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Abstract
In this paper, we study the adaptivity gap of the influence maximization problem under the
independent cascade model when full-adoption feedback is available. Our main results are to
derive upper bounds on several families of well-studied influence graphs, including in-arborescences,
out-arborescences and bipartite graphs. Especially, we prove that the adaptivity gap for the in-
arborescences is between [ e

e−1 , 2e
e−1 ], and for the out-arborescences the gap is between [ e

e−1 , 2]. These
are the first constant upper bounds in the full-adoption feedback model. Our analysis provides
several novel ideas to tackle the correlated feedback appearing in adaptive stochastic optimization,
which may be of independent interest.
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1 Introduction

Following the celebrated work of Kempe et al. [19], the influence maximization (IM) problem
has been extensively studied over past decades. Influence maximization is the problem of
selecting at most k seed nodes that maximize the influence spread on a given social network
and diffusion model. Influence maximization has many real world applications such as viral
markets, rumor controls, etc. In the past years, the IM problem has been studied in different
context such as outbreak detection [20], topic-aware influence propagation [5], competitive
and complementary influence maximization [23] etc., and both theoretically and practically
efficient algorithms have been developed [13, 12, 7, 32, 31]. See the recent survey [11, 21] for
more detailed reference.

Meanwhile, stimulated by the real life demand, researchers in recent years begin to consider
this classical problem in the adaptive setting. In the adaptive influence maximization problem,
instead of selecting the full seed set all at once, we are allowed to select seeds one after
another, making future decisions based on the propagation feedback gathered from the
previous seeds selected. Two feedback models are typically considered [15]: myopic feedback,
where only the one-step propagation from the selected seed to its immediate out-neighbors
are included in the feedback, and full-adoption feedback, where the entire cascade from the
seed is included in the feedback. This adaptive decision process can potentially bring huge
benefits but it also brings technical challenges, since adaptive policies are usually hard to

1 Work is mostly done while Binghui was at Tsinghua University and visiting Microsoft Research Asia as
an intern.
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24:2 On Adaptivity Gaps of Influence Maximization

design and analyze, and the adaptive decision process can be slow in practice. Thus, a
crucial task in this area is to decide whether and how much adaptive policy is really superior
over the non-adaptive policy. The adaptivity gap quantifies to what extent adaptive policy
outperforms a non-adaptive one and it is defined as the supremum ratio between the influence
spread of the optimal adaptive policy and that of the optimal non-adaptive policy. The
above question has been answered recently when only myopic feedback are available [25, 14]
and constant upper bounds on the adaptivity gap have been derived.

In this paper, we consider the influence maximization problem in the independent cascade
(IC) model with full-adoption feedback. Even though the full-adoption feedback under the
IC model satisfies an important property called adaptive submodularity, the analysis of its
adaptivity gap is more challenging because the feedback obtained from different seed nodes are
no longer independent – feedback from one seed contains multiple-step cascade results, and
thus it may overlap with the feedback from other seed nodes. Therefore, results from existing
studies on the adaptivity gap of general classes of stochastic adaptive optimization problems
[3, 16, 17, 8] cannot be applied, since they all rely on the independent feedback assumption.

In this study, we are able to derive nontrivial constant upper bounds on several families
of graphs, including in-arborescences, out-arborescence and bipartite graphs, which have
been the targets of many studies in influence maximization (see Section 1.1 for more details).
Formally, we have (i) when the influence graph is an in-arborescence, the adaptivity gap
is between [ e

e−1 ,
2e
e−1 ] (Section 3 and Section 6), (ii) when the influence graph is an out-

arborescence, the adaptivity gap is between [ e
e−1 , 2] (Section 4 and Section 6) and (iii) the

adaptivity gap for the bipartite influence graph is e
e−1 (Section 5). Our upper bounds on

arborescences are the first constant upper bounds in the full-adoption feedback model with
multiple steps of cascades and thus dependent feedback, and our upper bound on bipartite
graphs improves the results in [14, 18].

The main technical contributions in this paper are on the adaptivity gaps for arborescences,
in which the feedback information can be correlated and all previous methods failed. We
adopt two different proof strategies to overcome the difficulty of dependent feedback. For
in-arborescences, we follow the framework in [3] and construct a Poisson process to relate
the influence spread of the optimal adaptive policy and the multilinear extension. The
analyses are non-trivial due to the correlated feedback. We need to delicately decompose
the marginal gain of the Poisson process and give upper bounds on each terms. The key
observation we have for in-arborescences is that the boundary of the active nodes shrinks
during the diffusion process. For out-arborescences, we again relate the influence spread
of the multilinear extension to the optimal policy, but using a completely different proof
strategy. The key observation for out-arborescences is that the predecessors of each node
form a directed line thus proving a stronger results on this line is sufficient. We derive a
family of constraints on the optimal adaptive policy and telescope the marginal gains of the
multilinear extension, combining these two could yield our results.

1.1 Related Work
A number of studies [6, 36, 35, 24, 22] have focused on the influence maximization problem on
arborescences and interesting theoretical results have been found with this special structural
assumption. Bharathi et al. [6] initiate the study on arborescences and derive a polynomial-
time approximation scheme (PTAS) for bidirected trees. Wang et al. [36] convert diffusion
in the IC model in the local region into the diffusion in in-arborescences to design efficient
heuristic algorithms for influence maximization. For in-arborescences, Wang et al. [35] give
a polynomial time algorithm in the linear threshold (LT) model and Lu et al. [24] prove NP
hardness results under the independent cascade model.
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The influence maximization problem on one-directional bipartite graphs has been studied
by [2, 29, 18], and it has applications in advertisement selections. Especially, Hatano et
al. [18] consider the problem in the adaptive setting and derive adaptive algorithms with
theoretical guarantees.

Initiated by the pioneering work of [15], a recent line of work [33, 37, 26, 30, 14, 25]
focus on the adaptive influence maximization problem and develop both theoretical results
and practical methods. Golovn and Krause [15] propose the novel concept of adaptive
submodularity and apply it to the adaptive influence maximization problem. They prove
that with full-adoption feedback in the IC model, the influence spread function satisfies the
adaptive submodularity, thus a simple adaptive greedy algorithm could achieve the (1− 1/e)
approximation ratio. Fujii et al. [14] generalize the notion and propose weakly adaptive
submodularity. They consider the adaptivity gap on both LT and IC models, when the
influence graph is one-directional bipartite, which means that the diffusion is always done
in one step and there is no difference between myopic feedback and full-adoption feedback.
While they prove a tight upper bound of 2 for the LT model, their bound for IC model
depends on the structure of the graph and can be far worse than 1− 1/e. In contrast, in this
paper we provide the tight bound of 1− 1/e with a simple analysis in this case. Recently,
Peng and Chen [25] consider the myopic feedback model and prove an upper bound of 4
for the adaptivity gap in the IC model. Singer and his collaborators have done a series of
studies on adaptive seeding and studied the adaptivity gap in their setting [27, 28, 4], but
their model is a two-step adaptive model with the first step purely for referring to the seed
candidates, and thus their model is very different from adaptive influence maximization of
this paper and other related work above.

