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Abstract
Given a set P of h pairwise disjoint simple polygonal obstacles in R2 defined with n vertices, we
compute a sketch Ω of P whose size is independent of n, depending only on h and the input
parameter ε. We utilize Ω to compute a (1 + ε)-approximate geodesic shortest path between the
two given points in O(n+ h((lgn) + (lg h)1+δ + ( 1

ε
lg h

ε
))) time. Here, ε is a user parameter, and δ

is a small positive constant (resulting from the time for triangulating the free space of P using
the algorithm in [3]). Moreover, we devise a (2 + ε)-approximation algorithm to answer two-point
Euclidean distance queries for the case of convex polygonal obstacles.
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1 Introduction

For any set Q of pairwise-disjoint simple polygonal obstacles in R2, the free space F(Q) is
the closure of R2 without the union of the interior of all the polygons in Q. Given a set
P = {P1, P2, . . . , Ph} of pairwise-disjoint simple polygonal obstacles in R2 and two points
s and t in F(P), the Euclidean shortest path finding problem seeks to compute a shortest
path between s and t that lies in F(P). This problem is well-known in the computational
geometry community. Mitchell [10, 27] provides an extensive survey of research accomplished
in determining shortest paths in polygonal and polyhedral domains. The problem of finding
shortest paths in graphs is quite popular and considered to be fundamental. Especially,
several algorithms for efficiently computing single-source shortest paths and all-pairs shortest
paths are presented in Cormen et al. [9] and Kleinberg and Tardos [25]) texts. And, the
algorithms for approximate shortest paths are surveyed in [28]. In the following, we assume
that n vertices together define the h polygonal obstacles of P.

Given a polygonal domain P as input, the following are three well-known variants of the
Euclidean shortest path finding problem: (i) both s and t are given as input with P, (ii)
only s is provided as input with P, and (iii) neither s nor t is given as input. The type (i)
problem is a single-shot problem and involves no preprocessing. The preprocessing phase of
the algorithm for a type (ii) problem constructs a shortest path map with s as the source so
that a shortest path between s and any given query point t can be found efficiently. In the

© R. Inkulu and Sanjiv Kapoor;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248536559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iitg.ac.in/rinkulu/
mailto:rinkulu@iitg.ac.in
http://www.cs.iit.edu/~kapoor/
mailto:kapoor@iit.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.11
https://arxiv.org/abs/1506.01769
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Approximate Euclidean Shortest Paths

third variation, which is known as a two-point shortest path query problem, the polygonal
domain P is preprocessed to construct data structures that facilitate in answering shortest
path queries between any given pair of query points s and t.

In solving a type (i) or type (ii) problem, there are two fundamentally different approaches:
the visibility graph method (see Ghosh [14] for both the survey and details of various visibility
algorithms) and the continuous Dijkstra (wavefront propagation) method. The visibility
graph method [5, 21, 22, 29] is based on constructing a graph G, termed visibility graph,
whose nodes are the vertices of the obstacles (together with s and t) and edges are the pairs
of mutually visible vertices. Once the visibility graph G is available, a shortest path between
s and t in G is found using Dijkstra’s algorithm. As the number of edges in the visibility
graph is O(n2), this method has worst-case quadratic time complexity. In the continuous
Dijkstra approach [17, 18, 19, 26], a wavefront is expanded from s till it reaches t. In specific,
for the case of polygonal obstacles in plane, Hershberger and Suri devised an algorithm in [17]
which computes a shortest path in O(n lgn) time and the algorithm in [18] (which extends
the algorithm by Kapoor [19]) by Inkulu, Kapoor, and Maheshwari computes a shortest path
in O(n+ h((lg h)δ + (lgn)(lg h))) time. Here, δ is a small positive constant (resulting from
the time for triangulating the F(P) using the algorithm in [3]). The continuous Dijkstra
method typically constructs a shortest path map with respect to s so that for any query
point t, a shortest path from s to t can be found efficiently.

The two-point shortest path query problem within a given simple polygon was addressed
by Guibas and Hershberger [15]. It preprocessed the simple polygon in O(n) time and
constructed a data structure of size O(n) and answers two-point shortest distance queries in
O(lgn) time. Exact two-point shortest path queries in the polygonal domain were explored
by Chiang and Mitchell [7]. One of the algorithms in [7] constructs data structures of size
O(n5) and answers the query for any two-point distance in O(h+ lgn) worst-case time. And,
another algorithm in [7] builds data structures of size O(n+ h5) and outputs any two-point
distance query in O(h lgn) time. In both of these algorithms, a shortest path itself is found
in additional time O(k), where k is the number of edges in the output path. Guo et al. [16]
preprocessed F(P) in O(n2 lgn) time to compute data structures of size O(n2) for answering
two-point distance queries for any given pair of query points in O(h lgn) time.

Because of the difficulty of exact two-point queries in polygonal domains, various approxim-
ation algorithms were devised. Clarkson first made such an attempt in [8]. Chen [4] used the
techniques from [8] in constructing data structures of size O(n lgn+ n

ε ) in o(n3/2) +O(nε lgn)
time to support (6 + ε)-approximate two-point distance queries in O( 1

ε lgn+ 1
ε2 ) time, and a

shortest path in additional O(L) time, where L is the number of edges of the output path.
Arikati et al. [2] devised a family of algorithms to answer two-point approximate shortest
path queries. Their first algorithm outputs a (

√
2 + ε)-approximate distance; depending on

a parameter 1 ≤ r ≤ n, in the worst-case, either the preprocessed data structures of this
algorithm take O(n2) space or the query time is O(

√
n). Their second algorithm takes O(n)

query time to report the distance. The stretch of the third and fourth algorithms proposed in
[2] are respectively (2

√
2+ε) and (3

√
2+ε). Agarwal et al. [1] computes a (1+ε)-approximate

geodesic shortest path in O(n+ h√
ε

lg(hε )) time when the obstacles are convex.
Throughout this paper, to distinguish graph vertices from the vertices of the polygonal

domain, we refer to vertices of a graph as nodes. The Euclidean distance between any two
points p and q is denoted with ‖pq‖. The obstacle-avoiding geodesic Euclidean shortest path
distance between any two points p, q amid a set Q of obstacles is denoted with distQ(p, q).
The (shortest) distance between two nodes s and t in a graph G is denoted with distG(s, t).
Unless specified otherwise, distance is measured in Euclidean metric. We denote both the
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convex hull of a set R of points and the convex hull of a simple polygon R with CH(R). Let
r′ and r′′ be two rays with origin at p. Let −→v1 and −→v2 be the unit vectors along the rays r′
and r′′ respectively. A cone Cp(r′, r′′) is the set of points defined by rays r′ and r′′ such
that a point q ∈ Cp(r′, r′′) if and only if q can be expressed as a convex combination of the
vectors −→v1 and −→v2 with positive coefficients. When the rays are evident from the context, we
denote the cone with Cp. The counterclockwise angle from the positive x-axis to the line
that bisects the cone angle of Cp is termed as the orientation of the cone Cp.

