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Abstract
Spectral techniques have proved amongst the most effective approaches to graph clustering. However,
in general they require explicit computation of the main eigenvectors of a suitable matrix (usually
the Laplacian matrix of the graph).

Recent work (e.g., Becchetti et al., SODA 2017) suggests that observing the temporal evolution
of the power method applied to an initial random vector may, at least in some cases, provide enough
information on the space spanned by the first two eigenvectors, so as to allow recovery of a hidden
partition without explicit eigenvector computations. While the results of Becchetti et al. apply
to perfectly balanced partitions and/or graphs that exhibit very strong forms of regularity, we
extend their approach to graphs containing a hidden k partition and characterized by a milder
form of volume-regularity. We show that the class of k-volume regular graphs is the largest class of
undirected (possibly weighted) graphs whose transition matrix admits k “stepwise” eigenvectors (i.e.,
vectors that are constant over each set of the hidden partition). To obtain this result, we highlight a
connection between volume regularity and lumpability of Markov chains. Moreover, we prove that if
the stepwise eigenvectors are those associated to the first k eigenvalues and the gap between the
k-th and the (k+1)-th eigenvalues is sufficiently large, the Averaging dynamics of Becchetti et al.
recovers the underlying community structure of the graph in logarithmic time, with high probability.
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20:2 Step-By-Step Community Detection in Volume-Regular Graphs

1 Introduction

Clustering a graph in a way that reflects underlying community structure is a very important
mining task [18]. Informally speaking, in the classical setting, we are given a possibly
weighted graph G and an integer k. Our goal is to partition the vertex set of G = (V,E)
into k disjoint subsets, so that the k induced subgraphs have high inner and low outer
expansion. Spectral techniques have proved amongst the most effective approaches to graph
clustering [37, 41, 45]. The general approach to spectral graph clustering [45] normally
implies embedding the vertices of G into the k-dimensional subspace spanned by the main k
eigenvectors of a matrix defined in terms of G’s adjacency matrix, typically its (normalized)
Laplacian. Intuitively, one expects that, for a well-clustered graph with k communities, the
profiles of the first k eigenvectors are correlated with the underlying community structure
of G. Recent work has provided theoretical support to this approach. In particular, [27]
showed that, given the first k orthonormal eigenvectors of the normalized Laplacian, it
is possible to produce a k-partition of the vertex set, corresponding to k suitably-defined
indicator vectors, such that the associated values of the Rayleigh quotient are relatively
small. More recently, [38] proved that, under suitable hypotheses on the spectral gap between
the k-th and (k+1)-th eigenvalue of the normalized Laplacian of G, the span of the first k
eigenvectors largely overlaps with the span of {D 1

2 g1, . . . , D
1
2 gk}, where D is the diagonal

degree matrix of G, while the gi’s are indicator vectors describing a k-way partition {Si}ki=1
of V such that, for every i, the conductance of Si is at most the k-way expansion constant
ρ(k) [27]. Note that, if v is an eigenvector associated to the i-th smallest eigenvalue of the
normalized Laplacian, D− 1

2v is an eigenvector corresponding to the i-th largest eigenvalue of
the random walk’s transition matrix associated to G. Hence, when G is well-clustered, one
might reasonably expect the first k eigenvectors of P to exhibit almost-“stepwise” profiles
reflecting G’s underlying community structure. The aforementioned spectral approaches
require explicit computation of the k main eigenvectors of a (generally symmetric) matrix.

In [6], the authors considered the case k = 2 for which they proposed the following
distributed algorithm (Averaging dynamics, Algorithm 1): “At the outset, every node
picks an initial value, independently and uniformly at random in {−1, 1}; then, in each
synchronous round, every node updates its value to the average of those held by its neighbors.
A node also tags itself blue if the last update increased its value, red otherwise” [6]. The
authors showed that, under a variety of graph models exhibiting sparse balanced cuts,
including the stochastic block model [20], the process resulting from the above simple local
rule converges, in logarithmic time, to a coloring that, depending on the model, exactly or
approximately reflects the underlying cut. They further elaborated on how to extend the
proposed approach to the case of multiple communities, providing an analysis for a strongly
regular version of the stochastic block model with multiple communities. While results like
those presented in [27, 38] provide further theoretical justification for spectral clustering,
the approach proposed in [6] suggests that observing the temporal evolution of the power
method applied to an initial random vector may, at least in some cases, provide equivalent
information, without requiring explicit eigenvector computations.

1.1 Our contributions
The goal of this work is to take a further step in this direction by considering a more general
class of graphs, even if still relatively “regular”, than the one considered in [6]. The analysis
of the Averaging dynamics on this class is considerably harder, but it is likely to provide
insights into the challenges of analyzing the general case, without all the intricacies of the
latter. Our contribution is as follows:
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We define the class of k-volume-regular graphs. This class of edge-weighted graphs
includes those considered in [6] and it is the largest class of undirected, possibly weighted
graphs that admit k “stepwise” eigenvectors (i.e., having constant values over the k
steps that identify the hidden partition). This result uses a connection between volume
regularity and lumpability of Markov chains [22, 44].
If the stepwise eigenvectors are those associated to the first k eigenvalues and the gap
between the k-th and the (k+1)-th eigenvalues is sufficiently large, we show that running
the Averaging dynamics for a suitable number of steps allows recovery of the underlying
community structure of the graph, with high probability.1 To prove this, we provide a
family of mutually orthonormal vectors which, when the graph is volume-regular, span
the eigenspace of the main k eigenvectors of the normalized adjacency matrix of the graph.
It should be noted that the first and second of these vectors are respectively the main
eigenvector and the Fiedler vector [17] associated to the normalized adjacency matrix.
While the results of [6] apply when the underlying communities are of the same size, our
results do not require this assumption and they apply to weighted graphs. It should also
be noted that volume regularity is a weaker notion than regularity of the graph.
We further show that variants of the Averaging dynamics (and/or its labeling rule) can
address different problems (e.g., identifying bipartiteness) and/or other graph classes.

We finally note that the overall algorithm we consider can be viewed as a fully decentralized,
synchronous algorithm that works in anonymous networks,2 with a completely local clustering
criterion, though it cannot be considered a dynamics in the sense of [6] since it requires a
bound on the number of nodes in the underlying network.

1.2 Further related work
We briefly discuss further work that bears some relationship to this paper, either because it
adopts simple and/or decentralized heuristics to uncover community structure, or because it
relies on the use of spectral techniques.

Decentralized heuristics for block reconstruction. Label propagation algorithms [39] are
dynamics based on majority updating rules [3] and have been applied for detecting commu-
nities in complex networks. Several papers present experimental results for such protocols
on specific classes of clustered graphs [4, 29, 39]. The only available rigorous analysis of
a label propagation algorithm on planted partition graphs is the one presented in [24],
where the authors analyze a label propagation algorithm on G2n,p,q graphs in the case of
dense topologies. In particular, their analysis considers the case where p = Ω(1/n 1

4−ε) and
q = O(p2), a parameter range in which very dense clusters of constant diameter separated
by a sparse cut occur w.h.p. In this setting, characterized by a polynomial gap between p
and q, simple combinatorial and concentration arguments show that the protocol converges
in constant expected time. A logarithmic bound for sparser topologies is conjectured in [24].

Following [6], a number of recent papers analyze simple distributed algorithms for
community detection that rely on elementary dynamics. In the Averaging dynamics
considered in this paper, every node communicates in parallel with all its neighbors in each
round. While this might be too expensive in scenarios characterized by dense topologies, it is

1 An event En holds with high probability (w.h.p.) if P (En) = 1−O(n−γ), for some constant γ > 0.
2 Nodes do not possess distinguished identities.
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20:4 Step-By-Step Community Detection in Volume-Regular Graphs

simply infeasible in other settings (for instance, when links represent opportunistic meetings
that occur asynchronously). Motivated by similar considerations, a first line of follow-up
work considered “sparsified”, asynchronous variants of the Averaging dynamics [5, 31, 43].

Another interesting direction is the rigorous analysis of well-known (non-linear) dynamics
based on majority rules on graphs that exhibit community structure. In [12], Cruciani et
al. consider the 2-Choices dynamics where, in each round, every node picks two random
neighbors and updates its value to the most frequent among its value and those held by its
sampled neighbors. They show that if the underlying graph has a suitable core-periphery
structure and the process starts in a configuration where nodes in core and periphery have
different states, the system either rapidly converges to the core’s state or reaches a metastable
regime that reflects the underlying graph structure. Similar results have been also obtained
for clustered regular graphs with dense communities in [13], where the 2-Choices dynamics
is proposed as a distributed algorithm for community detection.

