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Abstract
Suppose that n numbers arrive online in random order and the goal is to select k of them such that
the expected sum of the selected items is maximized. The decision for any item is irrevocable and
must be made on arrival without knowing future items. This problem is known as the k-secretary
problem, which includes the classical secretary problem with the special case k = 1. It is well-known
that the latter problem can be solved by a simple algorithm of competitive ratio 1/e which is
asymptotically optimal. When k is small, only for k = 2 does there exist an algorithm beating the
threshold of 1/e [Chan et al. SODA 2015]. The algorithm relies on an involved selection policy.
Moreover, there exist results when k is large [Kleinberg SODA 2005].

In this paper we present results for the k-secretary problem, considering the interesting and
relevant case that k is small. We focus on simple selection algorithms, accompanied by combinatorial
analyses. As a main contribution we propose a natural deterministic algorithm designed to have
competitive ratios strictly greater than 1/e for small k ≥ 2. This algorithm is hardly more complex
than the elegant strategy for the classical secretary problem, optimal for k = 1, and works for all
k ≥ 1. We explicitly compute its competitive ratios for 2 ≤ k ≤ 100, ranging from 0.41 for k = 2 to
0.75 for k = 100. Moreover, we show that an algorithm proposed by Babaioff et al. [APPROX 2007]
has a competitive ratio of 0.4168 for k = 2, implying that the previous analysis was not tight. Our
analysis reveals a surprising combinatorial property of this algorithm, which might be helpful for a
tight analysis of this algorithm for general k.
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1 Introduction

The secretary problem is a well-known problem in the field of optimal stopping theory and is
defined as follows: Given a sequence of n numbers which arrive online and in random order,
select the maximum number. Thereby, upon arrival of an item, the decision to accept or
reject it must be made immediately and irrevocably, especially without knowing future items.
The statement of the problem dates back to the 1960s and its solution is due to Lindley [23]
and Dynkin [10]. For discussions on the origin of the problem, we refer to the survey [13].

In the past years, generalizations of the secretary problem involving selection of multiple
items have become very popular. We consider one of the most canonical generalizations
known as the k-secretary problem: The algorithm is allowed to choose k elements and the
goal is to maximize the expected sum of accepted elements. Other objective functions,
such as maximizing the probability of accepting the k best [2, 14] or general submodular
functions [20], have been studied as well. Maximizing the sum of accepted items is closely
related to the knapsack secretary problem [3, 19]. If all items have unit weight and thus
the knapsack capacity is a cardinality bound, the k-secretary problem arises. The matroid
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18:2 New Results for the k-Secretary Problem

secretary problem, introduced by Babaioff et al. [6], is a generalization where an algorithm
must maintain a set of accepted items that form an independent set of a given matroid.
We refer the reader to [11, 12, 22] for recent work. If the matroid is k-uniform, again, the
k-secretary problem occurs. Another closely related problem was introduced by Buchbinder,
Jain, and Singh [8]. In the (J,K)-secretary problem, an algorithm has J choices and the
objective is to maximize the number of selected items among the K best. Assuming the
ordinal model [17] and a monotonicity property of the algorithm, any c-competitive algorithm
for the (k, k)-secretary problem is c-competitive for the k-secretary problem, and vice versa [8].
In the ordinal model [17], an algorithm decides based on the total order of items only, rather
than on their numeric values. In fact, most known and elegant algorithms for the k-secretary
problem assume the ordinal model [3, 10,21,23].

The large interest in generalizations of the classical secretary problem is motivated mainly
by numerous applications in online market design [4,6,21]. Apart from these applications, the
secretary problem is the prototype of an online problem analyzed in the random order model:
An adversarial input order often rules out (good) competitive ratios when considering online
optimization problems without further constraints. By contrast, the assumption that the
input is ordered randomly improves the competitive ratios in many optimization problems.
This includes packing problems [18, 19], scheduling problems [15], and graph problems [7, 24].
Therefore, developing new techniques for secretary problems may, more generally, yield
relevant insights for the analysis of online problems in randomized input models as well.

1.1 Previous Work
The k-secretary problem was introduced by Kleinberg [21] in 2005. He presents a randomized
algorithm attaining a competitive ratio of 1−5/

√
k, which approaches 1 for k →∞. Moreover,

Kleinberg gives in [21] a hardness result stating that any algorithm has a competitive ratio
of 1− Ω(

√
1/k). Therefore, from an asymptotic point of view, the k-secretary problem is

solved by Kleinberg’s result. However, the main drawback can be seen in the fact that the
competitive ratio is not defined if k ≤ 24 and breaks the barrier of 1/e only if k ≥ 63 (see
Figure 2, p. 11).

In 2007 the problem was revisited by Babaioff et al.[3]. The authors propose two algorithms
called virtual and optimistic and prove that both algorithms have a competitive ratio of
at least 1/e for any k. While the analysis of virtual is simple and tight, it takes much more
effort to analyze optimistic [3, 4]. The authors believe that their analysis for optimistic is
not tight for k ≥ 2.

Buchbinder, Jain, and Singh [8] developed a framework to analyze secretary problems
and their optimal algorithms using linear programming techniques. By numerical simulations
for the (k, k)-secretary problem with n = 100, Buchbinder et al. obtained competitive ratios
of 0.474, 0.565, and 0.612, for k = 2, 3, and 4, respectively. However, obtaining an algorithm
from their framework requires a formal analysis of the corresponding LP in the limit of
n→∞, which is not provided in the article [8, p. 192].

Chan, Chen, and Jiang [9] revisited the (J,K)-secretary problem and obtained several
fundamental results. Notably, they showed that optimal algorithms for the k-secretary
problem require access to the numeric values of the items, which complements the previous
line of research in the ordinal model. Chan et al. demonstrate this by providing a 0.4920-
competitive algorithm for the 2-secretary problem which is based on a 0.4886-competitive
algorithm for the (2, 2)-secretary problem. Still, an analysis for the general (J,K)-case is not
known, even for J = K. Moreover, the resulting algorithms seem overly involved. This dims
the prospect of elegant k-secretary algorithms for k ≥ 3 obtained from this approach.
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Table 1 Competitive ratios α of single-ref for k ∈ [1..20].

k 1 2 3 4 5 6 7 8 9 10

α 1/e 0.4119 0.4449 0.4785 0.4999 0.5148 0.5308 0.5453 0.5567 0.5660

k 11 12 13 14 15 16 17 18 19 20

α 0.5740 0.5834 0.5914 0.5983 0.6043 0.6096 0.6155 0.6211 0.6261 0.6306

1.2 Our Contribution

We study the k-secretary problem, the most natural and immediate generalization of the
classical secretary problem. While the extreme cases k = 1 and k → ∞ are well studied,
hardly any results for small values of k ≥ 2 exist. We believe that simple selection algorithms,
performing well for small k, are interesting both from a theoretical point of view and for
practical settings. Moreover, the hope is that existing algorithms for related problems based
on k-secretary algorithms can be improved this way [8, p. 191]. We study algorithms designed
for the ordinal model, which guarantees robustness and plainer decision rules.