Our contributions
First, we describe the algorithm for the case in which P comprises convex polygonal obstacles.
We compute a sketch Ω from the polygonal domain P. Essentially, each convex polygonal
obstacle Pi in P is approximated with another convex polygonal obstacle whose complexity
depends only on the input parameter ε; significantly, the size of the approximated polygon
is independent of the size of Pi. In specific, when P is comprised of h convex polygonal
obstacles, the sketch Ω is comprised of h convex polygonal obstacles: for each 1 ≤ i ≤ h,
the convex polygon Pi ∈ P is approximated with another convex polygon Qi ∈ Ω. For each
Pi ∈ P , we identify a coreset Si of vertices of Pi and form the core-polygon Qi ∈ Ω using Si.
When Pi is convex, the corresponding core-polygon Qi obtained through this procedure is
convex; and, Qi ⊆ Pi. Like in [1], the combinatorial complexity of Ω is independent of n;
it depends only on h and the input parameter ε. For two points s, t ∈ F(P), we compute
an approximate Euclidean shortest path between s and t in F(Ω) using an algorithm that
is a variant of [8]. From this path, we compute a path R in F(P) and show that R is a
(1 + ε)-approximate Euclidean shortest path between s and t amid polygonal obstacles in
P. When the obstacles in P are not necessarily convex, we compute the sketch of P using
the convex chains (that bound the obstacles) as well as the corridor paths that result from
the hourglass decomposition [19, 20, 22] of F(P). The main contributions and the major
advantages in our approach are described in the following:

When P is comprised of disjoint simple polygonal obstacles, we compute a (1 + ε)-
approximate geodesic Euclidean shortest path between the two given points belonging to
F(P) in O(n+ h((lgn) + (lg h)1+δ + 1

ε lg h
ε )) time. Here, δ is a small positive constant

resulting from the triangulation of the free space using the algorithm from [3]. (Refer to
Theorem 9.) Agarwal et al. [1] compute a (1 + ε)-approximate geodesic shortest path in
O(n+ h√

ε
lg(hε )) time when the obstacles are convex. In computing approximate shortest

paths, our algorithm extends the notion of coresets in [1] to simple polygons. However, our
approach is computing coresets, and an approximate shortest path using these coresets is
quite different from [1]. Our algorithm to construct the sketch of P is simpler.
As part of devising the above algorithm, when P is comprised of convex polygonal
obstacles, our algorithm computes a (1 + ε)-approximate geodesic Euclidean distance
between the two given points in O(n+ h

ε lg h
ε ) time. Further, our algorithm computes a

(1 + ε)-approximate shortest path in additional O(h lgn) time. (Refer to Theorem 7.)
When P is comprised of disjoint convex polygonal obstacles, we preprocess these polygons
in O(n+ h

ε2 (lg h
ε ) + h

ε (lg h
ε )2) time to construct data structures of size O(hε ) for answering

any two-point (2 + ε)-approximate geodesic distance (length) query in O( 1
ε6 (lg h

ε )2) time.
(Refer to Theorem 12.) To compute an optimal geodesic shortest path amid simple
polygonal obstacles, Chen and Wang [5] takes O(n + h lg h + k) time, where k is a
parameter sensitive to the geometric structures of the input and is upper bounded by
O(h2). Our algorithm to answer approximate two-point distance queries amid convex
polygonal obstacles takes space close to linear in n whereas the preprocessed data
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11:4 Approximate Euclidean Shortest Paths

structures of algorithms proposed in [7] occupy Ω(n5) space in the worst-case. Also, our
algorithm for two-point distance queries improves the stretch factor of [4] from (6 + ε) to
(2 + ε) in case of convex polygonal obstacles.
Furthermore, our algorithm to compute the coreset of simple polygons to obtain a sketch
Ω of P as well as the algorithm to compute an approximate geodesic Euclidean shortest
path in P using the sketch Ω may be of independent interest.

Section 2 describes an algorithm for computing a single-shot approximate shortest path
when obstacles in P are convex polygons. Section 3 extends this algorithm to compute an
approximate Euclidean shortest path amid simple polygonal obstacles. The algorithm to
answer two-point approximate Euclidean distance queries amid convex polygonal obstacles is
described in Section 4. A table comparing earlier algorithms to ours is given in the Appendix.

2 Approximate shortest path amid convex polygons

In this section, we consider the case in which every simple polygon in P is convex. We use
the following notation from Yao [30]. Let κ ≥ 2, and define θ = 2π/κ. Consider the set
of κ rays: for 0 ≤ iκ, the ray ri passes through the origin and makes an angle iθ with the
positive x-axis. Each pair of successive rays defines a cone whose apex is at the origin. This
collection of κ cones is denoted by C. It is clear that the cones of C partition the plane. Also,
the two bounding rays of any cone of C make an angle θ. In our algorithm, the value of κ is
chosen as a function of ε (refer to Subsection 2.2). When a cone C ∈ C is translated to have
the apex at a point p, the translated cone is denoted with Cp. Each cone that we refer in
this paper is a translated copy of some cone in C. For each polygon P in P, we choose a
subset of O( 1√

αε
) vertices from the vertices of P . At each such vertex p, we introduce a set

of cones at p.In the algorithm to compute a single-shot s-t geodesic shortest path, the value
of α is set to ε

2 . The algorithm for two-point approximate distance queries sets the value
of α to ε

12 . The proof of Theorem 7 details the reasons for setting these specific values. As
detailed below, these vertices and cones help in computing a spanner that approximates a
Euclidean shortest path between the two given points in F(P).