Although based on the Averaging dynamics and thus extremely simple and fully
decentralized, the algorithm we consider in this paper is not itself a dynamics in the sense
proposed in [6], since its clustering criterion is applied within a time window, which in turn
requires (at least approximate) knowledge of the network size.

Because of their relevance for the reconstruction problem, we also briefly discuss the class
of belief propagation algorithms, best known as message-passing algorithms for performing
inference in graphical models [30]. Though not a dynamics, belief propagation is still a
simple approach. Moreover, there is non-rigorous, strong supporting evidence that some
belief propagation algorithms might be optimal for the reconstruction problem [14]. A
rigorous analysis is a major challenge; in particular, convergence to the correct value of belief
propagation is far from being fully-understood on graphs which are not trees [34, 46]. As we
discuss in the next subsection, more complex algorithms inspired by belief propagation have
been rigorously shown to perform reconstruction optimally.

General algorithms for block reconstruction. Several algorithms for community detection
are spectral: They typically consider the eigenvector associated to the second largest eigenvalue
of the adjacency matrix A of G, or the eigenvector corresponding to the largest eigenvalue
of the matrix A− d

nJ [7, 10, 11, 32],3 since these are correlated with the hidden partition.
More recently spectral algorithms have been proposed [2, 8, 11, 25, 36, 38] that find a weak
reconstruction even in the sparse, tight regime.

Interestingly, spectral algorithms turn out to be a feasible approach also in distributed
settings. In particular, Kempe and McSherry [23] show that eigenvalue computations can be
performed in a distributed fashion, yielding distributed algorithms for community detection
under various models, including the stochastic block model. However, their algorithm does
not match any simple decentralized computing model. In particular, the algorithm of Kempe
and McSherry as well as any distributed version of the above mentioned centralized algorithms
are neither dynamics, nor do they correspond to the notion of light-weight algorithm of
Hassin and Peleg [19]. Moreover, the mixing time of the simple random walk on the graph is
a bottleneck for the distributed algorithm of Kempe and McSherry and for any algorithm
that performs community detection in a graph G by employing the power method or the
Lanczos method [26] as a subroutine. This is not the case for the Averaging dynamics,
since it removes the component of the state in the span of the main eigenvector.

3 A is the adjacency matrix of G, J is the matrix having all entries equal to 1, d is the average degree,
and n is the number of vertices.
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In general, the reconstruction problem has been studied extensively using a multiplicity of
techniques, which include combinatorial algorithms [15], belief propagation [14] and variants
of it [35], spectral-based techniques [11, 32], Metropolis approaches [21], and semidefinite
programming [1], among others.

1.3 Roadmap

The rest of this paper is organized as follows. In Section 2, we formally define the Averaging
dynamics and briefly recall how it is connected with the transition matrix of a random walk
on the underlying graph. We also define the notion of community-sensitive algorithm and the
class of clustered volume-regular graphs. In Section 3 we show the relation between lumpability
of Markov chains and volume-regular graphs. In Section 4 we state the main result of the
paper (see Theorem 9) on the analysis of the Averaging for clustered volume-regular graphs:
We give the two main technical lemmas and show how the main theorem derives from them.
In Section 5 we show how slightly modified versions of the Averaging dynamics can be used
to identify the hidden partition of other non-clustered volume-regular graphs, e.g., bipartite
graphs. In Section 6 we draw some conclusions and point to some open problems. Full proofs
of technical lemmas are given in the Appendix.

2 Preliminaries

Notation. Consider an undirected edge-weighted graph G = (V,E,w) with nonnegative
weights. For each node u ∈ V , we denote by δ(u) the volume, or weighted degree, of node u,
namely δ(u) =

∑
v:(u,v)∈E w(u, v). D denotes the diagonal matrix, such that Duu = δ(u) for

each u ∈ V . Without loss of generality we assume minu δ(u) = 1, since the behavior of the
Averaging dynamics (and the corresponding analysis) is not affected by a normalization of
the weights. We refer to the maximum volume of a node as ∆ := maxu δ(u).

In the remainder, W denotes the weighted adjacency matrix of G, while P = D−1W is
the transition matrix of a random walk on G, in which a transition from node u to node
v occurs with probability proportional to w(u, v). We call λ1, . . . , λn the eigenvalues of P ,
in non-increasing order, and v1, . . . ,vn a family of eigenvectors of P , such that Pvi = λivi.
We let N = D−

1
2WD−

1
2 = D

1
2PD−

1
2 denote the normalized weighted adjacency matrix of

G. Note that N is symmetric and that its spectrum is the same as that of P . We denote by
w1, . . . ,wn a family of eigenvectors of N , such that Nwi = λiwi. It is important to note
that wi is an eigenvector of N if and only if D− 1

2wi is an eigenvector of P .

2.1 Averaging dynamics

The simple algorithm we consider in this paper, named Averaging dynamics (Algorithm 1)
after [6] in which the algorithm was first proposed, can be seen as an application of the power
method, augmented with a Rademacher initialization and a suitable labeling scheme. In this
form, it is best described as a distributed process, executed by the nodes of an underlying
edge-weighted graph. The Averaging dynamics can be used as a building-block to achieve
“community detection” in some classes of “regular” and “almost regular” graphs. Herein, we
extend its use and analysis to broader graph classes and, in one case, to a different problem.

ISAAC 2019



20:6 Step-By-Step Community Detection in Volume-Regular Graphs

Algorithm 1 Averaging dynamics.
Rademacher initialization: At round t = 0, every node v ∈ V independently samples

its value x(0)(v) from {−1,+1} uniformly at random.
Update rule: At each subsequent round t > 1, every node v ∈ V :

1. Averaging: updates its value x(t)(v) to the weighted average of the values of its
neighbors at the end of the previous round.

2. Labeling: if x(t)(v) > x(t−1)(v) then v sets label(t)(v) = 1; otherwise v sets
label(t)(v) = 0.

Spectral decomposition of the transition matrix. Let x(t) denote the state vector at time
t, i.e., the vector whose u-th entry is the value held by node u at time t. We let x(0) = x

denote the initial state vector. Globally, the averaging update rule of Algorithm 1 corresponds
to one iteration of the power method, in this case an application of the transition matrix P
to the current state vector, i.e., x(t) = Px(t−1). We can write

x(t) = P tx = D−
1
2N tD

1
2x

(a)= D−
1
2

n∑
i=1

λtiwiw
ᵀ
i

n∑
i=1

βiwi =
n∑
i=1

λtiβiD
− 1

2wi,

where in (a) we spectrally decomposed the matrix N t and expressed the vector D 1
2x as a

linear combination of the eigenvectors of N , i.e., D 1
2x =

∑n
i=1 βiwi, with βi = 〈D 1

2x,wi〉.
By explicitly writing the βis and by noting that wi = D

1
2 vi

‖D
1
2 vi‖

we conclude that

x(t) =
n∑
i=1

λti
〈D 1

2x, D
1
2vi〉

‖D 1
2vi‖

D−
1
2
D

1
2vi

‖D 1
2vi‖

=
n∑
i=1

λtiαivi, (1)

where αi := 〈D
1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

= xᵀDvi

‖D
1
2 vi‖2

.
Note that λ1 = 1 and v1 = 1 (where 1 denotes the vector whose entries are 1), since P is

stochastic and, if G is connected and non bipartite, λi ∈ (−1, 1) for every i > 1. The long
term behavior of the dynamics can be written as

lim
t→∞

x(t) = lim
t→∞

n∑
i=1

λtiαivi = α11, with α1 =
∑
u∈V δ(u)x(u)∑
u∈V δ(u) =

∑
u∈V

δ(u)
vol(V )x(u),

i.e., each node converges to the initial global weighted average of the network.

2.2 Community-sensitive algorithms
We give the following definition of community sensitive algorithm, that closely resembles that
of locality-sensitive hashing (see, e.g., [28]).

I Definition 1 (Community-sensitive algorithm). Let A be a randomized algorithm that takes
in input a (possibly weighted) graph G = (V,E) with a hidden partition V = {V1, . . . , Vk}
and assigns a Boolean value A(G)[v] ∈ {0, 1} to each node v ∈ V . We say A is an (ε, δ)-
Community-sensitive algorithm, for some ε, δ > 0, if the following two conditions hold:
1. For each set Vi of the partition and for each pair of nodes u, v ∈ Vi in that set, the

probability that the algorithm assigns the same Boolean value to u and v is at least 1− ε,

∀i ∈ [k], ∀u, v ∈ Vi, P (A(G)[u] = A(G)[v]) > 1− ε.
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2. For each pair Vi, Vj of distinct sets of the partition and for each pair of nodes u ∈ Vi and
v ∈ Vj, the probability that the algorithm assigns the same value to u and v is at most δ,

∀i, j ∈ [k] with i 6= j, ∀u ∈ Vi,∀v ∈ Vj , P (A(G)[u] = A(G)[v]) 6 δ.

