
Approximating the Geometric Edit Distance
Kyle Fox
The University of Texas at Dallas, USA
kyle.fox@utdallas.edu

Xinyi Li
The University of Texas at Dallas, USA
Xinyi.Li2@utdallas.edu

Abstract
Edit distance is a measurement of similarity between two sequences such as strings, point sequences,
or polygonal curves. Many matching problems from a variety of areas, such as signal analysis,
bioinformatics, etc., need to be solved in a geometric space. Therefore, the geometric edit distance
(GED) has been studied. In this paper, we describe the first strictly sublinear approximate near-linear
time algorithm for computing the GED of two point sequences in constant dimensional Euclidean
space. Specifically, we present a randomized O(n log2 n) time O(

√
n)-approximation algorithm.

Then, we generalize our result to give a randomized α-approximation algorithm for any α ∈ [1,
√
n],

running in time Õ(n2/α2). Both algorithms are Monte Carlo and return approximately optimal
solutions with high probability.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Computational geometry

Keywords and phrases Geometric edit distance, Approximation, Randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.23

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.00773.

Acknowledgements The authors would like to thank Anne Driemel and Benjamin Raichel for helpful
discussions.

1 Introduction

Ordered sequences are frequently studied objects in the context of similarity measurements,
because sequence alignment plays a vital role in trajectory comparison and pattern recognition.
As a consequence, several metrics have been developed to measure the similarity of two
sequences, e.g., Fréchet distance, dynamic time warping, and their variations. Geometric
edit distance, a natural extension of the string metric to geometric space, is the focus of
this paper. This concept is formally introduced by Agarwal et al. [2]; however, a similar
idea (extending string edit distance to a geometric space) has been applied in other ways
during the past decade. Examples include an lp-type edit distance for biological sequence
comparison [19], ERP (Edit distance with Real Penalty) [10], EDR (Edit Distance on Real
sequence) [11], TWED (Time Warping Edit Distance) [16] and a matching framework from
Swaminathan et al. [18] motivated by computing the similarity of time series and trajectories.
See also a survey by Wang et al. [22].

Problem statement

Geometric Edit Distance (GED) is the minimum cost of any matching between two geometric
point sequences that respects order along the sequences. The cost includes a constant penalty
for each unmatched point.

© Kyle Fox and Xinyi Li;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248536509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kyle.fox@utdallas.edu
mailto:Xinyi.Li2@utdallas.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.23
https://arxiv.org/abs/1910.00773
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Approximating the Geometric Edit Distance

Formally, let P =< p1, ..., pm > and Q =< q1, ..., qn > be two point sequences in IRd for
some constant d. A monotone matching M is a set of index pairs {(i1, j1), ..., (ik, jk)} such
that for any two elements (i, j) and (i′, j′) inM, i < i′ if j < j′.

We call every unmatched point a gap point. Let Γ(M) be the set of all gap points. The
cost ofM is defined as

δ(M) =
∑

(i,j)∈M

dist(pi, qj) + ρ(Γ(M)) (1)

where dist(p, q) is the distance between points p and q (i.e. the Euclidean norm), and
ρ(Γ(M)) is a function of all gap points, which is known as a gap penalty function. The use
of gap points and the gap penalty function allow us to recognize good matchings even in
the presence of outlier points. The distance is sensitive to scaling, so, we can only match
points pairs that are sufficiently close together based on the current position. For geometric
edit distance, we use a linear gap function. That is to say, ρ((M)) = |Γ(M)| · `, where ` is a
constant parameter called the gap penalty.

I Definition 1. We denote the GED between two sequences P,Q as:

GED(P,Q) = min
M

δ(M) = min
M

 ∑
(i,j)∈M

dist(pi, qj) + |Γ(M)| · `

where the minimum is taken over all monotone matchings. Without loss of generality, we
assume ` = 1 throughout the paper.

Prior work

To simplify the presentation of prior work, we assume n ≥ m. It is trivial to compute
GED(P,Q) in O(mn) time by simply changing the cost of substitution in the original string
edit distance (Levenstein distance) dynamic programming algorithm [21]. Assuming k is the
GED, we can achieve an O(nk) time algorithm by restricting our attention to the middle
k diagonals of the dynamic programming table (see also Ukkonen [20]). There is a slightly
subquadratic O(n2/ logn) time algorithm [17] for the string version, but it appears unlikely
we can apply it to the geometric case. Accordingly, Gold and Sharir [12] proposed a different
algorithm which can compute GED as well as the closely related dynamic time warping
(DTW) distance in O(n2 log log logn/ log logn) time in polyhedral metric spaces. Recent
papers have shown conditional lower bounds for several sequence distance measures even with
some restrictions. In particular, there is no O(n2−δ) time algorithm for any constant δ > 0 for
Fréchet distance [5], DTW over a constant size alphabet [1] or restricted to one-dimensional
curves [6], and string edit distance on the binary alphabet [4, 6].1 The latter of the above
results implies the same lower bound for GED, even assuming the sequences consist entirely
of 0, 1-points in IR.

Due to these limitations and difficulties, many researchers have turned to approximation
algorithms for these distances. Much work has been done to explore approximate algorithms
for Fréchet distance, DTW, and string edit distance [2, 3, 7–9,14]. In particular, Bringmann

1 The (discrete) Fréchet and DTW distances are defined similarly to GED; however, they use one-to-many
correspondences instead of one-to-one matchings, and they disallow the use of gap points. As in GED,
DTW aims to minimize the sum of distances between corresponding points, while discrete Fréchet
distance aims to minimize the maximum distance over corresponding points.

