
Searching for Cryptogenography Upper Bounds
via Sum of Square Programming
Dominik Scheder
Shanghai Jiao Tong University, China
dominik@cs.sjtu.edu.cn

Shuyang Tang
Shanghai Jiao Tong University, China
htftsy@sjtu.edu.cn

Jiaheng Zhang
UC Berkeley, USA
jiaheng_zhang@berkeley.edu

Abstract
Cryptogenography is a secret-leaking game in which one of n players is holding a secret to be leaked.
The n players engage in communication as to (1) reveal the secret while (2) keeping the identity
of the secret holder as obscure as possible. All communication is public, and no computational
hardness assumptions are made, i.e., the setting is purely information theoretic. Brody, Jakobsen,
Scheder, and Winkler [2] formally defined this problem, showed that it has an equivalent geometric
characterization, and gave upper and lower bounds for the case in which the n players want to leak
a single bit. Surprisingly, even the easiest case, where two players want to leak a secret consisting of
a single bit, is not completely understood. Doerr and Künnemann [4] showed how to automatically
search for good protocols using a computer, thus finding an improved protocol for the 1-bit two-player
case. In this work, we show how the search for upper bounds (impossibility results) can be formulated
as a Sum of Squares program. We implement this idea for the 1-bit two-player case and significantly
improve the previous upper bound from 47/128 = 0.3671875 to 0.35183.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory
of computation → Semidefinite programming

Keywords and phrases Communication Complexity, Secret Leaking, Sum of Squares Programming

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.31

Supplement Material http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/

Funding Dominik Scheder : This research has been supported by the National Natural Science
Foundation of China under grant 61502300.

1 Introduction

Cryptogenography is a whistleblowing problem involving n players. One player J ∈ [n] is
holding a secret X ∈ X . The value of X is unknown to everybody else. The value of J is
unknown, too (the other players just know that they do not have the secret). The goal of
the players is to publish the secret while keeping the identity of J as obscure as possible. To
achieve this goal, the players engage in public communication according to some publicly
known protocol. The protocol ends once the value of the secret has been determined. At this
point, the authorities step in and arrest the prime suspect, i.e., the player with the highest
a-posteriori probability to be J .

In an (imaginary) application, the secret X could be a compromising document of some
government agency or company, J a whistleblower, and [n] a community of transparency
activists of which J is a member. A more mundane application sees X as a pirated movie, J

© Dominik Scheder, Shuyang Tang, and Jiaheng Zhang;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 31; pp. 31:1–31:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248536461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dominik@cs.sjtu.edu.cn
mailto:htftsy@sjtu.edu.cn
mailto:jiaheng_zhang@berkeley.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.31
http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Cryptogenography Upper Bounds via SoS Programming

as the person sharing the video, and [n] as the users of a file sharing platform. In both cases,
the participants want to keep the leaker J anonymous but make the secret X public. This
distinguishes it from most other problems in cryptography.

Towards a rigorous formulation, suppose (J,X) are drawn from some prior distribution
D on [n] × X . Typically, this will be the uniform distribution, representing a complete
lack of knowledge about X and J . A communication protocol is a finite binary tree T , in
which every inner node u is labeled with a speaker Pu ∈ [n] and a vector (pi)i∈X∪{∗}. The
semantics of this tree is as follows: we start at the root of the tree. At an inner node u,
player Pu sends the next bit of communication. If player Pu is the secret holder, she sends
right with probability pX (and left with probability 1 − pX). If she does not hold the
secret, her message cannot depend on X, and thus she sends right with probability p∗. The
protocol then proceeds to the left or right child of u, depending on the message sent by Pu.

With every node u of the tree we associate a distribution Du on [n] · X . Namely, Du(i, x)
is the probability that player i holds the secret and the secret is x, conditioned on the
protocol arriving at node u. Note that Droot is the prior distribution. A protocol is said
to be valid if X is determined once the protocol ends. In other words, for every leaf l of
the protocol tree there is some x ∈ X such that

∑
i Dl(i, x) = 1. We call x the output of

leaf l. If the protocol reaches leaf l, an outside observer can be sure that the secret is x.
At this point, the authorities arrest the prime suspect, which is the player i maximizing
Dl(i, x). The players win if the arrested player is not the secret holder, which happens with
probability 1−maxi∈[n] Dl(i, x). The value val(u) of a node u, is the winning probability of
the players, conditioned on this node being reached (so val(l) = 1−maxi Dl(i, x) for a leaf l
with output x, and val(u) is a weighted average of val(u0) and val(u1), where u0 and u1 are
the two children of u). The value of the protocol is the value of its root (which is equal to
the overall winning probability). The value val(D) of a distribution D is the supremum of
val(root), taken over all valid protocol trees. In words, it is the optimal achievable success
probability for the Cryptogenography problem with prior distribution D.