For this purpose, we propose a simple deterministic algorithm single-ref. This algorithm
uses a single value as threshold for accepting items. Although similar approaches based on
this natural idea have been used to solve related problems [1], to the best of our knowledge,
this algorithm has not been explored for the k-secretary problem so far. As a strength of
our algorithm we see its simplicity: It is of plain combinatorial nature and can be fine-tuned
using only two parameters. In contrast, the optimal algorithms which follow theoretically
from the (J,K)-secretary approach [9] would involve k2 parameters and the same number of
different decision rules.

An important insight for the analysis of single-ref is that items can be partitioned into
two classes, which we will call dominating and non-dominating. Both have certain properties
on which we base our fully parameterized analysis. In Table 1, we list the competitive ratios
of single-ref for k ≤ 20. While the competitive ratio for k = 1 is optimal, we obtain a
value significantly greater than 1/e already for k = 2. Furthermore, the competitive ratios
are monotonically increasing in the interval k ∈ [1..20], already breaking the threshold of 0.5
at k = 6. Numerical computations suggest that this monotonicity holds for general k. See
Figure 2 (p. 11) for the competitive ratios up to k = 100 and a comparison with Kleinberg’s
algorithm [21]. Providing a closed formula for the competitive ratio for any value of k is one
direction of future work (see Section 5).

Moreover, we investigate the optimistic algorithm by Babaioff et al. [3] for the case
k = 2. Although Chan et al. [9] provide the optimal algorithm for k = 2, we think studying
this elegant algorithm is interesting for two reasons: First, a tight analysis of optimistic
is stated as open problem in [3]. Article [3] does not provide the proof of the (1/e)-bound
and a recent journal publication [5] (evolved from [3] and [6]) does not cover the optimistic
algorithm at all. We make progress in this problem by proving that for k = 2 its competitive
ratio is exactly 0.4168 which significantly breaks the (1/e)-barrier. Second, our proof reveals
an interesting property of this algorithm, which we show in Lemma 4.1: The probability
that optimistic accepts the second best item is exactly the probability that the optimal
algorithm for k = 1 from [10,23] accepts the best item. A similar property might hold for
k ≥ 3, which could be a key insight into the general case.

From a technical point of view, we derive the exact probabilities using basic combinatorial
constructs exclusively. This is in contrast to previous approaches [8, 9] which can only
be analyzed using heavyweight linear programming techniques. In addition, we always
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18:4 New Results for the k-Secretary Problem

consider the asymptotic setting of n→∞ items, which gives more meaningful bounds on the
competitive ratio. Throughout the analyses of both algorithms, we associate probabilities
with sets of permutations (see Section 2.2). Hence, probability relations can be shown
equivalently by set relations. This is a simple but powerful technique which may be useful in
the analysis of other optimization problems with random arrival order as well.

2 Preliminaries

Let v1 > v2 > . . . > vn be the elements (also called items) of the input. In the ordinal
model, we can assume w.l.o.g. all items to be distinct. Therefore we say that i is the rank
of element vi. An input sequence is any permutation of the list v1, . . . , vn. We denote the
position of an element v given a specific input sequence π with posπ(v) ∈ {1, . . . , n} and
write pos(v) whenever the input sequence is clear from the context.

Given any input sequence, an algorithm can accept up to k items, where the decision
whether to accept or reject an item must be made immediately upon its arrival. Let ALG
denote the sum of items accepted by the algorithm. The algorithm is α-competitive if
E [ALG] ≥ α ·OPT holds for all item sets. Here the expectation is taken over the uniform
distribution of all n! input sequences and OPT =

∑k
i=1 vi.

Notation. For a, b ∈ N with a ≤ b, we use the notation [a..b] to denote the set of integers
{a, a+ 1, . . . , b} and write [a] for [1..a]. The (half-)open integer intervals (a..b], [a..b), and
(a..b) are defined accordingly. Further, we use the notation nk for the falling factorial n!

(n−k)! .

2.1 Algorithms
In the following, we state the optimistic algorithm proposed by Babaioff et al. (Algorithm 1)
and our proposed algorithm single-ref (Algorithm 2) and compare both strategies.

Algorithm 1 optimistic [3].

Parameters : t ∈ (k..n− k] (sampling threshold)
1 Sampling phase: Reject the first t− 1 items.
2 Let s1 > . . . > sk be the k best items from the sampling phase.
3 Selection phase: As j-th accepted item, choose the first item better than sk−j+1.

Algorithm 2 single-ref.

Parameters : t ∈ (k..n− k] (sampling threshold), r ∈ [k] (reference rank)
1 Sampling phase: Reject the first t− 1 items.
2 Let sr be the r-th best item from the sampling phase.
3 Selection phase: Choose the first k items better than sr.

While both algorithms consist of a sampling phase in which the first t − 1 items are
rejected, the main difference is the policy for accepting items: optimistic uses the k best
items from the sampling as reference elements. Right after the sampling phase, the first
item better than sk (the k-th best from the sampling) will be accepted. The following
accepted items are chosen similarly, but with sk−1, sk−2, . . . , s1 as reference items. Note that
this algorithm always sticks to this order of reference points, even if the first item already
outperforms s1. Hence, it is optimistic in the sense that it always expects that high-value
items occur in the future.
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single-ref has a simpler structure since it only uses a single item sr from the sampling
as reference point. Here, each item is compared to sr (the r-th best from sampling), thus the
first k elements better than sr will be selected. Despite its simpler structure, the analysis of
single-ref is involved due to the additional parameter r, as it is not clear how to choose
this parameter optimally.

Note that in the case k = 1, optimistic and single-ref (when setting r = 1) become
the strategy known for the classical secretary problem [10,23]: After rejecting the first t− 1
items, choose the first one better than the best from sampling. A simple argument shows
that this strategy selects the best item with probability t−1

n

∑n
i=t

1
i−1 . If n tends to infinity

and t− 1 ≈ n/e, this term approaches 1/e which is optimal.
The following lemma is used to bound the competitive ratios of both algorithms. It

heavily relies on the monotonicity property of the algorithms, i.e., for any vi > vj , both
algorithms select vi with greater or equal probability than vj .

I Lemma 2.1. Let A be optimistic or single-ref and for each i ∈ [n] let pi be the
probability that A selects item vi. The competitive ratio of A is (1/k)

∑k
i=1 pi.

Proof. First, we will argue that pi ≥ pi+1 for all i ∈ [n− 1], i.e., A selects items of smaller
rank with greater or equal probability. This follows if we can show that the number of
permutations where vi+1 is accepted is not greater than the respective number of permutations
for vi (this concept is described more detailed in Section 2.2).

