
Small Candidate Set for Translational Pattern
Search
Ziyun Huang
Department of Computer Science and Software Engineering, Penn State Erie,
The Behrend College, Erie, PA, USA
zxh201@psu.edu

Qilong Feng
School of Computer Science and Engineering, Central South University, P.R. China
csufeng@mail.csu.edu.cn

Jianxin Wang
School of Computer Science and Engineering, Central South University, P.R. China
jxwang@csu.edu.cn

Jinhui Xu
Department of Computer Science and Engineering, State University of New York at Buffalo, USA
jinhui@buffalo.edu

Abstract
In this paper, we study the following pattern search problem: Given a pair of point sets A and B
in fixed dimensional space Rd, with |B| = n, |A| = m and n ≥ m, the pattern search problem is
to find the translations T ’s of A such that each of the identified translations induces a matching
between T (A) and a subset B′ of B with cost no more than some given threshold, where the cost
is defined as the minimum bipartite matching cost of T (A) and B′. We present a novel algorithm
to produce a small set of candidate translations for the pattern search problem. For any B′ ⊆ B

with |B′| = |A|, there exists at least one translation T in the candidate set such that the minimum
bipartite matching cost between T (A) and B′ is no larger than (1 + ε) times the minimum bipartite
matching cost between A and B′ under any translation (i.e., the optimal translational matching
cost). We also show that there exists an alternative solution to this problem, which constructs a
candidate set of size O(n log2 n) in O(n log2 n) time with high probability of success. As a by-product
of our construction, we obtain a weak ε-net for hypercube ranges, which significantly improves the
construction time and the size of the candidate set. Our technique can be applied to a number of
applications, including the translational pattern matching problem.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation

Keywords and phrases Bipartite matching, Alignment, Discretization, Approximate algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.26

Funding The research of the first and last authors was supported in part by NSF through grant
CCF-1716400. The research of the last author was also supported by NSF through grant IIS-1910492.
The research of the second and third authors was supported in part by NSFC through grants
61872450, 61828205, and 61672536.

1 Introduction

Pattern search/matching is an important problem in computer science and finds applications
in many different domains such as computer vision, pattern recognition, robotics, autonomous
driving, and surveillance. In this paper, we consider a special variant of the problem, where
the objective is to find a small pattern (e.g., the image of a car) from a large environment
(called background; e.g., the image of a road with traffic) which may contain multiple copies

© Ziyun Huang, Qilong Feng, Jianxin Wang, and Jinhui Xu;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248536494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zxh201@psu.edu
mailto:csufeng@mail.csu.edu.cn
mailto:jxwang@csu.edu.cn
mailto:jinhui@buffalo.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Small Candidate Set for Translational Pattern Search

of the pattern or its deformations. The problem is often encountered in our daily life. For
example, most of the smart phones have the capability of identifying human faces (or other
types of objects) in their camera softwares. The core problem for such a functionality is
to efficiently find all appearances of a given object from the pictures. The pattern search
problem may also appear in higher (d > 2) dimensional space. One of such examples is the
pattern extraction problem arising in biological image analysis, where the objective is to
identify the 3D spatial positioning patterns of chromosomes [9, 10, 22].

We approach this pattern search problem from a geometric perspective, using a formulation
from [1] with some slight modifications. The pattern is represented by a point set A and the
background by a point set B in Rd space for some fixed d. The sizes of A and B are m and
n, respectively, with n ≥ m (note that n could be significantly larger than m). If there is a
translation T which moves A to a new location T (A) such that the difference between T (A)
and some B′ ⊆ B with |B′| = |A| is minimized, we say that an instance B′ of pattern A is
discovered by T , where the difference of two sets is measured by their bipartite matching
cost (see Section Preliminaries).

The pattern search problem is a natural extension of the pattern matching problem,
whose aim is to find a rigid transformation that minimizes the difference of two given sets A
and B. Extensive research has been done for the pattern matching problem using different
metrics as the measurement for the similarity/distance of two sets [13, 11, 14]. Commonly
used metrics include Euclidean distance in 1-to-1 matching, Hausdorff distance in 1-to-many
or many-to-1 matching, and Earth’s Mover Distance (EMD) in many-to-many matching. An
early result on this problem is the paper [18] which provides an Õ(mn2)-time solution to
the matching problem under translation and Hausdorff distance in R2. A more recent result
is the one in [11] which approximates (with ratio (1 + ε)) the pattern matching problem
under rigid transformations and EMD metric in Rd. The running time of their algorithm is
Õ((mn)2d), which is near the lower bound (i.e., Ω(mnΩ(d)) [5]) of the problem.

For the pattern search problem under translations, there is a number of results [21, 4] that
are closely related to the work in this paper. Most of them use the concept of partial-matching
Voronoi diagram.

For two given point sets A and B, their partial-matching Voronoi diagram (PMVD) is a
partition of the translation space into regions so that each of them consists of translations T
sharing the same locally optimal bipartite matching between T (A) and a subset of B. The
PMVD uses the sum of squared distances as the measurement for the matching cost. Clearly,
such a Voronoi diagram is capable of solving the pattern search/matching problem, as only
one translation from every cell needs to be determined for finding the optimal translational
alignment of A and B. The best known upper bound on the size of PMVD is O(m!mdn2d) [17].
Ben-Avraham et al. [4] constructed a partial-matching Voronoi diagram in R2 of complexity
O(n2m3.5 logmm), and found locally min-cost translations in O(m6n3 logn) time.

In this paper, we develop a novel method for finding a small set T of candidate translations
so that for any instance B′ ⊆ B of A, there is at least one translation T in the candidate
set that matches T (A) and B′ approximately. A subset B′ of B is called an instance of A if
|B′| = |A|. Note that B′ can be any subset of B as long as it has the same size as A and
may have a large difference with A; this is somewhat different from the normal meaning of
instance. We say that a translation T discovers an instance B′ if it minimizes the bipartite
matching cost of T (A) and B′. For any ε > 0, a translation T (1+ ε)-approximately discovers
B′, if the bipartite matching cost between T (A) and B′ is no more than (1 + ε) times the
minimum difference between B′ and A under any translation. Clearly, with such a candidate
set T, we are able to find all instances B′ which are similar to A, where the level of similarity

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:3

is controlled by some threshold on the difference of B′ and the translations of A. Note that
if a value of the threshold is given in advance, it is possible to further reduce the size of
the candidate set by removing (during the execution of our algorithm) those translations
which induce higher matching cost (see the remark in Section 6 for more details). Also, if
B has some exact (or congruent) instances of A, T will contain all translations inducing
zero-difference matchings of A.