2.1 Sketch of P
In this subsection, we define and characterise the sketch of P. For any Pi ∈ P and any two
points p′ and p′′ on the boundary of Pi, the section of boundary of Pi that occurs while
traversing from p′ to p′′ in counterclockwise order is termed a patch of Pi. In specific, we
partition the boundary of each Pi ∈ P into a collection of patches Γi such that for any two
points p′, p′′ belonging to any patch γ ∈ Γi, the angle between the outward (w.r.t. the centre
of Pi) normals to respective edges at p′ and p′′ is upper bounded by

√
αε
2 . The maximum

angle between the outward normals to any two edges that belong to a patch γ constructed in
our algorithm is the angle subtended by γ. To facilitate in computing patches of any obstacle
Pi, we partition the unit circle S2 centred at the origin into a minimum number of segments
such that each circular segment is of length at most

√
αε
2 . For every such segment s of S2, a

patch (corresponding to s) comprises of the maximal set of the contiguous sequence of edges
of Pi whose outward normals intersect s, when each of these normals is translated to the
origin. (To avoid degeneracies, we assume each normal intersects a single segment.) Let Γi
be a partition of the boundary of a convex polygon Pi into a collection of O( 1√

αε
) patches.

The lemma below shows that the geodesic distance between any two points belonging to any
patch γ ∈ Γi is a (1 + αε)-approximation to the Euclidean distance between them.
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I Lemma 1. For any two points p and q that belong to any patch γ ∈ Γj, the geodesic
distance between p and q along γ is upper bounded by (1 + αε)‖pq‖ for αε < 1.

Proof. Let e′ be the edge on which p lies and let e′′ be the edge on which q lies. Let c
be the point of intersection of normal to e′ at p and the normal to e′′ at q. Since p and

p

q

r
r′

π −
√
αε
2

e′′

e′

c
√
αε
2

Figure 1 Illustrating the construction in proving the upper bound on the patch length.

q belong to the same patch, the angle between cp and cq is upper bounded by
√
αε
2 , when

the value of αε is small. Let l′ and l′′ be the lines that respectively pass through e′ and
e′′. Also, let r be the point at which lines l′ and l′′ intersect. (Refer to Fig. 1.) For
the small values of

√
αε and due to triangle inequality, the geodesic length of the patch

between p and q is upper bounded by ‖pr‖ + ‖qr‖. Let r′ be the point of projection of r
on to line segment pq. Suppose ∠qrr′ = ∠prr′. (Analysis of other cases is similar.) Then
‖pr‖+ ‖qr‖ ≤ ‖pr′‖

sin(π2−
√
αε
4 )

+ ‖r′q‖
sin(π2−

√
αε
4 )

= ‖pq‖
cos

√
αε
4
≤ (1 +αε)‖pq‖. The last inequality is valid

when αε < 1. J

For each obstacle Pi, the coreset Si of Pi is comprised of two vertices chosen from each
patch in Γi. In particular, for each patch γ ∈ Γi, the first and last vertices of γ that occur
while traversing the boundary of Pi are chosen to be in the coreset Si of Pi. The coreset S
of P is then simply

⋃
i Si.

I Observation 1. The size of the coreset S of P is O( h√
αε

).

For every 1 ≤ i ≤ h, our algorithm uses core-polygon Qi = CH(Si) in place of Pi. For
any single point obstacle Pi in P, the core-polygon of Pi is that point itself. The patch
construction procedure guarantees that each polygonal obstacle in P is partitioned into
patches such that the core-polygon that correspond to every obstacle in P is valid. Let Ω
be the set comprising of core-polygons corresponding to each of the polygons in P. The set
Ω is called the sketch of P. The following lemmas show that Ω facilitates in computing a
(1 + αε)-approximation of the geodesic distance between any two given points in F(P).

I Lemma 2. Let v′, v′′ be any two vertices of obstacles in Ω. Then, distP(v′, v′′) is upper
bounded by (1 + αε)distΩ(v′, v′′).

Proof. Let v1, v2 be any two successive vertices along a shortest path between v′ and v′′
in F(Ω). Let O ⊆ P be the set of obstacles intersected by the line segment v1v2. Let v1
and v2 be respectively belonging to obstacles Pj and Pk. Also, let Γj (resp. Γk) be the set
comprising the partition of boundary of Pj (resp. Pk) into patches. And, let Sj (resp. Sk)
be the coreset of Pj (resp. Pk). Since the line segment v1v2 does not intersect the interior
of the CH(Sj) or CH(Sk), it intersects at most one patch belonging to set Γj and at most
one patch belonging to set Γk. Let v1 and r be the points of intersection of line segment
v1v2 with a patch γ ∈ Γj . (These points might as well be the endpoints of γ.) Then from
Lemma 1, the geodesic distance between v1 and r along γ is upper bounded by (1 +αε)‖v1r‖.
(Refer Fig. 2.) Analogously, let v2 and r′ be the points of intersection of line segment v1v2
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11:6 Approximate Euclidean Shortest Paths

with a patch γ′ ∈ Γk. Then the geodesic distance between v2 and r′ is upper bounded by
(1 + αε)‖v2r

′‖. For any convex polygonal obstacle Pl in O distinct from Pj and Pk, let p′, p′′
be the points of intersection of v1v2 with the boundary of Pl. Since the line segment v1v2
does not intersect the interior of the convex hull of coreset corresponding to Pl, both p′ and
p′′ belong to the same patch, say γ′′ ∈ Γl. Then again from Lemma 1, the geodesic distance
between p′ and p′′ along patch γ′′ is upper bounded by (1 + αε)‖p′p′′‖. We modify v1v2 as
follows: For every maximal subsection, say p′ip′′i , of the line segment v1v2 that is interior to a
polygonal obstacle of P, we replace that subsection with a geodesic Euclidean shortest path
in F(P) between p′i and p′′i .

v1

r p′
p′′

v2

r′

γ

γ′′

γ′

Figure 2 A line segment v1v2 of a shortest path amid Ω intersecting three patches belonging to
obstacles in P.

Let γ1, γ2, . . . , γk be the set Γ of patches intersected by the line segment v1v2. Also, for
every 1 ≤ i ≤ k, let p′i, p′′i be the points of intersections of v1v2 with patch γi ∈ Γ with
p′i closer to v1 than v2 along the line segment v1v2. Then

∑k
i=1 distP(p′i, p′′i ) added with∑k−1

i=1 ‖p′′i p′i+1‖ is upper bounded by (1 + αε)‖v1v2‖. Let v1, . . . , vl be the vertices of P that
occur in that order along a Euclidean shortest path in F(Ω) between vertices v′, v′′ ∈ P.
Then distP(v1, vl) =

∑l−1
i=1 distP(vi, vi+1) ≤ (1 + αε)

∑l−1
i=1 distΩ(vi, vi+1). Note that we do

this transformation for each line segment of the shortest path that intersects any patch. J

Since F(P) ⊆ F(Ω), every path that avoids convex polygonal obstacles in P is also a
path that avoids convex polygonal obstacles in Ω. This observation leads to the following:

I Lemma 3. For any two vertices v′, v′′ of P, distΩ(v′, v′′) ≤ distP(v′, v′′).