Consider any input sequence π in which vi+1 is accepted. Let sj < vi+1 be the sampling
item to which vi+1 is compared (in case of single-ref we have j = r). Since vi+1 is accepted,
we have sj 6= vi. By swapping vi with vi+1, we obtain a new permutation π′ with the same
reference element sj . This is obvious if vi is not in the sampling of π. Otherwise, note that
in the ordered sequences of sampling items from π and π′, both vi+1 and vi have the same
position. This implies that sj is the j-th best sampling item in π′. Further, item vi is at the
former position of vi+1 in π′, thus A accepts vi at this position since vi > vi+1 > sj .

Thus, both sequences p1, . . . , pk and v1, . . . , vk are sorted decreasingly. Let OPTk =∑k
i=1 vi and E [A] be the expected sum of the items accepted by A. Chebyshev’s sum

inequality [16] states that if a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, then
∑n
i=1 aibi ≥

(1/n) (
∑n
i=1 ai) (

∑n
i=1 bi). Applying this inequality yields

E [A] =
n∑
i=1

pivi ≥
k∑
i=1

pivi ≥
1
k

(
k∑
i=1

vi

)(
k∑
i=1

pi

)
=
(

1
k

k∑
i=1

pi

)
OPTk .

Note that the above inequalities are tight: Assuming that the first k items are almost
identical, i.e. vi = 1− iε for i ∈ [1..k] and ε→ 0, and vi = 0 for all remaining items of rank
i ∈ (k..n], the competitive ratio is exactly (1/k)

∑k
i=1 pi. J

The same argument is used in [8] to show the equivalence of the k-secretary and the (k, k)-
secretary problem for ordinal monotone algorithms.

2.2 Random Order Model
To analyze an algorithm given a random permutation, we often fix an order u1, u2, . . . , un of
positions. Then, we draw the element for position u1 uniformly from all n elements, next
the element for position u2 from the remaining n− 1 elements, and so on. It is easy to see
that by this process we obtain a permutation drawn uniformly at random.

Moreover, the uniform distribution allows us to prove probability relations using functions:
Suppose that pi is the probability that item vi is accepted in a random permutation, then
pi = |Pi| /n! where Pi is the set of all input sequences where vi is accepted. Thus, we can
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Table 2 Several identities involving binomial coefficients [16].

Rule Equation Parameters

(R1) Sum of products
l∑

k=0

(
l − k
m

)(
q + k

n

)
=
(
l + q + 1
m+ n+ 1

) l,m, n, q ∈ Z with l,m ≥ 0
and n ≥ q ≥ 0

(R2) Symmetry
(
n

k

)
=
(

n

n− k

)
n, k ∈ Z with n ≥ 0

(R3) Trinomial revision
(
r

m

)(
m

k

)
=
(
r

k

)(
r − k
m− k

)
m, k ∈ Z and r ∈ R

prove pi ≤ pj by finding an injective function f : Pi → Pj and get pi = pj if f is bijective.
For example, this technique turns out to be highly useful in the proof of Lemma 4.1, where
probabilities of different algorithms are related.

2.3 Combinatorics
We often need to analyze probabilities described by the following random experiment.

I Fact 2.2. Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length K is
h(N,M,K) :=

(
M
K

)
/
(
N
K

)
.

This fact follows from a special case of the hypergeometric distribution.
Furthermore, we make use of several identities involving binomial coefficients throughout

the following sections. These equations, denoted by (R1), (R2), and (R3), are listed in
Table 2.

3 Analysis of SINGLE-REF

In this section we analyze our proposed algorithm single-ref, which we denote by A
throughout this section. Recall that this algorithm uses sr, the r-th best sampling item, as
the threshold for accepting items. As implied by the proof of Lemma 2.1, only the k largest
items v1, . . . , vk contribute to the objective function. One essential idea of our approach is
to separate the set of top-k items into two classes according to the following definition.

I Definition 3.1. We say that item vi is dominating if i ≤ r, and non-dominating if
r + 1 ≤ i ≤ k.

The crucial property of dominating items becomes clear in the following scenario: Assume
that any dominating item v occurs after the sampling phase. Since sr is the r-th best item
from the sampling phase, it follows that v > sr. That is, each dominating item outside the
sampling beats the reference item. Therefore there are only two situations when dominating
items are rejected: Either they appear before position t, or after k accepted items.

3.1 Acceptance of Dominating Items
First we focus on dominating items. As we will show in Lemma 3.2, the algorithm cannot
distinguish between them and thus each dominating item has equal acceptance probability.



S. Albers and L. Ladewig 18:7

t

v

i

s1 sr

︷ ︸︸ ︷ ︷ ︸︸ ︷Rank

Position

z >z <z

. . .

1 r. . .

a1 aj. . .

i−j . . . i−1

≤r︷ ︸︸ ︷<z

Figure 1 Event Ẽj(z, i) considered in the proof of Lemma 3.2.

I Lemma 3.2. Let v be a dominating item and j ∈ [0..k). Let Ej be the event that A selects
v as (j+ 1)-th item. It holds that Pr [Ej ] = κτ

n

∑n
i=t+j

(
i−t
j

) 1
(i−1)r+j , where τ = (t− 1)r and

κ = (r − 1 + j)j.

Proof. Let Ej(z, i) be the event that A accepts v as (j + 1)-th item at position i = pos(v)
and sr has rank z (thus sr = vz). Note that there must be elements s1, . . . , sr−1 of rank
smaller than z in the sampling (such that sr is in fact the r-th best sampling element).
Similarly, there must be j elements a1, . . . , aj after the sampling but before v of rank smaller
than z (which are accepted by A).

The proof is in several steps. We first consider a stronger event Ẽj(z, i). Later, we show
how the probability of Ej(z, i) can be obtained from Ẽj(z, i). In the end, the law of total
probability yields Pr [Ej ].

Analysis of Ẽj(z, i). Event Ẽj(z, i) is defined as Ej(z, i) with additional position constraints
(see Figure 1): Elements s1, . . . , sr are in this order at the first r positions and elements
a1, . . . , aj are in this order at the j positions immediately before v. Therefore, Ẽj(z, i)
occurs if and only if the following conditions hold:
(i) pos(v) = i, pos(s`) = ` for ` ∈ [r], and pos(am) = i− j +m− 1 for m ∈ [j].
(ii) Elements s1, . . . , sr−1 have rank smaller than z
(iii) Elements a1 . . . , aj have rank smaller than z
(iv) All remaining items at positions r + 1, . . . , i− j − 1 have rank greater than z.
Using the concept described in Section 2.2, we think of sequentially drawing the elements
for the positions 1, . . . , r, i− j, . . . , i and then r + 1, . . . , i− j − 1. The probability for (i)
is
∏j+r
`=0

1
n−` = 1/nj+r+1 =: β, since each item has the same probability to occur at each

remaining position. In (ii), the r− 1 elements can be chosen out of z − 2 remaining items
of rank smaller than z (since v is dominating and was already drawn). Therefore we get
a factor of

(
z−2
r−1
)
. After this step, there remain z − 2− (r − 1) = z − r − 1 elements of

rank smaller than z, so we get factor
(
z−r−1
j

)
for step (iii).