From the theoretical side, there are two lines of works [3, 1, 16, 17, 8] on the adaptivity
gap that are most relevant to ours. Asadpour et al. [3] study the stochastic submodular
optimization problem. They use multilinear extensions to transform an adaptive strategy to
a non-adaptive strategy and give a tight upper bound of e

e−1 . Their method inspires our
work but theirs cannot be directly applied to our settings, since the feedback information is
not independent in the full-adoption feedback model. We defer further discussion about this
key difference to Section 3. Another line of work [16, 17, 8] focuses on the stochastic probing
problem. They transform any adaptive policy to a random walk non-adaptive policy and
Bradac et al. [8] finally prove a tight upper bound of 2 for prefix constraints.

2 Preliminaries

In this paper, we focus on the well known independent cascade (IC) model as the diffusion
model. In the IC model, the social network is described by a directed influence graph
G = (V,E, p) (|V | = n), and there is a probability puv associated with each edge (u, v) ∈ E.
The live-edge graph L = (V,L(E)) is a random subgraph of the influence graph G, where
each edge (u, v) ∈ E appears in L(E) independently with probability puv. If the edge appears
in L(E), we say it is live, otherwise we say it is blocked. We use L to denote all possible
live-edge graphs and P to denote the probability distribution over L. The diffusion process
can be described by the following discrete time process. At time t = 0, a seed set S ⊆ V is
activated and a live-edge graph L is sampled from the probability distribution P (i.e., each
edge (u, v) is live with probability puv). At time t = 1, 2, . . ., a node u ∈ V is active if (i) u
is active at time t− 1 or (ii) one of u’s in-neighbor in the live-edge graph L is active at time
t− 1. The diffusion process ends at a step when there are no new nodes activated at this
step. We use Γ(S,L) to denote the set of active nodes at the end of diffusion, or equivalently,
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24:4 On Adaptivity Gaps of Influence Maximization

the set of nodes reachable from set S under live-edge graph L. We define the influence reach
function f : {0, 1}V × L → R+ as f(S,L) := |Γ(S,L)|. Then the influence spread of a set S,
denoted as σ(S), is defined as the expected number of active nodes at the end of the diffusion
process, i.e., σ(S) := EL∼P [f(S,L)].

We formally state the (non-adaptive) influence maximization problem as follows.

I Definition 2.1 (Non-adaptive influence maximization). The non-adaptive influence maxim-
ization (IM) problem is the problem of given an influence graph G = (V,E, p) and a budget
k, finding a seed set S? of size at most k that maximizes the influence spread, i.e., finding
S? = argmaxS⊆V,|S|≤kσ(S).

In the adaptive setting, instead of committing the entire seed set all at once, we are
allowed to select the seed node one by one. After we select a seed, we can get some feedback
about the diffusion state from the node. Formally, a realization φ is a function φ : V → O,
mapping a node u to its state, i.e., the feedback we obtain when we select the node u as a
seed. The realization φ determines the status of all edges in the influence graph and it is
one-to-one correspondence to a live-edge graph. Henceforth, in the rest of the paper, we
would use φ to refer to both the realization and the live-edge graph interchangeably. The
feedback information depends on the feedback model and in this paper, we consider the
full-adoption feedback model. In the full-adoption feedback model, after we select a node
u, the feedback φ(u) of u we see is the status of all out-going edges of nodes v that are
reachable from u in the live-edge graph corresponding to φ. In other words, we get to see
the full cascade starting from the node u. At each step of the adaptive seeding process, our
observation so far is represented by a partial realization ψ ⊆ V × O, which is a collection
of nodes and states, (u, φ(u)), we have observed so far. We use dom(ψ) to denote the set
{u : u ∈ V,∃(u, o) ∈ ψ}, that is, all nodes we have selected so far. For two partial realizations
ψ and ψ′, we say ψ is a sub-realization of ψ′ if ψ ⊆ ψ′ when treating ψ and ψ′ as subsets
of V ×O.

An adaptive policy π is a mapping from partial realizations to nodes. Given a partial
realization ψ, we use π(ψ) to represent the next seed selected by π. After selecting node
π(ψ), our observation (partial realization) grows as ψ′ = ψ ∪ (π(ψ), φ(π(ψ))) and the policy
π would pick the next node based on the new partial realization ψ′. Given a realization
φ, we use V (π, φ) to denote the seed set selected by the policy π. The adaptive influence
spread of the policy π is defined as the expected number of active nodes under the policy
π, i.e., σ(π) := EΦ∼P [f(V (π,Φ),Φ)]. We define Π(k) as the set of policies π, such that for
any possible realization φ, |V (π, φ)| ≤ k. For convenience, we treat the adaptive policy π
as deterministic, but our results apply to randomized policies too. The adaptive influence
maximization problem is formally stated as follow.

I Definition 2.2 (Adaptive influence maximization). The adaptive influence maximization
(AIM) problem is the problem of given an influence graph G = (V,E, p) and a budget k,
finding a feasible policy π ∈ Π(k) that maximizes the adaptive influence spread, i.e., finding
π? = argmaxπ∈Π(k)σ(π).

In this paper, we study the adaptivity gap of the influence maximization problem under
the full-adoption feedback model. The adaptivity gap measures the supremacy of the
optimal adaptive policy over the optimal non-adaptive policy. We use OPTN (G, k) (resp.
OPTA(G, k)) to denote the influence spread of the optimal non-adaptive (resp. adaptive)
policy for the IM problem on the influence graph G with a budget k.
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I Definition 2.3 (Adaptivity gap). The adaptivity gap for the IM problem in the IC model
with full-adoption feedback is defined as

sup
G,k

OPTA(G, k)
OPTN (G, k) . (1)

We prove constant upper bounds on the adaptivity gap for several classes of graphs,
including the in-arborescence and the out-arborescence.

I Definition 2.4 (In-arborescence). We say an influence graph G = (V,E, p) is an in-
arborescence when the underlying graph is a directed tree with a root u, such that for any
node v ∈ V , the unique path between nodes u and v is directed from v to u. In other words,
the information propagates from leaves to the root.

I Definition 2.5 (Out-arborescence). We say an influence graph G = (V,E, p) is an out-
arborescence when the underlying graph is a directed tree with a root u, such that for any
node v ∈ V , the unique path between nodes u and v is directed from u to v. In other words,
the information propagates from the root to leaves.

A set function f : V → R+ is said to be submodular if for any set A ⊆ B ⊆ V and any
element u ∈ V \B, ∆f (u|A) := f(A∪ {u})− f(A) ≥ f(B ∪ {u})− f(B) = ∆f (u|B). We call
∆f (u|A) the marginal gain for adding element u to the set A. Moreover, the function f is
said to be monotone if f(B) ≥ f(A). Under the IC model, the influence spread function σ(·)
is proved to be submodular and monotone [19], thus given value oracles for σ(·), the greedy
algorithm is 1− 1/e approximate to the optimal non-adaptive solution.