The problem of finding the translations that match pattern A to all its exact instances
could be quite challenging, as suggested by the exponential size of PMVD in [21, 4]. However,
we are able to show that if approximation and implicit representation are allowed, the
problem can be solved much more efficiently through identifying a small candidate set of
translations with a (surprisingly) near linear size.

Particularly, we show that it is possible to build a candidate set T with size Od,ε(n logn)
for A and B in O(mn logmn) deterministic time. This bound is asymptotically near optimal,
since it is easy to construct an example that needs O(n) different translations to yield all
perfect matches of a pattern (such an example will be given later). A trade-off between the
running time and the size of T can also be made, which provides a probabilistic algorithm
to build a T with a slightly larger size (i.e., O(n log2 n)) but a better time complexity (i.e.,
O(n log2 n)) which is independent of m. Our construction is based on a weak ε-net technique
and a space discretization technique from [7]. Our approach shows a non-obvious connection
between weak ε-net and the pattern search problem. A fast algorithm is also provided to
build a small-size ε-net for ranges of axis-aligned hypercubes.

In some sense, candidate set T can be viewed as an implicit and approximate representation
of the exponential-size PMVD. Thus, it has the potential to be used in various applications
of PMVD, such as moving object tracking and autonomous driving. Note that in such
applications, all translations in T (rather than those inducing better matchings) are needed.

2 Preliminaries

In this paper, we do not distinguish a point and its corresponding vector in Rd, i.e., a point
is equivalent to a vector that points from the origin to it. In this way, a point in Rd naturally
defines a translation (along the corresponding vector) in Rd. Following the basic vector
arithmetics, operators + and − can be applied to points in Rd.

Given two point sets A1 and A2 of the same size, their bipartite matching is represented
by a bijective mapping φ : A1 → A2. That is, each point a ∈ A1 is matched to a distinct point
φ(a) ∈ A2 and the cost Cφ,A1,A2 of the matching is defined as Cφ,A1,A2 =

∑
a∈A1

‖a− φ(a)‖.
The difference of A1 and A2, denoted by ∆(A1, A2), is then ∆(A1, A2) = minφ Cφ,A1,A2 .

Let A,B ⊂ Rd be the two point sets in the pattern search problem, with |B| = n, |A| = m

and n ≥ m. We label points in A and B, respectively, as A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn}. The reference set P of A and B is defined as follows.

I Definition 1. Let pi,j = bj − ai for any ai ∈ A and bj ∈ B. The reference set P of A and
B is the muti-set that contains all pi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

We use an injective mapping φ : {1, 2, . . . ,m} → {1, 2, . . . , n} to represent a perfect
matching for A (under a certain translation) and a subset of B. φ(i) = j means that ai is
matched to bj . The matching cost Cφ for a matching φ is defined as

∑m
i=1‖ai − bφ(i)‖.

From the definition of P , it is clear that for any ai ∈ A, bj ∈ B and translation
T ∈ Rd, ‖T (ai) − bj‖ = ‖T − pi,j‖. The matching cost Cφ(T) between T (A) and B for
matching φ is then

∑m
i=1‖T − pi,φ(i)‖. In other words, Cφ(T) is the sum of distances from

T to m points in P . For convenience, we let P (φ) = {p1,φ(1), p2,φ(2), . . . , pm,φ(m)}. Thus
Cφ(T) =

∑
p∈P (φ)‖T − p‖.

ISAAC 2019

26:4 Small Candidate Set for Translational Pattern Search

In the rest of the paper, we study all possible matchings between A and B based on the
relationship of T ∈ Rd and P . This means that our algorithms work in the translational
space of P , instead of the original space of A and B.

For any pair of point sets X and Y with the same cardinality, we use ∆(X,Y) to denote
the minimum bipartite matching cost of X and Y . A set B′ ⊆ B is called an instance of A if
|B′| = |A|. For any instance B′, let T be the translation that minimizes ∆(T (A), B′). Then,
we say that T discovers B′, or B′ is discoverable at T . If there is another translation T ′
satisfying the following inequality, ∆(T ′(A), B′) ≤ (1 + ε)∆(T (A), B′), then, we say that B′
is (1 + ε)-approximately discoverable at T ′.

3 Main Results

The main results of this paper are the following theorems which show that for any given
pair of point sets A and B, and any constant ε > 0, it is possible to efficiently construct
a small-size candidate set T of translations in Rd such that any instance B′ ⊆ B of A is
approximately discoverable at some T ∈ T. In other words, T is a small-size candidate set of
translations to find all instances of A approximately.

I Theorem 2. For any pair of point sets A and B in fixed dimensional space Rd with
size m and n (n ≥ m), respectively, and any small constant 0 < ε < 1, it is possible to
construct, deterministically, a candidate set T ⊂ Rd of size O(n logn) in O(mn logmn)
time such that for any given instance B′ ⊆ B of A, there exists a translation T ∈ T that
(1 + ε)-approximately discovers B′.

I Theorem 3. For any pair of point sets A and B in fixed dimensional space Rd with size
m and n (n ≥ m), respectively, and any small constant 0 < ε < 1, it is possible to construct
a candidate set T ⊂ Rd of size O(n log2 n) in O(n log2 n) time, with success probability at
least 1 − 1/n. For any given instance B′ ⊆ B of A, there exists a translation T ∈ T that
(1 + ε)-approximately discovers B′.

With the above theorems, we immediately have the following corollary as their application
to the classical pattern matching problem. (See the appendix for the proof.)

I Corollary 4. It is to possible to generate a set of O(n logn) candidate translations in Rd
in O(mn logmn) time such that one of them induces a (1 + ε)-approximation for the optimal
translational matching between A and B.

Another interesting conclusion from the above discussion is that if there exists an instance
B′ ⊆ B which is identical to A under translation T (i.e., the bipartite matching cost between
B′ and T (A) is 0), then T ∈ T.

The above theorems and corollary suggest an efficient way to identify a small number
of translations that enable us to obtain approximate solutions to the translational pattern
matching problem. The size of the candidate set is near optimal. This can be easily seen
from the following simple example in 1-D: Consider A = {1, 2} and B = {1, 2, . . . , n}; then
all the n translations that align 1 in A to any of the n− 1 points {1, 2, . . . , n− 1} in B are
optimal translations.

After obtaining all the candidate translations, the approximate optimal matching can
then be computed by solving a min-cost partial matching problem for fixed point sets T (A)
and B for every candidate T .