Finally, the probability of (iv) can be formulated using Fact 2.2. Note that at this point,
there remain n− (1 + r + j) items and no item of rank greater than z has been drawn so
far. In terms of the random experiment described in Fact 2.2, we draw K = i− j − r − 1
balls (items) from an urn of size N = n− (1 + r+ j) where M = n− z balls are blue (rank
greater than z). Hence, the probability for (iv) is H := h(n− r− j−1, n− z, i− j− r−1).
Therefore we obtain

Pr
[
Ẽj(z, i)

]
= β ·

(
z − 2
r − 1

)(
z − r − 1

j

)
·H . (1)

This term can be simplified further by applying (R3) and (R2). Let R = z− 2, K = r− 1,
and M = j + r − 1. It holds that(

z−2
r−1

)(
z−r−1

j

)
(R3)=

(
R

M

)(
M

K

)
(R2)=

(
R

M

)(
M

M−K

)
=
(

z−2
j+r−1

)(
j+r−1

j

)
.

Let κ = (j + r − 1)j , then
(
j+r−1
j

)
= κ/j! and we get Pr

[
Ẽj(z, i)

]
= βκ

j! ·
(
z−2
j+r−1

)
·H .
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Relating Ẽj(z, i) to Ej(z, i). In contrast to Ẽj(z, i), in the event Ej(z, i), the elements
s1, . . . , sr can have any positions in [t − 1] and a1 . . . , aj any positions in [t..i). In the
random order model, the probability of an event depends linearly on the number of
permutations for which the event happens. Hence, we can multiply the probability
with corresponding factors (t − 1)r =: τ and (i − t)j =

(
i−t
j

)
j! and get Pr [Ej(z, i)] =(

i−t
j

)
τj! ·Pr

[
Ẽj(z, i)

]
.

Relating Ej(z, i) to Ej . As the final step, we sum over all possible values for i and z to
obtain Pr [Ej ]. The position i of item v ranges between t+ j and n, while the reference
rank z is between r+ j+ 1 (there are r−1 sampling elements and j+ 1 accepted elements
of rank less than z) and n. Thus we get:

Pr [Ej ] =
n∑

i=t+j

n∑
z=r+j+1

Pr [Ej(z, i)] = τj!
n∑

i=t+j

(
i− t
j

) n∑
z=r+j+1

Pr
[
Ẽj(z, i)

]
= βκτ

n∑
i=t+j

(
i− t
j

) n∑
z=r+j+1

(
z − 2

j + r − 1

)
·H

= βκτ

n∑
i=t+j

(
i− t
j

)
1(

n−r−j−1
i−j−r−1

) n∑
z=r+j+1

(
z − 2

j + r − 1

)(
n− z

i− j − r − 1

)
, (2)

where the last step follows from Fact 2.2. The sum over z in Equation (2) can be resolved
using (R1). Let L = n− r − j − 1, N = Q = r + j − 1, and M = i− j − r − 1. Then we
have

n∑
z=r+j+1

(
z − 2

j + r − 1

)(
n− z

i− j − r − 1

)
=
n−r−j−1∑
z=0

(
r + j − 1 + z

j + r − 1

)(
n− r − j − 1− z
i− j − r − 1

)

=
L∑
z=0

(
Q+ z

N

)(
L− z
M

)
=
(
L+Q+ 1
M +N + 1

)
=
(
n− 1
i− 1

)
. (3)

Note that in order to apply (R1) we need to verify L,M ≥ 0 and N ≥ Q ≥ 0. We can
assume k ≤ n/2, since for k > n/2, there exist a trivial (1/2)-competitive algorithm.
Therefore, we have L = n − r − j − 1 ≥ n − k − (k − 1) − 1 = n − 2k ≥ 0. Further,
i ≥ t+ j, thus i− j ≥ t ≥ k + 1 ≥ r + 1 which implies M ≥ 0. The condition N ≥ Q ≥ 0
holds trivially. By inserting Equation (3) into Equation (2), we obtain the quotient of
binomial coefficients

(
n−1
i−1
)
/
(
n−r−j−1
i−j−r−1

)
. From (R3) we get(

n− 1
i− 1

)/(n− 1− (r + j)
i− 1− (r + j)

)
=
(
n− 1
r + j

)/(i− 1
r + j

)
= (n− 1)r+j

(i− 1)r+j .

Recall β = 1/nj+r+1, thus (n− 1)r+j · β = 1/n. Together with Equation (2) we get

Pr [Ej ] = βκτ · (n− 1)r+j
n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j = κτ

n

n∑
i=t+j

(
i− t
j

)
1

(i− 1)r+j , (4)

which concludes the proof. J

Lemma 3.2 provides the exact probability that a dominating item is accepted as (j+ 1)-th
item. However, it is more meaningful to consider the asymptotic setting where n → ∞.
Here, we assume t − 1 = cn for some constant c ∈ (0, 1). For this setting, we obtain the
following lemma.
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I Lemma 3.3. Let Ej be defined as in Lemma 3.2. In the asymptotic setting described above,
(A) For r = 1 it holds that Pr [Ej ] = c

(
ln 1

c +
∑j
`=1 β`

c`−1
`

)
, where β` = (−1)`+1(j

`

)
for

` ∈ [j].

(B) For r ≥ 2 it holds that Pr [Ej ] = c
r−1 −

cr(1−c)j

r−1
∑j
`=0 α`

(
c

1−c

)`
, where α` =

(
j+r−1
`+r−1

)
for ` ∈ [0..j].

The proof of Lemma 3.3 relies on a sequence of technical lemmas and is given in Appendix A.

I Remark. As described in Section 2.1, single-ref generalizes the optimal strategy for the
secretary problem (k = 1). Note that the combinatorial analysis from Lemma 3.2 as well as
the asymptotic bound from Lemma 3.3 give exactly the respective terms from the secretary
problem. To see this, we set r = 1 and consider the probability that the dominating item v1
is accepted as first item. By Lemma 3.2 (with j = 0), the success probability is t−1

n

∑n
i=t

1
i−1 .

Moreover, Lemma 3.3(A) provides the asymptotic bound of c ln(1/c) for this case.

3.2 Non-Dominating Items
It remains to consider the acceptance probabilities of the non-dominating items vr+1, . . . ,

vk. Fortunately, there exist some interesting connections to the probabilities for dominating
items.

I Lemma 3.4. Let i ∈ [1..k − r] and j ∈ [1..i]. For the non-dominating item vr+i it holds
that Pr [vr+i is j-th accept] = Pr [vr+i is (i+ 1)-th accept].

Proof. First we argue that there are in total at least i + 1 accepts if vr+i is accepted.
Assuming that vr+i is accepted, we have sr < vr+i. Let S be the set of elements which
the algorithm may accept, i.e. S = {v1, . . . , vr+i}. Since sr is the r-th best element in the
sampling, at most r − 1 elements from S can be part of the sampling and thus at least
r + i− (r − 1) = i+ 1 elements from S, including vr+i, are accepted.