In the adaptive submodular optimization scenario, a similar notion to the submod-
ularity is called the adaptive submodularity. For a function f and a partial realization
ψ, the conditional marginal gain for an element u /∈ dom(ψ) is defined as ∆f,P(u|ψ) :=
EΦ∼P [f (dom(ψ) ∪ {u})− f (dom(ψ)) |Φ ∼ ψ], where we write Φ ∼ ψ to say that the realiz-
ation Φ is consistent with the partial realization ψ, i.e., Φ(u) = ψ(u) for every u ∈ dom(ψ).
A function f is said to be adaptive submodular with respect to P if for any partial realizations
ψ ⊆ ψ′ and any element u ∈ V \dom(ψ′), ∆f,P(u|ψ) ≥ ∆f,P(u|ψ′). Moreover, the function f
is adaptive monotone with respect to P if ∆f,P(u|ψ) ≥ 0 for any feasible partial realization
ψ with PrΦ∼P{Φ ∼ ψ} > 0. Golovin and Krause [15] show the following important result,
which will be used in our analysis.

I Proposition 2.6 ([15]). The influence reach function f is adaptive submodular and adaptive
monotone with respect to the live-edge graph distribution P under the independent cascade
model with full-adoption feedback.

The following two definitions are very important to our later analysis.

I Definition 2.7 (Multilinear extension). The multilinear extension F : [0, 1]V → R+ of the
influence spread function σ is defined as

F (x1, . . . , xn) =
∑
S⊆V

[(∏
i∈S

xi
∏
i/∈S

(1− xi)
)
σ(S)

]
. (2)

We remark that the multilinear extension F (·) is monotone and DR-submodular [19], when
the original function σ(·) is monotone and submodular. A vector function f is DR-submodular
if for any two vectors (x1, . . . , xn) ≤ (y1, . . . , yn) (coordinate-wise), for any δ > 0, any j ∈ [n],
f(x1, . . . , xj + δ, . . . , xn)− f(x1, . . . , xn) ≥ f(y1, . . . , yj + δ, . . . , yn)− f(y1, . . . , yn). For any
configuration (x1, . . . , xn), we use f+(x1, . . . , xn) to denote the adaptive influence spread of
the optimal adaptive strategy consistent with this configuration. Formally,
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24:6 On Adaptivity Gaps of Influence Maximization

I Definition 2.8 (Adaptive influence spread function based on an optimal adaptive policy). We
define f+ : [0, 1]|V | → R+ as:

f+(x1, . . . , xn) = sup
π

{
σ(π) : Pr

Φ∼P
[i ∈ V (π,Φ)] = xi, ∀i ∈ [n]

}
. (3)

3 Adaptivity Gap for In-arborescence

In this section, we give an upper bound on the adaptivity gap when the influence graph is
an in-arborescence, as stated in the following theorem.

I Theorem 3.1. When the underlying influence graph is an in-arborescence, the adaptivity
gap for the IM problem in the IC model with full-adoption feedback is at most 2e

e−1 .

Our approach follows the general framework of [3], i.e., we use the multilinear extension
to transform an adaptive policy to a non-adaptive policy, and construct a Poisson process to
connect the influence spread of the non-adaptive policy to the adaptive policy. Once we have
done this, combining with the rounding procedure in [9, 10], we can derive an upper bound
on the adaptive policy. However, remembering that the main difficulty of our problem comes
from the correlation of the feedback, directly applying the analyses in [3] does not work. Our
methods have several key differences comparing to [3]. To be more specific, we can no longer
directly relate the dynamic marginal gain of the Poisson process to the influence spread of
the adaptive policy. Instead, we need to delicately decompose the marginal gain into two
parts (see Lemma 3.3 and Lemma 3.9). The first part can be related to the optimal adaptive
strategy by telescoping the summation and applying a coupling argument, while the second
part can be related to a (randomized) non-adaptive policy. However, this non-adaptive policy
is not guaranteed to be bounded by OPTN (G, k) (the optimal non-adaptive policy of budget
k), because the size of the seed set is random and can potentially be very large. We utilize the
“weak concavity” of the optimal solution to show that it is enough to consider the expected
size of the (random) seed set, and then we give an upper bound on this expected size for
an in-arborescence. This upper bound relies on a crucial property of the in-arborescence,
i.e., the boundary (see Definition 3.7) size always shrinks during the diffusion process of the
information (see Lemma 3.8). Putting things together, we get a differential inequation that
relates the dynamic marginal gain of the Poision process to both an optimal adaptive policy
and the optimal non-adaptive policy. Solving the differential inequation yields a lower bound
on the multilinear extension and it gives an upper bound on the adaptivity gap. We remark
that one noticeable difference of our bound on the adaptivity gap is that it does not hold
for the matroid constraint (which holds in [3]), even though the multilinear extension was
originally designated to handle matroid constraints.

Following the work [3, 34], for any configuration (x1, . . . , xn), we consider the following
Poisson process, which indirectly relates the multilinear extension F (x1, . . . , xn) to the
optimal adaptive solution f+(x1, . . . , xn).

Poisson Process. There are n independent Poisson clocks C1, . . . , Cn, the clock Ci (i ∈ [n])
sends signals with rate xi. Whenever a clock Ci sends out a signal, we select node i as a
seed and gather feedback φ(i) according to the underlying realization φ. We use Ψ(t) to
denote the partial realization at time t and we start with Ψ(0) as ∅. We note that Ψ(t) is a
random partial realization that contains (a) random time points ti ≤ t at which clock Ci
sends a signal, for i ∈ [n]; and (b) for each ti ≤ t, the feedback φ(i) of seed node i based on
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the live-edge graph corresponding to realization φ. The Poisson process ends at t = 1. Note
that the Poisson process is parameterized by (x1, x2, . . . , xn), but we ignore these parameters
in the notation Ψ(t).

Given a partial realization ψ, we slightly abuse the notation and use Γ(ψ) to denote all
the nodes that seed nodes dom(ψ) activate in the diffusion. Since we are considering the
full-adoption feedback, all nodes activated from dom(ψ) are included in the partial realization
ψ, and thus Γ(ψ) is a fixed node set when ψ is fixed. We define f(ψ) = |Γ(ψ)|. The following
lemma states that at the end of the Poisson process, i.e., when t = 1, the expected influence
spread E[f(Ψ(1))] is no greater than the influence spread of F (x1, . . . , xn), so it links the
Poisson process to the non-adaptive optimal solution.

I Lemma 3.2. E [f (Ψ(1))] = F (1− e−x1 , . . . , 1− e−xn) ≤ F (x1, . . . , xn).

Proof. Notice that in the Poisson process, the selection of seeds are actually independent
of the realization of the influence graph. Moreover, seed nodes are selected independently.
At the end of the process (when t = 1), the node i is selected as a seed with probability
1− e−xi . Thus we have

E [f (Ψ(1))] =
∑
S⊆V

[(∏
i∈S

(1− e−xi)
)∏
i/∈S

(
e−xi

)
σ(S)

]
= F (1− e−x1 , . . . , 1− e−xn) ≤ F (x1, . . . , xn). (4)

The inequality holds due to the monotonicity of the multilinear extension F (·) and the fact
that 1− e−x ≤ x. J

In the following lemma, we give a lower bound on the dynamic marginal gain of the
influence spread in the Poisson process, which links the process to the optimal adaptive
solution f+.

