-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Measure and Conquer for Max Hamming Distance
XSAT
Gordon Hoi

School of Computing, National University of Singapore,
13 Computing Drive, Block COM1, Singapore 117417, Republic of Singapore
€0013185@u.nus.edu

Frank Stephan

Department of Mathematics, National University of Singapore,

10 Lower Kent Ridge Road, Block S17, Singapore 119076, Republic of Singapore
School of Computing, National University of Singapore,

13 Computing Drive, Block COM1, Singapore 117417, Republic of Singapore
fstephan@comp.nus.edu.sg

—— Abstract

XSAT is defined as the following: Given a propositional formula in conjunctive normal form, can
one find an assignment to variables such that there is exactly only 1 literal that is true in every
clause, while the other literals are false. The decision problem XSAT is known to be NP-complete.
Crescenzi and Rossi [12] introduced the variant where one searches for a pair of two solutions of
an X3SAT instance with maximal Hamming Distance among them, that is, one wants to identify
the largest number k such that there are two solutions of the instance with Hamming Distance k.
Dahll6f [15, 16] provided an algorithm using branch and bound method for Max Hamming Distance
XSAT in O(1.8348™); Fu, Zhou and Yin [8] worked on a more specific problem, the Max Hamming
Distance X3SAT, and found for this problem an algorithm with runtime O(1.6760™). In this paper,
we propose an exact exponential algorithm to solve the Max Hamming Distance XSAT problem in
0(1.4983™) time. Like all of them, we will use the branch and bound technique alongside a newly
defined measure to improve the analysis of the algorithm.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases XSAT, Measure and Conquer, DPLL, Exponential Time Algorithms
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.15

Funding Frank Stephan: supported in part in part by the Singapore Ministry of Education Academic
Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112.

Acknowledgements The authors would like to thank the anonymous referees of ISAAC 2019 for
useful suggestions. Furthermore, the authors would like to thank internet companies for putting
services like Wolfram Alpha Equation Solver, Firefox Scratchpad and Google Scholar for free onto

the internet.

1 Introduction

The Satisfiability problem has been an important part of complexity theory and continues
to be to this age. Given a Boolean formula ¢ in conjunctive normal form (CNF) , can we
find an assignment to the variables such that there are at least 1 literal in each clause that
evaluates to “True”. There are many variants of the satisfiability problem to date and many
are shown to be at least as hard as it. One variant that we will consider in this paper is
the exact satisfiability problem (XSAT). Given a boolean formula ¢ in CNF, can we find
a satisfying assignment such that exactly 1 literal in each clause is true while all the other
literals are false. If we restrict the number of literals that can appear in any clause, then the
problem comes as XkSAT, where k is the maximum number of literals that appear in any
clause. Both XSAT and X3SAT are known to be NP-complete.
?. Gordon Hoi and F‘ljank Stephan; .

5v icensed under Creative Commons License CC-BY
30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 15; pp. 15:1-15:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/248536545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:e0013185@u.nus.edu
mailto:fstephan@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.ISAAC.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

Measure and Conquer for Max Hamming Distance XSAT

There are no exact polynomial time solution for these problems unless P = NP. As such,
one has to resort to designing exponential time algorithms to solve these problems in the
exact manner. One common way of designing exact algorithms is to build DPLL [10, 9] style
algorithms. The idea behind is to branch over a selected variable in order to decompose
the problem into smaller subproblems and then solve them recursively. Every branching
algorithm contains two kinds of rules: simplification and branching rules. Simplification rules
are used to simplify the problem or to terminate the algorithm. Branching rules, on the
other hand, are used to recursively break the problem down into smaller subproblems. For
more on this topic, we refer the reader to chapter 2 of the textbook of Fomin and Kratsch [4].

The overall runtime to decide XSAT has been well-explored. Dahllof, Jonsson and Beigel
[17] gave an algorithm in O(1.1907™), improving the current state of the art from O(1.2299™);
later Byskov, Maden and Skjernaa [7] improved it to O(1.1749™). The algorithms mentioned
here gives a solution to a particular XSAT instance. However, there are times when we want
to consider many solutions and we want to see how “different” are these from one another.
For example, consider the UNIQUE SAT problem [1], where there must be only 1 solution to
this problem. On the other hand, for the usual satisfiability problem, the number of solutions
for that formula can vary and the solutions can be very “different” from one another.

To make precise this notion of “different” solution, the definition of the hamming distance
problem captures this combinatorial aspect naturally. The Max Hamming Distance problem
asks, given a formula ¢ in CNF, what is the maximum number of variables that can differ
between any two solutions to ¢? In this paper, we’ll study the Max Hamming Distance
XSAT problem where all solutions must satisfy a given XSAT instance. In fact, one may
note that a solution to the Max Hamming Distance XSAT problem can even yield a solution
to solve the XSAT decision problem. It closely resembles a counting problem and since it is
more complex than a XSAT decision problem, a larger overall runtime than O(1.1749™) may
be expected.

Dahllof [15] first gave an algorithm for Max Hamming Distance XSAT in O*(2") and
an improved version in O*(1.8348™), where the notation O*(.) denotes the suppression of
the polynomial terms. The first algorithm enumerates all possible subset of all sizes while
checking that they meet certain condition. The second algorithm uses techniques found in
DPLL algorithms. Fu, Zhou and Yin [8] worked on the X3SAT problem instead and gave an
algorithm to determine the Max Hamming Distance of two solutions of an X3SAT instance
in time O*(1.6760™).

In this paper, we will propose an algorithm to solve the Max Hamming Distance XSAT
in 0(1.4983™). Since X3SAT is a more specific version of an XSAT instance, our algorithm
practically solves both problems in a shorter overall runtime. Like the above authors, our
algorithm is also a DPLL algorithm which consists of branching and simplification rules.
The novelty in this paper is the designing of branching cases used in combination with a
nonstandard measure. If we were to use the standard measure, the algorithm takes O(1.5761")
(7(7,1)% = 1.5761), while the use of a nonstandard measure brings the same bottleneck down
to 0(1.4983™). This on the other hand meant that we have to pay special attention to some
cases. We'll explain them in greater detail in the next section. In addition, our algorithm
does a little more than just outputting the number to compute the Max Hamming Distance
XSAT. It outputs a polynomial p =3, apu® such that the coefficient ay, is the number of
pairs of solutions with Hamming distance k of the given XSAT instance. In other words, we
form for each pair of solutions the polynomial ©* where k is the Hamming distance of these
solutions and then p is the sum over all the so obtained polynomials in the formal variable w.

G. Hoi and F. Stephan

2 Preliminaries

In order to analyse the time complexity of DPLL algorithms, one can consider search trees
to help us illustrate the branching rules. One can consider the root of the search tree as
the whole problem, and the successive child nodes as smaller instances of the problem when
applying the branching algorithm. Using the search tree generated by the DPLL algorithm,
if we can bound the number of leaves in the tree, then we will know the worst case runtime
of this algorithm.

Kullmann [11] is one of the authors describing a technique to analyse DPLL algorithms;
furthermore, Eppstein [2, 3] dealt with this technique in algorithms on graph colouring
and more generally backtracking algorithms using the method of quasiconvex analysis of
algorithms. The technique is to analyze each branching rule of an DPLL algorithm as
follows: Let T'(n) denote the time needed for n variables, or more precisely the number
of leaves of the search tree. Then the runtime of that branching rule is given by T'(n) =
T(n—a1)+T(n—a2)+...+T(n—a,), where r denote the number of branches (or child

nodes), r > 2, generated from that node and each branch ¢ removes a; many variables.

This can then be formulated as a linear recurrence x™ = ™% + "% 4 ... + 2" % and
T(a1,a2,...,a,) =min{z > 1: 27 4z %+ . 42~ % < 1} is then the solution to the linear
recurrence and T'(n) = 7(a1, a2, ...,a,)". This 7(a1,as,...,a,) is known as the branching
factor. Note that a1 > af, then 7(a1, ag, ...,a,) < 7(a}, az,...,a,) and 7(i +¢€,j —€) < 7(4,),
for all 4, j,e with 0 <i < j and 0 < e < £3°.