As described in Section 2.2, we construct a bijective function f : P → Q where P (resp.
Q) is the set of permutations where vr+i is the j-th (resp. (i+ 1)-th) accept. For each input
sequence π ∈ P , let a1, . . . , ai+1 with aj = vr+i denote the first i+ 1 accepts. The function
f swaps the positions of a1, . . . , ai+1 in a cyclic shift, such that aj = vr+i is at the former
position of ai+1. In other words, the relative order of the first i + 1 accepted elements in
f(π) is changed in a way that vr+i is the (i+ 1)-th accept in f(π). Note that the cyclic shift
can be reversed, thus f is bijective. J

While Lemma 3.4 relates the acceptance probabilities of a single non-dominating item,
the claim of Lemma 3.5 is in a way orthogonal by relating probabilities of non-dominating
items to those for dominating items.

I Lemma 3.5. Let i ∈ [1..k−r] and j ∈ [1..k−i]. For the non-dominating item vr+i and any
dominating item v+ it holds that Pr [vr+i is (i+ j)-th accept] = Pr [v+ is (i+ j)-th accept].

Proof. Let P be the set of permutations where vr+i is the (i+ j)-th accept and let Q contain
those where v+ is the (i+ j)-th accept. We prove the claim by defining a bijective function
f : P → Q. Let f be the function that swaps vr+i with v+ in the input sequence.

Consider any input sequence π ∈ P . As vr+i is accepted, sr < vr+i. We can argue that
in f(π) element sr is still the r-th best element of the sampling: This holds clearly if no
item is moved out of or into the sampling. Otherwise, f moves vr+i into the sampling and
v+ outside. But since sr < vr+i < v+, this does not change the role of sr as the r-th best
sampling element. Thus f is injective.

ISAAC 2019



18:10 New Results for the k-Secretary Problem

To prove that f is surjective, let π′ ∈ Q be any input sequence where v+ is the (i+ j)-th
accept. We next consider the rank z of sr = vz. As there must be sampling elements
s1, . . . , sr−1 and accepted elements a1, . . . , ai+j−1, v

+ of rank smaller than z, we have z >
(r − 1) + (i + j − 1) + 1 ≥ r + i. Hence, sr < vr+i. The inverse function of f consists in
swapping back v+ with vr+i. For the same reason as above, this maintains sr. As sr < vr+i,
element vr+i gets accepted, thus f−1(π′) ∈ P . J

Using the previous results for dominating and non-dominating items we are now ready to
state the main result of this section, namely the competitive ratio of single-ref. Due to
the complex expressions from Lemma 3.3 we give numerical results for small values of k.

I Theorem 3.6. In the asymptotic setting of n → ∞ and assuming that t − 1 = cn for a
constant c ∈ (0, 1), single-ref achieves the competitive ratios given in Table 1.

Proof. For an item vi, let p(j)
i be the probability that vi is the j-th accept (with 1 ≤ j ≤ k).

The total acceptance probability of vi is denoted by pi =
∑k
j=1 p

(j)
i . According to Lemma 3.2,

each dominating item has the same acceptance probability for a fixed acceptance position.
Therefore, in the following we simply write p1 (resp. p(j)

1 ) for the acceptance probability of
any dominating item.

By Lemma 2.1 the competitive ratio can be obtained by summing over the acceptance
probabilities of all items divided by k. Clearly,

∑r
i=1 pi = rp1. Now consider any non-

dominating item vr+i. According to Lemmas 3.4 and 3.5, pr+i can be related to respective
probabilities p(j)

1 : It holds that p(j)
r+i = p

(z)
1 with z = max{j, i + 1}. Therefore pr+i =∑k

j=1 p
(j)
r+i =

∑i
j=1 p

(i+1)
1 +

∑k
j=i+1 p

(j)
1 = ip

(i+1)
1 +

∑k
j=i+1 p

(j)
1 . Hence, we obtain the

competitive ratio

1
k

k∑
i=1

pi = 1
k

rp1 +
k−r∑
i=1

ip(i+1)
1 +

k∑
j=i+1

p
(j)
1

 (5)

with p(j)
1 = Pr [Ej−1] for the event Ej considered in Lemmas 3.2 and 3.3. To evaluate the

performance of our algorithm, we maximized Equation (5) over the parameters r and c using
a computer algebra system. This yields the competitive ratios shown in Table 1 (p. 3). J

For completeness, we evaluated the competitive ratio of single-ref in the interval
k ∈ [1..100] using the optimization procedure mentioned in the previous proof. Figure 2
shows the performance of single-ref in comparison with Kleinberg’s result [21]; our
algorithm reaches competitive ratios of up to 0.75 and outperforms the algorithm from [21]
on this interval. In Appendix A, we provide the full list of optimal parameters for k ∈ [1..100]
(see Table 3, p. 19).

4 Analysis of OPTIMISTIC for k = 2

In this section we sketch the analysis of optimistic for k = 2. Due to space constraints, for
some proofs we refer to the full version of this paper. Let A2 denote optimistic algorithm
with k = 2 in the following. As implied by Lemma 2.1 the competitive ratio is determined by
p1 and p2, the probabilities that A2 accepts v1 and v2, respectively. To find these probabilities,
we make use of the relation between probabilities and sets (see Section 2.2). Let Pi be the
set of permutations in which A2 accepts vi.
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Figure 2 Comparison of our algorithm single-ref and the algorithm by Kleinberg [21], for
k ∈ [1..100]. The parameters r and c for single-ref are chosen optimally.

Probability p2. In the next lemma, we show a surprising relation between optimistic for
k = 2 and the algorithm for the classical (1-)secretary problem (see Section 2.1). The proof of
Lemma 4.1 uses a sophistically tailored bijection between two respective sets of permutations.
We sketch the proof method here and give the entire proof in the full version of this paper.

I Lemma 4.1. Let A1 be the algorithm for the classical secretary problem. Assuming that both
algorithms A1, A2 are parameterized with the same t, we have that p2 = Pr [A2 accepts v2] =
Pr [A1 accepts v1].

Sketch of proof. Equivalently, we prove that the corresponding complementary events hap-
pen with the same probability. For this purpose, we define for each permutation π where
A2 does not accept v2 a unique permutation f(π) where A1 does not accept v1. Different
situations where A2 does not accept v2 lead to a total number of five cases. If v2 is in the
sampling of π, we define f(π) such that the positions of v1 and v2 are swapped. Then, A1
clearly does not accept v1 in f(π). Another case is when v2 comes behind two accepted
elements a1, a2 in π and v1 = a1 is the first accept. Note that since a2 is accepted, a2 > s1.
In this case, f(π) can be defined by swapping the positions of both accepts v1 and a2. Recall
that A1 accepts the first item better than s1 following the sampling phase which is a2 in
f(π), thus v1 is not selected.

In the full proof, we consider all five cases according to π. In each case it is enough to
define f such that the positions of at most three elements are swapped. Finally, we have to
argue that the function f is indeed bijective. J

Probability p1. In this part, we argue that p1 = p2 + δ holds for some δ > 0. To obtain δ,
we again consider cardinalities of sets instead of probabilities. First, we observe that P2 can
be related to a set P ′1 ⊂ P1 such that P2 and P ′1 have equal size.

