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Abstract
Reachability is the problem of deciding whether there is a path from one vertex to the other in
the graph. Standard graph traversal algorithms such as DFS and BFS take linear time to decide
reachability; however, their space complexity is also linear. On the other hand, Savitch’s algorithm
takes quasipolynomial time although the space bound is O(log2 n). Here, we study space efficient
algorithms for deciding reachability that run in polynomial time.

In this paper, we show that given an n vertex directed graph of treewidth w along with its tree
decomposition, there exists an algorithm running in polynomial time and O(w log n) space that
solves the reachability problem.
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1 Introduction

Given a graph G and two vertices u and v in G, the reachability problem is to decide if
there exists a path from u to v in G. This problem is NL-complete for directed graphs and
L-complete for undirected graphs [17]. Hence its study gives important insight into space
bounded computations. We will henceforth refer to the problem of directed graph reachability
as Reach. The famous open question L ?= NL essentially asks if there is a deterministic
logspace algorithm for Reach or not. Reach can be solved in Θ(n logn) space and optimal
time using standard graph traversal algorithms such as DFS and BFS. We also know, due
to Savitch, that it can be solved in Θ(log2 n) space [18]. However, Savitch’s algorithm
requires nΘ(logn) time. Wigderson surveyed reachability problems in which he asked if there
is an algorithm for Reach that runs simultaneously in O(n1−ε) space (for any ε > 0) and
polynomial time [19]. Here, we make some partial progress towards answering this question.

In 1998 Barnes et al. made progress in answering Wigderson’s question for general graphs
by presenting an algorithm for Reach that runs simultaneously in n/2Θ(

√
logn) space and

polynomial time [6]. For several other topologically restricted classes of graphs, there has been
significant progress in giving polynomial time algorithms for Reach that run simultaneously
in sublinear space. For grid graphs a space bound of O(n1/2+ε) was first achieved [4]. The
same space bound was then extended to all planar graphs by Imai et al. [14]. Later for planar
graphs, the space bound was improved to Õ(n1/2) space by Asano et al. [5]. For graphs of
higher genus, Chakraborty et al. gave an Õ(n2/3g1/3) space algorithm which additionally
requires, as an input, an embedding of the graph on a surface of genus g [8]. They also gave
an Õ(n2/3) space algorithm for H minor-free graphs which requires tree decomposition of
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12:2 Reachability in High Treewidth Graphs

the graph as an input and O(n1/2+ε) space algorithm for K3,3-free and K5-free graphs. For
layered planar graphs, Chakraborty and Tewari showed that for every ε > 0 there is an O(nε)
space algorithm [9].

Treewidth is a well-studied property of graphs. The value of treewidth can range from 1
(for a tree) to n− 1 (for a complete graph on n vertices). The computational complexity of
many difficult problems becomes easy for bounded treewidth graphs. We can solve classical
problems such as the Hamiltonian circuit, vertex cover, Steiner tree, and vertex coloring in
linear time for bounded treewidth [3]. The weighted independent set problem can be solved
in O(2wn) time [7]. It is NP-complete to find on given input 〈G, k〉 if G has treewidth k [2].
However, an O(

√
logn)-factor approximation algorithm is known [12]. Series-parallel graphs

are equivalent to graphs of treewidth 2. For them, Jakoby and Tantau showed a logspace
algorithm for Reach [15]. Das et al. extended the logspace bound to bounded treewidth
graphs when the input contains the tree decomposition [10]. Elberfeld et al. showed a
logspace algorithm for any monadic second order property of a logical structure of bounded
treewidth [11].

1.1 Our Result
In this paper, we present a polynomial time algorithm with improved space bound for deciding
reachability in directed graphs of treewidth w. In particular, we show the following result.

I Theorem 1. Given a directed graph G, a tree decomposition T of G of treewidth w, and
two vertices u and v in G, there is an O(w logn) space and polynomial time algorithm that
decides if there is a path from u to v in G.

Das et al. presented a logspace algorithm to solve reachability in constant treewidth
graph given a tree decomposition as input [10]. Although they do not explicitly analyze the
space and time bounds of their algorithm to show how it is dependent on the treewidth w of
the graph, a naive analysis would show that their algorithm requires Ω(w2 logn) space and
nΩ(w logw) time.

The graph reachability problem can also be expressed by a constant-size MSO formula.
Hence the result by Elberfeld et al. [11] solves for a more general problem and implies
a logspace algorithm for reachability in constant treewidth graphs. However, the space
required by their algorithm is Ω(p(w) logn) and time required is Ω(nq(w)) where p and q are
super-linear polynomials.

It is worth noting here that both the algorithms of Elberfeld et al. [11] and Das et al.
[10] cease to be polynomial time algorithms for classes of graphs whose treewidth w is not
constant. These include a large number of interesting classes of graphs mentioned in the
introduction. Our algorithm requires O(w logn) space and O(poly(n,w)) time and therefore
has a better time and space complexity for solving the reachability problem when compared
to the results of [11] and [10].