For example, for (ε, δ) = (1/n, 1/2), an algorithm that simply assigns the same value to all
nodes would satisfy the first condition but not the second one, while an algorithm assigning
0 or 1 to each node with probability 1/2, independently of the other nodes, would satisfy the
second condition but not the first one.

Note that Algorithm 1 is a distributed algorithm that, at each round t, assigns one out
of two labels to each node of a graph. In the next section (see Theorem 9) we prove that
a time window [T1, T2] exists, such that for all rounds t ∈ [T1, T2], the assignment of the
Averaging dynamics satisfies both conditions in Definition 1: The first condition with
ε = ε(n) = O(n− 1

2 ), the second with δ = δ(n) = 1− Ω(1).

Community-sensitive labeling. If we execute ` = Θ(logn) independent runs of an (ε, δ)-
Community-sensitive algorithm A, each node is assigned a signature of ` binary values,
with pairwise Hamming distances probabilistically reflecting community membership of the
nodes. More precisely, let A be an (ε, δ)-Community-sensitive algorithm and let A1, . . . ,A`
be ` = Θ(logn) independent runs of A. For each node u ∈ V , let s(u) = (s1(u), . . . , s`(u))
denote the signature of node u, where si(u) = Ai(G)[u]. For each pair nodes u, v, let
h(u, v) = |{i ∈ [`] : si(u) 6= si(v)}| be the Hamming distance between s(u) and s(v). The
following lemma follows from a straightforward application of Chernoff bounds.

I Lemma 2 (From Community-sensitive algorithm to Community-sensitive labeling). Let A be
an (ε, δ)-Community-sensitive algorithm with ε = o(1) and δ = 1− Ω(1). For large enough
` = Θ(logn), two positive constants α, β exist, with 0 6 α < β 6 1, such that for each pair
of nodes u, v ∈ V it holds that:

If u and v belong to the same community then h(u, v) 6 α`, w.h.p.
If u and v belong to different communities then h(u, v) > β`, w.h.p.

Proof. If u and v belong to the same community, then E [h(u, v)] 6 ε`. If they belong
to different communities, then E [h(u, v)] > (1 − δ)`. The thesis follows by a standard
application of Chernoff bounds, e.g., by choosing α = (1− δ)/4 and β = (1− δ)/2. J

2.3 Volume-regular graphs
Recall that, for an undirected edge-weighted graph G = (V,E,w), we denote by δ(u) the
volume a node u ∈ V , i.e., δ(u) =

∑
v:(u,v)∈E w(u, v). Note that the transition matrix P of

a random walk on G is such that Puv = w (u, v) /δ(u). Given a partition V = {V1, . . . , Vk}
of the set of nodes V , for a node u ∈ V and a partition index i ∈ [k], δi(u) denotes the
overall weight of edges connecting u to nodes in Vi, δi(u) =

∑
v∈Vi :u,v∈E w (u, v) . Hence,

δ(u) =
∑k
i=1 δi(u).

I Definition 3 (Volume-regular graph). Let G = (V,E,w) be an undirected edge-weighted
graph with |V | = n nodes and let V = {V1, . . . , Vk} be a k-partition of the nodes, for some
k ∈ [n]. We say that G is volume-regular with respect to V if, for every pair of partition
indexes i, j ∈ [k] and for every pair of nodes u, v ∈ Vi, δj(u)

δ(u) = δj(v)
δ(v) . We say that G is

k-volume-regular if there exists a k-partition V of the nodes such that G is volume-regular
with respect to V.

ISAAC 2019



20:8 Step-By-Step Community Detection in Volume-Regular Graphs

In other words, G is volume-regular if there exists a partition of the nodes such that the
fraction of a node’s volume toward a set of the partition is constant across nodes of the same
set. Note that all graphs with n nodes are trivially 1- and n-volume-regular.

Let G = (V,E,w) be a k-volume-regular graph and let P be the transition matrix of a
random walk on G. In the next lemma we prove that the span of k linearly independent
eigenvectors of P equals the span of the indicator vectors of the k communities of G. The
proof makes use of the correspondence between random walks on volume-regular graphs and
ordinary lumpable Markov chains [22]; in particular the result follows from Lemma 7 and
Lemma 8 that can be found in Section 3.

I Lemma 4. Let P be the transition matrix of a random walk on a k-volume-regular graph
G = (V,E,w) with k-partition V = {V1, . . . , Vk}. There exists a family {v1, . . . ,vk} of linearly
independent eigenvectors of P such that Span ({v1, . . . ,vk}) = Span ({1V1 , . . . ,1Vk

}) , with
1Vi

the indicator vector of the i-th set of the partition, for i ∈ [k].

In the rest of the paper we call “stepwise” the eigenvectors of P that can be written as
linear combinations of the indicator vectors of the communities. In the next definition, we
formalize the fact that a k-volume-regular graph is clustered if the k linearly independent
stepwise eigenvectors of P , whose existence is guaranteed by the above lemma, are associated
to the k largest eigenvalues of P .

I Definition 5 (Clustered volume-regular graph). Let G = (V,E,w) be a k-volume-regular
graph and let P be the transition matrix of a random walk on G. We say that G is a clustered
k-volume-regular graph if the k stepwise eigenvectors of P are associated to the first k largest
eigenvalues of P .

3 Volume-regular graphs and lumpable Markov chains

The class of volume-regular graphs is deeply connected with the definition of lumpability [22]
of Markov chains. We here first recall the definition of lumpable Markov chain and then
show that a graph G is volume-regular if and only if the associated weighted random walk is
a lumpable Markov chain.

I Definition 6 (Ordinary lumpability of Markov Chains). Let {Xt}t be a finite Markov chain
with state space V and transition matrix P = (Puv)u,v∈V and let V = {V1, . . . , Vk} be a
partition of the state space. Markov chain {Xt}t is ordinary lumpable with respect to V if,
for every pair of partition indexes i, j ∈ [k] and for every pair of nodes in the same set of the
partition u, v ∈ Vi, it holds that∑

w∈Vi

Puw =
∑
w∈Vi

Pvw, ∀ u, v ∈ Vj . (2)

We define the lumped matrix P̂ of the Markov Chain as the matrix such that P̂ij =
∑
w∈Vi

Puw,
for any u ∈ Vj.

We first prove that random walks on volume-regular graphs define exactly the subset of
reversible and ordinary lumpable Markov chains.

I Lemma 7. A reversible Markov chain {Xt}t is ordinary lumpable if and only if it is a
random walk on a volume-regular graph.
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Proof. Assume first that {Xt}t is ordinary lumpable and let P be the corresponding transition
matrix. Consider the weighted graphG = (V,E,w) obtained from P as follows: V corresponds
to the set of states in P , while w(u, v) = π(u)Puv, for every u, v ∈ V , with π the stationary
distribution of P . Note that G is an undirected graph, i.e., w(u, v) = π(u)Puv

(a)= π(v)Pvu =
w(v, u), where (a) holds because P is reversible. Moreover

δ(u) =
∑
z∈V

w(u, z) =
∑
z∈V

π(u)Puz = π(u)
∑
z∈V

Puz
(b)= π(u),

where (b) holds because P is stochastic. Thus G meets Definition 3 because, for any u, v ∈ Vi,

δj(u)
δ(u) = 1

π(u)
∑
z∈Vj

w(u, z) =
∑
z∈Vj

Puz =
∑
z∈Vj

Pvz = 1
π(v)

∑
z∈Vj

w(v, z) = δj(v)
δ(v) .

Next, assume G is k-volume-regular with respect to the partition V = {V1, . . . , Vk}. Let
P be the transition matrix of the corresponding random walk. For every i, j ∈ [k] and for
every u, v ∈ Vi we have:∑

z∈Vj

Puz =
∑
z∈Vj

w(u, z)
δ(u) = δj(u)

δ(u)
(a)= δj(v)

δ(v) =
∑
z∈Vj

w(v, z)
δ(v) =

∑
z∈Vj

Pvz,

where (a) follows from Definition 3. Moreover note that P is reversible with respect to
distribution π, where π(u) = δ(u)

vol(G) . J

Note that infinitely many k-volume-regular graphs have the same k-ordinary lumpable
random walk chain.

We next show that a Markov chain is k-ordinary lumpable if and only if the corresponding
transition matrix P has k stepwise, linearly independent eigenvectors.

I Lemma 8. Let P be the transition matrix of a Markov chain. Then P has k stepwise
linearly independent eigenvectors if and only if P is ordinary lumpable.

Proof. We divide the proof in two parts. First, we assume that P is ordinary lumpable and
show that P has k stepwise linearly independent eigenvectors. Second, we assume that P
has k stepwise linearly independent eigenvectors and show that P is ordinary lumpable.