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:5

3.1 Overview of Techniques
Our main idea for constructing a small candidate set is via space discretization. We are able
to prove a locality property for the pattern search problem: if the distance between two
translations T1 and T2 (viewed as points in Rd) is close compared to their closest distance to
any point in the reference set P , then for any instance B′ ⊆ B, ∆(T1(A), B′) and ∆(T2(A), B′)
are also close. This suggests that we can decompose Rd into “small” regions, so that the
every region has a small diameter, comparing to its distance to P . For any B′ ⊆ B, let TO be
the translation that discovers B′, and TO lies in some “small” region C. Then, any T ′ ∈ C
approximately discovers B′. This means that, if we choose one arbitrary point from each
“small” region to form the candidate set T, it is guaranteed that any instance B′ will be
approximately discoverable by some translation in T. The details will be shown in Section 4.

However, making all regions of the entire space “small” seems to be challenging, if not
impossible. Existing space discretization techniques, such as [7, 3, 15], are only able to ensure
that regions distant from the points in P are “small”. For regions close to points in P (called
“close” regions), new techniques are needed to select their candidate translations. In Section
5, we discuss how to choose translations from “close” regions so that every instance B′ whose
corresponding optimal translation falls in some “close” region can also be approximately
discoverable.

In Section 4.4, we also describe how to use weak ε-net to “sketch” P (with size mn) using
a much smaller set Q of size O(n). This will allow us to significantly reduce the size of
discretization (and thus the size of the candidate set) from Õ(mn) to Õ(n), which is near
optimal. We are able to show that such a sketching still preserves the locality property of
the pattern search problem.

4 Locality Based Discretization for Pattern Search

In this section, we present a discretization approach for the pattern search problem, based
on the locality property of the problem.

4.1 Locality of Pattern Search
In the context of pattern search, locality refers to the following observation: for any instance
B′ ⊆ B and two translations T1 and T2, if T1 and T2 are close to each other, their induced
minimum bipartite matching costs between the translations of A and B′ are also close. Let
∆(X,Y) denote the minimum bipartite matching cost between two point sets X and Y . The
following lemma shows the locality property with respect to the distance between translations
and a point in the reference set P . (See Appendix for the proof.)

I Lemma 5. Let T1 and T2 be two translations in Rd, and p ∈ P be the nearest neighbor
of T1 in the reference set P . If ‖T1 − T2‖ ≤ ε‖p − T1‖ for some constant 0 < ε < 1, then
|∆(T1(A), B′)−∆(T2(A), B′)| ≤ ε∆(T1(A), B′) for any instance B′ ⊆ B.

The above locality property suggests the following discretization approach to find a
candidate set for the pattern search problem. The idea is to decompose Rd into a number of
“small” regions. Each region C is “small” enough in the sense that the minimum distance r
between C and the points in P is large, comparing to the diameter D(C) of C, i.e., D(C) ≤ εr
for some constant 0 < ε < 1. With such a discretization, we may then simply choose one
arbitrary translation from each region to form the candidate set T. To see that this is indeed
the desired candidate set, consider any instance B′ ⊆ B. Let T be the translation that
discovers B′, C ′ be the region containing T , and TC ∈ T be the translation chosen from C.
Then, by Lemma 5, we know that B′ is (1 + ε)-approximately discoverable at TC .

ISAAC 2019

26:6 Small Candidate Set for Translational Pattern Search

Figure 1 Illustrative figures for “small” and “close” regions. Left Figure: If every region needs
to be “small”, then an infinite number of regions will be generated around each point in P . Right
Figure: Possible “close” regions to prevent from yielding an infinite number of “small” regions.

4.2 Space Discretization and Close Regions
Unfortunately, an exact implementation of the above space discretization is not possible.
This is because the size of some regions can be infinitely small if the distance of the region to
a point in P is small enough. This means that an infinite number of regions can be generated
around every point in P (see Figure 1). To overcome this difficulty, a possible way is to
utilize some of the known space discretization techniques, such as [7, 3, 15]. However, a
common issue of such techniques is that only part of the resulting regions can be viewed as
“small” (i.e., D ≤ εr, where D is the diameter of the region and r is the minimum distance
between the a point in P and the region). Such regions are distant from points in P . All
other regions are in close proximity to points in P , and cannot be viewed as “small”, even
though their diameters might be small. We call such regions as “close” regions.

Clearly, for “small” regions, it will be sufficient (by Lemma 5) to choose one point
arbitrarily from each of them and include it into the candidate set T. The main issue is,
thus, how to select candidate translations from the “close” regions. We will discuss our ideas
on close regions in next section.

In this paper, we use the technique in [7] for space discretization. The main reason is
that using this technique, we have some good geometric properties on close regions. This
will help us ensure the correctness of our proposed approach and simplify the analysis.

For self completeness, below we summarize the space discretization technique in [7]. The
main technique in [7] is an algorithm AIDecomposition(P, β, γ) , where P is a point set in Rd
and 0 < β, γ < 1 are two small constants (to be determined in later analysis). The following
lemma is the main result of the algorithm.

I Lemma 6. [7] AIDecomposition(P, β, γ) generates a partition of Rd in Od,β,γ(|P | log|P |)
time, where each region C of the partition satisfies one of the following conditions.
1. C is associated with a subset V of P and a point v ∈ V , such that

a. The diameter D(V) of V is no larger than βr, where r is the closest distance between
a point in C and a point in V .

b. ‖v − u‖ ≤ γ‖v′ − u‖ and D(C) ≤ β‖v′ − u‖, for any point u ∈ C and any point
v′ ∈ P \ V

2. D(C) ≤ βr, where r is the closest distance between a point in C and a point in P .

The regions that satisfy condition 1 are the close regions in our previous discussion,
and the regions that satisfy condition 2 correspond to the small regions. Note that for a
close region C generated by AIDecomposition, it is close to the associated point set V ⊂ P ,

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:7

comparing to points in P \ V , where the closeness is controlled by the parameter γ. There
are also some other interesting properties of close regions generated by AIDecomposition
shown in Lemma 6. These properties will prove to be useful in later analysis.

4.3 Reducing the Number of Regions
If we directly apply the above AIDecomposition technique or any other space discretization
technique (such as [3, 15]) to the reference set P , at least Ω(mn) regions will be generated,
since |P | = mn. This results in a candidate set of size Ω(mn), which could be significantly
larger than O(n), i.e., the maximum number of possible translations that could yield a perfect
matching for T (A) and B. Thus, it is tempting to ask whether it is possible to construct a
discretization with size only near O(n).

A natural approach for size reduction is to use a smaller set Q to “sketch” P , and build a
discretization for Q, instead of P . Let ξ > 1 and µ > 0 be some given constants. We require
that Q be (ξ, µ)-dense for P , defined as follows.