Note that our scenario is purely information theoretical. We assume participants and
the authorities to be computationally unlimited. This precludes us from using established
methods like public-key cryptography. Also, all communicated is public, and thus methods
from multi-party communication (which otherwise could easily solve this problem) do not
apply here. In general, we consider cryptogenography as being part of communication
complexity, and we study it to explore the limitations of randomized two-party (or multi-
party) communication.

1.1 Previous Work
The Cryptogenography problem was introduced by Brody, Jakobsen, Scheder, and Winkler [2].
They also chose the name Cryptogenography, which roughly translates to “hidden source
writing”. This is because we want to protect the source and not, as would be more common
in cryptography, the message. They show that finding the optimal value is equivalent to
optimizing a function on the simplex ∆[n]×X (the set of probability distributions on [n]×X),
subject to certain concavity constraints (see Section 2). As for concrete bounds, [2] focus on
the case |X | = 2, i.e., the secret consists of a single bit. This might feel a bit unrealistic, as
most government documents and most movies consist of more than one bit; however, already
the 1-bit case turns out to be challenging. For the n-player case, [2] show that a simple
majority voting protocol has a success probability of 0.5406 if n ≥ 23; a more sophisticated
protocol, based on voting with abstention, achieves 0.5644 if n ≥ 1200. They also prove
an upper bound of 3

4 −
1

2n . For n = 2, the simplest non-trivial case, they show a protocol
achieving 1/3 and an upper bound of 3/8.

D. Scheder, S. Tang, and J. Zhang 31:3

The success probability of 1/3 for n = 2 is achieved by a simple three-round protocol.
Somewhat surprisingly, it is not optimal. Doerr and Künnemann [4] showed how Crypto-
genography protocol design can be viewed as a certain vector splitting game, and used a
computer program to find improved protocols. Their best protocol tree consists of 18248
nodes and achieves a success probability of 0.3384; the shortest protocol (in terms of rounds)
they found which beats 1/3 uses up to sixteen rounds of communication. They also improve
the upper bound for n = 2 from 3/8 to 47

128 .
What about the general case of larger n, |X | > 2? Sune Jakobsen [5] showed what the

skeptical reader might already suspect: as |X | increases, the optimal success probability
goes to 0, regardless of n. Thus, secure secret leakage is impossible, purely information
theoretically speaking. In fact, Jakobsen considered an even more general setting, in which
k = γ n “insider players” know the secret, and X = {0, 1}b, i.e., the secret has b bits,
with b = β n. He gives a simple and beautiful protocol using error correcting codes and
Shannon’s Noisy Channel Coding Theorem (see for example [3]) to show that the players
have a reasonable success probability if β is not too large compared to γ. He also shows
that this protocol is in some sense asymptotically optimal. Unfortunately, his method give
exact results only if γ, β are constants and n tends to infinity and thus do not help us for
the case |X | = 2.

Furthermore, Jakobsen and Orlandi [6] introduce a model in which a almost all commu-
nication is public, and only a very small key is sent through an anonymous channel. They
show that with high probability, the secret leaker stays anonymous. However, they assume
the adversary to be computationally bounded, and thus their techniques do not apply to our
purely information theoretic setting.

1.2 Our Contribution
Like Doerr and Künnemann [4], we focus on the 1-bit 2-player case: n = 2 and X = {0, 1}.
We show how to search for upper bounds in an automated way. We use the geometric
characterization of [2], which states that to find an upper bound on the possible success
probability, it is enough to minimize a function f : ∆[n]×X 7→ R subject to certain boundary
and concavity constraints. Since n = 2 and X = {0, 1}, the function f has only four variables.
If we let f be a degree-d polynomial in those four variable, this becomes an optimization
problem in the coefficients of f . We make this optimization problem tractable by formulating
it as a Sum-of-Squares problem (SoS), which we then solve using the Matlab packages
yalmip1 [9] and sostools [10]. The following table summarizes our results obtained with
yalmip. The numerical error arising from the SoS solver needs careful treatment in our case,
and indeed causes degree 8 to be worse than degree 6.