I Lemma 4.2. Let P ′1 = {π ∈ P1 | posπ(v2) < t ⇒ A2 accepts v1 as first item}. It holds
that |P ′1| = |P2|.

Proof. Let f : P2 → P ′1 be the function that swaps v1 with v2 in the given sequence. We
first have to argue that in fact f : P2 → P ′1, therefore let π ∈ P2 be given. Then, v1 gets
accepted by A2 in f(π) at the position posf(π)(v1) = posπ(v2), as v1 is an item of higher
value. So far we have f(π) ∈ P1. If posf(π)(v2) ≥ t, there is nothing to show. Assuming that
posf(π)(v2) < t, it follows posπ(v1) < t, i.e. v1 was the best element in the sampling of π.
Since no item (particularly not v2) can beat v1, but v2 was accepted by A2 in π, we get that
v2 was the first accept in π. Hence v1 is the first accept in f(π).
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Clearly, f is injective. For surjectivity, let π′ ∈ P ′1 and let π the permutation obtained
from π′ by swapping (back) v1 with v2. If posπ′(v2) < t, by definition of P ′1 we know that v1
is the first accept in π′, implying that no item before posπ′(v1) = posπ(v2) is chosen by A2.
In the case posπ′(v2) ≥ t, since posπ′(v1) ≥ t, the smallest rank in the sampling of π′ is 3 or
greater. Therefore, v2 gets accepted if not more than one item before v2 gets accepted. This
is the case in π, as posπ(v2) = posπ′(v1). J

Since |P1| = |P ′1| + |P1 \ P ′1| = |P2| + |P1 \ P ′1|, we therefore get δ = |P1 \ P ′1| /n!, i.e.,
δ is the probability that a random permutation is in the set |P1 \ P ′1|. This probability is
considered in Lemma 4.3.

I Lemma 4.3. Let δ = Pr [π ∈ P1 \ P ′1] where π is drawn uniformly from the set of all
permutations and P ′1 is defined like in Lemma 4.2. It holds that δ = t−1

n
t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1) .

The proof of Lemma 4.3 relies on a counting argument similar to the proof of Lemma 3.2.
We prove Lemma 4.3 in the full version of this paper.

Competitive ratio. From Lemmas 4.1 and 4.3, we know the exact probabilities p2 and p1.
For particular n, the term (p1 + p2)/2 can be optimized over t to find the optimal sampling
size. In the following theorem we consider the asymptotic setting n→∞. Here, we assume
that the sampling size is a constant fraction of the input size, i.e., t − 1 = cn for some
constant c ∈ (0, 1).

I Theorem 4.4. For k = 2, the algorithm optimistic is 0.4168-competitive in the limit
n→∞ and assuming that the sampling size is t− 1 = cn for c = 0.3521.

Proof. According to Lemma 4.1, p2 is the probability that the classical secretary algorithm
accepts the best item, i.e., p2 = t−1

n

∑n
i=t

1
i−1 . This term approaches c ln(1/c) asymptotically.

From Lemma 4.3 we know p1 = p2 + δ, where δ = t−1
n

t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1) . For n→∞, the

sum
∑n−1
i=t

n−i
(i−2)(i−1) is bounded from above and below by 1

c − ln 1
c − 1. This can be seen by

bounding the sum by two corresponding integrals. Further, limn→∞
t−1
n

t−2
n−1 = c2. Therefore,

δ = c2 ( 1
c − ln 1

c − 1
)
for large n. According to Lemma 2.1, A2 is α(c)-competitive with

α(c) = 1
2 (p1 + p2) = 1

2 (p2 + δ + p2) = c ln 1
c

+ c2

2

(
1
c
− ln 1

c
− 1
)
.

Setting c = 1/e, we obtain a competitive ratio of α(1/e) = 3e−2
2e2 ≈ 0.4164. However, the

optimal choice for c is around c∗ = 0.3521 < 1/e, improving the competitive ratio slightly to
α(c∗) ≈ 0.4168. J

5 Conclusion and Future Work

We investigated two algorithms for the k-secretary problem with a focus on small values
for k ≥ 2. Aside from a tight analysis of the optimistic algorithm [3] for k = 2, we
introduced and analyzed the algorithm single-ref. For any value of k, the competitive
ratio of single-ref can be obtained by numerical optimization.

We see various directions of future work. For single-ref, it remains to find the right
dependency between the parameters r, c, and k in general and to find a closed formula for the
competitive ratio for any value of k. optimistic seems a promising and elegant algorithm,
however no tight analysis for general k ≥ 3 is known so far. For k = 2, we identified a key
property in Lemma 4.1. Similar properties may hold in the general case. Lastly, to the best
of our knowledge, no hardness results for the k-secretary problem are known (apart from the
cases k ≤ 2).
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A Technical Proofs for SINGLE-REF

In several lemmas we need to find closed expressions for sums over values of a certain function.
If the function is monotone, such sums can be bounded by corresponding integrals:

I Fact A.1. Let f : R≥0 → R≥0 and a, b ∈ N.
(A) If f is monotonically decreasing, then

∫ b+1
a

f(i) di ≤
∑b
i=a f(i) ≤

∫ b
a−1 f(i) di .

(B) If f is monotonically increasing, then
∫ b
a−1 f(i) di ≤

∑b
i=a f(i) ≤

∫ b+1
a

f(i) di .

In Lemma 3.3 we consider the acceptance probabilities of dominating items in the
asymptotic setting n → ∞ with t − 1 = cn for c ∈ (0, 1). We can assume further that
j, r ≤ k = o(n). In the following, we prove Lemma 3.3 using some technical lemmas, stated
and proven below the main proof.

Proof of Lemma 3.3. We first consider the sum S :=
∑n
i=t+j

(
i−t
j

) 1
(i−1)r+j from Equation (4)

and obtain the following lower bound:

S =
n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j = 1
j!

n∑
i=t+j

(i− t)j

(i− 1)r+j ≥
1
j!

n∑
i=t+j

(i− t− j + 1)j

(i− 1)r+j

= 1
j!

n−t−j+1∑
i=1

ij

(i+ t+ j − 2)r+j .

Let f(i) = ij/(i+ y)r+j for y = t+ j − 2. Note that y can be seen as a constant independent
from i. Let m = n− t− j + 1, now the above inequality reads as S ≥ (1/j!)

∑m
i=1 f(i). In

the following we investigate the function f .
Unfortunately, f is in general not monotone, hence we can not apply Fact A.1A or

Fact A.1B directly in order to bound the sum by an integral. However, we can split the sum
into two monotone parts. Let d be defined like in Lemma A.2 (following this proof). Now we
can apply Fact A.1 as follows:

m∑
i=1

f(i) =
d∑
i=1

f(i) +
m∑

i=d+1
f(i) ≥

∫ d

0
f(i) di +

∫ m+1

d+1
f(i) di

=
∫ m+1

0
f(i) di −

∫ d+1

d

f(i) di . (6)
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Finding the indefinite integral
∫
f(i) di turns out to be a technical task and is therefore

moved to separate lemmas (see Lemmas A.3 and A.4). If F (i) is a function with F ′(i) = f(i),
we have for κ, τ defined like in Equation (4)

Pr [Ej ] = κτ

n
S ≥ κτ

nj! (F (m+ 1)− F (0)− F (d+ 1) + F (d)) . (7)

In the remainder of the proof we consider the two cases r = 1 and r ≥ 2 separately.