K. Fox and X. Li 23:3

and Mulzer [7] describe an α-approximation algorithm for the discrete Fréchet distance that
runs in time O(n logn+n2/α) for any α ∈ [1, n]. Chan and Rahmati [9] improved this running
time to O(n logn + n2/α2). Very recently, Kuszmaul [14] provided O(α)-approximation
algorithms with O((n2/α) polylogn) running times for edit distance over arbitrary metric
spaces and DTW over well separated tree metrics. Another O(n2/α) time algorithm with
an O(α) approximation factor for string edit distance is to run Ukkonen’s [20] O(nk) time
algorithm letting k be n/α, and unmatch all characters if this algorithm cannot return the
optimal matching. Similarly, we can obtain a different O(α)-approximation algorithm for
GED running in O(n2/α) time by making use of the O(nk) time exact algorithm mentioned
above. There are many other approximation algorithms specialized for the string version
of edit distance. In particular, an O(

√
n)-approximation algorithm can be acquired easily

from an O(n+ k2) time exact algorithm [15]. The current best results include papers with
(logn)O(1/ε) [3] and constant approximation ratios [8] with different running time tradeoffs.

For GED, a simple linear time O(n)-approximation algorithm was observed by Agarwal
et al. [2]. In the same paper, they also offered a subquadratic time (near-linear time in some
scenarios) approximation scheme on several well-behaved families of sequences. Using the
properties of these families, they reduced the search space to find the optimal admissible
path in the dynamic programming graph [2].

Our results

Inspired by the above applications and prior work, we commit to finding a faster approach to
approximating GED between general point sequences while also returning the approximate
best matching. Here, we give the first near-linear time algorithm to compute GED with a
strictly sublinear approximation factor. We then generalize our result to achieve a tradeoff
between the running time and approximation factor. Both of these algorithms are Monte
Carlo algorithms, returning an approximately best matching with high probability2. To
simplify our exposition, we assume the points are located in the plane (i.e., d = 2), and we
assume the input sequences are the same length (i.e., m = n). We can easily extend our
results to the unbalanced case, and our analysis implies that outside the plane, the running
times and approximation ratios increase only by a factor polynomial in d.

I Theorem 2. Given two point sequences P and Q in IR2, each with n points, there exists
an O(n log2 n)-time randomized algorithm that computes an O(

√
n)-approximate monotone

matching for geometric edit distance with high probability.

The intuitive idea behind this algorithm is very simple. We check if the GED is less than
each of several geometrically increasing values g, each of which is less than O(

√
n). For each

g, we transform the geometric sequences into strings using a randomly shifted grid, and run
the O(n+ k2) time exact algorithm for strings [15]. If the GED is less than g, then we get an
O(
√
n) approximate matching. If we never find a matching of cost O(

√
n), we simply leave

all points unmatched as this empty matching is an O(
√
n)-approximation for GED with high

probability. We give the details for this O(
√
n)-approximation algorithm in Section 2.

I Theorem 3. Given two point sequences P and Q in IR2, each with n points, there exists
an O(n log2 n + n2

α2 logn)-time randomized algorithm that computes an O(α)-approximate
monotone matching for geometric edit distance with high probability for any α ∈ [1,

√
n].

2 We say an event occurs with high probability if it occurs with probability at least 1 − 1
nc for some

constant c > 0.

ISAAC 2019

23:4 Approximating the Geometric Edit Distance

The second algorithm uses similar techniques to the former, except we can no longer
use the string edit distance algorithm as a black box. In particular, we cannot achieve our
desired time-approximation tradeoff by just directly altering some parameters in our first
algorithm. We discuss why in Section 3.1. To overcome these difficulties, we develop a
constant-factor approximation algorithm to compute the GED of point sequences obtained by
snapping points of the original input sequences to grid cell corners. Our algorithm for these
snapped points is based on the exact algorithm for string edit distance [15] but necessarily
more complicated to handle geometric distances. So, we first introduce the O(n+ k2) time
algorithm for strings in Section 4.1, and then describe our constant approximation algorithm
for points in Section 4.2. We note that a key component of the string algorithm and our
extension is a fast method for finding maximal length common substrings from a given pair
of starting positions in two strings A and B. A similar procedure was needed in the discrete
Fréchet distance approximation of Chan and Rahmati [9]. In Section 3, we present the
algorithm for Theorem 3 using our approximation algorithm for snapped point sequences as
a black box.

2 O(
√
n)-Approximation for GED

Recall that the main part of our algorithm is a decision procedure to check if the GED is
less than a guess value g. There are two steps in this process:
1. Transform the point sequences into strings. To be specific, we partition nearby points

into common groups and distant points into different groups to simulate the identical
characters and different characters in the string version of edit distance.

2. Run a modification of the exact string edit distance algorithm of Landau et al. [15]. To
better serve us when discussing geometric edit distance, we aim to minimize the number
of insertions and deletions to turn S into T only; we consider substitution to have infinite
cost. Details on this modified algorithm appear in Section 4.1.3

We explain how to transform the point sequences into strings in Section 2.1, and we analyze
the approximation factor and running time in Sections 2.2 and 2.3.