The notion of treewidth is intimately connected with a well-studied notion of vertex-
separators in a graph. It is known that if a graph has treewidth w, then the graph contains
vertex separators of size w + 1. To prove Theorem 1, we proceed in the following way:

We first show that, using the input tree decomposition, vertex separators of size w + 1 of
input graph can be constructed in O(w logn) space and polynomial time.
Using the algorithm for vertex separator as a subroutine, we construct a new binary
balanced tree decomposition of G having O(w) treewidth and logarithmic depth.
We use the new tree decomposition to solve the reachability problem.



R. Jain and R. Tewari 12:3

To solve the reachability problem in the last step, we use the universal sequences of Asano
et al. [5] to determine an appropriate order to process the vertices of the input graph.

Note that we use the input tree decomposition only to compute vertex separators in
the graph. Hence, the method presented here gives a slightly stronger result when dealing
with classes of graph where an O(w logn) space and polynomial time algorithm for finding a
vertex separator of size O(w) is known. For such graphs, we can waive the requirement of
additional tree decomposition in the input and still get similar space and time complexity.
We state this more formally in Theorem 2.
I Theorem 2. Let G be a class of graphs and w : N × N → N be a function such that for
every graph G ∈ G with n vertices and m edges, treewidth of G is atmost w(n,m). If there
exist an O(w(n,m) logn) space and polynomial time algorithm, that given a graph G ∈ G
and a set U of V (G), outputs a separator of U in G of size O(w(n,m)), then there exists an
algorithm to decide reachability in G that uses O(w(n,m) logn) space and polynomial time.
For constant treewidth graphs, the result of Elberfeld et al. [11] is equipped with a logspace
algorithm to construct a binary balanced tree decomposition of O(w) treewidth whose depth
is O(w logn). Since vertex separators can be constructed in logspace for constant treewidth
graphs, our technique can be used to construct a binary balanced tree decomposition of
O(w) treewidth with O(logn) depth in logspace. The depth of our tree decomposition is
independent of w.

1.2 Consequences of our Result
For graphs of treewidth n1−ε, for any ε > 0, our algorithm gives an O(n1−δ) space and
polynomial time algorithm (for some δ). For graphs of polylog treewidth, we show that
reachability can be solved in polynomial time and polylog space.

Graphs which have genus g have treewidth O((gn)1/2); hence our algorithm gives a
O((gn)1/2 logn) space and polynomial time algorithm for it.

For planar graphs, our approach gives a O(n1/2 logn) space and polynomial time algorithm.
Note that for planar graphs, a careful analysis of the separator construction algorithm of Imai
et al. shows that one can construct a separator for planar graphs in polynomial time and
O(n1/2 logn) space [14]. We can use this separator construction and waive the requirement
of having the tree decomposition as input for planar graphs. As a result, we get the best
known simultaneous time space bound for reachability in planar graphs.

Let H be a graph on h vertices. An H minor-free graph is also, by definition, Kh minor
free where Kh is a complete graph on h vertices. Graphs which exclude a fixed minor Kh,
have a treewidth of atmost hn1/2 [1][16]. Hence, for constant h, our approach results in
O(n1/2 logn) space and polynomial time algorithm for H minor-free graphs.

A chordal graph on n vertices with m edges have a separator of size O(m1/2)[13]. The
proof of existence of such a separator in [13] directly leads to a O(m1/2 logn) space and
polynomial time algorithm of constructing it. We can use this separator and obtain an
O(m1/2 logn) space and polynomial time algorithm to solve the reachability problem in
chordal graphs without the input tree decomposition.

1.3 Organization of the Paper
In Section 2 we give the definitions, notations and previously known results that we use in
this paper. In Section 3 we show how to efficiently compute a logarithmic depth binary tree
decomposition of G having a similar width from the input tree decomposition. In Section 4
we give the reachability algorithm and prove its correctness and complexity bounds.

ISAAC 2019



12:4 Reachability in High Treewidth Graphs

2 Preliminaries

For a graph G on n vertices, we denote its vertex and edge sets as V (G) and E(G) respectively.
Let W be a subset of V (G). We denote the subgraph of G induced by the vertices in W by
G[W ]. Let [n] denote the set {1, 2, . . . , n} for n ≥ 1. We assume that the vertices of an n
vertex graph are indexed by integers from 1 to n.

We next define the terminology and notations related to tree decomposition that we use
in this paper. For tree decomposition, we will treat the graph as an undirected graph by
ignoring the direction of its edges.

For a graph G, a tree decomposition is a labeled tree T where the labeling function
B : V (T )→ {X | X ⊆ V (G)} has the following property: (i)

⋃
t∈V (T )B(t) = V (G), (ii) for

every edge {v, w} in E(G), there exists t in V (T ) such that v and w are in B(t), and (iii)
if t3 is on the path from t1 to t2 in T , then B(t1) ∩B(t2) ⊆ B(t3). The treewidth of a tree
decomposition T is maxt∈V (T )(B(t)− 1). Finally the treewidth of a graph G is the minimum
treewidth over all tree decompositions of G. We refer to an element t of V (T ) as a node and
the set B(t) to be the bag corresponding to t.

We assume that in a binary tree, every node has zero or two children. Moreover in a
balanced tree, all paths from the root to leaves have the same length.