I Definition 7. A point set Q ⊂ Rd is called (ξ, µ)-dense for P , if for any point T ∈ Rd, it
satisfies µ‖pξ − T ‖ ≥ ‖q − T ‖, where pξ is the m/ξ-th closest point in P to T , and q ∈ Q is
the nearest neighbor of T in Q.

In other words, points in Q are “dense” enough, so that for any T ∈ Rd, it is possible to
find a point q ∈ Q that is closer to, or not much farther away from T than pξ. Using such a
formulation for “dense” allows us to use ‖q − T ‖ to effectively lower bound ∆(T (A), B′) for
any B′. Let φ be the matching realizing the minimum cost bipartite matching between T (A)
and B′. Then, we have

‖q−T ‖ ≤ µ‖pξ−T ‖ ≤
∑

p∈P (φ)

µ‖p−T ‖/((1− 1/ξ)m) = µ∆(T (A), B′)/((1− 1/ξ)m). (1)

Using an argument similar to the one in Lemma 5, we have the following improved version
of locality property.

I Lemma 8. Let T1 and T2 be two translations in Rd, and p ∈ Q be the nearest neighbor of T1
in Q. If ‖T1−T2‖ ≤ β‖p−T1‖ for constant 0 < β < 1, then |∆(T1(A), B′)−∆(T2(A), B′)| ≤
βµ(1− 1/ξ)−1∆(T1(A), B′) for any instance B′ ⊆ B.

The above lemma enables us to use Q for the space discretization. More specifically, we
run AIDecomposition(Q, β, γ) on an (ξ, µ)-dense Q (with β, ξ, µ and γ to be determined
later). This yields a near linear size (in terms of the size of Q) discretization. From previous
discussion, we know that for any instance B′ ⊆ B, if the translation that discovers B′ lies
in a small region (note that since the discretization is based on Q instead of P , “small
region” now means that their diameters are small compared to the distances to their nearest
neighbors in Q), then any translation in the small region will (1 + ε)-approximately discover
B′, if parameters β, ξ, µ and γ are properly chosen according to the desired approximate
ratio ε. A formal argument will be provided later when analyzing the correctness of our
algorithm. The remaining main challenge is then to deal with the case that the translation
discovering B′ lies in a close region. This will be covered in the next section.

4.4 Finding (ξ, µ)-dense Q for P
To conclude this section, we briefly describe how to find a (ξ, µ)-dense set Q for the discre-
tization.

ISAAC 2019

26:8 Small Candidate Set for Translational Pattern Search

A set Q that is (ξ, µ)-dense can actually be found by constructing a weak ε-net of
P [16]. ε-net is an important concept in combinatorial and computational geometry, and has
been extensively studied in the past. For our problem, we use weak ε-net for axis-aligned
hypercubes (i.e., hyper-boxes with equal edge length in every direction). Below is the
definition.

I Definition 9. Let P be any point set in Rd, and ε be any small constant between 0 and 1.
A point set Q ⊂ Rd is called a weak ε-net of P for axis-aligned hypercubes, if any axis-aligned
hypercube G containing ε|P | or more points in P also contains at least one point in Q.

Note that ε-net is a much more general concept than the above definition. In this
paper, we only consider weak ε-net for axis-aligned hypercubes. For convenience, we will use
thereafter the term “ε-net” without specifying “weak” and “axis-aligned hypercubes”. For
any constant c > 1, it is easy to see that a 1/cn-net Q of P is (c,

√
d)-dense.

A small-size ε-net for the reference set P can be built efficiently. (We leave the proofs of
the following lemmas to the end of the paper.)

I Lemma 10. For any point multi-set P ⊂ Rd with size mn and any constant c > 0, a
1/cn-net of P with size Od(n) can be generated in Od(nm lognm) time.

I Lemma 11. A 1/cn-net of the reference set P with size Od(n logn) can be generated in
Od(n logn) time for any constant c > 0 with probability at leat 1− 1/n.

5 Handling Close Regions

In last section, we discuss how to use (ξ, µ)-dense Q to obtain a space discretization and how
to select translations from small regions. In this section, we show how to pick translations
from close regions (i.e. regions that satisfy condition 1 in Lemma 6) so that they will be
good approximations for all those translations that fall in close regions and discover some
instances of B.

Below, we assume that γ, β, µ and ξ are chosen such that γ < (16
√
d+ 1)−1, 4

√
dβ < 1

and ξ = 12d. Let B′ ⊆ B be an instance of A and TO be the translation that discovers B′
and lies in some close region C. Denote by V ⊂ Q and v ∈ V , respectively, the subset of
points in Q and its representative associated with C, as indicated in condition 1 of Lemma
6. Let φO be the matching between TO(A) and B′ that realizes the minimum bipartite
matching cost. Let Gv be the smallest axis-aligned box containing V . We consider 2 cases:
|Gv ∩ P (φO)| ≥ 2m/3 or |Gv ∩ P (φO)| < 2m/3.

I Lemma 12. If |Gv ∩ P (φO)| ≥ 2m/3, TO = v.

Proof. Assume by contradiction that TO 6= v. For any matching φ and any translation T ,
we use notation Cφ(T) to denote the matching cost between T (A) and B′ under φ. In the
following, we analyze how the value of CφO

(T) changes, where variable T is initially TO,
and then changed to v. Note that CφO

(T) =
∑
p∈P (φO)‖p− T ‖ =

∑
p∈Gv∩P (φO)‖p− T ‖+∑

p∈P (φO)\Gv
‖p− T ‖.

To estimate the change of
∑
p∈Gv∩P (φO)‖p− T ‖, we note that for any p ∈ Gv ∩ P (φO),

‖p − v‖ ≤
√
dD(V) ≤

√
dβ‖TO − v‖, where the last inequality is from Condition 1 of

Lemma 6 and the fact that TO is in C. From triangle inequality, we have ‖p − T0‖ ≥
‖v−T0‖−‖v−p‖ ≥ (1−

√
dβ)‖v−T0‖. Thus, we get ‖p−T0‖−‖p−v‖ ≥ (1−2

√
dβ)‖v−T0‖.

This means that moving T from TO to v reduces the value of
∑
p∈Gv∩P (φO)‖p− T ‖ by at

least (2m/3)(1− 2
√
dβ)‖v − TO‖.

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:9

Gv

G1

G2

G3

G4

Figure 2 Illustration of the arrangement of {G1, G2, . . . , G2d} and Gv.