For convenience, we refer to the string edit distance algorithm as SED(S, T, k), where S
and T are two strings with equal length. This algorithm will return a matching in O(n+ k2)
time if the edit distance is at most k. We give an outline of our algorithm as Algorithm 1.
Here, c is a sufficiently large constant, and we use lg to denote the logarithm of base 2.

2.1 Transformation by a random grid
As stated above, the transformation technique should partition nearby points into common
groups and distant points into different groups. We use a randomly shifted grid to realize
this ideal, see [13] for example.

Recall P and Q lie in IR2. We cover the space with a grid. Let the side length of each
grid cell be ∆, and let b be a vector chosen uniformly at random from [0,∆]2. Starting from
an arbitrary position, the grid shifts bi units in each dimension i. For a point p, let id∆,b(p)
denote the cell which contains p in this configuration. We consider two points p1 = (x1, y1),
and p2 = (x2, y2) in this space.

3 Computing this variant of the string edit distance is really us computing the shortest common super-
sequence length of the strings rather than the traditional Levenshtein distance, but we stick with “edit
distance” for simplicity.

K. Fox and X. Li 23:5

Algorithm 1 O(
√
n)-approximation algorithm for GED.

Input: Point sequences P and Q
Output: An approximately optimal matching for GED

1 if
∑n
i=1 dist(pi, qi) ≤ 1 then

2 return matching {(1, 1), ..., (n, n)}
3 else
4 for i := 0 to dlg

√
ne do

5 g := 2i
6 for j := 1 to dc lgne do
7 Transform P , Q to strings S, T using a randomly shifted grid
8 out := SED(S, T, 12

√
n+ 2g)

9 if out 6= false then
10 return out
11 end
12 end
13 end
14 return the empty matching
15 end

I Lemma 4. We have P (id∆,b(p1) 6= id∆,b(p2)) ≤ min{ |x1−x2|+|y1−y2|
∆ , 1}.

We use this observation in our algorithm and set ∆ = g√
n
as each cell’s side length.

2.2 Time complexity
We claim the running time for Algorithm 1 is O(n log2 n). Computing

∑n
i=1 dist(pi, qi) takes

O(n) time. In the inner loop, the transformation operation (line 7) takes O(n) time assuming
use of a hash table. The running time for SED(S, T, 12

√
n + 2g) is O(n) for g = O(

√
n).

Summing over the outer loop and inner loop, the overall running time for Algorithm 1 is

dlg
√
ne∑

i=1

dc lgne∑
j=1

O(n) = O(n log2 n).

2.3 Approximation ratio
In this section, we show that Algorithm 1 returns an O(

√
n)-approximate matching with

high probability.

Notation

For any monotone matching M, we define CS(M) as the cost of the corresponding edit
operations forM in the string case and CG(M) to be δ(M) as defined in (1) for the geometric
case (as stated, there is no substitution operation in our modified string case). LetM∗G be
the optimal matching for geometric edit distance, andM∗S be the optimal matching under
the string configuration during one iteration of the loop. Our final goal is to establish the
relationship between CG(M∗G) and CG(M∗S).

I Lemma 5. If GED(S, T) ≤ g, with a probability at least 1− 1
nc , at least one of the dc lgne

iterations of the inner for loop will return a matchingM∗S where CS(M∗S) ≤ 12
√
n+ 2g.

ISAAC 2019

23:6 Approximating the Geometric Edit Distance

Proof. Let M be a monotone matching, and let UMM be the set of unmatched indices.
There are four subsets of pairs inM:

OCM: In each pair, both indices’ points fall into One cell, and the distance between the
two points is less and equal to g√

n
(Close).

OFM: In each pair, both indices’ points fall into One cell, and the distance between the
two points is larger than g√

n
(Far).

DCM: In each pair, the indices’ points are in Different cells, and the distance between
the two points is less and equal to g√

n
(Close).

DFM: In each pair, the indices’ points are in Different cells and the distance between
the two points is larger than g√

n
(Far).

These sets are disjoint, so

CG(M∗G) =|UMM∗
G
|+

∑
(i,j)∈OCM∗

G

dist(pi, qj) +
∑

(i,j)∈OFM∗
G

dist(pi, qj)

+
∑

(i,j)∈DCM∗
G

dist(pi, qj) +
∑

(i,j)∈DFM∗
G

dist(pi, qj). (2)

Recall that there is no substitution operation in our version of the string case. So to
understand optimal matchings for string edit distance, we must unmatch all the pairs in
DCM∗

G
and DFM∗

G
, forming a new matchingM∗′G . Points in one cell are regarded as identical

characters while those in different cells are different characters. Therefore,

CS(M∗
′

G) = |UMM∗
G
|+ 0 · (|OCM∗

G
|+ |OFM∗

G
|) + 2 · (|DCM∗

G
|+ |DFM∗

G
|)

= |UMM∗
G
|+ 2 · (|DCM∗

G
|+ |DFM∗

G
|).

Observe that there are at most g
g/
√
n

=
√
n pairs in DFM∗

G
if CG(M∗G) ≤ g. Therefore,

CS(M∗S) ≤ CS(M∗
′

G)
= |UMM∗

G
|+ 2|DCM∗

G
|+ 2|DFM∗

G
| ≤ g + 2

√
n+ 2|DCM∗

G
| (3)

For any two points pi, qj , let PD(i, j) be the probability that pi and qj are assigned into
different cells. From Lemma 4, we can infer PD(i, j) ≤ 2dist(pi,qj)

g/
√
n

.
Then,

E(|DCM∗
G
|) ≤

∑
(i,j)∈M∗

G

PD(i, j) ≤
∑

(i,j)∈M∗
G

2dist(pi, qj)
g/
√
n

(4)

≤ 2
√
n.