Case A: r = 1. Let F (i) and β` be defined like in Lemma A.3. In Equation (7), the factor
κτ
nj! resolves to c as κ = (j + r− 1)j = jj = j! and τ = (t− 1)r = (t− 1)1 = t− 1. Further
it holds that

lim
n→∞

F (m+ 1) = lim
n→∞

(
ln((m+ 1) + y) +

j∑
`=1

β`
y`

`((m+ 1) + y)`

)

= lim
n→∞

(
lnn+

j∑
`=1

β`
(t+ j − 2)`

`n`

)
= lim
n→∞

(
lnn+

j∑
`=1

β`
c`

`

)
and moreover

lim
n→∞

F (0) = lim
n→∞

(
ln y +

j∑
`=1

β`
y`

`y`

)
= lim
n→∞

(
ln(t+ j − 2) +

j∑
`=1

β`
1
`

)

= lim
n→∞

(
ln t+

j∑
`=1

β`
1
`

)
.

Hence, lim
n→∞

(F (m+ 1)− F (0)) = ln 1
c +

∑j
`=1 β`

c`−1
` . It remains to consider F (d) −

F (d+ 1) in the limit of n→∞. It holds that

F (d)− F (d+ 1) = ln(d+ y) +
j∑
`=1

β`
y`

`(d+ y)` − ln(d+ 1 + y)−
j∑
`=1

β`
y`

`(d+ 1 + y)`

= ln
(

d+ y

d+ 1 + y

)
+

j∑
`=1

β`
`

((
y

d+ y

)`
−
(

y

d+ 1 + y

)`)

and since y = t+j−2 = Θ(n) and d = (j/r)y = Θ(y), we get that lim
n→∞

(F (d)− F (d+ 1))
= 0.

Case B: r ≥ 2. In this case let F (i) and α` be defined according to Lemma A.4. Further,
let G(i) = −α0(r − 1)F (i). Using Equation (7) we obtain

= κτ

nj!α0(r − 1) (G(0)−G(m+ 1) +G(d+ 1)−G(d))

= τ

n(r − 1) (G(0)−G(m+ 1) +G(d+ 1)−G(d)) , (8)

where the last equality follows from the definition of α0 =
(
j+r−1
r−1

)
= κ/j!. We first notice

lim
n→∞

τ

n(r − 1) = 1
r − 1 lim

n→∞

(t− 1)r

n
= 1
r − 1 lim

n→∞

(t− 1)r

n
= 1
r − 1c

r lim
n→∞

nr−1 .

Further it holds that

G(m+ 1) =
∑j
`=0 α`(m+ 1)j−`(t+ j − 2)`

(m+ 1 + t+ j − 2)r+j−1 =
∑j
`=0 α`(m+ 1)j−`(t+ j − 2)`

nr+j−1 .
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Note that lim
n→∞

(m+ 1) = lim
n→∞

(n− (t− 1)) = lim
n→∞

(n− cn) = lim
n→∞

(1− c)n and similarly
lim
n→∞

(t+ j − 2) = lim
n→∞

(t− 1) = lim
n→∞

cn. Hence we get

lim
n→∞

G(m+ 1) = lim
n→∞

∑j
`=0 α`(1− c)j−`nj−`c`n`

nr+j−1 = lim
n→∞

∑j
`=0 α`(1− c)j−`c`

nr−1 .

For the term G(0) we obtain

G(0) =
∑j
`=0 α`0j−`y`

yr+j−1 = αjy
j

yr+j−1 = 1
yr−1

and thus lim
n→∞

G(0) = lim
n→∞

1
yr−1 = lim

n→∞
1

(t−1)r−1 = 1
cr−1 lim

n→∞
1

nr−1 .
In Equation (8) it remains to consider G(d+ 1)−G(d). Similarly to case A we can show
that this term approaches 0 for n→∞:

G(d+ 1)−G(d) =
∑j
`=0 α`(d+ 1)j−`y`

(d+ 1 + y)r+j−1 −
∑j
`=0 α`d

j−`y`

(d+ y)r+j−1

≤
∑j
`=0 α`y

`
(
(d+ 1)j−` − dj−`

)
(d+ y)r+j−1

where the numerator approaches 0 since d = Θ(y) = Θ(n). Using Equation (8) and all
limits stated above, we get finally

lim
n→∞

Pr [Ej ] = lim
n→∞

1
r − 1c

rnr−1

(
1

cr−1
1

nr−1 −
∑j
`=0 α`(1− c)j−`c`

nr−1

)

= 1
r − 1

(
c−

j∑
`=0

α`c
r+`(1− c)j−`

)

= c

r − 1 −
cr(1− c)j

r − 1

j∑
`=0

α`

(
c

1− c

)`
.

This concludes the proof. J

I Lemma A.2. Let f : R→ R with f(i) = ij/(i+ y)r+j and j ≥ 0, r ≥ 1, and y > 0 does
not depend on i. The function f is monotonically increasing for i ≤ d and monotonically
decreasing for i > d where d = (jy)/r.

Proof. Let g(i) = ij and h(i) = (i + y)r+j . We consider the first derivative f ′(i) =
g′(i)h(i)−g(i)h′(i)

h(i)2 . Since h(i)2 is nonnegative, f grows monotonically if

g′(i)h(i) ≥ g(i)h′(i) ⇔ jij−1(i+ y)r+j ≥ ij(r + j)(i+ y)r+j−1 ⇔ j(i+ y) ≥ i(r + j) .

It is easy to see that the last inequality is equivalent to i ≤ jy
r = d. J

I Lemma A.3. Let f : R→ R with f(i) = ij/(i+ y)r+j and r = 1, j ≥ 0, and y > 0 does
not depend on i. The following function F fulfills F ′(i) = f(i):

F (i) = ln(i+ y) +
j∑
`=1

β`
y`

`(i+ y)`

where β` = (−1)`+1(j
`

)
for 1 ≤ ` ≤ j.
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Proof. We need to show F ′(i) = f(i) and observe first that

F ′(i) = 1
i+ y

+
j∑
`=1

β`
−`y`

`(i+ y)`+1 = 1
i+ y

+
j∑
`=1

β`y
`−(i+ y)j−`

(i+ y)j+1

= 1
(i+ y)j+1

(
(i+ y)j +

j∑
`=1

β`y
`(−(i+ y)j−`)

)

and since β0 = (−1)0+1(j
0
)

= −1 we get further

F ′(i) = 1
(i+ y)j+1

j∑
`=0

β`y
`(−(i+ y)j−`) = 1

(i+ y)j+1

j∑
`=0

(−1)`+2
(
j

`

)
y`(i+ y)j−` .