A more sophisticated technique of analysing the runtime of branching algorithms is

measure and conquer; a typical reference to this are by Fomin, Grandoni and Kratsch [5].

See also the textbooks of Downey and Fellows [13] and of Fomin and Kratsch [4]. Tt focuses
on designing a new measure instead of changing the algorithm and a measure is a weight
assigned to a variable in our case. Typically, a measure should observe 3 properties:

A measure should be at least 0;

The measure of an instance of a subproblem obtained after branching should be smaller

than the measure of the instance before branching;

The measure of an instance should be bounded above by some function on the parameter

of the problem.
In simple measure, every variable is given a weight of 1 and eliminated variables are given
a weight 0. When measure and conquer is used, usually one designs a new nonstandard
measure in the hope of bringing down the analysis of algorithm further without changing the
algorithm. One may then again apply Kullmann’s technique to solve the linear recurrence
under the new measure to obtain the running time of the branching rule.

3 High-level description of algorithm

We give a high level description of the algorithm here before giving the whole algorithm.

To know the Max Hamming Distance of a given XSAT instance, we consider each pair of
solution and the number of variables that each pair differs. Therefore, to achieve this, we
will take in two identical instances of ¢, we call it 7 and @2 such that ¢ = @9 and branch
them individually. Through the course of branching, ¢1 and ¢, will differ later on.

The idea here is to branch whenever cases arise that match our branching cases. Our aim
is to break connected components of clauses together into smaller isolated sets of clauses;
this is done by first breaking chains of length 6 or more and second by branching variables
that have 8 or more neighbours. Once they are small enough, we can brute force the Max
Hamming Distance from the remaining sets of small isolated cliques. Note that the Hamming

15:3

ISAAC 2019

15:4

Measure and Conquer for Max Hamming Distance XSAT

Distance can only be computed once the same variable on both ¢; and ¢ have been branched.
Suppose that the branched i-th variable z; ; and z2 ; have the same value, then they will have
Hamming distance 0 and represent this value as u® = 1. Otherwise, they have different values
and they will have Hamming Distance 1 and we represent this as u! = u. As we build the
search tree, and we traverse a path from the root to the leaf, we multiply all the polynomials
along each edge of the path. Finally, we form the sum all the multiplied polynomials along
each path up.

We use polynomials to represent our Hamming Distance. The degree k of the polynomial
denotes the Hamming Distance k and the coefficients of degree k denote the number of
pairs of solution having Hamming Distance k. The notion of polynomials allow us to add
and multiply together which makes it easier to understand. The reader might also consult
Example 11 below for a better understanding of the algorithm.

4 A new measure

Here, we define the measure that we will be using throughout the entire algorithm. Given
any variable x;, we give the following formulas for weight w; of variable z; and measure p as

1, if x; has at least 3 neighbours; Z <
Wi = = w; < n
"7)0.905813, otherwise: K i

Here a neighbour is defined as a variable that appears alongside with it in the same clause, see
Definition 1 below. So most cases of weight 0.905813 are variables occurring in exactly one
clause and this has 3 literals. So if the formula consists of clauses (a, b, ¢,d), (¢,d, e, f), (f, g, h)
the weight of a,b,c,d, e, f is 1 each and the weight of g, h is 0.905813 each; for example, a
has the neighbours b, ¢, d, ¢ has the neighbours a, b, d, e, f and g has the neighbours f, h.

The idea of choosing the reduced weight for variables with two or less neighbours is
that creating such variables, by branching a node in a 4-clause, should give some savings
in anticipation of the further savings done by handling 3-clauses. Furthermore, the value
0.905813 is chosen by a computer program optimising the runtime and mainly satisfies that
31/(3:0:905813) and 7(1 + 4 -0.094187,7)? are both bounded by 1.4983, which are the estimate
of the basis of the exponentiation in Case 2 and the bottleneck of Case 1, respectively. Here
note that 0.094187 = 1 — 0.905813.

5 The algorithm in detail

We give a few definition that will be needed throughout the algorithm.

» Definition 1. A wvariable x occurs in a clause iff the clause contains at least one of the
literals x and —x. Two variables are neighbours iff they are different and occur jointly in at
least one clause; two clauses are neighbours iff there is at least one variable occurring in both
of them.

For example, if there are clauses (a,b,c), (¢, d, e), (e, f,g) then the neighbours of the variable
c are a, b, d, e; the clause (¢, d, e) is a neighbour of the clause (a,b,¢), but (e, f,g) is not a
neighbour of (a, b, ¢).

» Definition 2. We say that a clause c is isolated if for every variable x; in the clause ¢
does not appear in any other clauses. We say that a variable is a singleton if it appears, as
negated or an unnegated literal, in exactly one clause.

G. Hoi and F. Stephan

» Definition 3. We say that two variables x and y are linked together if there are up to 3
clauses which allow together to derive that either x = y or x = —y. If two variables are
linked, we can remove one variable, say y, by replacing all occurrences of y by respectively
x or ~x. We write x ~ y. If there are two clauses overlapping with each other, we call the
non-overlapping variables that appear in the two clauses as outside variables.

» Definition 4. A chain is a sequence C1,Cy,...,Cy of clauses such that C;,C; share at
least one variable iff i — j| <1 and k is the length of the chain.

For example, the chain («, b), (b,d, a), (a,e,c), (¢, B) in Figure 12 is a chain of at least length
4 and (a, b,), (c,d, e) is a chain of length 2. Figure 5 is not a chain, as all three members
have the joint variable a.

Algorithm MHXSAT (Max Hamming Distance XSAT).
Input: ¢ and @3, where 1 = @2 and both are instances are XSAT; A set of polynomials
Pib, j,b,; () for each possible pair (4, b;, y;,b;) of variables x; in ¢ and y; in ¢ including
specific variables g, y9 which only occur with value by = 0 and ¢y = 0.
Initial Recursive Call: Call algorithm with ¢1, @2 both being the initial formula and
the polynomials p; ; ;»» be defined for all ¢, j, b, " such that (¢ is index of z; and b € {0,1}
ori=0Ab=0) and (j is index of y; and &' € {0,1} or j = 0 A D = 0); the initial value
Dip,jb is as follows: if ¢ = j and b # b’ then p; p ;i (u) = w else p;p o (w) = 1.
Output: a formal polynomial p(u) =), apu® where for each k are aj, pairs of satisfying
assignments where the two assignments have Hamming distance k.
Label Start.
Simplification for ¢;.
If there is a clause o where, whatever values one chooses for the variables, the sum of
the literals is not 1 Then Return with the polynomial p(u) = 0.
If there are clauses «, 8 with a literal using x; occurring at least in o and a value b;
which is the only value from 0,1 for x; such that a, 8 can be made true Then Begin
replace x; by the constant b; everywhere, update po 0,j.0' = P0,0,5,b’ * Pi,b;,5,pr and remove
x; from the set of possible variables and i from the possible indices of polynomials on
the ¢1-side and Goto Start; End.
If there is a clause o mentioning exactly two variables z;,z; in the literals such that
one can deduce either x; = x; or x; = —x; for all possible assignments making « true
and there is at least one clause which contains exactly one of z;,z; and also a further
variable in some literal Then Begin replace x; everywhere by x; or —x;, respectively,
and update pj;p k,br = Pj bk, * Pi,bk,b’ OF Dj b kb’ = Djbk,b * Pi,1—b,k,br i the respective
case for all b,b" € {0,1} and indices k on the ps-side and remove z;,4 from the list

of possible variables and indices of ¢; /* this is called linking */ Goto Start; End.