The next tool that we would be using is that of separators in graphs. For a subset W of
V (G), a vertex separator of W in G, is a subset S of V (G) such that every component of
the graph G[V (G) \ S] has at most |W |/2 vertices of W .

We state in Lemma 3 the commonly known result about vertex separators in the form
that we would be using it.

I Lemma 3. Let G be a graph and T be a tree decomposition of G. For every subset U of
V (G), there exists a node t in V (T ) such that the bag B(t) is a vertex separator of U in G.

Proof. We root the tree arbitrarily. For a node t in V (T ), we denote its parent by parent(t).
Let C(t) = B(t) ∩ U . We define weights on the nodes of T , such that each vertex of U is
counted in exactly one of the weights. α(t) = |C(t)\C(parent(t))|. Thus,

∑
t∈V (T ) α(t) = |U |.

In a weighted tree, there exists a node whose removal divides the tree into components whose
weights are at most half the total weight of the tree. Let this node be t∗ for the weight
function α. We claim that B(t∗) is the vertex separator for U in G. To prove this, we will
prove that for a connected component H of G[V (G) \B(t∗)], H is a subset of (∪t∈TiB(t))
for some subtree Ti of T \ {t∗}. Since the total weight of this subtree is at most half the
total weight on T , it would follow that the number of vertices of U \B(t∗) contained in this
set would be at most half, thus proving the lemma.

We will now prove that H ⊆ (∪t∈Ti
B(t)). We first observe that a vertex v ∈ V (G) \B(t∗)

can be in the bag of only one of the subtree, since otherwise, it would belong to B(t∗) as
well, due to the third property of tree decomposition. Now, let us assume that there are two
vertices of H which belong to the bags of two different subtrees, say Ti and Tj . Since they
are in a connected component, there will exist a path between them. In this path, there will
exist an edge, whose endpoints v1 and v2 would belong to different subtrees. We thus get a
contradiction to the second property of tree decomposition. J

We use a multitape Turing machine model to discuss the space-bounded polynomial time
algorithms. A multitape Turing machine consists of a read-only input tape, a write-only
output tape, and a constant number of work tapes. We measure the space complexity of a
multitape Turing machine by the total number of bits used in the worktapes.
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If we compose two polynomial time algorithms A1 and A2, requiring space S1(n) and
S2(n) respectively, such that the output of A1 is used as an input to A2, then the total space
used in composing A1 and A2 is S(n) = O(S1(n) + S2(n)). To see this note that whenever
A2 queries for an input bit, we simulate A1 until it yields the desired bit, and then resume
the simulation of A2. The total time would remain polynomial as it would be a product of
two polynomials.

3 Finding a Tree Decomposition of Small Depth

In this section, we show how to compute a binary balanced tree decomposition (say T ′) with
logarithmic depth and treewidth O(w). We require such a tree decomposition because our
main algorithm for reachability (Algorithm 4) might potentially store reachability information
for all vertices corresponding to the bags of treenodes in a path from the root to a leaf. Once
the depth is reduced to O(logn) with bag size being O(w), the algorithm will only need to
store reachability information of O(w logn) vertices.

Thus, we prove the following theorem.

I Theorem 4. Given as input 〈G,T 〉 where G is a graph and T is a tree decomposition of
G with treewidth w, there exists an algorithm working simultaneously in O(w logn) space
and polynomial time which outputs a binary tree decomposition T ′ of G which has treewidth
6w + 6 and depth O(logn).

We will now develop a framework that will help us to prove Theorem 4.
First, we show how to compute a vertex separator of a given set U in G in polynomial

time and O(w logn) space. We cycle through every node in the tree T and store the set of
vertices in B(t). Doing this requires O(w logn) space. Then using Reingold’s undirected
reachability algorithm [17], we count the number of vertices of U in each of the components
of G[V (G) \B(t)]. By Lemma 3, at least one of these sets B(t) would be a separator of U in
G. Its size will be the size of B(t) for some treenode t. Hence it can be at most w + 1. We
summarise this procedure in Lemma 5.

I Lemma 5. Given as input 〈G,T, U〉 where G is a graph, T is a tree decomposition of G
with treewidth w, and U is a subset of V (G), there exists an O(w logn) space and polynomial
time algorithm that computes a vertex separator of U in G of size atmost w + 1.

When G and T are clear from the context, we will refer to the vertex separator of U in G
that is returned by the algorithm of Lemma 5 as sep(U).

3.1 Constructing a Recursive Decomposition
As an intermediate step, we construct a recursive decomposition of the graph which is a tree
whose nodes represent a subgraph of G. The root node represents the entire G. We then
remove a separator from it. We assume inductively that each of the connected components
has its recursive decomposition and connect the root node to the roots of these recursive
decompositions of connected components. We select a separator such that a small number of
bits can encode each node. This recursive decomposition acts as an intermediate to our tree
decomposition. Once we have a recursive decomposition of the graph, we add labels to each
node such that it satisfies the properties of tree decomposition.