Degree SoS opt
numerical

error
SoS opt
+ error Remark

2 0.375 0 0.375 Same as [2]
4 0.3644 negligible 0.3644 slightly better than 0.3671875 from [4]
6 0.351612 0.000217 0.35183 our best bound so far
8 0.349515 0.0079587 0.35747 worse than degree 6 (numerical errors)

In theory, our techniques easily extend to the multi-player case and beyond the 1-bit case.
However, the complexity increases in a way that makes it quickly impractical for current
SoS solvers.

1 https://yalmip.github.io/

ISAAC 2019

https://yalmip.github.io/

31:4 Cryptogenography Upper Bounds via SoS Programming

2 Geometric Formulation

We now formally introduce the geometric characterization given by Brody, Jakobsen, Scheder,
and Winkler [2]. We focus on the two-player 1-bit case, since this already contains all
main ideas. Consider the simplex ∆ := {Alice,Bob} × {0, 1}, the space of all probability
distributions on who has the secret bit and what its value is. We represent a distribution D
as a matrix:

0 1
Alice x0 x1
Bob y0 y1

,

or short as
[
x0 x1
y0 y1

]
. Given a protocol tree, we associate a distribution Du ∈ ∆ with every

node u: namely, Du(j, x) is the probability that j is the secret holder and x is the secret,
conditioned on the protocol passing through u. Suppose it’s Alice’s turn to send a bit at node
u. Let p be the probability that she sends right at node u and denote by D, D′, and D′′ the
distributions at u, its left child, and its right child, respectively. Then D = pD′ + (1− p)D′′,
so the three distributions[

x′0 x′1
y′0 y′1

]
,

[
x0 x1
y0 y1

]
,

[
x′′0 x′′1
y′′0 y′′1

]
lie on a common line. In fact, this line has a crucial additional property: the line through
[y′0, y′1], [y0, y1], [y′′0 , y′′1] also passes through the origin! In other words, the ratio between y0
and y1 is the same for all three distributions. This is because Alice can give hints about (1)
whether she has the secret and (2) what its value is provided she owns it but not what the
value is if Bob has it. This property is formally proven in [2]. The upshot is that the line
through D,D′, D′′ can be parametrized as

` : t 7→
[
x0 x1
y0 y1

]
+ t

[
r0 r1
s0 s1

]
(1)

where

x0 + x1 + y0 + y1 = 1 (2)
x0, x1, y0, y1 ≥ 0 (3)

r0 + r1 + s0 + s1 = 0 (4)
s0 y1 − s1 y0 = 0 (5)

s0 s1 ≥ 0. (6)

Note that (2) and (3) simply state thatD is a distribution; (4) must hold since the line contains
two other distributions D′ and D′′, too. Equality (5) states that the line [y0 y1] + t [s0 s1]
contains the origin. Finally, (6) follows from the other constraints and is included only
because it turns out to help the SoS solver.

A line of the form (1) satisfying (2)–(6) is an Alice-line. If it’s Bob’s turn to talk at u,
then equality (5) and (6) and should be replaced by r0 x1 − r1 x0 = 0 and r0 r1 ≥ 0; we call
such a line a Bob-line. A player-line is a line that is an Alice-line or a Bob-line. A player-line
is non-trivial if it intersects ∆ in more than one point.

D. Scheder, S. Tang, and J. Zhang 31:5

To wrap up, if Alice talks at node u, she “splits” the distribution D into D′ and D′′ such
that all three distributions lie on an Alice-line. A certain converse of this actually holds, too:
if D is the distribution associated with node u, and D lies between the distributions D′ and
D′′ on a common Alice-line, then there is a way for Alice to sample her message (depending
on whether she has the secret and if yes, what it is), such that the two children of u will be
labeled with D′ and D′′, respectively. The (straightforward) proof can be found in [2].

I Definition 1. A function f : ∆→ R is called admissible if

(a) f(D) ≥ 0 for D =
(

1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
, and

(
0 0
0 1

)
;

(b) f(D) ≥ 1/2 for D =
(

1/2 0
1/2 0

)
and

(
0 1/2
0 1/2

)
;

(c) If ` is a non-trivial player-line, then f |`, the restriction of f to `, is concave at every
point in ∆.