Considering the given two points s, t ∈ F(P) as degenerate obstacles, a (1 + αε)-
approximation of the shortest distance between s and t amid polygonal obstacles in P
is computed.

I Lemma 4. For a set P of h pairwise disjoint convex polygons in R2 and two points
s, t ∈ F(P), the sketch S of P with cardinality O( h√

αε
) suffices to compute a (1 + αε)-

approximate shortest path between s and t in F(P).

Proof. Immediate from Observation 1, Lemma 2, and Lemma 3. J

Our approach in computing coresets and an approximate shortest path using these
coresets is quite different from [1]. As will be shown in Section 3, our sketch construction
is extended to compute shortest paths even when P comprises of polygon obstacles which
are not necessarily convex. How our algorithm differs from [1] for the convex polygonal
case is detailed herewith. Let P be the polygonal domain defined with convex polygons
P1, P2, . . . , Ph. In this algorithm as well as in [1], Pi is approximated with Qi, for every
1 ≤ i ≤ h. However, for every 1 ≤ i ≤ h, in our algorithm Qi ⊆ Pi whereas in [1], Pi ⊆ Qi.
Let the new polygonal domain Ω be defined with simple polygons Q1, Q2, . . . , Qh. Unlike [1],
in computing Ω, our algorithm does not require using plane sweep algorithm to find pairwise
vertically visible simple polygons of P. As described above, our algorithm partitions the
boundary of each convex polygon P into a set of patches.
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v′

v′′ C ′′

C ′

Cv

v

Figure 3 Illustrating an admissible cone Cv incident to a coreset vertex v of an obstacle.

2.2 Computing an approximate geodesic shortest path in F(P) using
the sketch Ω of P

Since we intend to compute an approximate shortest path, to keep our algorithm simpler, we
do not want to use the algorithm from [17] to compute a shortest path amid convex polygonal
obstacles in Ω, Instead, we use a spanner constructed with the conic Voronoi diagrams
(CV Ds) [8]. Further, in our algorithm, for any maximal line segment with endpoints r′, r′′
along the computed (approximate) shortest path amid obstacles in Ω, if the line segment
r′r′′ lies in F(Q)−F(P), we replace line segment r′r′′ with the geodesic Euclidean shortest
path between r′ and r′′ in F(P).

Since our algorithm relies on [8], we give a brief overview of that algorithm first. The
algorithm in [8] constructs a spanner G(V,E) for polygonal domain P. Noting that the
endpoints of line segments of a shortest path in F(P) are a subset of vertices of polygonal
obstacles in P, the node set V is defined as the vertex set of P. Let C′ be the set of O( 1

ε )
cones with apex at the origin of the coordinate system together partitioning R2. (The cone
angle of each cone in C′ except for one is set to ε and that one cone has 2π−b 2π

ε cε as the cone
angle.) Let C ∈ C′ be a cone with orientation θ and let C ′ ∈ C′ be the cone with orientation
−θ. For each cone C ∈ C′ and a set K of points, the set of cones resultant from introducing
a cone Cp for every point p ∈ K, is the conic Voronoi diagram CV D(C,K). (Note that as
mentioned earlier, Cp is the cone resulted from translating cone C to have the apex at the
point p.) For a given cone Cv, among all the points on the boundaries of polygons in P that
are visible from v, a point p whose projection onto the bisector of Cv is closest to v is said to
be a closest point in Cv to v. If more than one point is closest in Cv to v, then we arbitrarily
pick one of those points. For every vertex v of P and for every cone Cv, if a closest point p
in Cv − {v} to v is not a vertex of P , then the algorithm includes p as a node in V . Further,
for every vertex v of P and for every cone Cv, an edge e joining v and a closest point p in
Cv − {v} to v is introduced in E with its weight equal to the Euclidean distance between v
and p. For every node v in G that corresponds to a point p on the boundary of P ∈ P, if
p is not a vertex of P, then for every neighbor p′ of p on the boundary of P which has a
corresponding node v′ in V , we introduce an edge e′ between v and p′ into E and set the
weight of e′ equal to the Euclidean distance between v and p′. These are the only edges
included in E. The Theorem 2.5 in [8] proves that if d is the obstacle-avoiding geodesic
Euclidean shortest path distance between any two vertices, say v′ and v′′, of P, then the
distance between the corresponding nodes v′ and v′′ in G is upper bounded by (1 + ε)d. The
CV D(C,K) is computed using the plane sweep in O(|K| lg |K|) time; and, the well-known
planar point location data structure is used to locate the region in CV D(C,K) to which a
given query point belongs to.
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11:8 Approximate Euclidean Shortest Paths

As detailed below, apart from computing a sketch Ω of P, as compared with [8], the
number of cones per obstacle that participate in computing CV Ds amid F(Ω) is further
optimized by exploiting the convexity of obstacles together with the properties of shortest
paths amid convex obstacles. By limiting the number of vertices of P at which the cones
are initiated to coreset S of vertices, our algorithm improves the space complexity of the
algorithm in [8]. Further, by exploiting the convexity of obstacles, we introduce O( 1√

αε
) cones

per obstacle, each with cone angle O(
√
αε), and show that these are sufficient to achieve the

claimed approximation factor.
Let v be a vertex of P that belongs to coreset Si of convex polygon Pi. Let v′, v, v′′ be

the vertices that respectively occur while traversing the boundary of Pi in counterclockwise
order. Also, let C ′ be the cone defined by the pair of rays (

−→
vv′,−

−→
vv′′) and let C ′′ be the cone

defined by the pair of rays (
−→
vv′′,−

−→
vv′). For a coreset vertex v ∈ S, a cone C ∈ C is said to be

admissible at v whenever Cv ∩C ′ or Cv ∩C ′′ is non-empty. (See Fig. 3.) Let p and q be two
points in F(P) such that p and q are not visible to each other due to polygonal obstacles in
P . Let v be a vertex of Pi through which a shortest path between p and q passes. Since any
shortest path is convex at v with respect to Pi, there exists a shortest path between p and q
where one of its line segment lies in C ′, and another line segment of that path lies in C ′′.
Hence, in computing a Euclidean shortest path amid P, it suffices to consider admissible
cones at the vertices of P.

Note that whenever two points s and t between which we intend to find a shortest path are
visible to each other, the line segment st needs to be computed. To facilitate this, for every
degenerate point obstacle p, every cone C with apex p is considered to be an admissible cone.