I Lemma 3.3. For any t ∈ [0, 1] and any fixed partial realization ψ, we have

E
[
df (Ψ(t))

dt
| Ψ(t) = ψ

]
≥ f+ (x1, . . . , xn)− σ (Γ(ψ)) . (5)

Before proving the above lemma, we need to first establish a useful and generic result
concerning the marginal influence spread given a partial realization (Lemma 3.6), which is
proved in turn from two basic and intuitive results (Lemmas 3.4 and 3.5). The result of
Lemma 3.6 also provides an alternative and perhaps more intuitive proof of the adaptive
submodularity of the independent cascade model under the full-adoption feedback, and thus
it may be of independent interest.

Given an influence graph G = (V,E, p), we use σG(S) to denote the expected influence
spread of the seed set S on influence graph G. For a node set A ⊆ V , we use G \A to denote
a reduced influence graph from G in which all nodes in A and its incident edges are removed,
and the remaining edges has the same influence probabilities as in G.

I Lemma 3.4. Under the independent cascade model with full-adoption feedback, for any
influence graph G = (V,E, p), partial realization ψ, and any node i 6∈ Γ(ψ), we have

∆f (i|ψ) = σG\Γ(ψ)({i}), (6)

i.e., the marginal influence spread of node i given a partial realization equals to its influence
on the reduced graph where nodes in Γ(ψ) are removed.

ISAAC 2019



24:8 On Adaptivity Gaps of Influence Maximization

Proof. We use E1 to denote all edges that are included in ψ, i.e., all edges that have already
revealed their status. These are the outgoing edges from nodes activated in ψ, i.e. outgoing
edges from Γ(ψ). We use E2 to denote edges in graph G\Γ(ψ) and set E3 = E\(E1 ∪ E2).
Then E2 are the edges in G that are not incident to nodes in Γ(ψ) and E3 are incoming
edges of nodes in Γ(ψ) that come from nodes in V \ Γ(ψ). We use Φi to denote a random
realization of edges in Ei (i = 1, 2, 3), and we know that they are mutually independent in
the IC model. Let S = dom(ψ). Now, we have

∆f (i|ψ) = E
Φ

[f (S ∪ {i},Φ)− f(S,Φ)|Φ ∼ ψ]

= E
Φ1,Φ2,Φ3

[f (S ∪ {i}, (Φ1,Φ2,Φ3))− f (S, (Φ1,Φ2,Φ3)) |(Φ1,Φ2,Φ3) ∼ ψ]

= E
Φ2

[
E
Φ3

[f(S ∪ {i}, (ψ,Φ2,Φ3))− f(S, (ψ,Φ2,Φ3))]
]
. (7)

The second equality comes from the fact that Φ1, Φ2 and Φ3 are independent and the third
equality comes from the fact that Φ1 = ψ, due to the full-adoption feedback model. We also
have

σG\Γ(ψ)({i}) = E
Φ2

[f({i},Φ2)] . (8)

To prove that Eq.(7) is the same as Eq.(8), it is suffice to show that for any fixed φ2, φ3 that
are realizations of edges in E2 and E3 respectively, we have

Γ({i}, φ2) = Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)). (9)

Recall that we equate a realization with a live-edge graph, and thus in the above notation,
φ2 is considered as a live-edge graph in graph G \ Γ(ψ) and Γ({i}, φ2) means the set of
nodes reachable from i in the live-edge graph of φ2. We first prove that Γ({i}, φ2) ⊆
Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)). For any node u ∈ Γ({i}, φ2), we know that it can
be reached from node i via a path in graph G\Γ(ψ), the path only contains edges in φ2,
which also means u is in the graph G \ Γ(ψ). Due to the existence of the path, we know that
u ∈ Γ(S∪{i}, (ψ, φ2, φ3)). We claim that u 6∈ Γ(S, (ψ, φ2, φ3)). This is because we are dealing
with the full-adoption feedback model, and thus Γ(S, (ψ, φ2, φ3)) is the nodes reachable from
S = dom(ψ), which means Γ(S, (ψ, φ2, φ3)) = Γ(ψ), and thus u ∈ Γ(S, (ψ, φ2, φ3)) would
conflict with the fact u is in G \Γ(ψ). Therefore, u ∈ Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)).

On the other side, for any node u ∈ Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)), the node u
can be reached from the node i via a path in the live-edge graph (ψ, φ2, φ3), but u cannot be
reached in the live-edge graph (ψ, φ2, φ3) from any node v that can be activated by dom(ψ)
in ψ, because otherwise u ∈ Γ(S, (ψ, φ2, φ3)). This implies that the path from i to u must be
in the live-edge graph φ2 in graph G \ Γ(ψ). That is, u ∈ Γ({i}, φ2). Therefore, Eq.(9) holds,
and this completes the proof. J

I Lemma 3.5. Given an influence graph G = (V,E, p). For any two node sets A,B ⊆ V

with A ⊆ B, for any u ∈ V \B, we have σG\B({i}) ≤ σG\A({i}).

Proof (Sketch). The proof is intuitively straightforward, since removing nodes could only
hurt the influence spread. A more rigorous proof could be carried out by arguing for any
random realization Φ1 for edges in G \ B and any random realization Φ2 for edges in
G \A but not in G \B, (a) Φ1 and Φ2 are independent in the IC model; (b) σG\B({i}) =
EΦ1 [|Γ({i},Φ1)|]; (c) σG\A({i}) = EΦ1,Φ2 [|Γ({i},Φ1 ∪Φ2)|]; and (d) Γ({i},Φ1) ⊆ Γ({i},Φ1 ∪
Φ2). J
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I Lemma 3.6. Under the independent cascade model with full-adoption feedback, for any two
partial realizations ψ1 and ψ2, if Γ(ψ1) ⊆ Γ(ψ2), then for any node i 6∈ Γ(ψ1), ∆f (i|ψ2) ≤
∆(i|ψ1).

Proof. First, note that if i ∈ Γ(ψ2) \ Γ(ψ1), then ∆(i|ψ2) = 0, so ∆f (i|ψ2) ≤ ∆(i|ψ1). We
now consider that i 6∈ Γ(ψ2). By Lemma 3.4, ∆f (i|ψ1) = σG\Γ(ψ1)({i}), and ∆f (i|ψ2) =
σG\Γ(ψ2)({i}). Since Γ(ψ1) ⊆ Γ(ψ2), by Lemma 3.5, we have σG\Γ(ψ2)({i}) ≤ σG\Γ(ψ1)({i}).
Thus, the lemma holds. J

We are now ready to prove Lemma 3.3.