For the term of
∑
p∈P (φO)\Gv

‖p − T ‖, we know (from triangle inequality and the as-
sumption that |P (φO) \Gv| ≤ m/3) that its change is smaller than (m/3)‖v − TO‖. Since
1− 2

√
dβ > 1/2 (by the assumption that 4

√
dβ < 1), we get (2m/3)(1− 2

√
dβ)‖v − TO‖ >

(m/3)‖v − TO‖ when TO 6= v. Therefore, we have CφO
(v) < CφO

(TO) (from previous discus-
sion). However, this results in a contradiction, since from definition, TO discovers B′ and
thus should have the minimum matching cost between A and B′ under any translation.

Thus, the lemma follows. J

For the case |Gv ∩ P (φO)| < 2m/3, we have the following lemma.

I Lemma 13. If |Gv ∩ P (φO)| < 2m/3, then for any T ′ ∈ C, ∆(T ′(A), B′) ≤ (1 +
48β
√
d)∆(TO(A), B′).

Proof. For any matching φ and any translation T , we use notation Cφ(T) to denote the
matching cost between T (A) and B′ under φ. We prove this lemma by showing that
CφO

(T ′) ≤ (1 + 48β
√
d)CφO

(TO); the lemma then follows, since CφO
(T ′) ≥ ∆(T ′(A), B′).

Let P ′ be the closest 5m/6 points to TO in P (φO). Since |Gv ∩ P (φO)| < 2m/3, we have
|P ′ \Gv| ≥ m/6.

For analysis purpose, imagine that we “attach” 2d axis-aligned boxes {G1, G2, . . . , G2d}
to each face of Gv, with centers aligned in Gv (see Figure 2 for an example in 2D), and
each box has equal edge length r, where r is the smallest positive number such that P ′ is
contained in the union of {G1, G2, . . . , G2d} and Gv. Let F = Gv ∪G1 ∪G2 . . . ∪G2d.

By the fact that |P ′ \Gv| ≥ m/6, we know that one box of {G1, G2, . . . , G2d} contains
more than m/12d points in P . Since ξ = 12d and Q is a 1/nξ-net of P , we also know that
the box contains a point qt from Q. Thus, F contains a point qt in Q \ V .

From Lemma 6, we have ‖TO − v‖ ≤ γ‖TO − qt‖. Thus,

‖v − qt‖ ≥ (1/γ − 1)‖TO − v‖. (2)

Let Lv denote the edge length of Gv. Then, we have Lv ≤ D(V) ≤ β‖TO − v‖. Since
β < 1/4

√
d < (1/4

√
d)(1/γ − 1), from (2) we get

Lv ≤ ‖v − qt‖/4
√
d. (3)

ISAAC 2019

26:10 Small Candidate Set for Translational Pattern Search

Let L denote the length of F : L = 2r + Lv. L is clearly no smaller than ‖v − qt‖/
√
d in

order to contain both v and qt. From (3), we have Lv ≤ r and r ≥ 3‖v − qt‖/8
√
d. By (2)

and the assumption that 1/γ − 1 ≥ 16
√
d, we get

r ≥ 3(1/γ − 1)‖TO − v‖/8
√
d ≥ 6‖TO − v‖. (4)

Let Ov denote the center of Gv. Then, ‖Ov − v‖ ≤
√
dLv ≤

√
dD(V) ≤

√
dβ‖TO − v‖ ≤

‖TO − v‖/4. Thus, from triangle inequality we have

‖Ov − TO‖ ≤ 5‖TO − v‖/4. (5)

Combining (4) and (5) gives us ‖Ov − TO‖ ≤ 5r/24.
From the definition of r, we know that there must exist a point p′ ∈ P ′ on the boundary

of F . From the arrangement of {G1, G2, . . . , G2d} and Gv, we have ‖Ov − p′‖ ≥ r/2. Thus,
‖TO − p′‖ ≥ r/2− 5r/24 > r/4 (by triangle inequality).

Also, from the fact that Lv ≤ r, we know that F can be covered by a box centered at Ov
and with edge length 3r. Since qt ∈ F , we have ‖Ov − qt‖ ≤ 3

√
dr/2. Combining this with

the fact that ‖Ov − TO‖ ≤ 5r/24, we get ‖TO − qt‖ ≤ 3
√
dr/2 + 5r/24 ≤ 2

√
dr. Thus, we

have ‖TO − qt‖/‖TO − p′‖ ≤ 8
√
d.

In summary, from the above discussion and Lemma 6, we have the following.

1. There exists qt ∈ Q such that the following inequality holds ‖TO − qt‖/‖TO − p′‖ ≤ 8
√
d,

where p′ ∈ P (φO) satisfies the condition that less than 5m/6 points in P (φO) are closer
to TO than it.

2. Inequality ‖TO − T ′‖ ≤ β‖TO − qt‖ holds for any T ′ ∈ C.

Following a similar argument given in Lemma 5, we can show that |CφO
(TO)−CφO

(T ′)| ≤
48β
√
dCφO

(TO). This concludes the proof. J

Now for any ε > 0, if we set 48β
√
d ≤ ε, then by Lemmas 12 and 13, we know that

if TO lies in a close region C generated by AIDecomposition, either v discovers B′ (if
|Gv ∩ P (φO)| ≥ 2m/3), or an arbitrary T ′ ∈ C (1 + ε)-approximately discovers B′ (if
|Gv ∩ P (φO)| < m/3). Therefore, we may put v and an arbitrary point in C into the
candidate set. This ensures that B′ is (1 + ε)-approximately discoverable by at least one of
these two points when TO lies in C.

6 The Algorithm and Analysis

In this section, we summarize the discussion so far and provide the algorithm to generate the
candidate set of translations. The following Algorithm 1 shows in details how to generate
the candidate set T.

Depending on the method chosen to construct the ε-net in Step 3 (Lemma 10 or Lemma
11), the size of Q is O(n) or O(n logn), the size of the discretization (in terms of number of
regions) generated in step 4 is O(n logn) or O(n log2 n), and the total running time of the
algorithm is O(mn logmn) or O(n log2 n). No matter which algorithm is chosen to construct
T, we have the following lemma.

I Lemma 14. For any instance B′ ∈ B of A, there exists at least one translation T ∈ T,
such that T (1 + ε)-approximately discovers B′.

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:11

Algorithm 1 Generate-Candidate-Set.

Input: Point sets A and B of Rd with |A| ≤ |B|. Approximate factor 0 < ε < 1.
Output: A set T of translations in Rd, such that each instance B′ of A is (1+ε)-approximately
discoverable.
1: Initialize T to be ∅.
2: Initialize constants β, γ, ξ, such that: ξ = 12d, 48β

√
d ≤ ε, γ < (16

√
d+ 1)−1, 4

√
dβ < 1

and
√
dβ(1− 1/ξ)−1 ≤ ε.