The same properties carry over to the polygonal domain Ω as well. For any two points p1
and p2 in F(Ω), suppose that p1 and p2 are not visible to each other. Consider any shortest
path τ between p1 and p2. For any line segment ab in τ , ab is either an edge of a polygon in
Ω or it is a tangent to an obstacle O ∈ Ω. In the latter case, ab belongs to an admissible
cone of O. When the polygonal domain is Ω, the following Lemma upper bounds the number
of cones at the vertices of convex polygons in Ω.

I Lemma 5. The number of cones introduced at all the obstacles of Ω is O( h√
αε

).

Proof. Let O be the origin of the coordinate system. Let −→r be a ray with origin at O. (See
Fig. 4.) For any two distinct vertices v′ and v′′ of a convex polygon P , let −→rv′ be the ray
parallel to −→r with origin at v′ and pointing in the same direction as −→r and let −→rv′′ be the ray
parallel to −→r with origin at v′′ and point in the same direction as −→r . Also, let v′1 precede v′
(resp. v′′1 precede v′′) and v′2 succeed v′ (resp. v′′2 succeed v′′) while traversing the boundary
of P in counterclockwise order. Since P is a convex polygon, if every point of −→rv′ belongs to
the cone defined by

−−→
v′1v
′ and

−−→
v′v′2 then it is guaranteed that not every point of −→rv′′ belongs

to the cone defined by
−−→
v′′v′′2 and

−−→
v′′1 v
′′. Extending this argument, if a cone Cv′ is admissible

−→r

v′

v′′

v′′1

v′′2

v′1

v′2

−→rv′−→rv′′

Figure 4 Illustrating that a ray parallel to r can exist in only one admissible cone per obstacle.
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v

p

Figure 5 Illustrating an edge of the spanner.

at v′ then the cone Cv′′ cannot be admissible at v′′. Since the number of coreset vertices per
obstacle is O( 1√

αε
), the number of cones introduced per obstacle is O( 1√

αε
). Further, since

there are h convex polygonal obstacles, number of cones at all the obstacle vertices together
is O( h√

αε
). J

Next, we describe the algorithm to compute the spanner G(V = S ∪ S′, E). The set S
comprises of nodes corresponding to coreset S. The set S′ is a set of Steiner points, as follows.
For every v ∈ S and every admissible cone Cv, let V ′ be the set of points on the boundaries of
obstacles of Ω that are visible from v and belong to cone Cv. (See Fig. 5.) The point p in V ′
that is closest to v, termed the closest Steiner point in Cv to v, is determined and p is added
to S′. An edge e between v and p is introduced in E while the Euclidean distance between
v and p is set as the weight of e in G. Let p be located on a convex polygonal obstacle P .
Further, for every Steiner point p, let v′ (resp. v′′) be the coreset vertex or Steiner point that
lies on the boundary of P and occurs before (resp. after) p while traversing the boundary
of P in counterclockwise order. Then an edge e′ (resp. e′′) between p and v′ (resp. p and
v′′) is introduced in E while the geodesic distance between p and v′ (resp. p and v′′) along
the boundary of P is set as the weight of e′ (resp. e′′) in G. Note that both |V | and |E| are
O( h√

αε
). For any two points s, t ∈ F(Ω), the following Lemma upper bounds the distG(s, t)

in terms of distΩ(s, t).

I Lemma 6. Let G be the spanner constructed from Ω. Let distG(p′, p′′) be the distance
between p′ and p′′ in G. Then for any two points s, t ∈ F(Ω), distΩ(s, t) ≤ distG(s, t) ≤
(1 +

√
αε)distΩ(s, t).

Proof. Theorem 2.5 of [8] concludes that to achieve (1 + αε)-approximation, sinψ − cosψ ≤
−1

1+αε . Expanding sine and cosine functions for the first few terms yield −1 +ψ+ ψ2

2! ≤
−1

1+αε .
Solving the quadratic equation in ψ yields ψ ≤ αε. Since we are using cones with cone angle√
αε in our algorithm, a (1 +

√
αε)-approximation is achieved.

We claim that introducing a subset of cones (admissible cones) rather than all the cones
as used in [8] does not affect the correctness. Let p and q be the vertices of two convex
polygons Pi and Pj respectively. Suppose that pq is a line segment belonging to a shortest
path R between vertices s and t of the spanner computed in [8]. Further, suppose that p
occurs before q when R is traversed from s to t. If the line along pq supports Pi (resp. Pj) at
p (resp. q), then the line segment pq belongs to an admissible cone at p (resp. q). Otherwise,
there exists a line segment in the admissible cone with apex either at a vertex of Pi or at
a vertex of Pj which would yield a shorter path from source s to q without using the line
segment pq. J

Once we find a shortest path SPΩ between s and t amid convex polygonal obstacles in
Ω using the spanner G, following the proof of Lemma 3, we transform SPΩ to a path amid
obstacles in P. Since there are O(h) obstacles in Ω, SPΩ contains O(h) tangents between
obstacles. Let this set of tangents be T . We need to find points of intersection of convex
polygons in P with the line segments in T . For any l ∈ T and Pi ∈ P , by using the algorithm
from Dobkin et al. [12], we compute the possible intersection between l and Pi. Whenever
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a line segment l ∈ T and a convex polygon Pi ∈ P intersect, say at points p′ and p′′, we
replace the line segment between p′ and p′′ with the geodesic shortest path between p′ and
p′′ along the boundary of Pi. Analogously, for every line segment l ∈ SPΩ − T belonging to
an obstacle Pj ∈ Ω, we replace l with the corresponding geodesic path along the boundary of
Pj . We use the plane sweep technique [11] to determine whichever line segments in T could
intersect with the convex obstacles in P . Essentially, the event handling procedures of plane
sweep algorithm replace every line segment in SPΩ that intersects with any obstacle Pj ∈ P
with the shortest geodesic shortest path along the boundary of Pj , so that the resulting
shortest path SPP after all such replacements belongs to F(P).