/* Note that the only case where one cannot link the variables is the one where one
variable occurs in two literals in the clause, say x; and —x; or two times z;; this case
is already caught by the previous case, as either xz;, —x; both occur and the literal
containing x; must be 0 or x; occurs twice and x; must be 0. */

If there are clauses of form z; V o and —z; V 8 in ¢ and z; does not have 10 or
more neighbours of weight 0.905813 Then Begin update for all z; occurring in
a with b, = 1 if x; is the literal in « and by, = 0 if —x; is the literal in « the
polynomials as pg b, ..’ = Pk,be.i,b’ * Di0,5,6r and for all z, occurring in 8 with b, =1
if zy is the literal in 8 and with by = 0 if -y is the literal in 5 the polynomials as
Dh,bi,j,b' = Phbjb’ - Dij1,jp for all variables y; on the po-side and all o’ = 0,1 and

15:5

ISAAC 2019

15:6 Measure and Conquer for Max Hamming Distance XSAT

6

replace all clauses of the form x; Vv by 8V v and all clauses of the form —z; V § by
a V¢ and remove x;,¢ from the list of possible variables and indices of ¢; /* this is
called making a cut or also called resolving x; */ Goto Start; End.

Simplication for 5. Do the actions analogue to those for ¢, given above and go back
to Start whenever any of these actions has been performed.
Branching for ¢;.

If there is a clause of form « V 8 of ¢ such that branching a = 1 versus a = 0 has
branching factor at most 1.4983 as indicated in Proposition 5 or List 1 (= Proposition 6)
or List 2 (= Proposition 7), in this order of priority, and the subclauses «, 8 both contain
at least one literal then compute p = MHXSAT (1 A @, @2, pols) + MHXSAT (1 A
B, 2, pols) and go out with Return(p) End. /* This is called branching o = 1 versus
« = 0; for doing the branching, the only requirement is that there is a clause in 1 of
the form a Vv § where both «, 5 have at least one literal. After doing all choices by
Proposition 5, one can w.l.o.g. assume by cut, branching and renaming that all clauses
in 7 contain only positive literals; after doing all choices of List 1, there are except for
isolated components of size up to six, no clauses in 7 with a multiple overlap; after
doing all choices of List 2, there are no proper chains of length 6 or more in ¢; and no
variables with more than 7 neighbours. */

Branching for ;. Do the actions analogue to those for ¢, given above.

Now none of the above cases applies. Note that no variable has more than 7
neighbours (unless it is in an isolated component of size 9 by List 2 item 3) and no proper
chain is longer than 5 clauses; thus both formulas are split into isolated components
which by Proposition 8 contain at most 1364 variables and by a more involved argument
with a slightly modified algorithm in Proposition 14 in the appendix at most 67 variables.
Measure ¢; and @9 and do the following with the smaller task, say with ¢;.

Compute an explicit list of satisfying assignments for ¢; only using the surviving
variables x; obtaining a list of vectors with entries b; for each i # 0;
Compute for each assignment (b;) an updated list of polynomials pols obtained by
updating the previous polynomials to po.o,j,6r = P0,0,5,6' - i0Ds,b;,5,0'
For each (b;), pols Do Begin
For each component of variables and clauses C' in ¢y compute all possible
assignments (b;) of the y; € C and update

0,0,0,0 = P0,0,0,0 * (Z H P0,0,5,5;)-End

assignment (bj) of C xzj occurring in C

Let p be the sum of all the pp 0,0 calculated for the above list of (b;),pols and
Return(p).

The Simplifications and the Branchings from List 1 and List 2

» Proposition 5. If a,—a appear both in clauses then either one can do a cut without
increasing the weight or one can branch a with branching-factor below 1.31719.

Proof. For the simplifications, as they remove variables, one should not expect problems.
However, there is one case, namely making the cut. In the case of a cut eliminating variable
d, one replaces clauses dV a and =dV 8 by aV 8 and this increases the number of neighbours
of the variables in the disjunctions a and 8 and might therefore increase the weights of some
variables from 0.905813 to 1. If there are at most 9 such variables, the saving of removing
d is at least 0.905813 while the weights going up are at most 9 - 0.094187 < 0.905813 and

G. Hoi and F. Stephan

there is no problem; here note that 1 — 0.905813 = 0.094187. If there are at least 10 such
variables, one can see that for both cases d = 0 and d = 1, some additional literals are
set to 0 and therefore variables are eliminated, thus one can branch d instead of making a
cut and the worst case is that the eliminated variables are distributed 2 on one side and
all others on the other side, hence one has 7(1 + 2 -0.905813,1 + 8 - 0.905813)? < 1.31719.
For that reason, one can assume when reaching the branching case, that all variables are
non-negated — if a variable d is negated everywhere, one replace —d by d everywhere and
adjusts the polynomials accordingly. <

Now, we begin to analyse the time needed for each rule in the algorithm. We will omit the
simplification rules and instead only analyze the branching rules since the simplification
rules do not increase the number of leaves of the search tree. Before we go on to analyze
the runtime complexity, we give an example of the different branching cases below in List 1
and List 2. List 1 contains all the different cases that we handle when there are two or more
variables that appear between two clauses. List 2 contains all the different branching cases
where there is only a common variable between two clauses.

List 1.
Figure 1 List 1 Item 1. Figure 2 List 1 Item 2.
T A oy > T D Dy
Figure 3 List 1 Item 4 with 7 vars. Figure 4 List 1 Item 4 with 7 vars.

Figure 5 List 1 Item 3. Figure 6 List 1 Item 4 with 8 vars.

This list gives how to handle overlaps between of two or more variables between two clauses.
Furthermore, the variables are in each clause listed nonredundantly, so if a clause is («, 3),
the two lists of variables o and S are disjoint. Lower case single letters always refer to single
variables. Note that the case that an isolated component with up to six variables is not
covered, where isolated means that no other clause has some but not all variables from this
component. Such components are treated in Case 2. In the figures above, primed Greek
letters like o/, o’ denote the variables in the corresponding list of variables like « in this case.
Furthermore, we indicate only those clauses which are relevant; additional clauses might
connect to those given in the figures or case distinction, unless explicitly said otherwise.
1. (d,), (a, B) where «, § are lists of literals not containing d and « has at least two variables.
Now one can see that d = § and by adding —d on both sides, one gets 1 = —=d + (.
Thus one has the formulas (d, @), (—d, §) and these allow a cut, as in the last item of the

15:7

ISAAC 2019

15:8

Measure and Conquer for Max Hamming Distance XSAT

Simplification part of the algorithm. In the case that making the cut would cause more
than 10 variables to be upgraded from weight 0.905813 to 1 and therefore the measure
would go up, one does not make the cut but instead branches the variable d. In the case
of a branching, note that there is at least one variable in 8 and furthermore d has weight
1; furthermore, the literals with weight 0.905813 are except a perhaps single one in £ all
connected to d, as —d was just introduced and the variables in o have weight 1. This
gives the branching factor 7(1 + 0.905813,3 + 10 - 0.905813)2 < 1.2900. For example in
Figure 1, |a| = 2, there are 3 outside variables.

. (B,a), (a,b,¢), (¢, d) with § containing some variable d not in («, b, ¢) and «, 8 have both

at least two variables.

If 6 = bV d then the situation of Item 1 applies after some renaming, as the clauses
(d,e,b), (¢, b,) exist. Thus this case is already handled.

If § contains at least three variables including b then d has weight 1 and will in the case
a = 0 be set to 0 again and the branching factor is at most 7(3,4)? < 1.4903.

If § does not contain b then the case o = 0 allows to link b to ¢ and removes the variables
in @ and b which all have weight 1 and « = 0 allows to remove those in 3, b, ¢ which all
have weight 1 and so the branching factor is again at most 7(3,4)% < 1.4903.

For example in Figure 2, we have two 4-clauses with overlapping part a consisting of two
variables.

. (B,a,d),(a,d,v), (a,b,0) or (8,a,d), (a,d,~), (a,b,d,d) and Items 1,2 do not apply and

|B] = |7| = 2. Now every subclause containing variables of § is a subclause of (3, a,d)
and every subclause containing variables of v is a subclause of (v, a,d) and b does not
occur in a, d, 3,7.

One branches a +d = 0 versus a+d = 1. If a + d = 0 then the weight of all the variables
in 3,7 is reduced from 1 to 0.905813. If a + d = 1 all variables in (3, are set to 0 and
either a can be linked to d or b can be set to 0, depending on what the third clause is. So
the branching factor is at most 7(2 + 4 - 0.094187,4 + 0.905813)? < 1.4888.

For example in Figure 5, we have the variables a, d as the overlapping variables and we
have [§] = 1.