Therefore,

E(CS(M∗S)) ≤ 6
√
n+ g.

By Markov’s inequality,

P [CS(M∗S) ≥ 12
√
n+ 2g] ≤ 1

2 .

In other words, SED(S, T, 12
√
n+ 2g) will fail with probability at most 1

2 if GED(P,Q) ≤ g.
So, if we test SED(S,D, 12

√
n+ 2g) dc lgne times, at least one iteration will return a value

if GED(P,Q) ≤ g with a probability greater than or equal to

1−
dc lgne∏

1
P [CS(M∗S) ≥ 12

√
n+ 2g] ≥ 1−

dc lgne∏
1

1
2 = 1− 1

nc
.

We conclude the proof of Lemma 5. J

K. Fox and X. Li 23:7

According to Lemma 5, if all test procedures return false, we can say CG(M∗G) > g with
high probability; otherwise, we obtain a matchingM∗S and CS(M∗S) ≤ 12

√
n+ 2g.

We now consider CG(M∗S). Again, UMM is the set of unmatched indices for a matching
M. Observe, for all (i, j) ∈ M∗S , points pi and qj lie in the same grid cell. Therefore,
dist(pi, qj) ≤

√
2g√
n

if (i, j) ∈M∗S . We have:

CG(M∗S) = |UMM∗
S
|+

∑
(i,j)∈M∗

S

dist(pi, qj) (5)

≤ 12
√
n+ 2g + n · (

√
2g√
n

) = 12
√
n+ 2g +

√
2g
√
n

If GED(P,Q) ≤
√
n, then, with high probability, we obtain a matching M∗S during the

iteration where g ≥ GED(P,Q) ≥ 1
2g. The cost of this matching is at most 12

√
n + 2g +√

2g
√
n = O(

√
n)GED(P,Q). The same approximation bound holds if GED(P,Q) >

√
n,

whether or not we find a matching during the outer for loop. We conclude the proof of
Theorem 2.

3 O(α)-Approximation for GED

We now discuss our O(α)-approximation algorithm for any α ∈ [1,
√
n]. A natural approach

for extending our O(
√
n)-approximation is using the same reduction to string edit distance

but let the cell’s side length be a variable depending on the approximation factor α. However,
this method does not appear to work well.

3.1 Flaws in O(
√
n)-algorithm to achieve tradeoff

Let ∆α be the cell’s side length which depends on the approximation factor α. For our
analysis we need CG(M∗S) ≤ g ·O(α).

There can be at most n matched pairs inM∗S . Following (5), we derive n ·∆α ≤ g ·O(α),
implying

∆α ≤ O(gα
n

).

On the other hand, we require CS(M∗S) ≤ g · O(α) in our analysis; in particular, we
need to replace the 2

√
n in (3) with g · O(α). We derived 2

√
n as 2 g

∆α
. We now need

2 g
∆α
≤ g ·O(α), implying

∆α ≥ Ω(1
α

).

This is fine for α =
√
n or for large values of g. But for small α and small g, we cannot

have both inequalities be true. Therefore, we do grid-snapping that let us ignore the second
inequality.

3.2 O(α)-algorithm based on grid-snapping
Grid-snapping

Instead of grouping points into different cells as the O(
√
n)-approximation algorithm, we

snap points to the lower left corners of their respective grid cells. Let P ′ =< p′1, ..., p
′
n >,

Q′ =< q′1, ..., q
′
n > be the sequences after grid-snapping. We immediately obtain the following

observations:

ISAAC 2019

23:8 Approximating the Geometric Edit Distance

I Observation 1. If pi and qj are in the same cell, dist(p′i, q′j) = 0, and dist(pi, qj) ≤√
2∆ < 2

√
2∆.

I Observation 2. If pi and qj are in different cells, ∆ ≤ dist(p′i, q′j) ≤ dist(pi, qj) + 2
√

2∆.

We can then obtain our O(α)-approximation algorithm by altering the bound in the
outer loop and the test procedure of Algorithm 1. See Algorithm 2. Here, AGED(P ′, Q′, k)
attempts to Approximate GED(P ′, Q′) given that P ′ and Q′ have their points on the corners
of the grid cells. If GED(P ′, Q′) ≤ k, then it returns an O(1)-approximate matching for
the edit distance of the point sequences after grid-snapping. Otherwise, it either returns an
O(1)-approximate matching or it returns false.

Algorithm 2 O(α)-approximation algorithm.

Input: Point sequences P and Q
Output: An approximately optimal matching for GED

1 if
∑n
i=1 dist(pi, qi) ≤ 1 then

2 return matching {(1, 1), ..., (n, n)}
3 else
4 for i := 0 to dlg n

αe do
5 g := 2i
6 for j := 1 to dc lgne do
7 Obtain P ′, Q′ by doing grid-snapping to P , Q based on a randomly

shifted grid
8 out := AGED

(
P ′, Q′, (12

√
2 +
√

2)g
)

9 if out 6= false then
10 return out
11 end
12 end
13 end
14 Return the empty matching
15 end

We describe how to implement AGED(P ′, Q′, k) in Section 4.2. The running time of our
implementation is O(n+ k2

∆) where ∆ is the cell side length of the grid. We do grid snapping
in O(n) time. For each g = 2i, we use cells of side length gα

n and set k to
(
12
√

2 + 2
)
g, so

the overall running time of our O(α)-approximation algorithm is

O(n) +
dlg n

α e∑
i=0

dc lgne∑
j=1

O(n+ 2in
α

) =
dlg n

α e∑
i=0

O(n logn+ 2in
α

logn) = O(n log2 n+ n2

α2 logn).