Finally, note that (−1)`+2y` = (−y)`, thus by the binomial theorem the last sum evaluates
to ((i+ y) + (−y))j = ij which concludes the proof. J

I Lemma A.4. Let f : R→ R with f(i) = ij/(i+ y)r+j and j ≥ 0, r ≥ 2, and y > 0 does
not depend on i. The following function F fulfills F ′(i) = f(i):

F (i) = −
∑j
`=0 α`i

j−`y`

α0(r − 1)(i+ y)r+j−1 ,

where α` =
(
j+r−1
`+r−1

)
for 0 ≤ ` ≤ j.

Proof. Let G(i) and H(i) be the numerator and denominator of F (i). It holds that G′(i) =
−
∑j
`=0 α`(j − `)ij−`−1y` and H ′(i) = α0(r − 1)(r + j − 1)(i + y)r+j−2 = H(i)r(i) where

r(i) = r+j−1
i+y . In order to prove the claim, we show

G′(i)(i+ y)−G(i)(r + j − 1) = ijα0(r − 1) (9)

since then we have

F ′(i) = G′(i)H(i)−G(i)H ′(i)
H(i)2 = G′(i)−G(i)r(i)

H(i) = G′(i)−G(i)r(i)
α0(r−1)
i+y (i+ y)r+j

= (i+ y)(G′(i)−G(i)r(i))
α0(r − 1)(i+ y)r+j = (i+ y)G′(i)− (r + j − 1)G(i)

α0(r − 1)(i+ y)r+j

With Equation (9), the last term resolves to = ijα0(r−1)
α0(r−1)(i+y)r+j = f(i) . It remains to show

Equation (9):

G′(i)(i+ y)−G(i)(r + j − 1)

= −
(

j∑
`=0

α`(j − `)ij−`−1y`

)
(i+ y) +

(
j∑
`=0

α`i
j−`y`

)
(r + j − 1)

= −
(

j∑
`=0

α`(j − `)ij−`y`
)
−

(
j∑
`=0

α`(j − `)ij−`−1y`+1

)

+
(

j∑
`=0

α`i
j−`y`

)
(r + j − 1)

=
(

j∑
`=0

α`i
j−`y`(r − 1 + `)

)
−

(
j−1∑
`=0

α`(j − `)ij−`−1y`+1

)
.
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Note that the first sum contains all powers of i from i0 to ij , while the latter sum only
powers from i0 to ij−1. Therefore, we can split up the part for ij from the first sum and
group equal powers of i to obtain

α0(r − 1)ij +
j∑
`=1

(α`(r − 1 + `)− α`−1(j − `+ 1)) ij−`y` .

The claim follows if we can show that the last sum evaluates to zero. This is true, since by
definition of α` it holds that

α`(r − 1 + `) =
(
j + r − 1
`+ r − 1

)
(r − 1 + `) = (j + r − 1)!

(`+ r − 1)!(j − `)! (r − 1 + `)

= (j + r − 1)!
(`+ r − 2)!(j − `+ 1)!

(j − `+ 1)
(j − `)! =

(
j + r − 1

(`− 1) + r − 1

)
(j−`+1) = α`−1(j−`+1) . J
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Table 3 Optimal parameters and corresponding competitive ratios of single-ref for k ∈ [1..100].
For readibility, the numeric values are truncated after the fourth decimal place.

k r c competitive ratio

1 1 0.3678 0.3678
2 1 0.2545 0.4119
3 2 0.3475 0.4449
4 2 0.2928 0.4785
5 2 0.2525 0.4999
6 2 0.2217 0.5148
7 3 0.2800 0.5308
8 3 0.2549 0.5453
9 3 0.2338 0.5567
10 3 0.2159 0.5660
11 4 0.2570 0.5740
12 4 0.2410 0.5834
13 4 0.2267 0.5914
14 4 0.2140 0.5983
15 4 0.2026 0.6043
16 4 0.1924 0.6096
17 5 0.2231 0.6155
18 5 0.2133 0.6211
19 5 0.2042 0.6261
20 5 0.1959 0.6306
21 5 0.1882 0.6347
22 5 0.1811 0.6384
23 6 0.2054 0.6426
24 6 0.1985 0.6465
25 6 0.1919 0.6502
26 6 0.1858 0.6535
27 6 0.1800 0.6566
28 6 0.1746 0.6595
29 7 0.1947 0.6625
30 7 0.1893 0.6655
31 7 0.1842 0.6684
32 7 0.1793 0.6711
33 7 0.1747 0.6736
34 7 0.1703 0.6760
35 7 0.1662 0.6782
36 8 0.1830 0.6805
37 8 0.1788 0.6829
38 8 0.1748 0.6851
39 8 0.1710 0.6873
40 8 0.1673 0.6893
41 8 0.1638 0.6912
42 8 0.1605 0.6930
43 9 0.1750 0.6948
44 9 0.1716 0.6968
45 9 0.1683 0.6986
46 9 0.1651 0.7004
47 9 0.1621 0.7021
48 9 0.1592 0.7037
49 9 0.1563 0.7052
50 9 0.1536 0.7067

k r c competitive ratio

51 10 0.1662 0.7082
52 10 0.1635 0.7098
53 10 0.1608 0.7113
54 10 0.1582 0.7127
55 10 0.1557 0.7141
56 10 0.1532 0.7155
57 10 0.1509 0.7168
58 10 0.1486 0.7180
59 11 0.1597 0.7193
60 11 0.1574 0.7206
61 11 0.1551 0.7219
62 11 0.1529 0.7231
63 11 0.1508 0.7243
64 11 0.1487 0.7255
65 11 0.1467 0.7266
66 11 0.1447 0.7277
67 11 0.1428 0.7287
68 12 0.1527 0.7298
69 12 0.1508 0.7309
70 12 0.1489 0.7320
71 12 0.1470 0.7330
72 12 0.1452 0.7340
73 12 0.1434 0.7350
74 12 0.1417 0.7360
75 12 0.1400 0.7369
76 12 0.1384 0.7378
77 13 0.1473 0.7387
78 13 0.1456 0.7397
79 13 0.1440 0.7406
80 13 0.1424 0.7415
81 13 0.1408 0.7424
82 13 0.1393 0.7433
83 13 0.1378 0.7441
84 13 0.1363 0.7449
85 13 0.1349 0.7457
86 14 0.1429 0.7465
87 14 0.1415 0.7473
88 14 0.1400 0.7482
89 14 0.1386 0.7490
90 14 0.1372 0.7497
91 14 0.1359 0.7505
92 14 0.1346 0.7512
93 14 0.1333 0.7520
94 14 0.1320 0.7527
95 14 0.1307 0.7534
96 15 0.1381 0.7541
97 15 0.1368 0.7548
98 15 0.1356 0.7555
99 15 0.1343 0.7562
100 15 0.1331 0.7569
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