As part of the plane sweep, a vertical line is swept from left-to-right in the plane. Let L
(resp. R) be the set of leftmost (resp. rightmost) vertices of convex polygons in P. Initially,
points in L and R together with the two endpoints of every line segment in T are inserted into
the priority queue Q. The event points are scheduled from Q using their respective distances
from the initial sweep line position. As the events occur, the event points corresponding
to L,R, and the endpoints of line segments in T are handled and are deleted from Q. The
algorithm terminates whenever Q is empty. As described below, the intersection points
between the line segments in T and the convex polygons in P are added to Q with the
traversal of the sweep line. The sweep line status is maintained as a balanced binary search
tree B. We insert (resp. delete) a pointer to a line segment in T or a pointer to a convex
polygon in P to B whenever leftmost (resp. rightmost) endpoint of it is popped from Q. We
note that before a line segment l ∈ T and P ∈ P intersect, it is guaranteed that l and P
occur adjacent along the sweep line. Hence, whenever l and P are adjacent in the sweep line
status, we update the event-point schedule with the point of intersection between l and P
that occurs first among all such points of intersection in traversing the sweep line from left to
right. By using the algorithm from Dobkin et al. [12], we compute the possible intersection
between l and P . If they do intersect, we push the leftmost point of their intersection to Q
with the distance from the initial sweep line as the priority of that event point. Further, we
store the rightmost intersection point between l and P with the leftmost point of intersection
as satellite data. If the leftmost intersection point between l and P pops from Q, we compute
the geodesic shortest path along the boundary of P between the leftmost intersection point
and the corresponding rightmost intersection point. Further, whenever l and P become
non-adjacent along the sweep line, we delete their leftmost point of intersection from Q.

I Theorem 7. Given a set P of pairwise disjoint convex polygons, two points s, t ∈ F(P),
and ε ∈ (0, 0.6], computing a (1 + ε)-approximate geodesic distance between s and t takes
O(n + h

ε lg h
ε ) time. Further, within an additional O(h lgn) time, a (1 + ε)-approximate

shortest path is computed.

Proof. From Lemma 4, we know that distΩ(s, t) ≤ distP(s, t) ≤ (1 + αε)distΩ(s, t). Let
G be the spanner constructed. From Lemma 6, we know that distΩ(s, t) ≤ distG(s, t) ≤
(1 +

√
αε)distΩ(s, t). As detailed in Lemma 2, algorithm transforms a shortest path between

s and t in G to a path p in F(P). Let distpP(s, t) be the distance along p. From Lemma 2,
distpP(s, t) ≤ (1 + αε)distG(s, t). Hence, distpP(s, t) ≤ (1 + αε)distG(s, t) ≤ (1 + αε)(1 +√
αε)distΩ(s, t) ≤ (1 + αε)(1 +

√
αε)distP(s, t). Since p is a path in F(P), it is immediate

to note that distP(s, t) ≤ distpP(s, t). Therefore, distP(s, t) ≤ distpP(s, t) ≤ (1 + αε)(1 +√
αε)distP(s, t). To achieve (1 + ε)-approximation, (1 + αε)(1 +

√
αε) needs to be less than

or equal to (1 + ε). For small values of ε (ε ∈ (0, 0.6]), choosing α = ε
2 satisfies this inequality.

From here on, we denote αε with ε′. Finding the coreset S of vertices from the convex
polygons in P, and computing the set Ω of core-polygons together takes O(n) time. The
number of coreset vertices is O( h√

ε′ ). The number of cones per obstacle is O( 1√
ε′ ). Therefore,
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the total number of cones is O( h√
ε′ ). For any cone C ∈ C and for any core-polygon O ∈ Ω,

at most a constant number of vertices of O are apexes to cones that have the orientation of
C. Considering a sweep line in the orientation of C, the sweep line algorithm to find the
closest Steiner point to the apex of each cone C (whenever an obstacle intersects with C)
takes O(h lg h) time. Hence, computing the set of closest Steiner points corresponding to all
the cone orientations in C together take O( h√

ε′ lg h).
The number of nodes in the spanner G is O( h√

ε′ ). These nodes include coreset vertices
and at most one closest Steiner point per cone. As each cone introduces at most one edge
into G, the number of edges in G is O( h√

ε′ ). Using the Fredman-Tarjan algorithm [13],
finding a shortest path between s and t in G takes O( h√

ε′ lg h√
ε′ ) time. Hence, computing

the (1 + ε)-approximate distance between s and t takes O(n+ h√
ε′ lg h√

ε′ ) time. For α = ε
2 ,

the value of ε′ is O(ε2). Hence, the result stated in the theorem statement.
For the plane sweep, leftmost and rightmost extreme vertices of convex polygons in P are

found in O(n) time. There are O(h) line segments in T , cardinality of Ω is O(h), and O(h)
line segment-obstacle pairs (respectively from T and P) that intersect. The number of event
points due to the endpoints in sets L,R, and the endpoints of line segments in T is O(h). If
l and P become non-adjacent along the sweep line, deleting their point of intersection from
Q is charged to the event that caused them non-adjacent. The sweep line status is updated
if any of these O(h) number of event points occur. Analogous to the analysis provided for
line segment intersection [11], our plane sweep algorithm takes O(n+ h lg h) time.

Due to Dobkin et al. [12], determining whether a line segment l in SPΩ intersects with an
obstacle P takes O(lgn) time, The preprocessing structures corresponding to [12] take O(n)
space and they are constructed in O(n) time. Further, replacing every line segment between
points of intersection with their respective geodesic shortest paths along the boundaries of
obstacles together take O(n) time. J

Note that the proof of the above theorem requires us to set the value of α to ε
2 .

3 Approximate shortest path amid simple polygons

In this section, we extend the approximation method from previous sections to the case of
simple (not necessarily convex) polygons. This is accomplished by first decomposing F(P)
into a set of corridors, funnels, hourglasses, and junctions [19, 20, 22]. In the following, we
describe these geometric structures, and then we detail our algorithm.

For convenience, we assume a bounding box encloses the polygonal domain P. In the
following, we describe a coarser decomposition of F(P) as compared to the triangulation
of F(P). In specific, this decomposition is used in our algorithm to achieve efficiency. Let
Tri(F) denote a triangulation of F(P). The line segments of Tri(F) that are not the edges
of obstacles in P are referred to as diagonals. Let G(F) denote the dual graph of Tri(F), i.e.,
each node of G(F) corresponds to a triangle of Tri(F) and each edge connects two nodes
corresponding to two triangles sharing a diagonal of Tri(F). Based on G(F), we compute a
planar 3-regular graph, denoted by G3 (the degree of every node in G3 is three), possibly
with loops and multi-edges, as follows. First, we remove each degree-one node from G(F)
along with its incident edge; repeat this process until no degree-one node remains in the
graph. Second, remove every degree-two node from G(F) and replace its two incident edges
by a single edge; repeat this process until no degree-two node remains. The resultant graph
G3 is planar, which has O(h) faces, nodes, and edges. Every node of G3 corresponds to a
triangle in Tri(F), called a junction triangle. The removal of all junction triangles results in
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Figure 6 Illustrating an open hourglass (left) and a closed hourglass (right) with a corridor path
connecting the apexes x and y of the two funnels. The dashed segments are diagonals.