1. Let P be ordinary lumpable and P̂ its lumped matrix. Let λi, v̂i be the eigenvalues and
eigenvectors of P̂ , for each i ∈ [k]. Let vi ∈ Rn be a stepwise vector defined as

vi = (v̂i(1), . . . , v̂i(1), v̂i(2), . . . , v̂i(2), . . . , v̂i(k), . . . , v̂i(k))ᵀ,

where v̂i(j) indicates the j-th component of v̂i, and then the nj components relative to
Vj are all equal to v̂i(j).
Since the eigenvectors v̂i of P̂ are linearly independent, the vectors vi are also linearly
independent. Moreover, it is easy to see that Pvi = λivi by just verifying the equation
for every i ∈ [k].

2. Assume P has k stepwise linearly independent eigenvectors vi, associated to k eigenvalues
λi, for each i ∈ [k]. Let v̂i ∈ Rk the vector that has as components the k constant values
in the steps of vi. Since the vi are linearly independent, the v̂i also are.
For every eigenvector vi and for every two states x, y ∈ Vl, for every l ∈ [k], we have that
λivi(x) = λivi(y) since vi is stepwise. Then, since Pvi = λivi, we have that

k∑
j=1

∑
z∈Vj

Pxzv̂i(j) = (Pvi)(x) = (Pvi)(y) =
k∑
j=1

∑
z∈Vj

Pyzv̂i(j).
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Thus
∑k
j=1 v̂i(j)

∑
z∈Vj

(Pxz − Pyz) = 0 and then it follows that

k∑
j=1

v̂i(j)uxy(j) = 〈uxy, v̂i〉 = 0,

where uxy(j) =
∑
z∈Vj

(Pxz − Pyz). Since the v̂i are k linearly independent vectors in a
k-dimensional space, uxy cannot be orthogonal to all of them and then it has to be the
null vector, i.e., uxy(j) = 0 for all j ∈ [k]. This implies that P is ordinary lumpable, i.e.,∑
z∈Vj

Pxz =
∑
z∈Vj

Pyz. It is easy to verify that the eigenvalues and eigenvectors of P̂
are exactly λi, v̂i, with i ∈ [k]. J

4 Averaging dynamics on clustered volume-regular graphs

For a volume-regular graph G = (V,E,w) with n nodes and k-partition V = {V1, . . . , Vk} we
name N = maxi |Vi|

mini |Vi| the ratio between the maximum and minimum sizes of the communities.
In this section we prove the following result for volume-regular graphs.

I Theorem 9. Let G = (V,E,w) be a connected clustered k-volume-regular graph with n
nodes and k-partition V = {V1, . . . , Vk}, with k 6

√
n, maximum weighted degree ∆ 6 poly(n),

and N = O(
√
k/∆). If λk > 1

2 and (1 − λ2) > (λ2 − λk)∆ 3
2n1+c, for an arbitrarily-small

positive constant c, then a time interval [T1, T2] exists, with T1 = O(logn / log(λk/λk+1))
and T2 = Ω(nc/3), such that for each time t ∈ [T1, T2] the Averaging dynamics truncated
at round t is a (O(n− 1

2 ), 1− Ω(1))-community sensitive algorithm, w.h.p.

In the remainder of this section, we first introduce further notation and then state the
two main technical lemmas (Lemma 10 and Lemma 11), that will be used in the proof of
Theorem 9, which concludes this section.

Let G = (V,E,w) be a clustered k-volume-regular graph and, without loss of generality,
let V1, . . . , Vk be an arbitrary ordering of its communities. We introduce a family of stepwise
vectors that generalize Fiedler vector [17], namely{

χi =
√
m̂i

mi
1Vi −

√
mi

m̂i
1V̂i

: i ∈ [k − 1]
}
,

where 1Vi
is the indicator vector of the set Vi and, for convenience sake, we denoted by mi

the volume of the i-th community, V̂i the set of all nodes in communities i+ 1, . . . , k, and m̂i

the volume of V̂i, i.e., mi =
∑
u∈Vi

δ(u), V̂i =
⋃k
h=i+1 Vh, and m̂i =

∑k
h=i+1mh. Note that

vectors χis are “stepwise” with respect to the communities of G (i.e., for every i ∈ [k − 1],
χi(u) = χi(v) whenever u and v belong to the same community).

Recall from Equation (1) that the initial state vector can be written as x =
∑n
i=1 αivi.

Let z =
∑k
i=1 αivi and note that z = α11 +

∑k−1
i=1 γiχi by applying Lemma 4 and because

Span ({1,χ1, . . . ,χk−1}) = Span ({1V1 , . . . ,1Vk
}). Let us now define the vector y = z−α11

or, equivalently,

y =
k−1∑
i=1

γiχi, where γi = xᵀDχi∥∥D1/2χi
∥∥2 .

Note that the coefficients γis are proportional to the length of the projection of the (inhomoge-
neously) contracted state vector on the (inhomogeneously) contracted, not anymore stepwise,
D

1
2χis and can be computed since the vectors in the family {D 1

2 1} ∪ {D 1
2χi : i ∈ [k − 1]}

are mutually orthogonal.4

4 The mutual orthogonality of the vectors, including D
1
2 1, is also one of the reasons why other “simpler”

families of stepwise vectors, e.g., the indicator vectors of the communities, are not used instead.
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The binary coloring of each node only depends on the difference of its state in two
consecutive rounds (see Algorithm 1). Essentially in Lemma 10 we show that, under suitable
assumptions on the transition matrix of a random walk on G, there exists a time window
where the the difference of the state vector in two consecutive rounds, i.e., x(t) − x(t+1)

can be approximated by the previously defined vector y in a way that the sign of the two
vectors is equal in any component, with high probability. Instead, in Lemma 11 we prove
that with some constant probability (i.e., independent from the number of nodes n) the first
two “steps” of the vector y have different signs, i.e., the sign can be considered as a criterion
to distinguish the first two communities.

I Lemma 10 (Sign of the difference). Let G = (V,E,w) be a clustered k-volume-regular
graph. If λk > 1

2 and (1− λ2) > (λ2 − λk)∆ 3
2n1+c, for an arbitrarily-small positive constant

c, then a time interval [T1, T2] exists, with T1 = O(logn / log(λk/λk+1)) and T2 = Ω(nc/3),
such that for each node u ∈ V it holds that sgn(x(t)(u)− x(t+1)(u) ) = sgn(y(u)) for every
round t ∈ [T1, T2] of the execution of the Averaging dynamics, w.h.p.

Proof. Recall from Equation (1) that the state vector at time t, i.e., x(t), can be written as
the sum of the first k stepwise vectors of P and of the remaining ones, namely

x(t) = α11 +
k∑
i=2

λtiαivi +
n∑

i=k+1
λtiαivi = α11 + c(t) + e(t),

where we call c(t) :=
∑k
i=2 λ

t
iαivi the core contribution and e(t) :=

∑n
i=k+1 λ

t
iαivi the

error contribution. If we look at the difference of the state vector between two consecutive
rounds, for each node u ∈ V , the first term cancels out being constant over time and we
get x(t)(u)− x(t+1)(u) = c(t)(u)− c(t+1)(u) + e(t)(u)− e(t+1)(u). Note that the sign of the
difference between two consecutive states of each node u ∈ V is determined by the difference
of the core contributions during the two consecutive rounds, i.e., c(t)(u)−c(t+1)(u), whenever∣∣∣c(t)(u)− c(t+1)(u)

∣∣∣ > ∣∣∣e(t)(u)− e(t+1)(u)
∣∣∣ . (3)

To find the conditions on t that make Equation (3) hold, we give a bound to both the left
and right hand side of the inequality. In detail:
1. We know from Lemma 24 (see Appendix C) that

∣∣c(t)(u)− c(t+1)(u)
∣∣ > 1

2λ
t
k(1−λ2) |y(u)|

for every u ∈ V and for every time t < T2, where T2 = Ω(n c
3 ), since by hypothesis λk > 1

2
and (1− λ2) > (λ2 − λk)∆ 3

2n1+c.
2. We know from Lemma 25 (see Appendix D) that |e(t)(u)| 6 λtk+1

√
∆n, for every u ∈ V ,

and thus it follows that
∣∣e(t)(u)− e(t+1)(u)

∣∣ 6 ∣∣e(t)(u)
∣∣+
∣∣e(t+1)(u)

∣∣ 6 2λtk+1
√

∆n.
Combining Lemma 24 and Lemma 25, we get that if the following inequality holds, i.e.,

1
2λ

t
k(1− λ2) |y(u)| > 2λtk+1

√
∆n, (4)

then also Equation (3) holds. By moving the terms dependent from t on the left hand side
and by taking the logarithm of both sides, we can finally find the conditions on t such that
Equation (4) is satisfied, i.e., all times t > T1 where

T1 = log
(

4
√

∆n
(1− λ2) |y(u)|

)
· 1

log
(

λk

λk+1

) .
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Note that T1 = O(logn / log( λk

λk+1
)) and that T1 = O(logn) when λk

λk+1
= Ω(1). In fact:

1. We know by hypothesis that the maximum weighted degree of a node is at most polynomial
in n, i.e., ∆ 6 poly(n).

2. We know from the Cheeger’s inequality for weighted graphs (Theorem 15) the relation
between the spectral gap and the Cheeger’s constant of G, i.e., 1− λ2 > 1

2∆n , given that
1− λ2 > h2

G

2 > 1
2∆n .