The analysis for the O(α)-approximation algorithm is similar to the first algorithm. The
major difference is that for any g ≥ GED(P,Q), if we compute the cost of the optimal
matching for GED under the new point sequences, it will increase to only

(
12
√

2 + 2
)
g with

constant probability despite our small choice for the grid cell side length. But as argued
above, the small grid cell side length means the optimal matching of the point sequences
after grid-snapping does not increase its cost much when returning the snapped points to
their original positions. See Appendix A for details.

K. Fox and X. Li 23:9

4 Constant Approximation Algorithm AGED(P ′, Q′, k)

Recall that our constant factor approximation algorithm for GED of grid corner points is
based on a known O(n + k2) time exact algorithm for string edit distance [15]. We first
describe this exact algorithm for strings, which we refer as SED(S, T, k), in Section 4.1.
Then in Section 4.2, we modify this string algorithm to obtain an O(1)-approximate matching
for edit distance between point sequences P ′ and Q′ assuming the points lie on the corners
of grid cells and GED(P ′, Q′) ≤ k.

4.1 The exact O(n+ k2) string edit distance algorithm
Dynamic programming matrix and its properties

Let S =< s1, s2, ...sn > and T =< t1, t2, ..., tn > be two strings of length n. Let D
denote a (n + 1) × (n + 1) matrix where D(i, j) is the edit distance between substrings
Si =< s1, s2, .., si > and Tj =< t1, t2, ..., tj >. We give a label h to every diagonal in this
matrix such that for any entry (i, j) in this diagonal, j = i+ h. See Fig. 1 (a).

0 1

1

...

...

i

...

...

n

nj

e

Lh;e

diagonal h = j − idiagonal h− 1

diagonal h+ 1

e− 1

e− 1Lh+1;e−1

Lh−1;e−1

r

Figure 1 (a) The diagonal containing any entry (i, i + h) is diagonal h. (b) The algorithm
slides down the diagonal until finding an entry representing distinct characters. A circle means the
corresponding two characters are the same; a cross means they are different.

Recall, we aim to minimize only the number of insertions and deletions to turn S into T .
There are four important properties in this matrix which are used in the O(n + k2) time
algorithm.

I Property 1. D(i, j) = min

D(i− 1, j) + 1
D(i, j − 1) + 1
D(i− 1, j − 1) + |sitj |

where |sitj | =
{

0, if si = tj

∞, otherwise
.

I Property 2. D(i, 0) = i, and D(0, j) = j.

I Property 3. D(i, i+ h) is even if and only if h is even.

I Property 4. D(i, j)−D(i− 1, j − 1) ∈ {0, 2}.

Property 4 can be easily derived from Property 3 and induction on i + j (see Lemma 3
of [20]). From Property 4, we know all the diagonals are non-decreasing. In particular, all
values on diagonal h are greater than |h| considering Property 2. So, we can just search the
band from diagonal −k to k if the edit distance between S and T is at most k.

ISAAC 2019

23:10 Approximating the Geometric Edit Distance

Algorithm for edit distance at most k

We use a greedy approach to fill the entries along each diagonal. For each value e ∈ {0, . . . , k}
(the outer loop), we locate the elements whose value is e by inspecting diagonals −e to e (the
inner loop). Finally, we return the best matching if D(n, n) is covered by the above search.
Otherwise, the edit distance is greater than k.

The key insight is that we can implicitly find all entries containing e efficiently in each
round. We first define Lh,e as the row index of the farthest e entry in diagonal h.

I Definition 6. Lh,e = max{i|D(i, i+ h) = e}.

Note by Property 3, Lh,e is well-defined only if h ≡ e mod 2. Observe that all values on
diagonal h are at least |h|, which means that we can define our initial values as:

Lh,h−2 =
{
|h| − 1, if h < 0;
−1, otherwise

, where h ∈ [−k, k].

Let r = max{Lh−1,e−1, Lh+1,e−1 + 1}. Then, D(r, r + h) = e by Properties 1 and 4. Also, if
D(r, r + h) = e and sr+1 = tr+1+h, then D(r + 1, r + 1 + h) = e. From these observations,
we can compute Lh,e in each inner loop using Algorithm 3 below.

Algorithm 3 Computing Lh,e in each inner loop.

1 r := max{Lh−1,e−1, Lh+1,e−1 + 1}
2 while r + 1 ≤ n, r + h+ 1 ≤ n, and sr+1 == tr+1+h do
3 r := r + 1 ; /* slide */
4 end
5 if r > n or r + h > n then
6 Lh,e :=∞
7 else
8 Lh,e := r

9 end

We call lines 2 through 4 “the slide”. It is straightforward to recover the optimal matching
by using the Lh,e values to trace backwards through the dynamic programming matrix. Fig.
1 (b) demonstrates this process.

We can perform slides in constant time each after some O(n)-time preprocessing at the
beginning of the algorithm. In short, the length of a slide can be computed using a lowest
common ancestor query in the suffix tree of a string based on S and T [15]. The overall
running time is O(n+ k2).