I Definition 6. Let Z ⊆ V (G) and a vertex r ∈ (V (G)\Z). Define G〈Z,r〉 to be the subgraph
of G induced by the set of vertices in the connected component of G[V (G) \Z] which contains
r. Define the tree rdtree(Z, r) which we call recursive decomposition as follows:

ISAAC 2019



12:6 Reachability in High Treewidth Graphs

The root of rdtree(Z, r) is 〈Z, r〉.
Let Z ′ = Z ∪ sep(Z) ∪ sep(V (G〈Z,r〉)) and let r1, . . . , rk be the lowest indexed vertices in
each of the connected components of G[(V (G〈Z,r〉) \Z ′]. The children of the root are roots
of the recursive decompositions rdtree(Z ′i, ri) for each i ∈ {1, . . . , k}, where Z ′i is the set
of vertices in Z ′ that are adjacent to at least one vertex of V (G〈Z′,ri〉) in G.

Observe that for the graph G the recursive decomposition tree structure has logarithmic
depth, and we can encode a node 〈Z, r〉 using O(|Z| logn) bits.

I Lemma 7. Let v0 be a vertex in G. Then the depth of the recursive decomposition
rdtree(∅, v0) is at most logn. Moreover, for a node 〈Z, r〉 in rdtree(∅, v0), we have |Z| ≤ 4w+4.

Proof. We prove a more general result that for any set of vertices Z ⊆ V (G) and a vertex
r ∈ (V (G) \ Z), the depth of rdtree(Z, r) is at most logn. Let Z ′ be as in Definition 6. By
Definition 6, the set sep(V (G〈Z,r〉)) is a subset of Z ′. Hence removal of Z ′ divides the graph
G〈Z,r〉 into components each of which is of size at most half that of the size of G〈Z,r〉. Since
r1, . . . , rk are chosen from these components, it follows that the size of G〈Z′,ri〉 is at most
half of G〈Z,r〉. Additionally, in Definition 6 the sets Z ′i are chosen in such a manner that the
graphs G〈Z′

i
,ri〉 and G〈Z′,ri〉 are equivalent. This proves that the size of the graph G〈Z,r〉

halves at each level of the recursive decomposition. Hence rdtree(Z, r) would have at most
logn depth.

We prove the second part of the lemma by induction on the depth of the node 〈Z, r〉
in rdtree(∅, v0). This is trivially true for the root. Now let 〈Z ′i, ri〉 be a child of 〈Z, r〉. Let
Zi be the set of vertices of Z \ sep(Z) which are adjacent to at least one of the vertices
of V (G〈Z′,ri〉) in G, and let Ci be the unique connected component of G[V (G) \ sep(Z)]
whose intersection with G〈Z′,ri〉 is not empty. Since sep(Z) is a separator of Z in G, Ci
will contain at most |Z|/2 vertices of Z. This shows that |Zi| ≤ |Z|/2. By Definition 6, we
know that |Z ′i| ≤ |Zi|+ |sep(Z)|+ |sep(V (G〈Z,r〉))|. The size of sep(V (G〈Z,r〉)) ≤ w + 1 and
sep(Z) ≤ w + 1 by Lemma 5. Lastly by induction |Z|/2 ≤ (4w + 4)/2. Hence it follows that
|Z ′i| ≤ 4w + 4. J

We now show that the recursive decomposition tree corresponding to G can be computed
efficiently as well. To prove this, we give procedures that, given a node in the recursive
decomposition tree, can compute its parent and children efficiently.

Algorithm 1 Computes the children of the node 〈Z, r〉 in rdtree(∅, v0).

Input: 〈G,T, v0, Z, r〉
Output: Children of the node 〈Z, r〉 in rdtree(∅, v0)

1 Compute sep(Z) using Lemma 5
2 Compute sep(V (G〈Z,r〉)) using Lemma 5
3 Let Z ′ := Z ∪ sep(Z) ∪ sep(V (G〈Z,r〉))
4 for v ∈ V (G) do
5 if v ∈ V (G〈Z,r〉) and v is smallest indexed vertex in G〈Z′,v〉 then
6 Let Ẑ := {u ∈ Z ′ | u is adjacent to V (G〈Z′,v〉) in G}
7 Output 〈Ẑ, v〉
8 endif
9 endfor

Algorithm 1 outputs the children of 〈Z, r〉 in rdtree(∅, v0). Note that we don’t explicitly
store V (G〈Z,r〉) but compute it whenever required. That is, whenever we need to check if a
vertex belongs to V (G〈Z,r〉), we check if it is connected to r in the underlying undirected graph



R. Jain and R. Tewari 12:7

of G \ Z using Reingold’s algorithm. The separators in line 1 and 2 both have cardinality at
most w+ 1 and can be computed in O(w logn) space and polynomial time by Lemma 5. The
cardinality of Z is at most 4w+ 4 by Lemma 7. Therefore |Z ′| is at most 6w+ 6. The size of
Ẑ computed is 4w + 4 by Lemma 7. Thus the space required by Algorithm 1 is O(w logn).

Algorithm 2 Computes the parent of the node 〈Z, r〉 in rdtree(∅, v0).