3. We know from Lemma 20 (see Appendix B) that the length of the projection of the state
vector on the stepwise vectors is not too small, i.e., |y(u)| > k

∆n , w.h.p.

Since Lemma 24 holds for every time t < T2, we conclude that there exists a time
window [T1, T2] such that, for every time t ∈ [T1, T2] of the Averaging dynamics, it holds
that sgn(x(t)(u) − x(t+1)(u)) = sgn(c(t)(u) − c(t+1)(u)), with high probability. Moreover,
Lemma 24 tells us that sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)), for every u ∈ V and for every
t ∈ [T1, T2]. Thus, sgn(x(t)(u)− x(t+1)(u)) = sgn(y(u)), concluding the proof. J

I Lemma 11 (Different communities, different signs). Let G = (V,E,w) be a clustered k-
volume-regular graph with maximum weighted degree ∆ 6 poly(n) and N = O(

√
k/∆). For

each pair of nodes u ∈ Vi, v ∈ Vj , with i 6= j, it holds that P ( sgn(y(u)) 6= sgn(y(v)) ) = Ω(1).

Proof. Since the ordering of the communities (and consequent definition of the χi’s) is
completely arbitrary, we can without loss of generality assume i = 1 and j = 2. From
Lemma 10 we have that sgn(x(t)(u)−x(t+1)(u)) = sgn(y(u)), for every u ∈ V , during a time
interval [T1, T2], w.h.p. Let us define X(Vi) :=

∑
w∈Vi

δ(w)x(w).
Note that y(u) = γ1χ1(u) and y(v) = γ1χ1(v) + γ2χ2(v), since the other terms of the

χis are equal to 0 on the components relative to u and v. Thus, with some algebra, we get

y(u) = 1
m

[
m̂1

m1
X(V1)−X(V2)−X(V̂2)

]
,

y(v) = 1
m

[
m1m2 +mm̂2

m̂1m2
X(V2)−X(V1)−X(V̂2)

]
.

Note that, by linearity of expectation, E [X(Vi)] = 0. Moreover, since the terms x(w)s are
independent Rademacher random variables, we can write the standard deviation of X(Vi) as

σ(X(Vi)) =
√∑
w∈Vi

σ2(x(w)) =
√∑
w∈Vi

(
E [δ(w)2x(w)2]−E [δ(w)x(w)]2

)
=
√∑
w∈Vi

δ(w)2.

Then we can upper and lower bound the standard deviation σ(X(Vi)) getting mi√
|Vi|

6

σ(X(Vi)) 6 ∆
√
|Vi|, where the lower bound follows from ‖d‖2 > ‖d‖1 /

√
|Vi|, where di is

the vector of weighted degrees of nodes in community Vi, and for the upper bound we used
that δ(w) 6 ∆, for each w ∈ V .

Let us now define the following three events:
1. E1: X(V1) > σ(X(V1)) =⇒ X(V1) > m1√

|V1|
> mini mi√

maxi |Vi|
;

2. E2: X(V2) 6 −σ(X(V2)) =⇒ X(V2) 6 − m2√
|V2|

6 − mini mi√
maxi |Vi|

;

3. E3: 0 6 X(V̂2) 6 εσ(X(V̂2)) =⇒ 0 6 X(V̂2) 6 ε∆
√∑k

i=3 |Vi| 6 ε∆
√
kmaxi |Vi|,

with ε a suitable positive constant. When E1, E2, E3 are true, i.e., with some constant
probability, it holds that y(v) < 0; as for y(u) we have that

m̂1

m1
X(V1)−X(V2)−X(V̂2) > m̂1

m1
σ(X(V1)) + σ(X(V2))− εσ(X(V̂2))
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>
kmini |Vi|√

maxi |Vi|
− ε∆

√
kmaxi |Vi|.

The previous inequality is greater than 0 whenever ε <
√
k

∆N . By hypothesis ∆N = O(
√
k)

and thus
√
k

∆N = Ω(1), i.e., there is an ε = Ω(1) such that y(u) > 0.
By approximating the random variables with Gaussian ones and using Berry-Esseen’s

theorem (Theorem 16), it is possible to show that all three events have probability at least
constant; moreover, being the events independent, also P (E1, E2, E3) is constant. J

Proof of Theorem 9. The proof proceeds by showing that the binary labeling of the nodes
of G produced by the Averaging dynamics during the time window [T1, T2] is such that the
two conditions required by the definition of (ε, δ)-community sensitive algorithm (Definition 1)
are met. The first condition follows directly from Lemma 10 and from the fact that y is
a “stepwise” vector, with ε = O(n− 1

2 ) (see Lemma 20 for details on the probability). The
second condition follows directly from Lemma 11. J

5 Extensions

In this section, we discuss extensions to bipartite graphs (Section 5.1) and to other non-
clustered graph classes (Section 5.2).

5.1 Bipartite Graphs

Assume G = (V,E,w) is a bipartite 2-volume-regular graph, i.e., V = V1∪V2, E ⊆ V1×V2 and
G is volume-regular w.r.t. the bipartition (V1, V2). In this case, basic properties of random
walks imply that the Averaging dynamics does not converge to the global (weighted)
average of the values, but it periodically oscillates. This follows since the state vector is
mainly affected by the eigenvectors associated to the two eigenvalues of absolute value 1 (for
bipartite graphs, λ1 and λn). As a result, after a number of rounds depending on 1/λ2, the
following happens: in even rounds, all nodes in Vi (i = 1, 2) have a state that is close to some
local average µi; in odd rounds these values are swapped, as shown in Equation (5). In even
rounds (or, equivalently, in odd rounds) however, the states of nodes in V1 would converge
to µ1 and those of nodes in V2 would converge to µ2. Unfortunately, convergence to local
averages does not eventually become monotonic in this case, since the eigenvector associated
to λ2 is no longer stepwise in general.5 However, we can easily modify the labeling scheme of
the Averaging dynamics to perform bipartiteness detection as follows: Nodes apply the
labeling rule every two time steps and they do it between the states of two consecutive rounds,
i.e., each node v ∈ V sets label(2t)(v) = 1 if x(2t)(v) > x(2t−1)(v) and label(2t)(v) = 0
otherwise. We call this new protocol Averaging Bipartite dynamics.

Let G = (V,E,w) be an edge-weighted undirected bipartite volume-regular graph. We
denote with W ∈ Rn×n the weighted adjacency matrix of G. Since G is undirected and
bipartite, the matrix W can be written as

W =
(

0 W1
W2 0

)
=
(

0 W1
W ᵀ

1 0

)
.

5 This in turn follows since lumpable classes are already associated to 1 and χ.
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Thus, the transition matrix of a simple random walk on G, i.e., P = D−1W where D−1 is a
diagonal matrix and Dii = 1

δ(i) , has the form

P =
(

0 P1
P ᵀ

1 0

)
.

Claim 12 shows that the spectrum of P is symmetric and it gives a relation between the
eigenvectors of symmetric eigenvalues.

B Claim 12. Let G = (V1 ∪ V2, E, w) be an edge-weighted undirected bipartite graph with
bipartition (V1, V2) and such that |Vi| = ni . If v = (v1,v2)ᵀ, with vi ∈ Rni , is an eigenvector
of P with eigenvalue λ, then v′ = (v1,−v2)ᵀ is an eigenvector of P with eigenvalue −λ.

Proof. If Pv = λv then we have that P1v2 = λv1 and P ᵀ
1 v2 = λv2. Using these two equalities

we get that Pv′ = −λv′. In fact,

Pv′ =
(

0 P1
P ᵀ

1 0

)(
v1
−v2

)
=
(
−P1v2
P ᵀ

1 v1

)
= −λ

(
v1
−v2

)
.

C

The transition matrix P is stochastic, thus the vector 1 (i.e., the vector of all ones) is an
eigenvector associated to λ1 = 1, that is the first largest eigenvalue of P . Claim 12 implies
that χ = 1V1 − 1V2 is an eigenvector of P with eigenvalue λn = −1.

