,;

@

// compute a tentative assignment (is,j;) by randomized rounding
)

Choose bin j, randomly where Pr [j, = j] = x;,’; and

Prije=0l=1- Y
Jj€lm]
if jo #0 and Py_1 U{(i¢,je)} is feasible then
L Py < Pro1 U{(ie, Je) }5

| return P,

A.2 Proof of Theorem 5

Proof. To prove the competitive-ratio of Algorithm 3, we bound the expected profit pf the
algorithm in round separately. In Lemma 12 below, we bound the expected profit in each
round of the dense phase, and in Lemma 13, we bound the expected profit in each round
of the sparse phase. Then we sum over the expected profit in both phases to get the total
profit of the algorithm.

10:13

ISAAC 2019



10:14

Online Multidimensional Packing Problems in the Random-Order Model

» Lemma 12. For ¢in +1 < { < gon, we have E[R(] > 745 - %OPT(Idense).

The proof is similar to the proof of Lemma 1 by using the observation that in Zje, s at most
V/d items can be packed in every bin, therefore, a maximum weight matching in G(Zgense)
has a weight of at least OPT(Idmse)/\/E. .

» Lemma 13. For gin+1 < ¢ < gon, we have

£—1
qQ 1
[R¢]>q—2 1-vVd > - opT(Spme).

k=qgan+1
Proof. Asin Lemma 2, we have E [p;, ;,] = 1 ~OPT (Zsparse) where the expectation is taken
only over the random choice of the subset S[ C [n], the random choice of i, € Sy and the

internal randomness of the algorithm at round ¢. Once again we bound the probability
of successful assignment over the random arrival order of previous items and the internal
randomness of the algorithm in previous rounds. The assignment of i, to j, must be successful
if the following conditions hold: (1) no item was packed in j, during the dense phase, and
(2) no tentative assignments from previous rounds of the sparse phase occupy the entries
in supp (w;, j,) of jo. Let us denote event (1) by H, and the event described in (2) by
Ly. At round ¢gon < k < ¢ the algorithm uses an optimal fractional solution z(*) for the
LP-relaxation on Z|g, to compute a tentative assignment (i, jx). In that solution we have
> ies,, xikj)zwl j, <1, Vt € [d]. Observe that by the randomized rounding at round k and the
fact that wlk e € {0, 1}, the probability that the tentative assignment of iy uses dimension t
in jg is given by Y-, Prlje = je Awj, = 1|ip, =] - Prlix = i] = ¢ Zlesk W wt,, < .
Using a union bound, since |supp (w;, j,)| < V/d, the probability that i, blocks i, from being
packed is at most v/d d/k. Applying a umon bound once again over all previous rounds of the
sparse phase, we get Pr[L,] > 1 — Zk gan—+1 Vd/k. From here on we can follow a similar

argument as in the proof of Lemma 2 and get that the probability of successful assignment

is at least
qan -1 -1
1 Vd q1
PriH ALl > ] (1—k) -y Y =tiva Y
k=qin+1 k=qgan+1 k=qgan+1
Overall, we get the lemma. <

By using Lemma 12 and Lemma 13 to sum over the profit raised in each phase, we get

E[ALG] > OPT (Zyense) % In (f)
1

+ OPT (Zaparse) ;(Wgﬂ) (1~ )~ Vdn (q12>>

Setting ¢o = de&’ q1 = q2/+/e, we get
v
2ve (Vi+1)

T OPT (Zuparse f( Vi (1+¢1g)) 3)

E [ALG} 2 OPT (Idense)
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To bound the second term we use the fact that for > 0, In(1 + ) <z — %x2 + %x3 and get

\}5(1—\/&1n(1+\}g>>>\;é<2\1/g—;l>>m. (4)

The second inequality can be easily verified to holds for d > 1. By substituting (4) in
Equation (3) and using the fact that OPT (Zgense) + OPT (Zsparse) > OPT (Z), we get
the theorem. |
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