Input: 〈G,T, v0, Z, r〉
Output: parent of the node 〈Z, r〉 in rdtree(∅, v0)

1 Set current := 〈∅, v0〉
2 while 〈Z, r〉 is not a child of current do
3 Let 〈Z ′, r′〉 be the child of current such that G〈Z′,r′〉 contains r
4 Set current := 〈Z ′, r′〉
5 end
6 Output current

Algorithm 2 outputs the parent of 〈Z, r〉 in rdtree(∅, v0). It uses Algorithm 1 as a
subroutine to get the children of a node in rdtree(∅, v0). Hence we can traverse the tree
rdtree(∅, v0) in O(w logn) space and polynomial time. We summarize the above in Lemma 8.

I Lemma 8. Let G be a graph, T be a tree decomposition of G with treewidth w and v0 be a
vertex in G. Given 〈G,T, v0〉 and the node 〈Z, r〉 in rdtree(∅, v0), there exist algorithms that
use O(w logn) space and polynomial time, and output the children and parent of 〈Z, r〉 re-
spectively. As a consequence rdtree(∅, v0) can be traversed in O(w logn) space and polynomial
time as well.

3.2 Constructing a New Tree Decomposition
We now construct a new tree decomposition of G from the recursive decomposition defined
earlier. The new tree decomposition will have the same tree structure as that of the recursive
decomposition. However, we will assign it a labeling function. The subgraph that a node of
the recursive decomposition represents is a connected component obtained after removing a
set of separators from G. The corresponding label for this node in the new tree decomposition
is simply the set of separator vertices in the boundary of this subgraph together with the
separator required to subdivide this subgraph further. We formalize this in Definition 9.

I Definition 9. Let T̂ be the tree corresponding to the recursive decomposition rdtree(∅, v0).
For a node 〈Z, r〉 in rdtree(∅, v0), we define the function B̂(〈Z, r〉) as, B̂(〈Z, r〉) := Z ∪
((sep(V (G〈Z,r〉)) ∪ sep(Z)) ∩ V (G〈Z,r〉)).

We first show that T̂ is a tree decomposition of G as well, with labeling function B̂.

I Lemma 10. The tree T̂ defined in Definition 9 along with the labeling function B̂, is a
tree decomposition of G of width 6w + 6. Moreover, the depth of T̂ is at most logn.

Proof. We claim that for a node v in G〈Z,r〉, there exists a vertex 〈Z ′, r′〉 in rdtree(Z, r)
such that B̂(〈Z ′, r′〉) contains v. We prove this by induction on the depth of the recursive
decomposition rdtree(Z, r). If rdtree(Z, r) is just a single node, then v is in sep(V (G〈Z,r〉)) by
construction. Otherwise v is either in (sep(Z) ∪ sep(V (G〈Z,r〉))) or in one of the connected
components of G[V (G〈Z,r〉) \ (sep(Z) ∪ sep(V (G〈Z,r〉)))]. If v is in (sep(Z) ∪ sep(V (G〈Z,r〉))),
then v is in B̂(〈Z, r〉) and we are done. Otherwise one of the children of 〈Z, r〉 will be
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12:8 Reachability in High Treewidth Graphs

〈Z̃, r̃〉 such that v is in G〈Z̃,r̃〉. Now by induction hypothesis, there exists a vertex 〈Z ′, r′〉
in rdtree(Z̃, r̃) such that B̂(〈Z ′, r′〉) contains v. It follows that every vertex v of V (G) is
contained in the label of at least one of the vertices of T̂ , satisfying the first property of tree
decomposition.

We claim that for any edge (u, v) in G such that {u, v} ⊆ V (G〈Z,r〉)∪Z, either both u and
v are in B̂(〈Z, r〉) or there exists a child 〈Z ′i, ri〉 of 〈Z, r〉 such that {u, v} ⊆ V (G〈Z′

i
,ri〉)∪Z ′i.

Since u and v are connected by an edge, there cannot exist any set of vertices Ẑ such that u and
v are in different connected components of G[V (G)\Ẑ]. Let Z ′ = Z∪sep(Z)∪sep(V (G〈Z,r〉)).
If both u and v are in Z ′, then they are in B̂(〈Z, r〉). Otherwise, let ri be the lowest indexed
vertex in the connected component of G[(V (G〈Z,r〉) \Z ′] which contains either of u or v. Let
Z ′i is the set of vertices in Z ′ that are adjacent to at least one of the vertices of V (G〈Z′,ri〉)
in G. Now, if both u and v are not in V (G〈Z′

i
,ri〉), then one of them have to be in Z ′i. Hence

in all cases, u and v are contained in V (G〈Z′
i
,ri〉) ∪ Z ′i. Hence by induction on the depth of

the tree decomposition T̂ we have that there exists a treenode in T̂ whose bag contains both
u and v, satisfying the second property of tree decomposition.

To establish the third property of tree decomposition we first show that if v is not in
Z ∪ V (G〈Z,r〉), then for no descendant 〈Z̃, r̃〉 of 〈Z, r〉 will B̂(〈Z̃, r̃〉) contain v. We show
this by induction on the depth of the recursive decomposition. If there is only one node
in rdtree(Z, r), then B̂(〈Z, r〉) does not contain v by definition. Otherwise, no connected
component of G[V (G〈Z,r〉) \ Z ′] contains v. Also Z ′i for any of its children will not contain v
as claimed.