As in Section 2, we write the state vector at time t using the spectral decomposition
of P . Let 1 = λ1 > λ2 > . . . > λn = −1 be the eigenvalues of P . We denote by
1 = v1,v2, . . . ,vn = χ a family of n linearly independent eigenvectors of P , where each vi is
the eigenvector associated to λi. Thus, we have that

x(t) = P tx =
n∑
i=1

λtiαivi = α11 + (−1)tαnχ+
n−1∑
i=2

λtiαivi (5)

where αi = 〈D
1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

. The last equation implies that x(t) = P tx does not converge to
some value as t tends to infinity, but oscillates. In particular, nodes in V1 on even rounds
and nodes in V2 on odd rounds, converge to α1 +αn. Instead in the symmetric case, i.e., odd
rounds for nodes in V1 and even rounds for nodes in V2, the process converges to α1 − αn.
These quantities are proportional to the weighted average of the initial values in the first
and in the second partition, respectively.

Lemma 13 shows that Averaging Bipartite dynamics performs bipartiteness detec-
tion in O(logn / log(1/λ2)) rounds. Note that if log(1/λ2) = Ω(1), then the Averaging
Bipartite dynamics takes logarithmic time to find the bipartition.

I Lemma 13. Let G = (V,E,w) be an edge-weighted bipartite volume-regular graph with
bipartition V1, V2 and maximum weighted degree ∆ 6 poly(n). Then for every time t > T ,
with T = O(logn / log(1/λ2)), the Averaging Bipartite dynamics is a (O(n− 1

2 ), O(1))-
community sensitive algorithm, w.h.p.

Proof of Lemma 13. We assume that the coloring rule is applied between every even and
every odd round (conversely, the signs of the nodes in the analysis are swapped). Recall
the definition of the error contribution, namely e(t)(u) =

∑n−1
i=2 λ

t
iαivi(u). We compute the

difference between the state vectors of two consecutive steps by using Equation (5), namely
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x(2t) − x(2t+1) = α11 + (−1)2tαnχ+ e(2t) − α11− (−1)2t+1αnχ− e(2t+1)

= 2αnχ+ e(2t) − e(2t+1).

We want to find a time T such that for every t > T the sign of a node u ∈ V depends only on
χ(u). Formally, sgn(x(2t)(u)− x(2t+1)(u)) = sgn(αnχ). The last equation holds whenever

2|αnχ(u)| > |e(2t)(u)− e(2t+1)(u)|

2|αn| > |e(2t)(u)− e(2t+1)(u)|. (6)

We upper bound |e(2t)(u) − e(2t+1)(u)| by using Lemma 25. We get that |e(2t)(u) −
e(2t+1)(u)| 6 2λ2t

2
√

∆n. We get that Equation (6) holds if the following holds:

|αn| > λ2t
2
√

∆n(
1
λ2

)2t
>

√
∆n
|αn|

2t > log
(√

∆n
|αn|

)
1

log(1/λ2) .

In order to find the time t which makes the last inequality hold, we provide a lower bound
on |αn|, showing that it is not too small, with high probability. Recall that αi = 〈D

1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

and thus

αn = 〈D
1
2x, D

1
2χ〉

‖D 1
2χ‖2

= 1
vol(V )

∑
v∈V

δ(v)x(v)χ(v),

where vol(V ) =
∑
v∈V δ(v). We get the lower bound, with high probability, by showing that

P
(
|αn| 6

1
∆n

)
6 P

(
|αn| 6

1
vol(V )

)
= P

(∣∣∣∣∣∑
v∈V

δ(v)x(v)χ(v)

∣∣∣∣∣ 6 1
)

(a)= O
(

1√
n

)
where in (a) we apply Theorem 17. Indeed this last inequality implies that |αn| > 1

∆n
with high probability. The thesis then follows from the above bound on |αn| and from the
hypothesis on ∆ 6 poly(n). J

5.2 Other non-clustered volume-regular graphs
Consider k-volume-regular graphs whose k stepwise eigenvectors are associated to the k
largest eigenvalues, in absolute value. These graphs include many k-partite graphs (e.g.,
regular ones), graphs that are “close” to being k-partite (i.e., ones that would become
k-partite upon removal of a few edges). Differently from the clustered case (Theorem 9)
some of the k eigenvalues can in general be negative.

Consider the following variant of the labeling scheme of the Averaging dynamics, in
which nodes apply their labeling rule only on even rounds, comparing their value with the
one they held at the end of the last even round, i.e., each node v ∈ V sets label(2t)(v) = 1
if x(2t)(v) > x(2t−2)(v) and label(2t)(v) = 0 otherwise.

Since the above protocol amounts to only taking even powers of eigenvalues, the analysis
of this modified protocol proceeds along the same lines as the clustered case, while the results
of Theorem 9 seamlessly extend to this class of graphs.
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6 Conclusions

The focus of this work is on heuristics that implicitely perform spectral graph clustering,
without explicitely computing the main eigenvectors of a matrix describing connectivity
properties of the underlying network (typically, its Laplacian or a related matrix). In this
perspective, we extended the work of Becchetti et al. [6] in several ways. In particular, for k
communities, [6] considered an extremely regular case, in which the second eigenvalue of the
(normalized) Laplacian has algebraic and geometric multiplicities k−1 and the corresponding
eigenspace is spanned by a basis of indicator vectors. We considered a more general case
in which the first k eigenvalues are in general different, but the span of the corresponding
eigenvectors again admits a base of indicator vectors. We also made a connection between
this stepwise property and lumpability properties of the underlying random walk, which
results in a class of volume-regular graphs, that may not have constant degree, nor exhibit
balanced communities.

Though far from conclusive, we believe our results point to potentially interesting
directions for future research. In general, our analysis sheds further light on the connections
between temporal evolution of the power method and spectral-related clustering properties
of the underlying network. At the same time, we showed that variants of the Averaging
dynamics (and/or its labeling rule) might be useful in addressing different problems and/or
other graph classes, as the examples given in Section 5.1 suggest. On the other hand,
identifying k hidden partitions using the algorithm presented in [6] requires relatively strong
assumptions on the k main eigenvalues and knowledge of an upper bound to the graph
size,6 while the analysis becomes considerably more intricate than the perfectly regular
and completely balanced case addressed in [6]. Some aspects of our analysis (e.g., the
aforementioned presence of a size-dependent time window in which the labeling rule has to
be applied) suggest that more sophisticated variants of the Averaging dynamics might be
needed to express the full power of a spectral method that explicitely computes the k main
eigenvectors of a graph-related matrix. While we believe this goal can be achieved, designing
and analyzing such an algorithm might prove a challenging task.
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A Useful inequalities

I Theorem 14 (Cauchy-Schwarz’s inequality [42]). For all vectors u,v of an inner product
space it holds that |〈u,v〉|2 6 〈u,u〉 · 〈v,v〉, where 〈·, ·〉 is the inner product.

I Theorem 15 (Cheeger’s inequality [9]). Let P be the transition matrix of a connected edge-
weighted graph G = (V,E,w) and let λ2 be its second largest eigenvalue. Let |E(S, V \ S)| =∑

u∈S, v∈V \S w(u, v) and hG = min
S:vol(S)6 vol(V )

2

|E(S,V \S)|
vol(S) . Then 1−λ2

2 6 hG 6
√

2(1− λ2).

I Theorem 16 (Berry-Esseen’s theorem [40]). Let X1, . . . , Xn be independent and identically
distributed random variables with mean µ = 0, variance σ2 > 0, and third absolute moment
ρ <∞. Let Yn = 1

n

∑n
i=1Xi; let Fn be the cumulative distribution function of Yn

√
n

σ ; let Φ
the cumulative distribution function of the standard normal distribution. Then, there exists a
positive constant C < 0.4748 such that, for all x and for all n, |Fn(x)− Φ(x)| 6 Cρ

σ3√n .

I Theorem 17 (Littlewood-Offord’s small ball [16]). Let xi be a Rademacher random variable
(taking values ±1 with probability p = 1

2), let ai be real constants such that |ai| > 1, and let
X =

∑n
i=1 aixi. Then, for any r ∈ R, it holds that P(|X − r| < 1) = O

(
1√
n

)
.

I Theorem 18 (Rademacher concentration bound [33]). Let xi be a Rademacher random
variable (taking values ±1 with probability p = 1

2), let ai be real constants, and let X =∑n
i=1 aixi. Then, it holds that P (|X| > t‖a‖2) 6 2e− t2

2 , where ‖a‖2 is the Euclidean norm
of the vector a = (a1, . . . , an).

B Length of the projection of the state vector

In this section we show that every component of y, i.e., the projection of the contracted initial
state vector D 1

2x on the contracted vectors D 1
2χis, is not too small, w.h.p. (Lemma 20).