The following theorem gives a geometric characterization of the problem. It is an adaptation
of Lemma 4.3 from [2], together with the additional observation, made in [4], that the six
“boundary distributions” in Point (a) and Point (b) actually suffice.

I Theorem 2 (adapted from [2] and [4]). If f is an admissible function, then f(D) ≥ val(D)
for all distributions D.

The proof of the theorem is simple and works by induction on the protocol tree. Point (a)
and Point (b) of Definition 1 serve as the induction base, and concavity along player-lines (c)
is used in the induction step.

A similar geometric characterization by has been used by Mark Braverman, Ankit
Garg, Denis Pankratov, and Omri Weinstein [1] to determine the information complexity
of zero-error protocols computing the 2-bit AND function, and subsequently determining
the asymptotic communication complexity of Disjointness, one of the most important
functions in communication complexity.

I Lemma 3. A function f : ∆→ R is concave along every Alice-line (respectively, Bob-line),
if and only if ∂2

∂t2 f(`(t))|t=0 ≤ 0 for every Alice-line ` as in (1) (respectively, Bob-line).

Proof. For fixed x0, x1, y0, y1, r0, r1, s0, s1 the function g(t) = f(`(t)) is a univariate polyno-
mial in t. For the “if” part, not that if this is not concave for some t∗ such that `(t∗) ∈ ∆,
then g′′(t∗) > 0; furthermore, we can re-parametrize the line as `(t∗ + t); this is also an Alice
line (resp., Bob-line), and concavity is violated at t = 0. For the “only if” part, note that
concavity of f |` implies that g′′(0) ≤ 0. J

3 Sum of Square Programs

In this section we introduce the absolute basics of Sum of Square (SoS) Programs. SoS
programming is a rapidly evolving field with vast literature but unfortunately no standard
textbook yet. The reader interested in actually solving SoS programs may have a look at the
SOSTOOLS User’s guide [11]. If the reader is more interested in the theoretical background
of SoS programming, they might start with Laurent [8].

How do you show that P (x, y, z) = (x2 +y)2 (1+z2)−4xyz is non-negative? For example,
you could check that P (x, y, z) = (x− yz)2 + (y − xz)2. In other words, you write it as a
sum of squares polynomial (SoS). Next, consider Q(x, y) = 1− x2y2 − 2x2y. How can one
show that Q ≥ 0 on the unit disk? For example, by writing

Q(x, y) = (x2 − y)2 + (1 + x2) (1− x2 − y2) .

ISAAC 2019

31:6 Cryptogenography Upper Bounds via SoS Programming

Indeed, (x2− y)2 and 1 +x2 are SoS, and 1−x2− y2 is non-negative on the unit disk. Is this
method complete? No: there are non-negative polynomials that are not SoS. Is it correct?
Obviously. Even better, it is “tractable”, in a certain sense. Namely, while deciding “Is
P (x) ≥ 0?” is NP-hard, the question “Is P (x) a SoS” can be translated into a semi-definite
program and then efficiently solved (at least up to arbitrary precision). This is the basic
idea behind sum-of-square programs. In its full generality, however, it allows us much more.
Namely, each line of a SoS program can be
1. A polynomial declaration, like “P is a polynomial of degree 6 in variables u,w, x, z”.

From the SoS program’s point of view, the coefficients of P are variables. We call them
decision variables since the SoS solver will decide what values to assign to them; the
“true” variables u,w, x, z, etc. will be called polynomial variables.

2. A linear constraint in the decision variables.
3. A statement like “P is a Sum of Square polynomial”.
4. A target function “minimize T”, where T is a linear expression in the decision variables.

Of course, there can be only one target function.
Thus, not only can we ask the SoS solver check that P = (x2 + y)2 (1 + z2)− 4xyz is non-
negative; we can also use it to find the maximum w for which (x2 +y)2 (1+z2)−wxyz is non-
negative. There is no guarantee that it finds the maximum such value w; instead, it finds the
maximum w for which (x2+y)2 (1+z2)−wxyz is a SoS. Next, setQw(x, y, z) = 1−x2y2−w x2y.
We have seen above that Q2 is non-negative on the unit disk. Can we determine the maximum
w for which Qw is non-negative on the unit disk? Again, the SoS framework offers no such
guarantee, but we can write the following SoS program:

maximize w

subject to Qw = P1 + P2 (1− x2 − y2)
P1, P2 are SoS polynomials of degree d1 and d2, respectively.