Now let 〈Z, r〉 be a treenode in T̂ . We claim that for any child 〈Z ′i, ri〉 of 〈Z, r〉 if a
vertex v is in B̂(〈Z, r〉), then either v is also in B̂(〈Z ′i, ri〉) or no descendant of 〈Z ′i, ri〉 has a
bag corresponding to it which contains v. Since any connected component of G[V (G〈Z,r〉) \
B̂(〈Z, r〉)] cannot contain v, v is not in V (G〈Z′

i
,ri〉) for any child 〈Z ′i, ri〉 of 〈Z, r〉. Now if v

is not in B̂(〈Z ′i, ri〉), then it implies that v is not in Z ′i ∪ V (G〈Z′
i
,ri〉) as well. Hence the third

property of tree decomposition is satisfied as well.
For a vertex 〈Z, r〉 in rdtree(∅, v0), we have |Z| ≤ 4w + 4, sep(Z) ≤ w + 1 and

sep((V (G〈Z,r〉)) ≤ w + 1 as well. Hence B̂(〈Z, r〉) ≤ 6w + 6.
Since the tree T̂ and rdtree(∅, v0) have the same structure, the bounds on their depths

are the same. J

Next, we observe that given 〈Z, r〉, we can compute B̂(〈Z, r〉) in O(w logn) space and
polynomial time. Hence we have the following Lemma.

I Lemma 11. Given a graph G and a tree decomposition T of G with treewidth w, there is
an algorithm that can compute a new tree decomposition T̂ of G having treewidth at most
6w + 6 and depth at most logn, using O(w logn) space and polynomial time. Moreover, the
tree T̂ can be traversed in O(w logn) space and polynomial time as well.

Note that the tree T̂ might not be a binary tree since a separator might disconnect the
graph into more than two components. However, to decide reachability in the later part of
this paper, we require the tree decomposition to have bounded degree as well. We achieve this
by using the following lemma from Elberfeld et al. to get the required tree decomposition T ′.

I Lemma 12 ([11]). There is a logspace algorithm that on the input of any logarithmic
depth tree decomposition of a graph G outputs a logarithmic depth, binary balanced tree
decomposition of G having the same treewidth.
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Now combining Lemma 11 and Lemma 12 we get the proof of Theorem 4.
We observe here that the input tree decomposition T is used only to compute a vertex

separator in G.
The requirement of input tree decomposition can be waived for those classes of graphs

where vertex separators can be constructed in a space efficient manner. For example, in
planar graphs [14] and chordal graphs [13], we can use their respective separator algorithms
as subroutines instead of the algorithm of Lemma 5 in lines 1 and 2 of the Algorithm 1.

4 Deciding Reachability using a Binary Balanced Tree Decomposition

In this section, we show that given a graph G along with a binary balanced tree decomposition
T whose depth is O(logn); there exists an efficient algorithm to decide reachability in G in
O(w logn) space and polynomial time. In particular, we show the following theorem.

I Theorem 13. Given 〈G,T, u, v〉 as input, where G is a graph on n vertices, u and v are
two vertices of G, and T is a binary balanced tree decomposition of G having depth h and
treewidth w, there exists an O(wh+ logn) space and O(poly(2h, w, n)) time algorithm that
solves reachability in G.

We first state the notation required to prove Theorem 13. This notation is commonly
used to describe dynamic programming algorithms which use tree decomposition. Let T
be a rooted binary tree. We denote root(T ) to be the root of T and for a node t ∈ T ,
we denote left(t) and right(t) to be the left and right child of t respectively (the value is
NULL if a child does not exist). For two nodes t and t′ in T , if t′ lies in the path from
root(T ) to t, then we say that t′ is an ancestor of t and t is a descendent of t′. For a
treenode t, let Be(t) denote the set of edges of G whose both endpoints are in B(t). We
define a subgraph of G with respect to the treenode t consisting of the ancestor vertices
of t. Formally, the vertex set is V anc

t =
⋃
{t′ is an ancestor of t}B(t′), and the edge set is

Eanc
t =

⋃
{t′ is an ancestor of t}Be(t′) and the graph Ganc

t = (V anc
t , Eanc

t ). Now, we define a
subgraph of G with respect to the treenode t consisting of the ancestor as well as descendent
vertices of t. Formally, the vertex set is Vt =

⋃
{t′ is an ancestor or descendent of t}B(t′), the edge

set is Et =
⋃
{t′ is an ancestor or descendent of t}Be(t′) and the graph Gt = (Vt, Et).

We assume that the vertices u and v are in root(T ), for otherwise, we can add them in
all of the bags of the given tree decomposition. Also, we assume that n is a power of 2.