This result is used is Appendices C and D.

B Claim 19. Let α(u, v) =
∑k−1
i=1

χi(u)χi(v)
m̂i−1

. For every pair of nodes u, v ∈ V it holds that
minu,v∈V |α(u, v)| > k

∆n .

Proof. Let u ∈ Vl and v ∈ Vh, for some l, h ∈ [k]. We divide the proof in two cases. First,
we assume that l = h, then we handle the case l 6= h. Without loss of generality, we assume
m1 6 . . . 6 mk and consequently m = m̂0 > m̂1 > . . . > m̂k−1 = mk.

Let us suppose l = h. Then

minu,v∈V |α(u, v)| = minu,v∈V
(∑

i<min{h,l}
mi

m̂im̂i−1
+ m̂l

mlm̂l−1

)
> m̂1

m1m̂0
> k

m > k
∆n .

Let us suppose l 6= h. In this case, α(u, v) =
∑
i<min{h,l}

mi

m̂im̂i−1
− 1 < 0. In fact∑

i<min{h,l}
mi

m̂im̂i−1
=
∑
i<min{h,l}

mi(∑k

j=i+1
mj

)(∑k

j=i
mj

)
(a)
6
∑
i<min{h,l}

mi

(k−i)(k−i+1)m2
i

=
∑
i<min{h,l}

1
(k−i)(k−i+1)mi

6
∑
i<min{h,l}

1
(k−i)(k−i+1) 6

∑k
j=1

1
j(j+1) < 1,
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where in (a) we use the assumption on the ordering of the volumes of the commu-
nities, i.e., mi 6 mj for every i 6 j. Since α(u, v) < 0, we have that |α(u, v)| =
1−

∑
i<min{h,l}

mi

m̂im̂i−1
and thus

minu,v∈V |α(u, v)| = 1−maxu,v∈V
(∑

i<min{h,l}
mi

m̂im̂i−1

)
> 1− (k−2)mk

m2
k

= 1− k−2
mk

.

Note that mk > n
k and, given that k 6

√
n, we get mk > k. Thus 1− k−2

mk
> 2

k > k
∆n .

C

I Lemma 20 (Length of the projection of the state vector). For every u ∈ V , it holds that
P
(
|y(u)| > k

∆n
)
> 1−O

(
1√
n

)
.

Proof. Let us write y(u) =
∑k−1
i=1 γiχi(u) in terms of x. Recall that γi = xᵀDχi

‖D1/2χi‖2 and

that χi =
√

m̂i

mi
1Vi
−
√

mi

m̂i
1V̂i

. Thus, we get
∥∥D1/2χi

∥∥2 = m̂i

mi

∑
v∈Vi

δ(v) + mi

m̂i

∑
v∈V̂i

δ(v) =
m̂i +mi = m̂i−1, where m̂0 := m =

∑
v∈V δ(v). Now, we can rewrite y(u) as

y(u) =
∑k−1
i=1 γiχi(u) =

∑k−1
i=1

xᵀDχi

m̂i−1
χi(u) =

∑k−1
i=1

(∑
v∈V

δ(v)x(v)χi(v)
m̂i−1

)
χi(u)

=
∑
v∈V

(∑k−1
i=1

χi(u)χi(v)
m̂i−1

)
δ(v)x(v) =

∑
v∈V α(u, v)δ(v)x(v),

where α(u, v) :=
∑k−1
i=1

χi(u)χi(v)
m̂i−1

. Note that, for every u ∈ Vl and v ∈ Vh, with l, h ∈ [k],

χi(u)χi(v) =


mi

m̂i
if i < min(l, h),

m̂i

mi
if i = min(l, h) and l = h,

−1 if i = min(l, h) and l 6= h,

0 if i > min(l, h).

Thus α(u, v) =
∑k−1
i=1

χi(u)χi(v)
m̂i−1

=
{ ∑

i<min{h,l}
mi

m̂im̂i−1
+ m̂l

mlm̂l−1
if h = l,∑

i<min{h,l}
mi

m̂im̂i−1
− 1 if h 6= l.

We apply Theorem 17 and Claim 19 to prove that the length of the projection of the
state vector x on {χi : i ∈ [k]} is not too small, w.h.p.

P
(
|y(u)| 6 k

∆n
)

= P
(∣∣∑

v∈V α(u, v)δ(v)x(v)
∣∣ 6 k

∆n
)

= P
(∣∣∣∑v∈V

α(u,v)
minu,v |α(u,v)|δ(v)x(v)

∣∣∣ 6 k
∆nminu,v |α(u,v)|

)
(a)
6 P

(∣∣∣∑v∈V
α(u,v)

minu,v |α(u,v)|δ(v)x(v)
∣∣∣ 6 1

) (b)
6 O

(
1√
n

)
,

where in (a) we use Claim 19 to upper bound with 1 the r.h.s. term in the probability; in (b)
we can apply Theorem 17 given that minv δ(v) = 1 and that

∣∣∣ α(u,v)
minu,v |α(u,v)|

∣∣∣ > 1. J

C Lower bound on the core contribution

In this section we provide a lower bound on the difference of the core contribution of the state
vector between two consecutive time steps; we also show that the sign of a node depends
only on the sign of y (Lemma 24). In order to prove that we: (i) provide upper and lower
bounds on c(t)(u) (Claim 21), and (ii) we bound c(t)(u)− c(t+1)(u) (Claim 22).
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B Claim 21. Let c(t) =
∑k
i=2 λ

t
iαivi. For every u ∈ V it holds that:

c(t)(u) > λtk
∑k
i=2 αivi(u) + tλt−1

2 (λ2 − λk)
∑
i:αivi(u)<0 αivi(u);

c(t)(u) 6 λtk
∑k
i=2 αivi(u) + tλt−1

2 (λ2 − λk)
∑
i:αivi(u)>0 αivi(u).

Proof. Let us start with the lower bound.

c(t)(u) =
∑k
i=2 λ

t
iαivi(u) =

∑
i:αivi(u)>0 λ

t
iαivi(u) +

∑
i:αivi(u)<0 λ

t
iαivi(u)

> λk
∑
i:αivi(u)>0 λ

t−1
i αivi(u) + λ2

∑
i:αivi(u)<0 λ

t−1
i αivi(u)

(a)= λk
∑k
i=2 λ

t−1
i αivi(u) + (λ2 − λk)

∑
i:αivi(u)<0 λ

t−1
i αivi(u)

(b)= λk

[
λk
∑k
i=2 λ

t−2
i αivi(u) + (λ2 − λk)

∑
i:αivi(u)<0 λ

t−2
i αivi(u)

]
+ (λ2 − λk)λt−1

2
∑
i:αivi(u)<0 αivi(u)

= λ2
k

∑k
i=2 λ

t−2
i αivi(u) + λk(λ2 − λk)

∑
i:αivi(u)<0 λ

t−2
i αivi(u)

+ (λ2 − λk)λt−1
2
∑
i:αivi(u)<0 αivi(u)

> λ2
k

∑k
i=2 λ

t−2
i αivi(u) + λkλ

t−2
2 (λ2 − λk)

∑
i:αivi(u)<0 αivi(u)

+ (λ2 − λk)λt−1
2
∑
i:αivi(u)<0 αivi(u)

= λ2
k

∑k
i=2 λ

t−2
i αivi(u) + (λkλt−2

2 + λt−1
2 )(λ2 − λk)

∑
i:αivi(u)<0 αivi(u)

> λ2
k

∑k
i=2 λ

t−2
i αivi(u) + 2λt−1

2 (λ2 − λk)
∑
i:αivi(u)<0 αivi(u)

> . . .

> λtk
∑k
i=2 αivi(u) + tλt−1

2 (λ2 − λk)
∑
i:αivi(u)<0 αivi(u),

where in (a) we add and subtract λk
∑
i:αivi(u)<0 λ

t−1
i αivi(u); in (b) we iterate the same

reasoning on the first term only.
The upper bound follows with analogous calculations. C

By using Claim 21 is possible to give upper and lower bounds on the difference between
the core contribution in two consecutive rounds.

B Claim 22. Let c(t) =
∑k
i=2 λ

t
iαivi and let λ2 > λk >

1
2 . For every u ∈ V , it holds that

c(t)(u)− c(t+1)(u) > λtk(1− λ2)
∑k
i=2 αivi(u) + (t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u);

c(t)(u)− c(t+1)(u) 6 λtk(1− λ2)
∑k
i=2 αivi(u) + (t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)>0 αivi(u).

The proof of Lemma 24 requires one extra claim about the coefficients βi, i.e., the ones
such that αivi = βiD

1
2wi. This last bound is shown in Claim 23.