3: Build a 1/ξn-net Q for P , where P is the reference set.
4: Run AIDecomposition(Q, β, γ) to generate a discretization which decomposes Rd into

close regions and small regions.
5: For each small region C, pick an arbitrary point from C and put it into T.
6: For each close region C, suppose it is associated with point set V and v ∈ V . Pick an

arbitrary point p in C. Put both v and p into T.
7: Output T as the result.

Proof. Let TO be the translation that discovers B′.
If TO lies in a small region C, let TC ∈ T be the point chosen from C in step 5 of

Algorithm 1. Let q be the nearest neighbor of TO in Q. By Lemma 6, we know that
‖TC − TO‖ ≤ β‖q − TO‖. By Lemma 8 and the fact that Q is (ξ,

√
d)-dense, we have

∆(TC(A), B′) ≤ (1 +
√
dβ(1− ξ)−1)∆(TO(A), B′) ≤ (1 + ε)∆(TO(A), B′) (The last inequality

comes from choice of parameters in Algorithm 1). Thus, we know that B′ is (1 + ε)-
approximately discoverable at TC ∈ T.

If TO lies in a close region C, let v ∈ V ⊂ Q be the representative point associated with
C as stated in Lemma 6. Let TC ∈ T be the point chosen from C in step 6 of Algorithm
1. Then, by Lemmas 12 and 13, we know that either v discovers B′, or ∆(TC(A), B′) ≤
(1 + 48β

√
d)∆(TO(A), B′) ≤ (1 + ε)∆(TO(A), B′). This means that either v or TC (1 + ε)-

approximately discovers B′.
This completes the proof. J

From the above analysis, we immediately have our main results, Theorems 2 and 3.

7 Constructing ε-net for Hypercubes for P

To conclude this paper, we introduce efficient algorithms to construct a weak ε-net for the
reference set P with axis-aligned hypercubic ranges. From the well known ε-net theorem,
we know that a random sample of size O((d′/ε) log(d′/ε) + logn/ε) from P , where d′ is the
VC-dimension of the range space defined by hypercubes in Rd (it is known that d′ ≤ 2d), is an
ε-net with probability at least 1− 1/n. There are several previous results on ε-net for simple
shapes like axis aligned rectangles, halfspace and disks in 2 or 3 dimension [20, 8, 2], which
provide methods to build smaller size ε-nets. [19] provides a mathematical construction of
ε-nets for axis-aligned hypercubes of size O(1/ε), which is optimal in size, although its efficient
(i.e. in near O(|P |) time) algorithmic implementation is unknown. [12] introduces a method
to construct ε-nets for axis-aligned rectangles in any fixed dimension, which can be applied
to generate the (ξ, µ)-dense subset Q. The running time of this method is O(|P | logd|P |).

We show that if we further restrict the shapes to hypercubes, we are able to obtain an
optimal size (i.e. O(1/ε)) weak ε-net more efficiently. In the following we show how to
deterministically construct a linear size 1/n-net Q for any multi-set P of size O(mn), i.e.,
a point set Q of size O(n) such that if an axis-aligned hypercube G contains m points in

ISAAC 2019

26:12 Small Candidate Set for Translational Pattern Search

P , it then contains at least one point in Q. The time of the construction is O(nm lognm)
(Recall that the size of P is mn). Clearly, the same space and time complexity bounds for a
1/cn-net Q for any constant c are also achievable, thus proving Lemma 10. We also note that
by applying the ε-net theorem, it is possible to construct such a Q of larger size (O(n logn)),
but in shorter (O(n logn)) time, with high probability. This allows us to make a trade-off
between the size of Q and the time complexity of the construction. We leave the discussion
of the alternative construction to the end of section, and focus on the deterministic linear
size ε-net construction in the following.

The construction is based on the quad-tree decomposition technique, which recursively
partitions the regions inside the quad-tree boxes, and uses a 2d-way tree structure to represent
the partition. To build a quad-tree for P , we first start with a bounding box G which contains
all points in P and is the root of the quad-tree. We then decompose G into 2d smaller boxes
with equal size, with each of them being a child of G. For each child box, we recursively
perform the same decomposition. The recursion stops when a box contains no more than 1
point in P . The quad tree decomposition for P can be performed within O(|P | log|P |) time
by maintaining a sorted list of P for each of the d axes [6], and compressing the tree properly
to handle empty boxes during the decomposition.

Figure 3 below shows and example of quad-tree decomposition.

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b
b

Figure 3 Example of quad-tree decomposition.

A quad-tree decomposition may produce a large number of empty boxes, when a large
number of points are aggregated in some region (see left of Figure 4 for an example). To
resolve this issue, when decomposing a box G in the quad-tree decomposition, we first
perform a quad-tree compression, which directly computes the smallest quad-tree box GC
that contains all the points in P ∩G (see the right side of Figure 4). Then the quad-tree
decomposition can continue on GC . This will avoid generating many unnecessary empty
boxes. Note that this compression step is not required if points are not concentrated, i.e., if
decomposing G yields at least 2 nonempty boxes (i.e., containing points in P). In this case,
we decompose G in the standard fashion.

With this compression step, the running time of the quad-tree decomposition is still
O(|P | log|P |) [6].

Algorithm 2 and Algorithm 3 describe our quad-tree decomposition-based method for
producing a weak ε-net Q. The decomposition scheme is a modification of the standard
quad-tree decomposition. The main routine Algorithm 2 outputs the ε-net Q, together with
a set U of boxes which is for analysis purpose. Algorithm 3 is the body for the recursion.

The Algorithm 2 and 3 are essentially trimmed versions of the standard quad-tree
decomposition (by not decomposing some of the boxes in the process). Given a box G

that contains multiple points in P , instead of simply decomposing it into 2d sub-boxes and
recursively building the quad-tree on them (which could generate boxes with few points in
it and thus results in a quad-tree with high complexity), Algorithm 3 iteratively performs

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:13

bb b
b
b
b

G

bb b
b
b
b

G

Gc

Figure 4 Example of quad-tree compression. It is possible that points in a box are aggregated at
some location. Directly applying the quad-tree decomposition will generate many empty boxes. We
can directly compute a box to contain all these points without really performing the decomposition.

Algorithm 2 Construct-ε-Net.