Proof Lemma 3.3. First, we consider the left-hand side of Eq. (5). For any t ∈ [0, 1], i ∈ [n]
and small enough amount of time dt, the clock Ci sends out signals with probability xidt
during the time interval [t, t+ dt]. Since signals are sent out independently, the probability
that more than one clock send out signals simultaneously in time interval [t, t+ dt] is of order
O((dt)2), which can be considered negligible comparing to dt. Thus we have

E [f (Ψ(t+ dt))− f (Ψ(t)) |Ψ(t) = ψ] =
∑

i/∈dom(ψ)

xidt ·∆f (i|ψ), (10)

Rewriting the above equation, we derive that

E
[
df (Ψ(t))

dt
|Ψ(t) = ψ

]
=

∑
i/∈dom(ψ)

xi∆f (i|ψ) =
∑
i/∈Γ(ψ)

xi∆f (i|ψ). (11)

The second equality holds because ∆f (i|ψ) = 0 for any node i ∈ Γ(ψ) in the full-adoption
feedback model.

Next, we consider the right-hand side of Eq. (5). We write x = (x1, . . . , xn) and use the
indicator vector IS ∈ {0, 1}n to denote an n-dimensional 0-1 vector such that the coordinate
i is 1 if and only if i ∈ S. By the monotonicity of the function f+(·), we have

f+ (x1, . . . , xn) ≤ f+ (x ∨ IΓ(ψ)
)
. (12)

Consider the optimal adaptive policy π+ of f+(x ∨ IΓ(ψ)) as defined in Definition 2.8. We
can assume π+ selects nodes in Γ(ψ) at the beginning since they will eventually appear in
the seed set regardless of the realization of the live-edge graph. For i /∈ Γ(ψ), π+ would select
node i as a seed with probability xi, according to Definition 2.8. Let Ψi denote the partial
realization just before π+ selects node i, given that π+ first selects nodes in Γ(ψ) and sees
their feedback. Then we have Γ(ψ) ⊆ Γ(Ψi). Conditioned on Ψi, the selection of i provides
a marginal gain of ∆f (i|Ψi) for the influence spread. When we take its expectation over Ψi

and then multiply it with xi, we obtain the overall marginal gain of selecting i as a seed
in policy π+. When summing over all i /∈ Γ(ψ), together with the non-adaptive influence
spread of seed nodes in Γ(ψ), we thus obtain:

f+ (x ∨ IΓ(ψ)
)

=
∑
i/∈Γ(ψ)

xi · E
Ψi

[∆f (i|Ψi)] + σ (Γ(ψ)) . (13)

Combining Eq. (11), (12), (13), it suffices to prove

∆f (i|Ψi) ≤ ∆f (i|ψ) (14)

for any i /∈ Γ(ψ) and any partial realization Ψi such that Γ(ψ) ⊆ Γ(Ψi), but this is exactly
what is shown in Lemma 3.6. This completes our proof. J
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A couple of remarks are now in order concerning Lemma 3.3 and its proof. First,
Inequality (14) looks very much like the adaptive submodularity condition, and we could
directly apply adaptive submodularity should we have ψ ⊆ Ψi. However, by our construction,
we only have Γ(ψ) as the initial seed set for Ψi, and the partial realization in Ψi from the
seeds in dom(ψ) may not be exactly the same as ψ, so we do not have ψ ⊆ Ψi. Instead,
we only have Γ(ψ) ⊆ Γ(Ψi). Therefore, we provide a separate proof (Lemmas 3.4, 3.5,
and 3.6) to show that the above condition is enough to prove Inequality (14). Even though
our proof does not directly apply the adaptive submodularity result of the IC model with
the full-adoption feedback, the essence of proof related to Inequality (14) is still due to the
diminishing return behavior of the model in the adaptive setting.

Second, the overall proof structure of Lemma 3.3 roughly follows the proof structure
in [3]. However, because in the full-adoption feedback model the feedback from two different
nodes may be correlated, we cannot exactly follow the proof structure in [3]. In particular,
we have to incorporate Γ(ψ) directly into the seeds of an adaptive strategy π+ to avoid such
correlation to interfere with our analysis. This results in the term σ(Γ(ψ)) in Inequality (5)
of Lemma 3.3 instead of the term |Γ(ψ)| that would be derived should we exactly follow [3],
and eventually the term σ(Γ(ψ)) leads to the extra factor of 2 in the adaptivity gap given in
Theorem 3.1, which does not appear in [3].

Next, we introduce the concept of the boundary of a partial realization. We need to use
the property of the boundary in in-arborescences (Lemma 3.8) to properly bound the extra
term σ(Γ(ψ)) (Lemma 3.9).

I Definition 3.7 (Boundary of a partial realization). In the full-adoption feedback model, for
any partial realization ψ, we use ∂(ψ) to denote the boundary of the partial realization, i.e.,
the set of nodes ∂(ψ) ⊆ Γ(ψ) with minimum cardinality such that there is no directed edges
in the original graph G from Γ(ψ)\∂(ψ) to V \Γ(ψ). We remark that when there are more
than one such sets, we take an arbitrary one.

The main property we rely on the structure of an in-arborescence is that the boundary
of any partial realization can be bounded by the number of seeds that have been selected.
Formally, we have

I Lemma 3.8. When the influence graph is an in-arborescence, for any partial realization
ψ, we have |∂(ψ)| ≤ |dom(ψ)|.

Proof. Consider any partial realization ψ and any node v ∈ dom(ψ). Take the unique
directed path from node v to the root u, let v̄ denote the node on the path which is (i)
contained in Γ(ψ) and (ii) closest to the root u. Then we set S = {v̄ : v ∈ dom(ψ)}. Clearly
there is no directed edge from Γ(ψ)\S to V \Γ(ψ) and we have |∂(ψ)| ≤ |S| ≤ |dom(ψ)|. J

Now, we give an upper bound on the term σ(Γ(ψ)).

I Lemma 3.9. For any partial realization ψ

σ(Γ(ψ)) ≤ |Γ(ψ)|+ σ(∂(ψ)). (15)

Moreover, when the influence graph is an in-arborescence, we have

σ(Γ(ψ)) ≤ |Γ(ψ)|+ OPTN (G, |dom(ψ)|). (16)

Proof. Fix any realization φ ∼ ψ, and then consider any node v in Γ(Γ(ψ), φ)\Γ(∂(ψ), φ).
There must exist a directed path P from Γ(ψ)\∂(ψ) to v, and the path P does not contain
any nodes in ∂(ψ). According to the definition of the boundary set ∂(ψ), there is no
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directed path from Γ(ψ)\∂(ψ) to V \Γ(ψ) , unless it goes through a node in ∂(ψ). Thus we
conclude that v ∈ Γ(ψ)\∂(ψ) and this gives proof for Eq. (15). With Lemma 3.8, we have
σ(∂(ψ)) ≤ OPTN (G, |dom(ψ)|). Therefore, Inequality (16) holds. J

For any fixed influence graph G, we can view OPTN (G, k) as a function of the budget k,
we prove that OPTN (G, k) is “weakly concave” for k, as stated in the following lemma.