. Not Items 1,2,3 and |«| + |5] + |y| > 7. This in particular means that a, 3, have at

least two variables. As Item 2 does not apply, if 8 has two exactly two variables then all
clauses containing variables from § are subclauses of («, 3), similarly for 7. One branches
a =0 versus a = 1.

Now consider the case where o has two variables and 3, have together exactly five
variables, so one of them, say (3, has exactly two variables. Now consider the subcase
that one or both variables from « are in a further clause containing a b not occurring
in «, B,7. Now a = 1 makes the variables in 3, all 0 and further allows to either link
the variables in a or makes b = 0; furthermore, @ = 0 makes the variable in # have a
weight 0.905813 while before they had weight 1. Thus the branching factor is at most
7(2+2-0.094187,5 + 0.905813)% < 1.4498. In the other subcase that has exactly two
variables and they do not occur in clauses with variables outside «, 3,7, one takes into
account that choosing a = 1 reduces the weight of the variables of o from 1 to 0.905813.
So the branching factor is at most 7(2 + 2 - 0.094187,5 + 2 - 0.094187)2 < 1.4917.

If |o| = 2 and |B] + |y| > 6 then the branching factor is at most 7(2,6)? < 1.4656 without
any further assumptions. If |a| > 3 then the branching factor is at most 7(3,4)? < 1.4903.
In Figure 3, we have that |a| = 3 and we have 4 outside variables where |5| + || = 4;
Figures 4 and 6 represent typical cases where |a] = 2 and || + || > 5.

G. Hoi and F. Stephan

This case distinction shows that one can get rid of all multiple overlaps which are in
components larger than six variables, if a component contains only (a, 3), (8, v) with «, 3,
having each two variables and perhaps further clauses only using these variables. This
situation allows no simplification, but one can let it stand, as the component is already
sufficiently small and deal with the other components in ¢; and o until those are also
broken down.

To see the completeness of the above case-distinction in List 1, note that Item 1 deals
with the case that one of the neighbours of « is only a single variables d; in all other cases it
is assumed that the basic situation is (3, &), (o, y) with «, 8 and v each having at least two
variables. Item 2 considers the case that « has a neighbour bV ¢ where the variable ¢ occurs
in a further clause with at least one variable different from those in «, b, c. Item 3 considers
the case where both neighbours of o have two variables and the condition from Item 2 does
not apply to these neighbours, but that at least one variable a of a occurs in a clause where
not all variables are from «, 3,~. Item 4 considers the case where |a| + |3]| + |y| > 7 and the
above cases do not apply.

List 2. In this list, if a variable is branched, it is called a. Furthermore, b, ¢ are variables in
the chain which link the clauses considered to further members and these contain exactly one
of b, ¢ each. One does the first case in this list which applies. Again note that the case of one
variable a in four clauses of size 3 without any further variables in the isolated component
except for a and its eight neighbours does not need any further treatment. Thus in item 1 of
the following list, one can assume that there is either one neighbour with weight 1 or at least
10 neighbours with weight 0.905813.

Figure 7 List 2 Item 1.

Figure 8 List 2 Item 4. Figure 9 List 2 Item 5.

~

R CTACHN wRRa GYRC

Figure 10 List 2 Item 2. Figure 11 List 2 Item 2.
Figure 12 List 2 Item 3. Figure 13 List 2 Item 6, subsequence of 6-chain.

1. One variable a with at least eight neighbours. One branches a. If there are eight
neighbours and at least two of them have weight 1 or if there are at least nine neighbours
then the branching factor is at most 7(1,6 - 0.905813 + 3)? < 1.4967. If there are exactly

15:9

ISAAC 2019

15:10

Measure and Conquer for Max Hamming Distance XSAT

eight neighbours and exactly one of them has weight 1 then the neighbours are in four
3-clauses and only one of these has a variable b shared with another clause, let d denote
the other variable in this clause. If a = 0, b and d will be linked, if a = 1 all neighbours
are 0. This gives 7(1 + 0.905813,7 - 0.905813 + 2)? < 1.3775.

. (a,a),(a,d,c) where o has at least three variables. One branches a. Note that a

has at least five neighbours out of which only d can have measure 0.905813. This gives
7(140.905813,5+40.905813)2 < 1.4824. For example in Figure 10, we have the overlapping
variable as a, ¢ appears as part of a larger chain and |o| = 3 here. We have 5 outside
variables in this case.

. (b,d,a),(a,e,c). One branches a. If a = 0 then one can link both d to b and e to ¢ else

all five variables are determined. Thus 7(1+2-0.905813,3 4+ 2-0.905813)2 < 1.4518. This
is exactly the case as given in Figure 12 where a is our overlapping variable and we have
4 outside variables in this case.

. (b,d,e,a),(a, f,g,c) with each of d,e, f, g being singleton variables and b,c being in

further clauses. Now one branches a and gets 7(1 + 4 -0.094187,7)? < 1.4983, as d, e, f, g
will change their measure by the branching in the case that a = 0. This is exactly the case
as given in Figure 8 where a is the overlapping variable and we have 6 outside variables
in this case.

. (b,d,e,a),(a,...,[f)and d is a singleton variable and the clause (a,..., f) having at least

5 variables. Now one branches a and has 7(1 + 0.094187,8)? < 1.4983. We see this
example in Figure 9 where a is our overlapping variable and we have 7 outside variables
in this case.

. (b,d,e,c) and b, ¢ are only in inner clauses of some chain and d is in a further clause. By

the cases with the 3-clauses above being done first, the clauses on the other side of b and
c contain at least four literals. Thus b, ¢ have both at least six neighbours. If one of them,
say b, would have further neighbours which have weight 0.905813, these would have to be
in a further 3 clause and so b would have eight neighbours, so that List 2 Item 1 above
applies, thus this case does not happen. Now one distinguishes b+ ¢ = 0 versus b+ c = 1.
In the case that b+ ¢ = 0, one can link d, e and eliminate three variables. In the case that
b+c=1,d,e are 0 and one can make a cut exploiting that b = —c and that neither b nor
¢ have neighbours which have weight 0.905813. So no weight-compensation is needed and
4 variables are eliminated. This gives 7(3,4)? < 1.4903. Note that we needed the fact
that the neighbours at b, ¢ are connected to further clauses in the chain only to guarantee
that these clauses have at least four variables; therefore we apply this branching rule also
when a 4-clause with three neighbours satisfies that two of them are disjoint and have
four variables each. An example of this can be found in Figure 13.

Assume now by way of contradiction that after all actions in List 2 are done there would be
a chain of length 6. Note that no variable a in the chain can have exactly eight neighbours
with all having weight 0.905813, as then every variable in the chain is either a or a neighbour
of a and thus the chain has at most length 2. None of the second, third, fourth and fifth
member of this chain can be 3-clauses, as these are eliminated as above. The third and fourth
both cannot be two 4-clauses containing two singletons. Neither the third nor the fourth can
be a 4-clause with at most one singleton variable, as such clauses are also eliminated. The
third and the fourth clause cannot be a 4-clause plus a clause of five or more variables, as in
such situation again the connecting variable is branched. The third plus the fourth clause
cannot together have 9 or more variables, as then the connecting variable a has at least eight
neighbours and can be branched. Thus there is no chain of length 6 or more.

G. Hoi and F. Stephan

7 Analysis of Algorithm

For the verification, we divide our algorithm into two portions: Case 1 on the different
simplification and branching cases and Case 2 on the brute forcing of the independent cliques
of clauses. We will be using our defined measure in this analysis as given in Section 4. In
addition, note that we are branching on both formulas ¢; and 5. This means that we
have 2n many variables in this case. All branchings in this proof are kept to the standard
branching of a variable taking on values either 1 or 0 unless explicitly mentioned. We pay
more attention to 3-literal and 4-literal clauses due to our nonstandard measure. In addition,
we exploit the fact these clauses which we branch belong to a larger chain. We analyze the
worst runtime needed for the first part below.

» Proposition 6. Let k > 2. If there are k overlapping variables between two clauses, then
the worst case time complexity for branching these overlapping variables in the two clauses is
0(1.4917™).