We now explain our reachability algorithm. For a node t in the tree decomposition T
consider the graph Gt. Let P be a path of length d from a vertex of V anc

t to another (assume
without loss of generality that d a power of 2). We define a sequence of leaves SEQt,d of T
(see Section 4.1). Each leaf f in this sequence corresponds to a set of at most wh vertices Vf .
Now subdivide the path P into subpaths P1, P2, . . . , Pk such that each Pi completely lies
either in Gleft(t) or in Gright(t). We now use the sequence SEQt,d to give an iterative procedure
to combine the results of the subpaths Pi’s to determine the path P . In Algorithm 4 we
show how to use the sequence SEQt,d to simulate the described method. We show in Lemma
18 that processing SEQt,d is sufficient to determine a path of length at most d between two
vertices in the graph Gt.

4.1 Constructing the Sequence SEQt,d

We will be using universal sequences and the following lemma about it from Asano et al.
to construct the sequence of leaves.
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For every integer s ≥ 0, a universal sequence σs of length 2s+1 − 1 is defined as follows:

σs =
{
〈1〉 s = 0
σs−1 � 〈2s〉 � σs−1 s > 0

where � is the concatenation operation.

I Lemma 14 ([5]). The universal sequence σs satisfies the following properties:
- Let σs = 〈c1, . . . , c2s+1−1〉. Then for any positive integer sequence 〈d1, . . . , dx〉 such that

Σdi ≤ 2s, there exists a subsequence 〈ci1 , . . . , cix〉 such that dj ≤ cij for all j ∈ [x].
- The sequence σs contains exactly 2s−i appearances of the integer 2i and nothing else.
- The sequence σs is computable in O(2s) time and O(s) space.

IDefinition 15. Let T be a binary balanced tree. Let t be a node in T and d be a positive power
of 2. We define a sequence SEQt,d consisting of leaves of T in the following way: If t is not a
leaf then SEQt,d = SEQleft(t),c1 �SEQright(t),c1 �SEQleft(t),c2 �SEQright(t),c2 � · · · �SEQright(t),c2d−1

where ci is the i-th integer in σlog d. Otherwise, if t is a leaf, SEQt,d is 〈t〉 concatenated with
itself d times. We also define SEQt,d(r) to be the leaf at the index r in the sequence SEQt,d.
The length of SEQt,d is the number of leaves in SEQt,d.

We show in Algorithm 3 how to construct the sequence SEQroot(T ),d in O(h+ log d) space.
In Lemma 16 we give a closed form expression for the length of the sequence.

Algorithm to Compute SEQt,d

Algorithm 3 Computes the r-th element of the sequence SEQt,d.

Input: 〈t, d, r〉
1 while t is not a leaf do
2 Let m be the depth of the subtree of T rooted at t
3 Let i∗ be the smallest integer such that (r − 2

∑i∗

i=1 L(m/2, ci)) ≤ 0 where ci is
the i’th integer in the sequence σlog d

4 if r − 2
∑i∗−1
i=1 L(m/2, ci)− L(m/2, ci∗) ≤ 0 then

5 r ← r − 2
∑i∗−1
i=1 L(m/2, ci)

6 t← left(t)
7 else
8 r ← r − 2

∑i∗−1
i=1 L(m/2, ci)− L(m/2, ci∗)

9 t← right(t)
10 endif
11 d← ci∗

12 end
13 return t

I Lemma 16. Let T be a binary balanced tree. Let t be a node in T , d be a positive power
of 2 and h be the depth of subtree of T rooted at t. Then, the length of sequence SEQt,d is
2hd
(
h+log d

log d
)
.

Proof. Let L(h, d) be the length of the sequence SEQt,d. By definition of SEQt,d, we have

L(h, d) =
{

2
∑
c∈σlog d

L(h− 1, c) h > 0
d h = 0
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From lemma 14, we get that σlog d contains exactly d
2i occurrences of the integer 2i. Thus we

have:

L(h, d) =
{∑log d

i=0
d

2i−1L(h− 1, 2i) h > 0
d h = 0

We claim that L(h, d) = 2hd
(
h+log d

log d
)
and we prove this by induction on h. For h = 0, we

see that

2hd
(
h+ log d

log d

)
= d

(
log d
log d

)
= d

Now, we assume the statement to be true for smaller values of h. We see that:

L(h, d) =
log d∑
i=0

d

2i−1L(h− 1, 2i)

L(h, d) =
log d∑
i=0

d

2i−1 2h−12i
(
h+ i− 1

i

)

L(h, d) = 2hd
log d∑
i=0

(
h+ i− 1

i

)
using

(
a
r

)
=
(
a+1
r

)
−
(
a
r−1
)

L(h, d) = 2hd
log d∑
i=0

(
(
h+ i

i

)
−
(
h+ i− 1
i− 1

)
)

L(h, d) = 2hd
(
h+ log d

log d

)
J

I Lemma 17. Let T be a binary balanced tree of depth at most h. Let t be a node of T and
d be a power of 2. The sequence SEQt,d can be constructed in space O(h+ log d).

Proof. We see that L(m, d) is bounded by a polynomial in m and d. For a given integer
r, let i∗ be the smallest integer such that r − 2

∑i∗

i=1 L(m/2, ci) ≤ 0. By the definition,
SEQt,d(r) = SEQleft(t),ci∗ (r−2

∑i∗−1
i=1 L(m/2, ci)) if r−2

∑i∗−1
i=1 L(m/2, ci)−L(m/2, ci∗) ≤ 0

and SEQt,d(r) = SEQright(t),ci∗ (r − 2
∑i∗−1
i=1 L(m/2, ci)− L(m/2, ci∗)) otherwise.