4.2 O(1)-approximation algorithm by modifying the string version
Notation

Similar to the string algorithm, we have a dynamic programming matrix; D′(i, j) is the edit
distance between subsequence P ′i =< p′1, ..., p

′
i > and Q′j =< q′1, ..., q

′
j >. This matrix also

meets Property 1 stated earlier except that we use dist(p′i, q′j) instead of |sitj |. In addition,
we also have the following property which is a refinement of Property 4.

I Property 5. D′(i, j)−D′(i− 1, j − 1) ∈ [0, 2].

K. Fox and X. Li 23:11

Clearly, the upper bound is 2 (just unmatch pi and qj). The lower bound can be proved by
induction. Because the values in any diagonal are non-decreasing, we need only consider
diagonals −k through k.

(Implicit) label rules

To obtain an approximate matching for the edit distance of snapped point sequences, we
now label each entry in the dynamic programming matrix with an approximately tight lower
bound on its value. Inspired by the string algorithm, we use non-negative integers for our
labels, and the entries of any diagonal h only receive labels e where e ≡ h mod 2. Let
LA(i, j) be the label of entry (i, j) and L′h,e be the row index of the farthest entry whose
label is e in diagonal h.

I Definition 7. L′h,e := max{i|LA(i, i+ h) = e}.

For each e from 0 to k, for each diagonal h where h ≡ e mod 2, we (implicitly) assign labels
e to each entry on diagonal h.
1. If h = −e or e, i.e., this is the first iteration to assign labels to this diagonal, then we

label the very beginning entry in diagonal h as e, i.e., if h = −e, LA(|h|, 0) = e; otherwise,
LA(0, h) = e.

2. We define a start entry (r, r + h) for each diagonal h. If h = −e or e, r is the row index
of the first one entry in diagonal h; otherwise, r = max{L′h−1,e−1, L

′
h+1,e−1 + 1}.

3. We assign the label e to entries (r, r+h) to (r+s, r+h+s) where
∑s
i=r+1 dist(p′i, q′i+h) ≤ 2

and
∑s+1
i=r+1 dist(p′i, q′i+h) > 2. L′h,e = r + s. These entries correspond to a slide in the

string algorithm.
4. Finally, if (r− 1, r + h− 1) is unlabeled, we go backward up the diagonal labeling entries

as e until we meet an entry that has been assigned a label previously. (Again, this step is
implicit. As explained below, the actual algorithm only finds the L′h,e entries.)

Fig. 2 illustrates our rules.

(a) Notations and labels for the boundary
entries.

(b) Label entries following step 3.

Figure 2 Notations and rules for approximating SGED.

Computing an approximately optimal matching

Assume we have set the initial values. Our algorithm only needs to compute each L′h,e as
before. See Algorithm 4. Then, we guarantee the following theorem:

ISAAC 2019

23:12 Approximating the Geometric Edit Distance

I Theorem 8. We can recover a matching M∗′GS using all L′h,e from Algorithm 4. The cost
of M∗′GS for point sequences P ′, Q′ is less and equal to 3GED(P ′, Q′).

In short, we argue each label LA(i, j) ≤ D′(i, j). We then follow a path through the matrix
as suggested by the way we pick labels in Algorithm 4. The final matching has cost at most
3LA(n, n) which is less and equal to 3GED(P ′, Q′). The full proof appears in Appendix B.

Algorithm 4 Computing L′
h,e for the fixed h and e.

1 r := max{(L′h−1,e−1), (L′h+1,e−1 + 1)}
2 sum := 0
3 while r + 1 ≤ n, r + h+ 1 ≤ n, and sum+ dist(p′r+1, q

′
r+h+1) ≤ 2 do

4 r := r + 1
5 sum := sum+ dist(p′r, q′r+h)
6 end
7 if r > n or r + h > n then
8 L′h,e :=∞
9 else

10 L′h,e := r

11 end

We conclude by discussing the time complexity for our algorithm. Using the same
O(n) preprocessing as in [15], we can slide down maximal sequences of consecutive entries
(r, r + h) with dist(p′r, q′r+h) = 0 in constant time per slide. Let ∆ be the cell side length
of the grid whose cell corners contain points of P ′ and Q′. For dist(p′r, q′r+h) 6= 0, we know
dist(p′r, q′r+h) ≥ ∆ from Observations 1 and 2. Therefore, we only need to manually add
distances and restart faster portions of each slide of distances summing to 2 a total of 2

∆
times. Thus, the total running time is

O(n+
k∑
e=0

e∑
h=−e

1
∆) = O(n+ k2

∆).

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In Proceedings of the IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 59–78, 2015.

2 Pankaj K Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. In Proceedings of the 32nd International
Symposium on Computational Geometry, pages 6:1–6:16, 2016.

3 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In Proceedings of the IEEE 51st
Annual Symposium on Foundations of Computer Science, pages 377–386, 2010.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the 47th Annual ACM Symposium on Theory
of Computing, pages 51–58, 2015.

5 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In Proceedings of the IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 661–670, 2014.

K. Fox and X. Li 23:13

6 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 79–97, 2015.

7 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
JoCG, 7(2):46–76, 2016.

8 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In Proceedings
of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 979–990. IEEE, 2018.

9 Timothy M Chan and Zahed Rahmati. An improved approximation algorithm for the discrete
Fréchet distance. Information Processing Letters, pages 72–74, 2018.