O(h) corridors. The points s and t between which a shortest path needs to be computed
are placed in their own degenerate single point corridors. The boundary of each corridor C
consists of four parts (see Fig. 6): (1) A boundary portion of an obstacle Pi ∈ P, from a
point a to a point b; (2) a diagonal of a junction triangle from b to a point e on an obstacle
Pj ∈ P (Pi = Pj is possible); (3) a boundary portion of the obstacle Pj from e to a point
f ; (4) a diagonal of a junction triangle from f to a. The corridor C is a simple polygon.
Let τ(a, b) (resp., τ(e, f)) be the Euclidean shortest path from a to b (resp., e to f) in C.
The region HC bounded by τ(a, b), τ(e, f), be, and fa is called an hourglass, which is open if
τ(a, b)∩τ(e, f) = ∅ and closed otherwise. (Refer Fig. 6.) If HC is open, then both τ(a, b) and
τ(e, f) are convex polygonal chains and are called the sides of HC ; otherwise, HC consists
of two funnels and a path τC = τ(a, b) ∩ τ(e, f) joining the two apexes of the two funnels,
and τC is called the corridor path of C. Let x and y be the endpoints of πC . Also, let x
be at a shorter distance from b as compared to y. The paths τ(b, x), τ(e, x), τ(a, y), and
τ(f, y) are termed sides of funnels of hourglass HC . We note that these paths are indeed
convex polygonal chains. The apieces x and y together is termed a apex pair of hourglass
HC . Further, the shortest path between x and y along the boundary of HC is the corridor
path between apexes of HC .

We first give an overview of our algorithm for simple polygonal obstacles. A sketch
of P comprising of a sequence of convex polygonal (core-)chains is computed. Each such
core-chain either corresponds to an approximation of a side of an open hourglass or a side of
a funnel. If a simple polygon does not participate in any closed corridor, these polygonal
chains together form a core-polygon. Similar to the convex polygon case, each such polygonal
chain is partitioned into patches. Using these chains, we compute a spanner G. In addition,
the following set of edges are included in G: for every closed hourglass HC and for each
obstacle P that participates in HC , an edge representing the unique shortest path between
the two apieces of HC (as detailed below). After we compute a shortest path p between s
and t in the spanner, for every edge e(r′, r′′) ∈ p, if e is an edge that corresponds to the
closed corridor path then we replace e with a shortest path (sequence of edges) between r′
and r′′ in F(P). The resultant path is the output of our algorithm. The scheme designed in
Agarwal et al. [1] does not appear to extend easily to the case of simple polygons as they
use the critical step of computing partitioning planes between pairs of convex polygonal
obstacles from P.

For every obstacle Pj ∈ P, let Rj be the union of the following: (i) the set comprising
of open hourglass sides whose endpoints are incident to Pj , and (ii) the set comprising of
sections of funnel sides whose non-apex endpoints incident to Pi. Note that the elements
of sets in (i) and (ii) are polygonal convex chains. For every R ∈ Rj , similar to the case
of convex polygonal obstacles, we partition R into patches and the set comprising of the
endpoints of these patches is the coreset of R. (For details, refer to Section 2.) For every
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R ∈ Rj , the core-chain of R is obtained by joining every two successive vertices that belong
to the coreset of R with a line segment while traversing the boundary of R. We construct
a spanner G(V,E) that correspond to core-chains of P using CV Ds. For every admissible
cone Cp at every vertex p of every core-chain, we consider Cp only if Cp has an intersection
with F(P). While noting that Clarkson’s method extends to core-chains defined as above,
the shortest path determination algorithm for simple polygons is the same as for the convex
polygons described in the previous section except for the following. For each apex pair v′-v′′,
an edge e is introduced into G between the vertices of G that correspond to v′ and v′′ with
the weight of e equal to the geodesic distance between v′ and v′′ in the closed hourglass. For
a shortest path p between any two nodes of G, for every edge e ∈ p if both the endpoints of
e correspond to an apex pair a′-a′′ then we replace p with the shortest path between a′ and
a′′ so that that path contains the corridor path of that closed hourglass; otherwise, as in
Lemma 2, we replace the line segment l correspond to e with the sections of l together with
the geodesic paths along the boundaries of patches that l intersects. Thus a shortest path
between s and t in the spanner G is transformed to a path in the F(P). In addition, since
the distance along the path that contains the corridor path between every pair of apexes
is made as the weight of its corresponding edge in the spanner, and due to Lemma 6, the
distance along the transformed path is a (1 + αε)-approximation to the distance between s
and t amid obstacles in P.

I Lemma 8. For a set P of h pairwise disjoint simple polygons in R2 and two points
s, t ∈ F(P), the sketch of P with cardinality O( h√

αε
) suffices to compute a (1+αε)-approximate

shortest path between s and t in F(P).

Computing hourglasses of F(P) using [19, 20, 22] and determining the core-chains together
takes O(n+ h(lg h)1+δ + h lgn) time (where δ is a small positive constant resulting from the
triangulation of F(P) using the algorithm from [3]). Extending the proof of Theorem 7 leads
to the following.

I Theorem 9. Given a set P of pairwise disjoint simple polygonal obstacles, two points
s, t ∈ F(P), and ε ∈ (0, 0.6], a (1 + ε)-approximate geodesic shortest path between s and t is
computed in O(n+ h((lgn) + (lg h)1+δ + ( 1

ε lg h
ε ))) time. Here, δ is a small positive constant

(resulting from the time involved in triangulating F(P) using [3]).

Same as in Theorem 7, the proof of this theorem also needs the value of α to be equal to ε
2 .

4 Two-point approximate distance queries amid convex polygons

We preprocess the given set P of convex polygons to output the approximate distance between
any two query points located in F(P). Like in the previous section, our preprocessing
algorithm relies on [8] and constructs a spanner G. Our query algorithm constructs an
auxiliary graph from G. We compute the approximate distance between the two query points
using a shortest path finding algorithm in the auxiliary graph.