Proof. First we note that by the simplifications in the algorithm and Proposition 5, we can
assume without loss of generality, that all literals are positive, that is, not negated. If only
—a occurs for some variable a, we just simply replace —a everywhere by a and adjust the
polynomials accordingly.

In the following we say that the outside variables in a pair of clauses (8, @), (o, y) are in
|B] — || orientation. List 1, Item 1 tells us how to handle outside variables in 1-m orientation,
where m > 2. Thus we only have to deal with m-m' orientations where m > 2 and m’/ > 2.

When k£ = 2 and if there are 4 outside variables, then it must be in the 2-2 orientation
(Figure 2). In this case, we exploit that these clauses are part of a larger chain. If not, then
they are an isolated component and will be handled by Case 2 of our algorithm. Therefore,
one of the variables in one of the orientation must be connected to a clause somewhere. Let
o, " be our overlapping variables and let ¢ be our variable that is connected to a different
clause and b be a variable appearing in the clause (o V a” VbV ¢). We branch (o Vo) =1
and o = o” = 0. Branching (/' V /') = 1 will allow us to remove all 4 outside variables and
branching o/ = o' = 0 will allow us to remove both o', ", and further link up the variables b

and c. Therefore, we have at most T'(u) = T'(u — 4) + T(— 3) = O(1.2208%) = 0(1.4903™).

On the other hand, suppose that the we are not allowed to link b and ¢ together, then it
must be that ¢ appears in another clause containing b as well. This other clause that ¢

appears in must be at least 4-literal in length else List 1 Item 1 would have handled it for us.

There must be a new variable d that is different from the overlapping variables and outside
variables. Then branching (¢ V o) = 1 will allow us to remove all 4 outside variables and
branching o/ = o’ = 0 will allow us to remove both o’ and o’ and at least another variable
d. This gives us T'(u) = T(u — 4) + T(pn — 3) = O(1.2208%#) = 0(1.4903™). This completes
the case for 4 outside variables.

If there are 5 outside variables as shown in Figure 4, then we must have them in the
2-3 orientation. Let 8’ and 8” be the two variables in the “2” orientation, while v/ ,v"
and ~""
The first case is that one of the 8’ or 5" is connected to a larger chain and one of o’ or
o’ or both variables are in a further clause containing a new variable b that is different
from the outside variables and the overlapping variables. Then branching (o/ V o) =1
will allow us to remove all 5 outside variables and link o/ = o’ or remove b. Branching
o' = o’ = 0 will allow us to remove 2 overlapping variables and link 3’ to 8. This gives
us T(p) = T(pu — 5.905813) + T'(u — 3) = O(1.1757?#) = 0(1.3822"). The second case is
that one of the 8’ or " is connected to a larger chain and o’ and «” do not appear in
further clauses. Then branching (o’ V /') = 1 will allow us to remove all 5 outside variables

be the three variables in the “3” orientation. We consider 4 different cases here.

15:11

ISAAC 2019

15:12

Measure and Conquer for Max Hamming Distance XSAT

and we can also factor in the change in measure for o/ and o’. Branching o/ = o/ =0
will allow us to remove both overlapping variables and link 3’ to 8”. This will give us
T(p)=T(u—5—2-0.094187) + T(p — 3) = O(1.1897*) = O(1.4154™). The third case is
that both 5’ and 3" are not connected to a larger chain and one of o’ or o/’ or both variables
are in a further clause containing a variable b that is different from the outside variables and
overlapping variables. Then branching (o’ V ') = 1 will allow us to remove all 5 outside
variables and link up o’ = o or remove b. Branching o/ = o/ = 0 will allow us to remove
both overlapping variables and also factor in the change of measure for 8 and 8. This
gives us T'(u) = T(u — 5.905813) + T(pn — 2 — 2 - 0.094187) = O(1.2041%*) = O(1.4498").
Finally, the last case is that both 3’ and " are not connected to a larger chain and o’
and o’ do not appear in a different clause. Then branching (o/ V /') = 1 will allow
us to remove all 5 outside variables and allow us to factor in the change of measure for
o’ and @”. On the other hand, branching o/ = o’ = 0 will allow us to remove both
overlapping variables and factor in the change in measure for both 3’ and 8”. This will give
us T(p) = T(p — 5 — 2 0.004187) + T — 2 — 2 - 0.094187) = O(1.22142%) = O(1.4917").
This completes the case for 5 outside variables.

Now, for the number of outside variables j, with j > 6, regardless of the orientation of
the outside variables, we have that applying the branching technique as above, we will arrive
at T(p) = T(u—6) + T(pu—2) = 0(1.2106%) = O(1.4657™) regardless if they appear as
part of a larger chain. Now we have that 7(j,2)? < 7(6,2)? < 1.4657. The case for k = 2 is
therefore complete.

For k = 3, we consider the case that we have 4 outside variables as shown in Figure 3.
Let our overlapping variables be o/, ", /" and we will branch (¢/ V o” V &) = 1 and
o/ =" =" =0 and this gives us T'(u) = T(u—3) + T'(u—4) = O(1.2207?*) = O(1.4903™)
regardless if they appear in a larger chain. Now for j > 4 outside variables, our branching
factor must be at most 7(3,5)% < 7(4,3)? = 1.4903. The case for k = 3 is therefore complete.

For k > 3 overlapping variables and for j > 4 outside variables, our branching factor must
be bounded above by 1.4903. This can see from the fact that 7(k,j)? < 7(4,3)? = 1.4903.
Therefore, the case for all £ > 2 has been covered and will take at most O(1.4903") time. <«

» Proposition 7. The worst-case runtime complexity of the branching cases when there is
exactly 1 overlapping variable between two clauses is O(1.4983™).

Proof. Let j be the number of outside variables that the overlapping variable has. Note that
j > 4. For j =4, we have that it must be in a 2-2 orientation as shown in Figure 12. Now,
we branch the overlapped variable and this gives us T'(u) = T'(u — 3 — 2 - 0.905813) + T'(n —
1 —2-0.905813). Therefore, we have T'(u) = O(1.2049%#) = O(1.4518"). Note that this is
the worst case when we have exactly two singleton in two of the outside variable.

If j = 5, then we can only have them in the 2-3 orientation like in Figure 10. Therefore,
we branch the overlapping variable a and we have T'(u) = T'(p — 5 — 0.905813) + T'(u — 1 —
0.905813+2-(0.905813 — 1)) = O(1.2083%*) = O(1.4600™). In this case, we assume that there
are 3 singletons out of the 5 outside variable. If we have 2 singletons out of the 5 variables
spread out in a 1-1 fashion, then we have T'(u) = T'(i — 5 — 0.905813) +T'(u — 1 — 0.905813 —
(1 —0.905813)) = O(1.21282%#) = O(1.4709™). On the other hand, if both singletons are now
on the 4-literal clause, then we have T'(y) = T'(u—6)+T(u—2) = O(1.2107%*) = O(1.4658").
If we have 1 singleton out of the 5 variable, then we consider the fact that this singleton
can be at the 4-literal or the 3-literal clause. If it appears on the 3-literal clause, then
we have T'(u) = T'(u — 5 — 0.905813) + T'(u — 1 — 0.905813) = O(1.2176%#) = O(1.4826™).

G. Hoi and F. Stephan

If it appears on the 4-literal clause, then we have T'(u) = T(p —6) + T(p — 2 — (1 —
0.905813)) = O(1.2062%*) = O(1.4550™). Finally, if there are no singletons, then we have
T(p) =T(u—6)+ T(u—2) = O(1.2106%*) = O(1.4656™). This completes the case for 5
outside variables.

If j = 6, then we can have it either in the 2-4 orientation or the 3-3 orientation, as shown
in Figure 11 and 8 respectively. If it is the 2-4 orientation, then we branch the overlapping
variable and we have T'(u) = T'(u — 6 — 0.905813) + T'(— 1 — 0.905813) = O(1.19655%*) =
0(1.4318™). For the 5-literal clause, we do not need to consider the case if there are singleton
variables or not as the presence or absence of it will not change the measure. Therefore, we
will only need to consider the case where there are no singletons on the 3-literal clause. We
have T'(u) = T(u—"7)+T(u—2) = O(1.1908%*) = O(1.4181™). If the outside variables appear
in the 3-3 orientation, then again, we branch the overlapping variable. We will therefore have

T(p) = T(n—T)+T(n—1—4-(1—0.905813)) = O(1.22403%*) = 0(1.224032") = O(1.4983").