Note that the constraint Qw = P1 + P2 (1 − x2 − y2) is linear in the coefficients of the
polynomials. Also, it is not clear a priori what degree d we should choose. As a heuristic,
we could choose d1 = 4 and d2 = 2 to make sure that every summand on the right-hand
side has degree 4, which is the degree of the left-hand side. If we are lucky, this returns the
optimal w. In any case, the result will be a lower bound on the optimum: if P1, P2 are SoS
and Qw = P1 + P2 (1− x2 − y2), then surely Qw ≥ 0 on the unit disk.

Let us now try to formulate our hunt for Cryptogenography upper bounds as a SoS
program. Referring to Definition 1 and Theorem 2, we define f to be a polynomial of degree
d in the variables U = {x0, x1, y0, y1} with unknown coefficients. Point (a) and (b) of the
definition are linear in the coefficients. How do we write (c) as a SoS constraint? First, define

g := − ∂2f(`(t))
∂t2

∣∣∣∣
t=0

.

This is a polynomial in the variables V := U ∪ {r0, r1, s0, s1}. We could add the constraint
“g is a SoS” into our program, but this requirement is way too strong. Indeed, g need be
non-negative only for those values of V that constitute a player-line, i.e., that satisfy (2)–(6).
We define b1 := x0, b2 := x1, b3 := y0, b4 := y1, b5 := s0 s1, c1 := x0 + x1 + y0 + y1 − 1, and
c2 := r0 + r1 + s0 + s1, and c3 := y0 s1 − y1 s0. Note that (2)–(6) are satisfied if and only if
b1, . . . , b5 ≥ 0 and c1 = c2 = c3 = 0. We add the following lines to our SoS program:

g = c1 ·R1 + c2 ·R2 + c3 ·R3 +
∑

I⊆[5]

QI ·
∏
i∈I

bi , (7)

each QI is a SoS polynomials of degree dI ,

R1, R2, R3 are arbitrary polynomials of degree dR .

D. Scheder, S. Tang, and J. Zhang 31:7

If g is as in (7), then g ≥ 0 for all values of V constituting an Alice-line, and thus f is concave
along all such lines. Obviously, we should add a similar constraint for Bob-lines. For efficiency
reason we don’t. Instead, we will exploit some inherent symmetries in the problem, as we
explain in the next paragraph. Finally, we define the target function of our SoS program:
“minimize f(1/4, 1/4, 1/4, 1/4)”, which is a linear function in the coefficients of f .

3.1 Exploiting Symmetries
The Cryptogenography problem has two fundamental symmetries: we can switch the roles
of Alice and Bob, and we can switch 0 and 1, all without changing the optimal value of a
protocol for the uniform prior distribution. Suppose our generic admissible function f is a
polynomial of degree d, namely f(x) =

∑
a∈N4

0:|a|1≤d waxa, where x = (x0, x1, y0, y1). By
symmetry, we can require that the wa,b,c,d = wb,a,d,c = wc,d,a,b = wd,c,b,a for all a, b, c, d ∈ N0.
Formally, for a = (a, b, c, d) ∈ N4

0, let ã denote the lexicographically first among (a, b, c, d),
(b, a, d, c), (c, d, a, b), (d, c, b, a). Thus, we can write f as

f(x) =
∑

a∈N4
0:|a|1≤d

wãxa . (8)

If such a n f is concave along Alice-lines, it is also concave along Bob-lines, by symmetry.
Thus, our SoS program only needs to contain a constraint for Alice-lines. As an additional
bonus, formulating Point (a) and Point (b) of Definition 1 only takes two constraints rather
than six. This basically describes our SoS program.