The length of the sequence SEQt,d is at most 2hd
(
h+log d

log d
)
. Hence the number of bits

required to store any index of the sequence is at most log(2hd
(
h+log d

log d
)
) = O(h+ log d). This

gives the space bound of Algorithm 3. J

4.2 Algorithm to Solve Reachability
For a leaf t of T and a vertex v of G we use post(v) for the position of v in an arbitrarily
fixed ordering of the vertices of Gt.

I Lemma 18. Let G be a graph and T be a binary tree decomposition of G of width w and
depth h. Let t be a node of T and d be a power of 2. For each vertex y ∈ V anc

t , y is marked
after the execution of iterations in lines 4 to 13 of Algorithm 4 with values of f in SEQt,d if
there is a marked vertex x in V anc

t and a path from x to y in Gt of length at most d.
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Algorithm 4 Reach(G, T , u, v).

Input: 〈G,T, v, u〉
1 Let R0 be and R1 be two wh bit-vectors
2 Initialize t0 and t1 by two arbitrary leaves of T
3 Initialize all the bits of R0 with 0 and mark u (by setting the bit at position post0(u)

to 1)
4 for every leaf f in SEQroot(T ),n in order do
5 Let i be the iteration number
6 Reset all the bits of Ri mod 2 to 0
7 Let ti mod 2 ← f

8 for all x marked in R(i−1) mod 2 and all y in Vf do
9 if (x, y) is an edge in G OR x = y then

10 Mark y in Ri mod 2 (by setting the bit at position posti mod 2
(y) to 1)

11 endif
12 endfor
13 endfor
14 If v is marked return 1; otherwise return 0.

Proof. We prove this by induction on the depth of subtree rooted at t. The base case is
trivial. Let p be the path of length at most d from x to y such that x is marked and x, y is in
V anc
t . We see that the edges of path p will belong to either Eleft(t) or Eright(t) (or both). We

label an edge of p as 0 if it belongs to Eleft(t), else label it as 1. Break down p into subpaths
p1, . . . , pk such that the edges in pi all have same label and label of edges in pi+1 is different
form label of pi. The endpoints yi of these subpaths will belong to V anc

t , for otherwise yi will
not be in B(t) but since yi has edges of both labels incident on it, it will be in bags of both
subtrees rooted at left(t) and right(t) contradicting the third property of tree decomposition.
Let li be the length of path pi. Since l1 + l2 + · · · + lk ≤ d, by Lemma 14, there exists a
subsequence 〈ci1 , ci2 , . . . , cik〉 of σlog d such that lj ≤ cij .

Consider the subsequence SEQleft(t),ci1
� SEQright(t),ci1

� SEQleft(t),ci2
� SEQright(t),ci2

�
SEQleft(t),ci3

� SEQright(t),ci3
� · · · � SEQleft(t),cik

� SEQright(t),cik
of SEQt,d. We claim that

yj is marked after the iterations with the value of f in SEQleft(t),cij
� SEQright(t),cij

. Since
yj−1 is marked before the iterations and the path pj is either the subgraph Gleft(t) or Gright(t)
having length at most cij , yj will be marked by induction hypothesis. We see that any vertex
present in V anct is present in Gt′ for all leaves t′ that is present in SEQt,d. Therefore, once
such a vertex is marked, it remains marked for the rest of these iterations. Hence, yj is
marked before the iterations with the value of f in SEQleft(t),cij+1

� SEQright(t),cij+1
J

I Lemma 19. On input of a graph G with n vertices and its tree decomposition T with
treewidth w and depth h; Algorithm 4 solves reachability in G and requires O(wh + logn)
space and time polynomial in 2h, n and w.

Proof. Algorithm 4 marks a vertex only if it is reachable from u. The proof of correctness
of the algorithm follows from Lemma 18 and the fact that u and v are both present in
B(root(T )) and u is marked before the first iteration of the for-loop in line 4.

We first analyze the space required. The size of bit-vectors R0 and R1 is wh. t0 and t1
are indices of nodes of T . The space required to store index of a vertex of T is O(h). Space
required to store a vertex of G is O(logn), and post(x) for a node t and a vertex x can be
found in O(logn+ h) space. Hence the total space required is O(wh+ logn).
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We now analyze the time bound. By Lemma 16, the size of SEQt,d is polynomial in 2h
and d, the number of iterations in the for-loop of line 4 is thus a polynomial. The other lines
do trivial stuff, and hence, the total running time of the algorithm is polynomial. J

Theorem 13 follows from Lemma 19. Combining Theorem 13 and Theorem 4 we get the
proof of Theorem 1. Theorem 2 follows in a similar way. We use the separator algorithm
which exists due to the hypothesis of Theorem 2 as subroutines instead of the algorithm of
Lemma 5 in lines 1 and 2 of the Algorithm 1. The rest of the analysis is similar.
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