In this case, we assume that all 4 out of the 6 outside variables are singletons. We also need to
handle the case that there are less than 4 singletons in this case. Suppose that there exist at
least one of the variables such that it is not a singleton, as shown in Figure 13, then we have
to change our approach in branching this problem because of the change in measure. Instead
of looking at the overlapping variable, we instead look at the 4-literal clause containing the
non-singleton variable. Let the variables b and ¢ be connected to a larger chain, d be that
non-singleton variable and the last variable be e. Now both b and ¢ cannot be connected to
3-literal clauses as the earlier cases would already have handled it. In addition, if b and ¢
appear at least 3 times, else we can branch them immediately to get a branching factor of at
most T(u) = T(pp—7—2-0.905813) + T (1 — 1) = O(1.2165%**) = O(1.4798"). Therefore both
b and ¢ must appear exactly twice. Now we branch (bVe¢)=1landb=c=0. Ifb=c=0,
then we can eliminate 3 variables by linking up d and e and if (b V ¢) = 1, we can remove
all 4 variables. Therefore, T'(u) = T(n — 3) + T(1 — 4) = O(1.2207?*) = O(1.4903™). This
completes the case for j = 6 outside variables.

If j = 7, then we can have it either in the 3-4 orientation (Figure 9) or the 2-5 orientation.

Now suppose that we have the 3-4 orientation. Then we will have T'(u) = T'(n — 8) + T'(p —
1—2-(1-0.905813)) = O(1.2169%) = O(1.4809™). In this case, we assume that 2 of the 7
outside variables in the 4-literal clause are singletons.

If this case does not happen, then again we have to look at the other neighbours of the
4-literal. Now, the neighbours of this 4-literal clause cannot be 3-literal or 4-literal, as they
would have been handled by the earlier cases. Therefore, the neighbours of this 4-literal
clause must be a 5-literal clause.

We first choose any two variables b and ¢ that are non-singletons. If variables b and ¢
appear at least 3 times , then we’ll branch them immediately to get a branching factor of at
most T'(p) = T'(u—8—2-0.905813)+T (u—1) = O(1.2003%#) = O(1.4406™). If not, then these
variables appear exactly twice and and we branch them as (bV¢) =1 or b=c = 0. Then we
will have a branching factor of T'(u) = T — 3) + T'(u — 4) = O(1.2208%#) = O(1.4904™). If
we have it in the 2-5 orientation, then we have T'(u) = T'(x — 7.905813) + T'(1n — 1.905813) =
O(1.1799%#) = 0(1.3922™). Now, if there are no singletons on the 3-literal clause, then we
will have T'(u) = T'(pp — 8) + T'(n — 2) = O(1.1750%*) = O(1.3807™). This completes the case
for 7 outside variables.

If j = 8, for example in Figure 7, branching the overlapping variable will give us a
branching factor 7(j,i)? < 7(9,1)? < 1.4718 regardless of the orientation of the outside
variables. In addition for j > 9, we have that 7(j,1)2 < 7(9,1)? < 1.4718. Note that this case
applies to a 9-literal clause. We can just branch any variable appearing in a 9-literal clause to

15:13

ISAAC 2019

15:14

Measure and Conquer for Max Hamming Distance XSAT

have a branching factor of 7(9,1)? = 1.4718. If there are 8 neighbours with two of them having
at least weight 1, then we have a branching factor of at most 7(1,6 - 0.905813 + 3)? = 1.4967.
If there are exactly 8 neighbours and one of them having weight 1, then we have a case of
an overlapping variable appearing in four 3-literal clauses. Branching the common variable
will give us a branching factor of at most 7(1 + 0.905813,7 - 0.90513 + 2)? = 1.3775. This
completes the case for all overlapping variables of exactly 1 variable.

The upper bound of these branching rules is the branching rules that has the worst case
time bound. Since the branching rule of the common variable between two 4-literal clause
has the worst case timebound, therefore the worst case time bound is O(1.4983™). |

After all the above branching rules have been applied and we come to a point where no
branching rules can be further applied, we come to the second part of the algorithm where
both ¢1 and @9 consists of small isolated components. See also Figure 14 in the appendix.
The following gives a rough estimate of the size of the isolated components; a better one is
found in the appendix.

» Proposition 8. After all actions in Case 1 is done, @1 and ps consist of disjoint components
each having at most 1364 variables.

Proof. Note that by doing the actions in List 1, every two clauses in the component intersect
by at most one variable, unless the component exist of exactly two clauses of the form
(a,b,¢,d), (¢,d,e, f). By doing the actions in List 2, every chain has at most length 5 and
every chain of four members has in the interior a clause of size 4 and perhaps also a clause of
size 5. So one chooses a clause C of size 4. Now when starting from C, one gives an upper
bound on all nodes which are in the last clause of chains of form C or Cy,C5 or Cy,Cs, Cs
or C1,Cy,C3,C4 or Cy,Co,C3,Cy,Cs. Here one uses that each variable in an inner C}, has at
least four and at most five members and thus each a € Cy has at most four new neighbours
which are not covered by chains of the form C1,Cs,...,Ck. So one gets the overall number
of variables estimated by 4 - (1 +4 + 16 + 64 + 256) = 5 - 341 = 1364. The appendix gives
an improved bound of 80 with a much more involved argument which also needs a slight
generalisation of the cases in List 2. |

Let p be the measure for ¢1 and v for o at this point. Now we will apply branch and bound
to the formula ¢y, where k € {1,2} with min{u,v} and then brute force the Hamming
Distance from the other formula. For the brute forcing portion, we know that the size of
each component is bounded above by some constant c. Therefore, the only thing we need
to ensure is that the branch and bound of the formula measure is still well within the time
bound of O(1.4983™).

» Proposition 9. The branch and bound of the formula with lower measure has worst case
run time of O(1.4983™).

Proof. Note that when we are in this case, we no longer have 2n variables but only n
variables from one of the formula. In addition, we can safely assume that we will not have
a variable with 8 other neighbours as it will be handled by the branching case above. We
consider all possible cases here.

First we consider standalone clauses with length < 9. Suppose that we have a clause of
length 2. Then we branch the entire clause by the values (1,0) and (0,1). This will incur
T(u) =T (u—2-0.905813) +T'(p—2-0.905813) = O(1.4662™). Suppose that we have a length
of length 3, then again we branch the clause with values (1,0,0), (0,1,0) and (0,0,1). This

G. Hoi and F. Stephan

will incur T'(u) = 3T (1 — 3 - 0.905813) = O(1.4983"). Now let n € N. We know that n(#) is
decreasing for n > 3 and hence for any length of any standalone clauses with 3 < j < 9, we
have that the branching factor with j branches and removal of j variables for each branch,
7(J,y s oy J) < 7(3-0.905813,3 - 0.905813, 3 - 0.905813) < 1.4983. This completes the case for
all standalone clauses.

We next consider clauses with at exactly 1 overlapping variable with < 8 neighbours.
Now the worst case that we can have is an overlapping variable with 4 outside variables in
a 2-2 orientation. In this case, we will have T'(u) = T(p — 1 —4-0.905813) + T'(n — 1) =
0(1.3433™). Again, let j be the number of neighbours in this case with 4 < j < 8. Then
7(1 4 7 -0.905813,1) < 1.3433. This completes the case for all clauses with exactly 1
overlapping variable. For two or more overlapping variables, we can treat it as a similar case
by just branching only 1 of the overlapping variable. This completes the case for all clauses
with overlapping variables. <

» Theorem 10. The algorithm takes O(1.4983™) time.