B Claim 23. Let x ∈ {−1, 1}n be a Rademacher random vector. Let D ∈ Rn×n be a positive
diagonal matrix with maximum element ∆ = maxiDii and let w ∈ Rn be a vector such that
‖w‖2 = 1. Let β = 〈x, D 1

2w〉. It holds that |β| 6
√

∆ logn, with high probability.

Proof. Note that β is a weighted sum of Rademacher random variables with i-th coefficient
equal to (D 1

2w)(i) and that ‖D 1
2w‖2 =

√∑n
i=1 δ(i)w(i)2 6

√
∆, since by hypothesis

‖w‖2 = 1 and thus ‖D 1
2w‖22 is a convex combination of the diagonal elements of D. Let

t =
√

logn; by applying Theorem 18 we get P
(
|β| >

√
∆ logn

)
6 P

(
|βi| > t‖D 1

2w‖2
)
6

2e−
log n

2 = O
( 1
n

)
. Thus |β| 6

√
∆ logn, with high probability. C

We are now ready to state and prove Lemma 24.
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I Lemma 24 (Lower bound on the core contribution). Let c(t) =
∑k
i=2 λ

t
iαivi. Let λk > 1

2
and 1−λ2

λ2−λk
> ∆ 3

2n1+c, for some positive constant c. For every u ∈ V and for every time
t < T2, such that T2 = Ω(nc/3), the two following conditions hold, w.h.p.:∣∣c(t)(u)− c(t+1)(u)

∣∣ > 1
2λ

t
k(1− λ2) |y(u)|;

sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)).

Proof. We show the lower bound in the time window. To do that, first we suppose that
c(t)(u)−c(t+1)(u) > 0 and show that the claim holds; then we show that the claim also holds
when c(t)(u)− c(t+1)(u) < 0.

Let us suppose c(t)(u)− c(t+1)(u) > 0. If y(u) < 0 the thesis follows directly; then let us
suppose y(u) > 0. From Claim 22 we have that c(t)(u)−c(t+1)(u) > λtk(1−λ2)

∑k
i=2 αivi(u)+

(t + 1)λt2(λ2 − λk)
∑
i:αivi(u)<0 αivi(u). In order to prove the lemma in this first case, we

need to show that

1
2λ

t
k(1− λ2)

∑k
i=2 αivi(u) > −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u). (7)

We lower bound the left hand side and upper bound the right hand side. For the lower bound
we apply Lemma 4 to get that

∑k
i=2 αivi(u) = y(u) and Lemma 20 to get y(u) > k

∆n , with
high probability. For the upper bound, instead, we rely on Claim 23 and on the fact that
αivi = βiD

1
2wi, for every i ∈ [n]. Indeed

−
∑
i:αivi(u)<0 αivi(u) = −

∑
i: βiwi(u)<0

βi√
δ(u)

wi(u)
(a)
6 k

√
∆ logn,

where in (a) we can apply Claim 23 since ‖wi‖2 = 1 for every i ∈ [k] and βi = 〈D 1
2x,wi〉.

By combining lower and upper bounds, we get

1
2λ

t
k(1− λ2)

∑k
i=2 αivi(u) > −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u)

1
2λ

t
k(1− λ2) k

∆n > (t+ 1)λt2(λ2 − λk)k
√

∆ logn(
λ2
λk

)t
(t+ 1) < 1

2
1−λ2
λ2−λk

1
∆

3
2 n
√

logn
. (8)

By hypothesis we have that 1−λ2
λ2−λk

> ∆ 3
2n1+c and that λk > 1

2 . Thus, we can derive an
upper bound for λ2

λk
, namely

λ2
λk

= 1 + λ2−λk

λk
6 1 + 1−λ2

λk∆
3
2 n1+c

6 1 + 1
∆

3
2 n1+c

6 1 + 1
n

c
3
. (9)

Moreover, by the hypothesis on 1−λ2
λ2−λk

, we know that

1
2

1−λ2
λ2−λk

1
∆

3
2 n
√

logn
> 1

2n
c
2 . (10)

We apply Equations (9) and (10) to Equation (8) to find a time T2 such that for every t 6 T2

the lemma holds, and get
(

1 + 1
n

c
3

)t
(t+ 1) < 1

2n
c
2 . Let T2 = n

c
3 . Note that

(
1 + 1

n
c
3

)t
6 e

for every time t 6 T2; thus, for every time t < T2, it also holds that e (t + 1) < 1
2n

c
2 . We

conclude that, in this first case, there exists a time T2 = Ω(n c
3 ) such that, for every t < T2,

c(t)(u)− c(t+1)(u) > 1
2λ

t
k(1− λ2)

∑k−1
i=1 γiχi(u). (11)
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Let us now suppose c(t)(u) − c(t+1)(u) < 0. As before, if y(u) > 0 the thesis directly
follows; then let us suppose y(u) 6 0. From Claim 22 we have that c(t)(u) − c(t+1)(u) 6
λtk(1− λ2)

∑k
i=2 αivi(u) + (t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)>0 αivi(u). Similarly to the previous

case, in order to prove the lemma we need to show that

1
2λ

t
k(1− λ2)

∑k
i=2 αivi(u) 6 −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)>0 αivi(u). (12)

Again, we upper bound the left hand side using Lemma 4 and Lemma 20 and getting∑k
i=2 αivi(u) =

∑k−1
i=1 γiχi(u) 6 − k

∆n , with high probability. As for the right hand side
we use Claim 23 and get that −

∑
i:αivi(u)>0 αivi(u) > −k

√
∆ logn. By combining the two

bounds we get − 1
2λ

t
k(1− λ2) k

∆n < −(t+ 1)λt2(λ2 − λk)k
√

∆ logn, which is exactly the same
condition of the previous case. Thus, for every time t < T2 = Ω(n 3

2 ), we have that

c(t)(u)− c(t+1)(u) 6 1
2λ

t
k(1− λ2)

∑k−1
i=1 γiχi(u). (13)

By combining Equation (11) and Equation (13), we conclude that
∣∣c(t)(u)− c(t+1)(u)

∣∣ >
1
2λ

t
k(1− λ2) |y(u)|.

Now we show that sgn(c(t)(u) − c(t+1)(u)) = sgn(y(u)). In particular, Equations (7)
and (12) imply that −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u) 6 1

2λ
t
k(1− λ2) |y(u)| and that

(t+ 1)λt2(λ2 − λk)
∑
i:αivi(u)>0 αivi(u) 6 1

2λ
t
k(1− λ2) |y(u)|. Thus, upper and lower bounds

for c(t)(u) − c(t+1)(u) in Claim 22, during for every t < T2, have the same sign of y and
consequently sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)). J

D Upper bound on the error contribution

In this section we upper bound the error contribution, i.e., the part of the state vector in the
eigenspace of eigenvalues λk+1, . . . , λn (Lemma 25).

I Lemma 25 (Upper bound on the error contribution). Let e(t) :=
∑n
i=k+1 λ

t
iαivi. For every

u ∈ V , it holds that |e(t)(u)| 6 λtk+1
√

∆n.

Proof. To bound all components of vector e(t) we use its `∞ norm, defined for any vector x
as ‖x‖∞ := supi |x(i)|. In particular

‖e(t)‖2∞ 6 ‖e(t)‖2 =
∥∥∑n

i=k+1 λ
t
iαivi

∥∥2 =
∥∥∥∑n

i=k+1 λ
t
iβiD

− 1
2wi

∥∥∥2

(a)
6
∥∥∥D− 1

2

∥∥∥2 ∥∥∑n
i=k+1 λ

t
iβiwi

∥∥2 (b)=
∥∥∥D− 1

2

∥∥∥2∑n
i=k+1 λ

2t
i β

2
i

6
∥∥∥D− 1

2

∥∥∥2
λ2t
k+1

∑n
i=k+1 β

2
i 6

∥∥∥D− 1
2

∥∥∥2
λ2t
k+1

∑n
i=1 β

2
i

=
∥∥∥D− 1

2

∥∥∥2
λ2t
k+1

∥∥∥D 1
2x
∥∥∥2

6
∥∥∥D− 1

2

∥∥∥2
λ2t
k+1

∥∥∥D 1
2

∥∥∥2
‖x‖2

(c)= maxu δ(u)
minu δ(u) λ

2t
k+1 ‖x‖

2 6 λ2t
k+1∆n,

where in (a) we use Cauchy-Schwarz inequality (Theorem 14) and we apply the definition
of spectral norm of an operator, i.e., ‖A‖ := supx:‖x=1‖ ‖Ax‖; in (b) we use that the wis
are orthonormal; in (c) we use that the spectral norm of a diagonal matrix is equal to its
maximum value. Thus, for every u ∈ V it holds that |e(t)(u)| 6

√
‖e(t)‖2∞ 6 λtk+1

√
∆n. J
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