10 Lei Chen and Raymond Ng. On the marriage of Lp-norms and edit distance. In Proceedings
of the 30th International Conference on Very Large Databases, pages 792–803, 2004.

11 Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, pages 491–502, 2005.

12 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Transactions on Algorithms, 14(4):50, 2018.

13 Sariel Har-Peled. Geometric approximation algorithms, chapter 11, Random Partition via
Shifting, pages 151–162. American Mathematical Soc., 2011.

14 William Kuszmaul. Dynamic Time Warping in Strongly Subquadratic Time: Algorithms for the
Low-Distance Regime and Approximate Evaluation. In Proceedings of the 46th International
Colloquium on Automata, Languages and Programming, 2019.

15 Gad M Landau, Eugene W Myers, and Jeanette P Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998.

16 Pierre-François Marteau. Time warp edit distance with stiffness adjustment for time series
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):306–318,
2009.

17 William J Masek and Michael S Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

18 Swaminathan Sankararaman, Pankaj K Agarwal, Thomas Mølhave, Jiangwei Pan, and
Arnold P Boedihardjo. Model-driven matching and segmentation of trajectories. In Proceed-
ings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 234–243, 2013.

19 Aleksandar Stojmirovic and Yi-kuo Yu. Geometric aspects of biological sequence comparison.
Journal of Computational Biology, 16(4):579–611, 2009.

20 Esko Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1-3):100–118, 1985.

21 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of
the ACM, 21(1):168–173, 1974.

22 Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn
Keogh. Experimental comparison of representation methods and distance measures for time
series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.

A Analysis for O(α)-approximation algorithm

We introduce some additional notations to those used in Section 2.3.
Let CGS(M) be the cost of any monotone matching M using distances between the

grid-snapped points of P ′ and Q′. Let M∗GS be the optimal matching for P ′ and Q′,
i.e., CGS(M∗GS) = GED(P ′, Q′). Let M∗′GS be the matching returned by AGED(P ′, Q′,
(12
√

2 + 2)g).
We have the following lemma.

ISAAC 2019

23:14 Approximating the Geometric Edit Distance

I Lemma 9. If GED(P,Q) ≤ g, with a probability at least 1− 1
nc , at least one of the dc lgne

iterations will return a matchingM∗′GS.
Proof. Similar to (2), and with Observations 1 and 2, we have

CGS(M∗G) = |UMM∗
G
|+ 0 · (|OCM∗

G
|+ |OFM∗

G
|)

+
∑

(i,j)∈DCM∗
G

dist(p′i, q′j) +
∑

(i,j)∈DFM∗
G

dist(p′i, q′j)

≤ |UMM∗
G
|+ 2

√
2∆ · |DCM∗

G
|+

∑
(i,j)∈DFM∗

G

(
dist(pi, qj) + 2

√
2∆
)
.

= |UMM∗
G
|+

∑
(i,j)∈DFM∗

G

dist(pi, qj) + 2
√

2∆
(
|DCM∗

G
|+ |DFM∗

G
|
)

If CG(M∗G) ≤ g, then

CGS(M∗GS) ≤ CGS(M∗G) ≤ g + 2
√

2∆ ·
(
|DCM∗

G
|+ |DFM∗

G
|
)
.

We have the same observation for DFM∗
G
as before, that is there are at most g

∆ pairs in
DFM∗

G
. Using the same algebra as (4), we have E(|DCM∗

G
|) ≤ 2g

∆ . So,

E(CGS(M∗GS)) ≤ g + 2
√

2∆ ·
(
g

∆ + 2g
∆

)
= 6
√

2g + g.

According to Markov’s inequality, we know

P
(
CGS(M∗GS) ≥

(
12
√

2 + 2
)
g
)
≤ 1

2 .

In Section 4.2, we prove that if CGS(M∗GS) = GED(P ′, Q′) ≤ (12
√

2 + 2)g, then AGED(P ′,
Q′, (12

√
2 + 2)g) will return a constant approximate matching M∗′GS . So, if we test

AGED(P ′, Q′,
(12
√

2 + 2)g) dc lgne times (using different grids each time), with a probability at least
1− 1

nc , at least one AGED(P ′, Q′, (12
√

2 + 2)g) will return a matchingM∗′GS . We conclude
the proof of Lemma 9. J

Finally, from Observation 2, for every pair (i, j) inM∗GS , we have dist(pi, qj) ≤ dist(p′i, q′j)+
2
√

2∆. We can now return points to their original positions:

CG(M∗
′
GS) = |UM

M∗′
GS

|+
∑

(i,j)∈DC
M∗′
GS

dist(pi, qj) +
∑

(i,j)∈DF
M∗′
GS

dist(pi, qj)

+
∑

(i,j)∈OC
M∗′
GS

dist(pi, qj) +
∑

(i,j)∈OF
M∗′
GS

dist(pi, qj)

≤ |UM
M∗′
GS

|+
∑

(i,j)∈DC
M∗′
GS

dist(p′i, q
′
j) +

∑
(i,j)∈DF

M∗′
GS

dist(p′i, q
′
j) +

∑
(i,j)∈OC

M∗′
GS

dist(p′i, q
′
j)

+
∑

(i,j)∈OF
M∗′
GS

dist(p′i, q
′
j) + 2

√
2∆
(∣∣∣DCM∗′

GS

∣∣∣+
∣∣∣DFM∗′

GS

∣∣∣+
∣∣∣OCM∗′

GS

∣∣∣+
∣∣∣OFM∗′

GS

∣∣∣)
≤ O(1) · (12

√
2 + 2)g + n · 2

√
2∆.