Proof. To know the worst case runtime of our algorithm, we have to consider the branching
rule which generates the most number of leaves. For branching rules in Case 1, we have that
the runtime is bounded above by O(1.4983™) as given by Proposition 7 and 6. For Case 2, as
shown in Proposition 9, the runtime is again bounded above by O(1.4983™). So the overall
complexity is O(1.4983™). <

» Example 11. Consider ¢1,p2 to contain the following clauses : x1V xa V a3, T1V Ty V x5,
1 Vg Var, raVagVagV ry. For variable xy, the initial values of the polynomials are
Dk,ak,b = U in the case that a # b and 1 in the case that a = b; furthermore, all polynomials
involving mized variables are 1 and also the polynomials with k = 0 on either side are 1.

Now the algorithm branches x1, first in w1. Now let x1 take the value a; in p1. Ifag =1
then the variables xp with h = 2,3,4,5,6,7 take the value ap, = 0. Furthermore, we update
the polynomials as follows: pookp = Hh:L___jph,ah’k,b for all k,b and after that we let
Dh,akp =0 for h=1,2,...,7 and all a,b, k. The remaining formula in @1 is x3 V xg V 1p.
If a1 = 0 then one can conclude that xo = —x3, T4 = —x5 and x¢ = —x7. However, only the
first of these 3 possible equalities will be realised, as xo appears also in a further clause. So
we do the update x3 = —x2 N @1 and P3¢ kb = DP3,a.kb " P2,1—a,kb JfOr all a, b,k and after that
D20,k = 0 for all a,b, k. The remaining formulas for ¢y are in this case x4 V x5, T6 V T7,
o VgV gV xig.

After that, one does the analogous updates in 3.

The descent will result in 4 subcases where one has on each side either 3 variables and
one clause or 8 variables distributed over 3 disjoint and unconnected clauses.

Now consider the example case where @1 has one clause (so one has branched z; = 1
previously for v1) and vo has 3 clauses. Now one considers the 3 cases of (xs, xg, x10) taking
the values (0,0,1), (0,1,0) and (1,0,0) in ¢1 and one subbranches into these cases which
will set the remaining variables accordingly. Then only the polynomials poo ks are non-zero
and we will process the 3 components of variables (x2,xs, X9, T10), (T4, x5) and (x¢,x7) for
w2 accordingly.

So for each (b,v',b") € {(0,0,1),(0,1,0),(1,0,0)}, we do separate computations where
each of them starts with the same version of the polynomials and first updates for all applicable
k and all a € {0,1} the polynomials po,o.k,a = P0,0,k,a * P8,bk,a * P9 k,a * P10,b" k,a ANA ONCE,
this is done, one updates the polynomial po 0,0 3 times as follows: First for 4 possible
vectors in U = {(0,0,0,1),(0,0,1,0),(0,1,0,0,),(1,0,0,0)} of (z2,xs,x9,z10), we update
£0,0,0,0 = P0,0,0,0* (Do (e.r, e ermyerr P0,0,2,¢ 7 P0,0,8,¢" * 0,09, * 00,10,) and then we deal with
the two solutions for x4V xs = 1 by updating po,0,0,0 = P0,0,0,0° (P0,0,4,110,0,5,0 +10,0,4,0"P0,0,5,1)

15:15

ISAAC 2019

15:16

Measure and Conquer for Max Hamming Distance XSAT

and afterwards we do the same for x¢V x7 = 1 by updating po.0,0,0 = P0.,0,0,0 * (P0,0,6,1*P0,0,7,0 +
10,0,6,0 - P0,0,7,1) and we receive for each of the 3 starting vectors (b,b',0") a sum polynomial
and these 3 sum polynomials are added up to the return value of this branch. The other 3
cases arising from different branchings of x1 in either formula are handled analogously.

8 Conclusion

In this paper, we introduced the concept of finding the most number of variables that can
differ between a pair of solution and called it the Max Hamming Distance problem and we
focused on the Max Hamming Distance XSAT problem. We introduced a DPLL algorithm
with a nonstandard measure to bring the complexity down to O(1.4983"™), and therefore
beating both Dahll6f’s state of the art algorithm to solve Max Hamming Distance XSAT
and Fu, Zhou and Yin’s algorithm to compute the Max Hamming Distance X3SAT.

Here is a possible direction where interested readers can take our work further. Our
current nonstandard measure gave us a huge improvement in performance from O(1.5761™)
if we were to use the standard measure. Can a more creative and cleverly designed measure
bring the complexity of the algorithm down further?

An anonymous referee also pointed out that the large constant of Proposition 8 is large
and that this constant goes in exponentiated form into the runtime; thus the algorithm is
only of theoretical nature and not implementable in practice. Proposition 14 in the appendix
gives a better value, but there is still room for improvement.

One might ask whether there are heuristics using known methods which might beat our
algorithm. One such approach would be to enumerate all solutions of ¢; at the beginning
and then to solve for each of this solution ¢s. In the general case, we note that the number
of solutions of 5 is a badly conditioned function. Say if there are n = 3m + 1 variables
consisting on m clauses with 4 variables where always the first variable is the same and the
other 3 are uniquely to the clause, then the number of solutions is 1 4+ 3" which is least
(1.4422™). For each of these solutions, though not in this specific case, one has to solve on
the other side a variable-weighted maximum XSAT formula which actually takes longer than
solving XSAT; Porschen [14] solved this in O(2°-244") which is O(1.184™). So combining
known algorithm might give only O(1.7075™), as 1.184 - 1.4422 > 1.7075. Thus even if the
first bound can be improved, as the current bound requires an easy structure, we do not
expect this method to give our bounds.

Hoi, Jain and Stephan [6] provide a better algorithm for computing the maximum
hamming distance of X3SAT; however, this better bound exploits several properties of
X3SAT which do not hold in general XSAT and this method does not generalise here. It is a
often observed phenomenon that algorithms for X3SAT have a better time performance than
their counterparts for the more general XSAT problem.

—— References

1 Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Information and
Control, 55(1-3):80-88, 1982.

2 David Eppstein. Small maximal independent sets and faster exact graph coloring. Proceedings
of the Seventh Workshop on Algorithms and Data Structures, Springer Lecture Notes in
Computer Science, 2125:462-470, 2001.

3 David Eppstein. Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Transactions on Algorithms, 2(4):492-509, 2006.

4 Fedor V. Fomin and Dieter Kratsch. FEzact Exponential Algorithms. Texts in Theoretical
Computer Science, EATCS, Springer, Berlin, Heidelberg, 2010.

G. Hoi and F. Stephan

5 Fedor V. Fomin, Fabrizio Grandoni and Dieter Kratsch. A measure and conquer approach for
the analysis of exact algorithms. Journal of the ACM, 56(5):25, 2009.

6 Gordon Hoi, Sanjay Jain and Frank Stephan. A fast exponential time algorithm for Max
Hamming X3SAT. Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, 2019.

7 Jesper Makholm Byskov, Bolette Amitzbgll Madsen and Bolette Skjernaa. New algorithms
for exact satisfiability. Theoretical Computer Science, 332(1-3):515-541, 2005.

8 Linlu Fu, Junping Zhou and Minghao Yin. Worst case upper bound for the maximum
Hamming distance X3SAT problem. Journal of Frontiers of Computer Science and Technology,
6(7):664-671, 2012.

9 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201-215, 1960.

10 Martin Davis, George Logemann and Donald W. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394-397, 1962.

11 Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1-2):1-72, 1999.

12 Pierluigi Crescenzi and Gianluca Rossi. On the Hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85-100, 2002.

13 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, Berlin, Heidelberg, 2013.

14 Stefan Porschen. On variable-weighted exact satisfiability problems. Annals of Mathematics
and Artificial Intelligence, 51(1):27-54, 2007.

15 Vilhelm Dahlloéf. Algorithms for Max Hamming Exact Satisfiability. International Symposium
on Algorithms and Computation, ISAAC 2005, Springer Lecture Notes in Computer Science,
3827:829-383, 2005.

16 Vilhelm Dahllof. Exact Algorithms for Exact Satisfiability Problems. PhD thesis, Department
of Computer and Information Science, Link6ping University, 2006.

17 Vilhelm Dahllof, Peter Jonsson and Richard Beigel. Algorithms for four variants of the exact
satisfiability problem. Theoretical Computer Science, 320(2-3):373-394, 2004.

A Appendix

Figure 14 shows an example of case 2. Each circle in both ¢; and (s represents an isolated
group of clauses.