4.1 Preprocessing
The graph G constructed as part of preprocessing in Section 2.2 is useful in finding an
approximate Euclidean shortest path in F(P) between any two vertices in P. Instead of
finding a shortest path between two query nodes in G, to improve the query time complexity,
we compute a planar graph Gpl(V,Epl) from G(V,E) using the result from Chew [6]. Chew’s
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algorithm finds a set Epl ⊆ E in O(|V | lg |V |) time so that the distance between any two
nodes of Gpl is a 2-approximation of the distance between the corresponding nodes in G. We
use the algorithm from Kawarabayashi et al. [23] to efficiently answer (1 + ε)-approximate
distance (length) queries in Gpl. More specifically, [23] takes O(|V |(lg |V |)2) time to construct
a data structure of size O(|V |) so that any distance query is answered in O(( lg |V |

ε )2) time.

I Lemma 10. Let G be the spanner computed for the polygonal domain Ω using the algorithm
mentioned in Subsection 2.2. Let s and t be two points in F(P). Let Gpl be the planar graph
constructed from G using [6]. Further, let distK(s, t) be the distance between s and t in Gpl
computed using the algorithm from [23]. By choosing α = ε

12 , distP(s, t) ≤ distK(s, t) ≤
(2 + ε)distP(s, t).

Proof. From Lemma 4, we know that distΩ(s, t) ≤ distP(s, t) ≤ (1 + αε)distΩ(s, t). From
Lemma 6, we know that distΩ(s, t) ≤ distG(s, t) ≤ (1 +

√
αε)distΩ(s, t). Let distGpl(s, t)

be the distance in Gpl between nodes s and t of Gpl. From [6], distG(s, t) ≤ distGpl(s, t) ≤
2distG(s, t). Further, as mentioned above, distGpl(s, t) ≤ distK(s, t) ≤ (1 + αε)distGpl(s, t).
As detailed in Lemma 2, algorithm transforms a shortest path between s and t in K to
a path p in F(P). Let distpP(s, t) be the distance along p. From Lemma 2, distpP(s, t) ≤
(1 + αε)distK(s, t). Hence, distpP(s, t) ≤ (1 + αε)distK(s, t) ≤ (1 + αε)2distGpl(s, t) ≤
2(1 + αε)2distG(s, t) ≤ 2(1 + αε)2(1 +

√
αε)distΩ(s, t) ≤ 2(1 + αε)2(1 +

√
αε)distP(s, t).

Since p is a path in F(P), it is immediate to note that distP(s, t) ≤ distpP(s, t). Therefore,
distP(s, t) ≤ distpP(s, t) ≤ 2(1 + αε)2(1 +

√
αε)distP(s, t). To achieve (2 + ε)-approximation,

(2)(1 + αε)2(1 +
√
αε) needs to be less than or equal to (2 + ε). For small values of ε

(ε ∈ (0, 0.7]), choosing α = ε
12 satisfies this inequality. J

We note that αε is O(ε2). We suppose that there are O( 1
ε ) cones in C, each cone with a

cone angle O(ε). It remains to describe data structures that need to be constructed during
the preprocessing phase for obtaining the closest vertex of the query point s (resp. t) in a
given cone Cs (resp. Ct). To efficiently determine all these O( 1

ε ) neighbors to s and t during
query time, we construct a set of O( 1

ε ) CV Ds: for every C ∈ C, one CV D that corresponds
to C. The CV Ds are constructed similarly to the algorithm given in Subsection 2.2.

I Lemma 11. The preprocessing phase takes O(n + h
ε2 (lg h

ε ) + h
ε (lg h

ε )2) time. The space
complexity of the data structures constructed by the end of the preprocessing phase is O(hε ).

Proof. Computing the sketch Ω from the given P takes O(n + h
ε ) time. The number of

cones in all the CV Ds together is O(hε ). It takes O( 1
ε
h
ε lg h

ε′′ ) time to compute G which
include computing CV Ds. Due to [6], computing planar graph Gpl with O(hε ) nodes takes
O(hε lg h

ε ) time. Computing space-efficient data structures using [23] takes O( hε′′ (lg h
ε )2)

time. Hence, the preprocessing phase takes O(n+ h
ε′′ lg h

ε + h
ε ((lg h

ε )2) time. Further, data
structures constructed using [23] by the end of preprocessing phase occupy O(hε ) space. The
Kirkpatrick’s point location [24] data structures for planar point location take O(hε ) space. J

4.2 Shortest distance query processing
The query algorithm finds the obstacle-avoiding Euclidean shortest path distance between
any two given points s, t ∈ F(P). We construct a graph Gst from Gpl. (The graph Gpl is as
defined in Subsection 4.1.) For every C ∈ C, if the point s is located in the cell of a point
p of CV D corresponding to C, then we introduce a node corresponding to p into a set Vs.
(Essentially, p is the closest visible point in cone −Cs to point s.) Analogously, we define
the set Vt of nodes for t in Gst. The node set of Gst comprises of nodes in Vs ∪ Vt ∪ {s, t}.



R. Inkulu and S. Kapoor 11:15

The edges of this graph are of three kinds: {s} × Vs, Vs × Vt and {t} × Vt. Since there are
O( 1

ε ) CVDs, the number of nodes and edges of Gst are respectively O( 1
ε ) and O( 1

ε2 ). For
every edge (s, s′) (resp. (t, t′)) with s′ ∈ Vs (resp. t′ ∈ Vt), the weight of edge (s, s′) (resp.
(t, t′)) is the Euclidean distance between s and s′ (resp. t and t′). For every edge (s′, t′)
with s′ ∈ Vs and t′ ∈ Vt, the weight of (s′, t′) is the (2 + ε)-approximate distance between s′
and t′. These weights are obtained from the data structures maintained as in [23]. We use
Fredman-Tarjan algorithm [13] to find a shortest path between s and t in Gst. From the
above, this distance is a (2 + ε)-approximate distance from s to t amid convex polygons in P .

I Theorem 12. Given a set P of h pairwise disjoint convex polygonal obstacles in plane
defined with n vertices and ε ∈ (0, 0.6], the polygons in P are preprocessed in O(n +
h
ε2 (lg h

ε ) + h
ε (lg h

ε )2) time to construct data structures of size O(hε ) for answering two point
(2 + ε)-approximate distance query between any two given points belonging to F(P) in
O( 1

ε6 (lg h
ε )2) time.
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A Appendix

Comparison with previous results is depicted in Table 1.
In Chiang and Mitchell [7], hs (resp. ht) is the number of vertices visible from s (resp.

t). Both the Chen [4] and Arikati et al. [2] output a shortest path in additional O(L) time,
where L is the number of edges of the output path. The r in Arikati et al. [2] is an arbitrary
integer such that 1 ≤ r ≤ n.
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