Recall, ∆ = gα
n . If we obtain a matchingM∗′GS during an iteration where g ≥ CG(M∗G) =

GED(P,Q) ≥ 1
2g, then CG(M∗′GS) ≤ O(gα) = O(α) ·GED(P,Q). Using the same argument

as in Theorem 2, we conclude our proof of Theorem 3.

K. Fox and X. Li 23:15

B Proof of Theorem 8

We have the following properties for our labels and the following lemma.

I Property 6. LA(i, i+ h)− LA(i+ 1, i+ 1 + h) ∈ {0, 2}.

I Property 7. LA(i, i+h)−LA(i−1, i+h) ∈ {−1, 1} and LA(i, i+h)−LA(i, i+h−1) ∈ {−1, 1}.

I Lemma 10. For every entry (i, j), LA(i, j) ≤ D′(i, j).

Note that in particular, LA(n, n) ≤ GED(P ′, Q′).

Proof. From Property 5, we only need to prove e is the lower bound of the first entry whose
label is e in each diagonal h.

We proceed by induction on e.
1. If e = 0, we only label the first entry in diagonal 0 as 0. We have 0 ≤ D′(0, 0) = 0. If

e = 1, then for diagonals 1 and −1, we have 1 ≤ D′(0, 1) = D′(1, 0) = 1.
2. Assume Lemma 10 for labels less than e. For e, we consider the diagonals h = −e to e:

If h = −e or e, we know e ≤ D′(|h|, 0) = e or e ≤ D′(0, h) = e.
Otherwise, let (f, f+h) be the first entry whose label is e. From Property 6, f = L′h,e−2+1.
Fig. 3 shows the notations. From the refined Property 1, we need to discuss three cases:

Figure 3 We compute the lower bound of entries which are labeled as e.

a. D′(f, f + h) = D′(f − 1, f + h) + 1.
From Property 7, we know LA(f − 1, f + h) = e− 1 or e+ 1.

If LA(f − 1, f + h) = e − 1, D′(f − 1, f + h) ≥ e − 1 from our assumption. So,
D′(f, f + h) = D′(f − 1, f + h) + 1 ≥ e− 1 + 1 = e.
If LA(f − 1, f + h) = e+ 1, then we know L′h+1,e−1 is less than f − 1. From non-
decreasing property, e− 1 ≤ D′(L′h+1,e−1, L

′
h+1,e−1 + h+ 1) ≤ D′(f − 1, f + h− 1).

b. D′(f, f + h) = D′(f, f + h− 1) + 1.
This case is similar to the above.

c. D′(f, f + h) = D′(f − 1, f + h− 1) + dist(p′f , q′f+h).
LA(f − 1, f + h− 1) = e− 2, because f − 1 = L′h,e−2. Let r be the row index of the
first entry to slide with label e−2 in diagonal h, i.e., r = max{L′h−1,e−3, L

′
h+1,e−3 + 1}.

See Fig. 3. We define u as the row index of the first entry walking backward from
entry (f, f +h) along the diagonal h where D′(u, u+h) = min{D′(u, u+h−1), D′(u−
1, u+ h− 1)}+ 1.

ISAAC 2019

23:16 Approximating the Geometric Edit Distance

If u > r, like Fig. 3, then u > L′h−1,e−3 and u − 1 > L′h+1,e−3. Combining our
assumption, we have

D′(u, u+ h− 1) ≥ D′(L′h−1,e−3 + 1, L′h−1,e−3 + h) ≥ e− 1

and

D′(u− 1, u+ h) ≥ D′(L′h+1,e−3 + 1, L′h+1,e−3 + h+ 2) ≥ e− 1.

So,

D′(u, u+ h) = min{D′(u, u+ h− 1), D′(u− 1, u+ h− 1)}+ 1 ≥ e− 1 + 1

implying D′(u, u+ h) ≥ e. Recall f ≥ u, so D′(f, f + h) ≥ e.
If u ≤ r, then

D′(f, f + h) = D′(r, r + h) +
f∑

i=r+1
dist(p′i, q′i+h)

> e− 2 + 2 = e.

Examining all cases, we conclude the proof of Lemma 10. J

The bounds for the approximate matching CGS(M∗′

GS)

From Algorithm 4, we note the label increases correspond to not matching a point in Line 1,
and slides correspond to matching points. LetM∗′GS be the resulting matching. So,

CGS(M∗
′

GS) = |UMM∗′
GS
|+

∑
(i,j)∈M∗′

GS

dist(p′i, q′j)

≤ LA(n, n) + 2 · LA(n, n) ≤ 3LA(n, n) ≤ 3GED(P ′, Q′).

We conclude the proof of Theorem 8 and obtain an O(1)-approximation algorithm for
GED(P ′, Q′).

	Introduction
	O(sqrt{n})-Approximation for GED
	Transformation by a random grid
	Time complexity
	Approximation ratio

	O(alpha)-Approximation for GED
	Flaws in O(sqrt{n})-algorithm to achieve tradeoff
	O(alpha)-algorithm based on grid-snapping

	Constant Approximation Algorithm AGED(P', Q', k)
	The exact O(n+k^2) string edit distance algorithm
	O(1)-approximation algorithm by modifying the string version

	Analysis for O(alpha)-approximation algorithm
	Proof of Theorem 8