Input: A set P ⊂ Rd
Output: An ε-net Q. A set U of Rd boxes.
1: Initialize Q,U as empty sets. Initialize G as a box that contains P .
2: Start recursion by running Decompose-Single-Box subroutine on G

the quad-tree decomposition on only one sub-box which contains the maximum number of
points in P , and tries to identify a box G′ with the following properties. When the iteration
(from step 4 to step 8) stops (at step 4 or 7), G′ satisfies the following 2 conditions
1. There are less than m/2d+1 points in P ∩G \G′.
2. (a) All points in P ∩G′ have the same location, OR (b) There are at least m/2d+1 points

in P ∩G \G′′, where G′′ is the child box of G′ with the most number of points in P .
Only in case 2(b) we perform the recursion on the boxes generated by the decomposition of
G′. See Figure 5 for illustration. In addition, we do not decompose G when there are only a
small number (≤ m/2d+1) of points in it. Since the algorithm is a trimmed version of the
standard quad-tree decomposition, the running time is thus O(|P | log|P |) = O(mn logmn).

b

b

b

b

b
b

b b
b
b
b

b

b

b

b

b
b

b
b b b

b

G
′

G
′′

Figure 5 To achieve better performance, Algorithm 3 uses an iteration to find out G′ with the
desired properties. Recursion continues only (on sub-boxes of G′) if P ∩G \G′′ contains an enough
number of points, where G′′ is the quad-tree child box of G′ with the most number of points in P .
This can greatly reduce the number of boxes generated.

It is quite clear that the size of Q is O(n). The Decompose-Single-Box procedure stops
immediately once the condition |G∩P | ≤ m/2d+1 is satisfied. The procedure also makes sure
that for any G′′ of the 2d child boxes generated for G (if the decomposition and recursion
occur), inequality |G \G′′| ≥ m/2d+1 holds. This implies that the size of the recursion tree,
and thus the size of U and Q, is O(mn/(m/2d+1)) = O(n).

ISAAC 2019

26:14 Small Candidate Set for Translational Pattern Search

Algorithm 3 Decompose-Single-Box.
Input: A box G
Output: A sub-quad tree with G as the root.
1: Add G into U . Add all the vertices of G to Q.
2: If G contains ≤ m/2d+1 points in P , return.
3: Initialize variable G′ to be the box G.
4: If all points in P that lie in G′ coincide at point p. Put p and all vertices of G′ into Q.

Put G′ into U . Return.
5: Update variable G′ to be the resulting box from the quad-tree compression of the current
G′, if necessary (See Appendix A.3).

6: Decompose G′ equally into 2d sub-boxes. Let G′′ be the one that contains the most
number of points in P .

7: If G \G′′ contains ≥ m/2d+1 points in P , recursively call Decompose-Single-Box on the
2d sub-boxes generated in the above step. Then return.

8: Otherwise, update variable G′ to be G′′. Go to step 4.

I Lemma 15. Set Q generated by the above algorithm is a weak 1/n-net for P , i.e., if any
axis-aligned hypercube Gm contains at least m points in P , then Gm contains at least 1 point
in Q.

Proof. Let Um denote the subset Um ⊆ U of hyperboxes G′ in U such that the interior of
Gm intersects G′.

For each coordinate axis e of R, let F (e) be the set of faces f of boxes in Um, such that f
is perpendicular to e and intersects the interior of Gm. Let the cutting number x(e) of e be
the possible number of distinct coordinate values of faces in F (e) in the e axis.(See Figure 6
for an example.) We consider two cases.

X

Y

Gm

b b b b
x1 x2 x3 x4

Figure 6 Example of cutting number for X axis in an configuration of interior Gm. In this
example there are 3 boxes of Um intersecting Gm. There are 4 different x values for faces of these
boxes that lies in Gm and are perpendicular to the X axis. Thus the cutting number for X axis in
this example is 4.

Case 1. x(e) ≤ 1 for any axis e. Then boxes in U partitions Gm into no more than 2d
regions, since in every direction Gm is “cut” by boxes in U at most once. Since Gm
contains at least m points in P , one of the regions will contain strictly more than m/2d
points. However, from Algorithm 3, we know that all of the regions formed by U can

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:15

only have no more than m/2d+1 points, with the exception that for some regions, all its
contained points in P have the same location p. Thus, Gm intersects such a region and
contains p. Since p ∈ Q from Algorithm 3 (see Step 4), this case is proved.

Case 2. x(e) ≥ 2 for some axis e. Since the quad-tree decomposition always divides boxes
equally, the following fact is clear.

Fact. Let f1, f2 be the faces of boxes G1 and G2 in U , respectively, such that they are facing
the same direction e. If the distance between f1 and f2 in the direction of e is l > 0, one of
G1 and G2 has edge length ≤ l.

If x(e) ≥ 2, then there exist faces f1 and f2 facing the direction of e and intersect the
interior of Gm. If these 2 faces belongs to the same box Gf ∈ U , then Gf is smaller than
Gm in size. Thus, one of the vertices pf of Gf must lie in Gm. From Algorithm 3, we know
that pf ∈ Q. Therefore, Gm ∩ Q 6= ∅. If f1 and f2 belong to different boxes, say G1 and
G2 in U , from the above fact, we know that the edge length of one of the boxes will be no
larger than the distance between f1 and f2 in the direction of e. Since the box size is smaller
than Gm, one of its vertices is in Gm. This again leads to the fact that Gm ∩Q 6= ∅. This
completes the proof. J

Alternative Construction Using ε-net Theorem. Recall that the ε-net Theorem allows us
to build a 1/cn-net of P with size O(n logn) by using O(n logn) samples, where c > 0 is
a constant. Also note that, it is not necessary to explicitly compute P (whose size is mn)
before conducting the sampling. From the definition of P (in Section 2, Definition 1), a
random sample from P can be obtained by first sampling a from A, b from B, and then
computing b− a as the sample. This allows us to build a 1/cn-net of P in O(n logn) time.

References
1 Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching, interpolation, and

approximation. In Handbook of computational geometry, pages 121–153. Elsevier, 2000.
2 Boris Aronov, Esther Ezra, and Micha Sharir. Small-Size \eps-Nets for Axis-Parallel Rectangles

and Boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010.
3 Sunil Arya, Theocharis Malamatos, and David M Mount. Space-time tradeoffs for approximate

nearest neighbor searching. Journal of the ACM (JACM), 57(1):1, 2009.
4 Rinat Ben-Avraham, Matthias Henze, Rafel Jaume, Balázs Keszegh, Orit E Raz, Micha Sharir,

and Igor Tubis. Minimum partial-matching and Hausdorff RMS-distance under translation:
combinatorics and algorithms. In European Symposium on Algorithms, pages 100–111. Springer,
2014.

5 Sergio Cabello, Panos Giannopoulos, and Christian Knauer. On the parameterized complexity
of d-dimensional point set pattern matching. In International Workshop on Parameterized
and Exact Computation, pages 175–183. Springer, 2006.

6 Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, 1995.