I Lemma 3.10. For any fixed influence graph G, let X be a random variable taking value
from {0, 1 . . . , n}, with mean value E[X] = k. Then we have

E [OPTN (G,X)] ≤ e

e− 1OPTN (G,E[X]) = e

e− 1OPTN (G, k). (17)

Proof. Let GreedyN (G, k) denote the non-adaptive greedy solution that selects k seed nodes.
For X ∈ {0, 1, . . . , n}, the greedy solution is 1 − 1/e approximate to the optimal solution,
i.e.,

OPTN (G,X) ≤ e

e− 1GreedyN (G,X). (18)

We note that the greedy solution GreedyN (G,X) is concave in X, due to the submodularity
of the influence spread function. Then taking expectation over both sides of Eq. (18), by
Jensen’s inequality, we have

E [OPTN (G,X)] ≤ e

e− 1 E[GreedyN (G,X)] ≤ e

e− 1GreedyN (G,E[X])

≤ e

e− 1OPTN (G,E[X]) = e

e− 1OPTN (G, k). (19)

This concludes the proof. J

Putting things together, we are able to prove Theorem 3.1 as follows.

Proof of Theorem 3.1. When the influence graph is an in-arborescence, for any configuration
(x1, . . . , xn) satisfying

∑
i xi = k, for any t ∈ [0, 1] and any fixed partial realization ψ, we

have

E
[
df (Ψ(t))

dt
|Ψ(t) = ψ

]
≥ f+ (x1, . . . , xn)− σ (Γ(ψ)) by Lemma 3.3
≥ f+(x1, . . . , xn)− |Γ(ψ)| −OPTN (G, |dom(ψ)|) by Lemma 3.9
= f+(x1, . . . , xn)− f(Ψ(t))−OPTN (G, |dom(Ψ(t))|). (20)

Taking expectation over Ψ(t), we have for any t ∈ [0, 1],

d

dt
E [f (Ψ(t))] = E

[
df (Ψ(t))

dt

]
= E

Ψ(t)
E
[
df (Ψ(t))

dt
| Ψ(t)

]
≥ f+(x1, . . . , xn)− E [f(Ψ(t))]− E [OPTN (G, |dom(Ψ(t))|)]

≥ f+(x1, . . . , xn)− e

e− 1OPTN (G, k)− E [f(Ψ(t))] . (21)

The first equality above is by the linearity of expectation. The second equality above is by
the law of total expectation. The first inequality is by Eq.(20), and the second inequality
holds due to Lemma 3.10 and the fact that

E [|dom(Ψ(t))|] =
∑
i

(1− e−txi) ≤
∑
i

txi ≤ k
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for any t ≤ 1. Solving the above differential inequality in Eq.(21), we obtain

E [f(Ψ(t))] ≥ (1− e−t)
[
f+(x1, . . . , xn)− e

e− 1OPTN (G, k)
]
. (22)

In particular, when t = 1, we have

E [f(Ψ(1))] ≥
(

1− 1
e

)[
f+(x1, . . . , xn)− e

e− 1OPTN (G, k)
]
. (23)

Finally, we have

OPTN (G, k) = sup
x1+···+xn=k

F (x1, . . . , xn)

≥ sup
x1+···+xn=k

E [f(Ψ(1))]

≥ sup
x1+···+xn=k

(
1− 1

e

)[
f+(x1, . . . , xn)− e

e− 1OPTN (G, k)
]

≥
(

1− 1
e

)
OPTA(G, k)−OPTN (G, k). (24)

The first equality above comes from the pipage rounding procedure in [9]. The first inequality
above is by Lemma 3.2. The second inequality is by Eq. (23). The last equality is by the
definition of f+ (Definition 2.8). Thus we conclude that the adaptivity gap is at most 2e

e−1
in the case of an in-arborescence. J

4 Adaptivity Gap for Out-arborescence

In this section, we give an upper bound on the adaptivity gap when the influence graph is
an out-arborescence. Formally,

I Theorem 4.1. When the influence graph is an out-arborescence, the adaptivity gap for the
IM problem in the IC model with full-adoption feedback is at most 2.

We first introduce some notations. For any node u ∈ V and any seed set S ⊆ V , we define
σu(S) := PrΦ [u ∈ Γ(S,Φ)], i.e., the probability that the node u is activated when S is the
seed set. Similarly, for any adaptive policy π, we define σu(π) := PrΦ [u ∈ Γ(V (π,Φ),Φ)],
i.e., the probability that the node u is activated under policy π. We will extend the definition
for the multilinear extension (Definition 2.7) and the definition for f+ (Definition 2.8)
correspondingly. To be more specific, we define

Fu(x1, . . . , xn) =
∑
S⊆[n]

[(∏
i∈S

xi
∏
i/∈S

(1− xi)
)
σu(S)

]
, (25)

and

f+
u (x1, . . . , xn) = sup

π

{
σu(π) : Pr

Φ∼P
[i ∈ V (π,Φ)] = xi, ∀i ∈ [n]

}
. (26)

In order to show Theorem 4.1, we again transform an adaptive policy to a non-adaptive policy
and compare their influence spread. Here, we utilize a new approach based on the structure
of out-arborescences and prove a stronger result. That is, we would prove that the probability
for any node u to become active in the multilinear extension (policy) is at least half of the
optimal adaptive policy (Lemma 4.2). This requires us to give a fine-grained bound on the
optimal adaptive policy (Lemma 4.3) and the multilinear extension (Lemma 4.4).



W. Chen and B. Peng 24:13

I Lemma 4.2. When the influence graph is an out-arborescence, for any node u ∈ V and
any configuration (x1, . . . , xn), we have

f+
u (x1, . . . , xn) ≤ 2Fu(x1, . . . , xn). (27)

Once we have the result of Lemma 4.2, we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Given Lemma 4.2, we have

OPTN (G, k) = sup
x1+···+xn=k

F (x1, . . . , xn) = sup
x1+···+xn=k

∑
u

Fu(x1, . . . , xn)

≥ 1
2 · sup

x1+···+xn=k

∑
u

f+
u (x1, . . . , xn) ≥ 1

2 · sup
x1+···+xn=k

f+(x1, . . . , xn) ≥ 1
2 ·OPTA(G, k). J

We now show how to prove Lemma 4.2. We note that node u’s predecessors (nodes that
can reach node u in the original graph) form a directed line when the influence graph is an
out-arborescence. We slightly abuse the notation and use node i to indicate the (i− 1)th
predecessor of node u, notice that node u itself is represented as node 1. We ignore all other
nodes since they do not affect either sides of Eq. (27). We use pi to denote the probability
that the node i can reach node 1. The following lemma gives an upper bound on the optimal
adaptive strategy.

I Lemma 4.3. For any i, f+
1 (x1, . . . , xn) ≤

∑i
j=1 xjpj + pi+1.