- 000
IACRCRORS

An anonymous referee pointed out to the authors, that the size of the components after Case
1 is critical to the performance of the algorithm when implemented, as it is multiplicative
constant in the runtime which is exponentiated, so the overall runtime multiplies with
approximately 27/2 . Poly(n) which is an estimate to count all the weighted number of

solutions of an component of size m with the weights being polynomials in u of degree n.

One can go for this through all possible solutions by descent. Due to the exponentiation of
m, it is important that one gets a bound on m to be as small as possible. Though a large

15:17

ISAAC 2019

15:18

Measure and Conquer for Max Hamming Distance XSAT

m does not influence the theoretical analysis of the algorithm in terms of its asymptotic
complexity, it still makes the algorithm useless for practical implementations. The following
relaxation from chains to pseudochains is critical for the improved bound on m.

» Definition 12. A pseudochain is a sequence of clauses C1,Cs,...,Cy such that two
netghbouring clauses Ch, Chy1 overlap by exactly one variable and for two subsequent pairs
of neighbouring clauses Cp, Cri1 and Chi1, Chya, the variables in the overlaps are different.

In this definition, the second condition implies that there are no pseudochains with a
subsequence C},, Ch41,Ch, so that one cannot go back and forth between two clauses. Now
for the following, the conditions in List 2 will be slightly generalised, in the sense that they
can also apply to pseudochains and not only proper chains. So in Item 2, it is allowed that
the neighbouring clause of ¢ has a joint variable with the first clause, but this needs to be
different from c. In Item 3, b, ¢ are in further clauses and there are no constraint on what
these further clauses are, they could even be the same clause; however, b # ¢ is required. In
Items 4 and 5, it is not required that b, ¢ are in further clauses and if they are, there are no
constraints on what they are. In Item 6, it is only required that the two additional clauses
where b and c¢ are in have at least four variables, no further requirement is there. The two
clauses have to be different, but they can have a joint variable. Note that b and ¢ are then
exactly in two clauses, as they have already six neighbours and as they cannot have eight
neighbours out of which six have weight 1 by Item 1 to be done first when it applies. These
relaxations do not influence the branching factors.

» Proposition 13. FEvery component of the formulas after Case 1 with the more modified
conditions in List 2 as above does not contain pseudochains of length siz or more; furthermore,
it contains no circular pseudochains like C1,Cy, Cs3, Cy.

Proof. Note that Item 1 enforces that no variable @ in a component has eight or more
neighbours, except in the case that the whole isolated component of the consists the variable
a and eight neighbours which are all in clauses (a, ., .) consisting of a and two further variables.
Furthermore the Simplification Rules enforce that there are no clauses of 1 or 2 variables,
except the case of an isolated component consisting of a single 2-variable-clause. Thus no
member of a pseudochain has more than six variables, as its neighbour must have at least
three variables. Items 2 and 3 in a pseudochain enforce that no inner member of a pseudochain
has three variables except in the case of a pseudochain C7,C5, C's where all three clauses
have exactly three variables. If now a pseudochain is of the form Cy,Cs, C3,Cy, Cs, Cg, the
clauses Cy, C3, C4, C5 have all at least four variables and it cannot be that both C5, Cy have
both four variables, as then either Item 4 applies or one of them has a variable connecting to
a further clause and Item 6 applies, causing a further reduction of the variables. Furthermore,
it cannot be that one of C3, Cy has four variables and the other one five or more variables,
as then either Item 5 or Item 6 applies. Furthermore, it cannot be that both C5, Cy have
at least five variables, as then the connecting variable can be branched by Item 1. Thus
pseudochains of six or more clauses do not survive until all branchings or cuts which can
apply by List 2 are done.

Note that for a circular pseudochain C1,Cs, ..., Cy, Cy, it is required that Cy and Cj
connect to C by different variables, as the writing should not depend on where one breaks
the circle. Thus one can also view it as a long pseudochain C1,Cy, ..., Cy,C1,Cs, ..., C) and,
as k > 3, this psuedochain has at least six members and does not exist after all branchings
of the modified List 2 are done. |

G. Hoi and F. Stephan

» Proposition 14. Every component of the formulas after Case 1 with the more modified
conditions in List 2 as above has at most 80 variables.

Proof. As seen in the preceding proposition, there are no circular pseudochains and no
pseudochains of length six or more. So let C1,Csy,...,C be a pseudochain of maximal
length, therefore k is at most five.

Now consider the case k = 5. Let a be the common variable of Cy,C3 and b be the
common variable of C3, C4. If there is a clause of distance 3 from (3, it is connected by
clauses C3, Cg, C7,Cg. Either Cg does not connect to C3 through a or does not connect to C3
through b, say the first. Now C7,C5, C3, Cg, C7, Cy is a pseudochain of length six which does
not exist. Thus all clauses are either neighbours of C3 or neighbours of neighbours of C3. So
assume that Cy is a neighbour of C3 with common variable ¢ which has a further neighbour
C7 which is not a neighbour of C3. Then C§g has at least four and at most five variables. Thus
c can only be in the clauses C5, Cg as these have together already at least seven variables and
being in a further clause would cause ¢ to have eight or more neighbours. So there are either
three or four variables in Cg other than ¢ and these have each at most 8 — |Cg| neighbours
which are not in Cg. So if Cs has four variables these are 3 neighbours of ¢ outside C3 plus
3 - 4 neighbours of neighbours; if Cs has five variables these are 4 neighbours of ¢ outside
Cj5 plus 4 - 3 neighbours of neighbours; in total ¢ contributes to at most 16 neighbours and
neighbours of neighbours. Note that 16 will only be reached, if Cg has five variables and
therefore C3 four. So one has at most max{4 - (14 16),5- (1 + 15)} = 80 variables in the
isolated component.

If k = 4 then every clause would have at most distance two from Cy which can be seen
as follows: If there would be a clause of distance three then it would be a pseudochain
027 05, 06, C7 which can be either extended to Cl, CQ, 057 Cﬁ, 07 or 03, CQ, C57 06; 07 and
does not exist. Similarly, any clause has distance at most three from Cs. If now a clause
C7 is of distance 2 from both Cs,C3 then this is witnessed by Cs, C5,C7 and Cs, Cg, Cr
and C5,Cg do not connect to Cy, Cs, respectively, through the common variable a of Cy
and C5. Thus C7, C5, Cy, Cg, C7 would be pseudochain of length five with does not exist by
assumption. Thus, every clause other than Cy and Cjs is a neighbour of exactly one of these
two clauses, but not of both. At most one of Cy, C5 is of size five and both have at least size
four. Thus a has up to 15 neighbours and neighbours of neighbours from one side and up to
16 from the other side, so the overall number of variables is at most 16 + 15 + 1 = 32.

If k = 3 then every clause is a neighbour of C. Each variable in Cs has at most 8 — |Cs|
neighbours which are not in C3 and so the overall number of nodes is variables in the
connected component is bounded by |Cs| + [Ca| - (8 — |Ca|) = |Cs| - (9 — |Cs|) which is
maximised at |Ca| € {4,5} and is 20.

If £ = 2 then every clause contains the connecting variable of C; and C5 so that the
overall number of variables is at most 9. If £ = 1 then the clause has at most size 8 and
there are no neighbouring clauses. |

It might be worth to mention that when dealing in a brute-force way with a component of
size 80, one can break it down by taking, in the case of k = 5, first the central clause C3 and
branch into the subcases according to which of the variables in it is 1, each of these branches
splits the component into subcomponents of size at most 16 which are easy to handle, as all
variables of C3 are set to constants. This would then make the case of dealing with isolated
components to become more treatable from an implementation perspective. In the case
of k = 4, one can branch the variable connecting Cs and C3 and get a similar breakdown
of the component into two smaller, isolated components of up to 16 variables. The cases
k =3,k =2,k =1 have already very small components.

15:19

ISAAC 2019

	Introduction
	Preliminaries
	High-level description of algorithm
	A new measure
	The algorithm in detail
	The Simplifications and the Branchings from List 1 and List 2
	Analysis of Algorithm
	Conclusion
	Appendix