7 Danny Z Chen, Ziyun Huang, Yangwei Liu, and Jinhui Xu. On Clustering Induced Voronoi
Diagrams. SIAM Journal on Computing, 46(6):1679–1711, 2017.

8 Kenneth L Clarkson and Kasturi Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

9 Hu Ding, Ronald Berezney, and Jinhui Xu. k-prototype learning for 3d rigid structures. In
Advances in Neural Information Processing Systems, pages 2589–2597, 2013.

10 Hu Ding, Branislav Stojkovic, Ronald Berezney, and Jinhui Xu. Gauging association patterns
of chromosome territories via chromatic median. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1296–1303, 2013.

ISAAC 2019

26:16 Small Candidate Set for Translational Pattern Search

11 Hu Ding and Jinhui Xu. FPTAS for minimizing earth mover’s distance under rigid transform-
ations. In European Symposium on Algorithms, pages 397–408. Springer, 2013.

12 Esther Ezra. A note about weak ε-nets for axis-parallel boxes in d-space. Information
Processing Letters, 110(18-19):835–840, 2010.

13 Martin Gavrilov, Piotr Indyk, Rajeev Motwani, and Suresh Venkatasubramanian. Combin-
atorial and experimental methods for approximate point pattern matching. Algorithmica,
38(1):59–90, 2004.

14 Michael T Goodrich, Joseph SB Mitchell, and Mark W Orletsky. Practical methods for approx-
imate geometric pattern matching under rigid motions:(preliminary version). In Proceedings
of the tenth annual symposium on Computational geometry, pages 103–112. ACM, 1994.

15 Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 94–103. IEEE, 2001.

16 David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete & Computational
Geometry, 2(2):127–151, 1987.

17 Matthias Henze, Rafel Jaume, and Balázs Keszegh. On the complexity of the partial least-
squares matching Voronoi diagram. In Proc. 29th European Workshop on Computational
Geometry, pages 193–196, 2013.

18 Daniel P Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of Voronoi
surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.

19 Janardhan Kulkarni and Sathish Govindarajan. New ε-net constructions. In Proceedings of
the 22nd Annual Canadian Conference on Computational Geometry, Winnipeg, Manitoba,
Canada, pages 159–162. Citeseer, 2010.

20 Jiří Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small ε-nets
for disks and halfspaces. In Proceedings of the sixth annual symposium on Computational
geometry, pages 16–22. ACM, 1990.

21 Günter Rote. Partial least-squares point matching under translations. In Proc. 26th European
Workshop on Computational Geometry, pages 249–251. Citeseer, 2010.

22 Nitasha Sehgal, Andrew J Fritz, Jaromira Vecerova, Hu Ding, Zihe Chen, Branislav Sto-
jkovic, Sambit Bhattacharya, Jinhui Xu, and Ronald Berezney. Large-scale probabilistic 3D
organization of human chromosome territories. Human molecular genetics, 25(3):419–436,
2015.

A Appendix

A.1 Proof of Corollary 4

Proof. Suppose that translation T and B′ ⊆ B realize the minimum cost bipartite matching
with A. Let COPT be the minimum bipartite matching cost of B′ and T (A). COPT is then
the optimal minimum bipartite matching cost between A and B under translations. Since
B′ is a COPT -instance of A, there exists T ′ ∈ T such that the matching cost between B′
and T ′(A) is no larger than (1 + ε)COPT . Thus, T ′ induces a (1 + ε)-approximation for the
optimal translational matching between A and B. J

A.2 Proof of Lemma 5

Proof. Let φ1 (or φ2) be the corresponding bipartite matching which gives rise to the
minimum cost between B′ and T1(A) (or T2(A)). Then, ∆(T1(A), B′) =

∑
q∈P (φ1)‖q − T1‖,

and ∆(T2(A), B′) =
∑
q∈P (φ2)‖q − T2‖. Note that

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:17

∑
q∈P (φ1)

‖q − T2‖ =
∑

q∈P (φ1)

‖q − T1 − T2 + T1‖

≤
∑

q∈P (φ1)

‖T2 − T1‖+
∑

q∈P (φ1)

‖q − T1‖

= m‖T2 − T1‖+ ∆(T1(A), B′)
≤ mε‖p− T1‖+ ∆(T1(A), B′)
≤ ε∆(T1(A), B′) + ∆(T1(A), B′)
= (1 + ε)∆(T1(A), B′),

where the first inquality comes from the triangle inequality, and the third inequality comes
from the fact that p is the nearest neighbor of T1 in P , which implies that m‖p − T1‖ ≤∑
q∈P (φ1)‖q − T1‖ = ∆(T1(A), B′). From the assumption that φ2 is the minimum cost

bipartite matching between T2(A) and B′, we know that the value
∑
q∈P (φ1)‖q − T2‖, which

is the matching cost between T2(A) and B′ under φ1, must be no smaller than ∆(T2(A), B′).
Therefore, from the above inequality, we have ∆(T2(A), B′) ≤ (1 + ε)∆(T1(A), B′).

Following a similar argument, we also have

∆(T1(A), B′) ≤
∑

q∈P (φ2)

‖q − T1‖

=
∑

q∈P (φ2)

‖q − T2 − T1 + T2‖

≤
∑

q∈P (φ2)

‖T2 − T1‖+
∑

q∈P (φ2)

‖q − T2‖

= m‖T2 − T1‖+ ∆(T2(A), B′)
≤ mε‖p− T1‖+ ∆(T2(A), B′)

≤ ε

1− ε∆(T2(A), B′) + ∆(T2(A), B′)

= (1− ε)−1∆(T2(A), B′),

where the fourth inequality comes from the following argument. The closest distance from
a point in P to T1 is ‖p − T1‖. Since ‖T1 − T2‖ ≤ ε‖p − T1‖, we know that the closest
distance from a point in P to T2 is at least (1 − ε)‖p − T1‖. Therefore, ∆(T2(A), B′) =∑
q∈P (φ2)‖q − T2‖ ≥ m(1− ε)‖p− T1‖.
Putting everything together, we have that (1 − ε)∆(T1(A), B′) ≤ ∆(T2(A), B′) ≤ (1 +

ε)∆(T1(A), B′). Thus, the lemma follows. J

ISAAC 2019

	Introduction
	Preliminaries
	Main Results
	Overview of Techniques

	Locality Based Discretization for Pattern Search
	Locality of Pattern Search
	Space Discretization and Close Regions
	Reducing the Number of Regions
	Finding (xi,mu)-dense Q for P

	Handling Close Regions
	The Algorithm and Analysis
	Constructing epsilon-net for Hypercubes for P
	Appendix
	Proof of Corollary 4
	Proof of Lemma 5