Proof. Let π be any adaptive strategy satisfying PrΦ∼P [i ∈ V (π,Φ)] = xi, i ∈ [n]. Let Ei
denote the event that node 1 becomes active right after π chooses node i. Furthermore, we
use Ei: to denote the event that node 1 becomes active right after π chooses a node from
{i, i+ 1, . . . , n}. We notice that events E1, . . . , En are disjoint and we have

f+
1 (x1, . . . , xn) =

n∑
j=1

Pr [Ej ] =
i∑

j=1
Pr [Ej ] + Pr [Ei+1:] ∀i. (28)

It is easy to see that

Pr[Ei+1:] ≤ pi+1, (29)

since the event Ei+1: can only happen when the node i+ 1 can reach node 1. Moreover, let
Fi denote the event that the policy π selects the node i before any nodes in {1, . . . , i} are
active. Then we have for any j ∈ [n],

Pr [Ej ] = Pr
Φ

[Ej |Fj ] · Pr
Φ

[Fj ] ≤ Pr
Φ

[Ej |Fj ] · Pr
Φ

[j ∈ V (π,Φ)] = pj · xj . (30)

The first equality holds since the event Ej can only happen when π selects the node j before
any nodes {1, . . . , j} are active. Combining Eq. (28) (29) (30), we complete the proof. J

We measure the marginal contribution of node i in the next lemma. Intuitively, we can see
that F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn) measures the marginal contribution
of i in activating node 1, when node i moves from no probability of being selected as a
seed to probability of xi being selected as the seed, under the situation that no nodes in
{1, . . . , i− 1} can be seeds while node j > i has probability xj of being selected as a seed.
Then this marginal contribution only happens when all three conditions hold: (a) possible
seeds in {i+ 1, . . . , n} cannot activate i, which has probability 1− Fi(0, . . . , 0, xi+1, . . . , xn);
(b) node i is activated as a seed, which has probability xi, and (c) node i passes influence
and activates node 1, which has probability pi.
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I Lemma 4.4. For any i, we have

F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn) = xipi (1−Fi(0, . . . , 0, xi+1, . . . , xn)) .

Proof. Since the node 1’s predecessors form a directed line, for any i we have

F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn)
=pi · (Fi(0, . . . , 0, xi, . . . , xn)− Fi(0, . . . , 0, xi+1, . . . , xn))
=pi · (1− (1− xi) (1− Fi(0, . . . , 0, xi+1, . . . , xn))− Fi(0, . . . , 0, xi+1, . . . , xn))
=pixi (1− Fi(0, . . . , 0, xi+1, . . . , xn)) .

The first two equalities hold because the realization and the selection of nodes are independent.
J

We are now back to prove Lemma 4.2.

Proof of Lemma 4.2.We use j to denote the minimum index that satisfies Fj(0, . . . , xj+1, . . . ,

xn) > 1
2 . If such index does not exist, we simply set j = n+ 1. Then, we have

F1(x1, . . . , xn)

=
j−1∑
i=1

(F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn)) + F1(0, . . . , 0, xj , . . . , xn)

=
j−1∑
i=1

xipi (1− Fi(0, . . . , 0, xi+1, . . . , xn)) + F1(0, . . . , 0, xj , . . . , xn)

=
j−1∑
i=1

xipi (1− Fi(0, . . . , 0, xi+1, . . . , xn)) + pj · Fj(0, . . . , 0, xj , . . . , xn)

≥1
2

j−1∑
i=1

xipi + 1
2pj

≥1
2f

+
1 (x1, . . . , xn). (31)

The second equality comes from Lemma 4.4 and the last inequality comes from Lemma 4.3. J

5 Adaptivity Gap for One-Directional Bipartite Graphs

In this section, we give an upper bound on the adaptivity gap of the influence maximization
problem in the IC model with full-adoption feedback under one-directional bipartite graphs
G(L,R,E, p), where L and R are the two set of nodes on the left side and right side
respectively, and E ⊆ L × R are a set of edges only pointing from a left-side node to a
right-side node, and p maps each edge to a probability. Our upper bound is tight as it matches
the lower bound derived in [25] and it also improves the results developed in [14, 18]. The
proof strategy adopted for bipartite graphs is a relatively easy application of our approaches
in previous sections, which relates the multilinear extension and the optimal strategy (See
Appendix A).

I Theorem 5.1. When the influence graph is a one-directional bipartite graph G(L,R,E, p),
the adaptivity gap on the influence maximization problem in the IC model with full-adoption
feedback is e

e−1 .
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6 Lower Bounds on the Adaptivity Gap

In this section, we give an example showing that the adaptivity gap is no less than e/(e− 1)
in the full-adoption feedback model, even when the influence graph is a directed line, a
special case of both the in-arborescence and the out-arborescence.

I Theorem 6.1. The adaptivity gap for the IM problem in the IC model with full-adoption
feedback is at least e/(e− 1), even when the influence graph is a directed line.

Proof. Consider the following influence graph G(V,E, p): the graph is a directed line with
vertices v11, . . . , v1t, v21, . . . , v2t, . . . , vk1, . . . , vkt, and each edge is live with probability 1−1/t.
Moreover, we have a budget k. Combining the following two claims, we can conclude that
the adaptivity gap is greater than or equal to e/(e − 1). The proofs of the claims are in
Appendix B.

B Claim 6.2. For any ε > 0, if k ≥ 8/ε3, we have E[OPTA(G, k)] ≥ (1− ε)kt.

B Claim 6.3. The optimal non-adaptive strategy is to select v11, . . . , vk1 as seeds. Thus, we
have E[OPTN (G, k)] = (1− (1− 1/t)t)kt. J

Discussion on Existing Approaches. There are two types of strategies for proving upper
bounds on adaptivity gaps. One common strategy is to convert any adaptive strategy to
the multilinear extension as in [27, 3] and our paper. The other is to convert the adaptive
strategy to the random walk non-adaptive strategy [16, 17, 8]. Here we claim that using the
instance constructed in Theorem 6.1, we can show that these two strategies can not yield
better-than-2 upper bounds on the adaptivity gap. We defer the detailed discussions to
Appendix B.

7 Conclusion

In this paper, we consider several families of influence graphs and give the first constant
upper bounds on adaptivity gaps for them under the full-adoption feedback model. Our
methods tackle the correlations on the feedback and hopefully can be applied to other
adaptive stochastic optimization problems. For future directions, there are still gaps between
our lower and upper bounds for both in-arborescences and out-arborescences, so it would be
interesting to close the gap. Another open question is to settle down the adaptivity gap for
general influence graphs under the IC model with the full-adoption feedback. The adaptive
gap for the linear threshold model and other diffusion models are also open.
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A Missing Proof from Section 5

I Theorem 5.1. When the influence graph is a one-directional bipartite graph G(L,R,E, p),
the adaptivity gap on the influence maximization problem in the IC model with full-adoption
feedback is e

e−1 .

Proof. For each node u, it suffices to prove that for any configuration (x1, . . . , xn),

Fu(x1, . . . , xn) ≥
(

1− 1
e

)
f+
u (x1, . . . , xn), (32)

where Fu and f+
u are the same as defined in the proof of Theorem 4.1. We use pi to denote

the probability that node i can reach node u, then we have

Fu(x1, . . . , xn) = 1−
n∏
i=1

(1− pixi). (33)

On the other side, let Ei denote the event that node u becomes active right after the optimal
policy π+ chooses node i. We know that Pr[Ei] ≤ xi · pi and thus we can conclude that

f+
u (x1, . . . , xn) =

n∑
i=1

Pr [Ei] ≤
n∑
i=1

xipi. (34)

Combining Eq. (33) (34) and the fact that

1−
n∏
i=1

(1− yi) ≥
(

1− 1
e

)
min{1,

n∑
i=1

yn} (35)

holds for all yi ∈ [0, 1], we can prove Eq. (32) and conclude the proof. J
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B Missing Proofs and Further Discussions from Section 6

B Claim 6.2. For any ε > 0, if k ≥ 8/ε3, we have E[OPTA(G, k)] ≥ (1− ε)kt.

Proof. Consider the following adaptive policy π: π always selects the inactive node that is
closest to the origin of the directed line, until it reaches the budget. Let Xi (i ∈ [k]) denote
the number of nodes that can be reached from the ith seed and let X = X1 + · · ·+Xk. It is
easy to see that E[OPTA(G, k)] ≥ σ(π) = E[X]. Let Yi ∼ GE(1− 1/t), i.e., Yi is a geometric
random variable parametrized with 1− 1/t. Y1, . . . , Yk are independent and we know that
E[Yi] = t and Var[Yi] = t2 − t. Our key observation is that E[X] = E[min{Y1 + · · ·+ Yk, kt}].
By Chebshev bounds, we have

Pr [Y1 + · · ·+ Yk < (1− ε/2)kt] ≤ 4k(t2 − t)
ε2k2t2

≤ 4
ε2k
≤ ε/2. (36)

Thus we know that

E [min{Y1 + · · ·+ Yk, kt}] ≥ Pr [Y1 + · · ·+ Yk ≥ (1− ε/2)kt] · (1− ε/2) kt
≥ (1− ε/2) · (1− ε/2) kt ≥ (1− ε) kt. (37)

This concludes the proof. C

B Claim 6.3. The optimal non-adaptive strategy is to select v11, . . . , vk1 as seeds. Thus, we
have E[OPTN (G, k)] = (1− (1− 1/t)t)kt.

Proof. In the non-adaptive setting, for any node u and seed set S, we define the distance
between the node u and the set S as the distance between u and the closest predecessor of u
in S. We know that the probability that the node u is active only depends on the distance
between u and S. Let Ni (i ≥ 0) denote the set of nodes that has distance i with S. Then
we know that (i) nodes in Ni are active with probability (1− 1/t)i, (ii) N0, N1, . . . Nkt−1 are
disjoint and |Ni| ≤ k. Now we have that σ(S) =

∑kt−1
i=0 (1− 1/t)i · |Ni| ≤

∑t−1
i=0(1− 1/t)i · k.

Thus, we can conclude that the optimal non-adaptive solution is to select v11, . . . , vk1 as
seeds and E[OPTN (G, k)] =

∑t−1
i=0(1− 1/t)i · k = (1− (1− 1/t)t)kt. C

Discussion on Existing Approaches. In this paragraph, we give a hard instance showing
that existing approaches cannot yield better-than-2 upper bounds on the adaptivity gap.
The hard instance is exactly the directed line constructed in Theorem 6.1, i.e., a directed
line of length kt and each edge is live with probability 1− 1/t. We use node i to denote the
(i− 1)th successor of the origin of the directed line, notice that the origin itself is denoted as
node 1.

Multilinear Extension. One common strategy is to use the multilinear extension as in
[27, 3]. In [3], they consider the stochastic submodular optimization problem and prove
that f+(x1, . . . , xn) ≤ e

e−1F (x1, . . . , xn) holds for any configuration (x1, . . . , xn). We show
that the ratio of f+(x1, . . . , xn)/F (x1, . . . , xn) can approach 2 in our example. To be more
specific, consider the configuration (1, 1/t, . . . , 1/t), we claim that f+(1, 1/t, . . . , 1/t) = kt.
Consider the adaptive policy π that always selects the inactive node that is closest to the
origin of the directed line. The policy π will select the first node with probability 1 and
other nodes with probability 1/t, since it will seed a node if and only if its incoming edge is
blocked, this can happen with probability 1/t. On the other side, we have F (1, 1/t, . . . , 1/t) ≤
F (1− 1/t, 0, . . . , 0) + F (1/t, . . . , 1/t) ≤ (1− 1/t)t+ F (1/t, . . . , 1/t) ≤ t+ 1

2kt+ k. The first
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inequality holds because of the DR-submodularity of the multilinear extension and the third
one holds because every node u in the line is active with probability

∞∑
i=0

Pr
[
u is activated by its ith predecessor

]
≤
∞∑
i=0

1
t
·
(

1− 1
t

)i
·
(

1− 1
t

)i
= 1
t
· 1

1− (1− 1/t)2 = t

2t− 1 . (38)

We conclude that when t, k →∞, f+(1, 1/t, . . . , 1/t)/F (1, 1/t, . . . , 1/t)→ 2.

Random Walk Non-adaptive Strategy. In [16, 17, 8], the authors consider the adaptive
stochastic probing problem and they convert an adaptive policy to a non-adaptive policy
by sampling a random leaf of the decision tree of the adaptive policy. Using our hard
instance in the previous paragraph, we can show that this approach (i.e., random walk
non-adaptive strategy) can give an upper bound of at most 2. To be more specific, we again
consider the adaptive strategy π and its corresponding non-adaptive strategy W(π), where
W(π) picks a random leaf of the decision tree of the policy π. We are going to show that
f+(1, 1/t, . . . , 1/t)/σ(W(π)) approaches 2 asymptotically and it is sufficient to show that
σ(W(π)) ≤ t + k + 1

2kt. We imagine that node 1 appears in W(π) with probability 1/t
instead of 1, this is for ease of analysis and it will decrease the influence spread for at most
(1− 1/t) · t due to the submodularity of the influence spread function. For any node u, u is
activated by its ith predecessor (if it has one) when (i) the random seed set W(π) does not
contain nodes between u and its ith predecessor (this happens with probability

(
1− 1

t

)i), (ii)
its ith predecessor is included in the seed set (this happens with probability 1

t ) and (iii) node
u can be reached from its ith predecessor (this happens with probability

(
1− 1

t

)i). Moreover,
we know that the above three events are independent in the non-adaptive setting, thus the
probability that node u is activated by the ith predecessor is 1

t ·
(
1− 1

t

)i · (1− 1
t

)i and the
probability that it is active is no more than t

2t−1 . This concludes our argument.

ISAAC 2019


	Introduction
	Related Work

	Preliminaries
	Adaptivity Gap for In-arborescence
	Adaptivity Gap for Out-arborescence
	Adaptivity Gap for One-Directional Bipartite Graphs
	Lower Bounds on the Adaptivity Gap
	Conclusion
	Missing Proof from Section 5
	Missing Proofs and Further Discussions from Section 6