3.2 Obvious Optimizations
Note that (2) states x0 + x1 + y0 + y1 = 1 and (4) states that r0 + r1 + s0 + s1 = 0. Thus,
instead of adding c1 ·R1 + c2 ·R2 to the right-hand side of (7), we can “by hand” substitute
x1 = 1 − x0 − y0 − y1 and r1 = −r0 − s0 − s1. This reduces the number of polynomial
variables from 8 to 6, which tremendously improves running time. The only downside is that
our SoS program becomes a bit uglier. Putting everything together, here is the pseudocode
of our SoS program:

f(x) :=
∑

a∈N4
0:|a|1≤d

wãxa .

minimize f(1/4, 1/4, 1/4, 1/4)
subject to f(1, 0, 0, 0) ≥ 0
subject to f(1/2, 0, 1/2, 0) ≥ 1/2

g(x0, x1, y0, y1, r0, r1, s0, s1) := − ∂2f(`(t))
∂t2

∣∣∣
t=0

h(x0, y0, y1, r0, s0, s1) := g(x0, 1− x0 − y0 − y1, y0, y1, r0,−r0 − s0 − s1, s0, s1)
b1 := x0, b2 := 1− x0 − y0 − y1, b3 := y0, b4 := y1, b5 := s0 s1, c := y0 s1 − y1 s0

subject to h =
∑

I⊆[5] QI ·
∏

i∈I
bi + R · c

subject to each QI is a SoS polynomial in x0, y0, y1, r0 of degree dI ,
R is an arbitrary polynomial of degree dR

It remains to specify the degree dI of each SoS polynomial QI . We heuristically set dI to
d− |I| or d− |I| − 1, whatever is even, and set dR := d − 2. The intuition is that (a) the
degree of the SoS polynomial QI must be even and (b) the degree of each summand on the
right-hand side should be at most d, the degree of the left-hand side.

ISAAC 2019

31:8 Cryptogenography Upper Bounds via SoS Programming

To implement the SoS program, we use the matlab package yalmip [9], since it turned
out to run significantly faster on our problems than sostools [10]. In the “exploration phase”
of this work we mostly used sostools, which might be a bit easier to work with for the
non-experienced user. We wrote a python program that takes a degree d as input and outputs
the yalmip code for our SoS program. In particular, it computes f(x) =

∑
a∈N4

0:|a|1≤d wãxa,
taking care of all symmetries; the remaining yalmip code is the same for each d.

4 Handling Numerical Errors

We are solving a SoS program on a computer; this uses a numerical algorithm, so the result
will contain some numerical errors. Inevitably so: SoS solvers are basically SDP solvers plus
syntactic sugar, and some semi-definite programs only have irrational solutions.

In particular, the equation h =
∑

I⊆[5] QI ·
∏

i∈I bi +R ·c will only hold approximately. At
least we can be sure that the QI on the right are SoS polynomials – we can ask the SoS solver
to give us the SoS decomposition p2

1 + p2
2 + · · ·+ p2

k and then simply define our QI to be this
sum, and let h̃ :=

∑
I⊆[5] QI ·

∏
i∈I bi +R · c. However, h = h̃ will hold only approximately.

Formally, E := h̃− h is some non-zero polynomial with very small coefficients. By design,
h̃ ≥ 0 for all values constituting an Alice-line; however, h might attain small negative values.
If we had an “approximate version” of Theorem 2, stating that if f is “almost concave” along
player-lines then it is “almost an upper bound”, we would be done. Unfortunately, we do
not have that, so we have to come up with a manual work-around. Let f be tentative upper
bound function as found by the SoS solver. For some suitable ε > 0, define

f̂(x) = f(x)− ε

2 (x2
0 + x2

1 + y2
0 + y2

1) + ε .

If f satisfies the boundary conditions up to error ε/2, that is, if f(1, 0, 0, 0) ≥ −ε/2 and
f(1/2, 0, 1/2, 0) ≥ 1/2 − ε/2, then f̂ does indeed satisfy them. Next, we want to show
that f̂ satisfies the concavity constraints. By re-parametrizing the equation of a generic
Alice-line (1), we can assume that r2

0 + r2
1 + s2

0 + s2
1 = 1. Put differently, one observes that

g is homogenous of degree 2 in each of the variables r0, r1, s0, s1. So it is non-negative for
all inputs in S if and only if it is for all inputs with r2

0 + r2
1 + s2

0 + s2
1 = 1. Consider the

polynomials ĝ and ĥ, defined analogous to g and h, but starting with f̂ instead of f . A brief
calculation shows that ĝ = g+ ε · (r2

0 + r2
1 + s2

0 + s2
1) = g+ ε and thus ĥ = h+ ε. Thus, on any

input (x, r) ∈ S with ‖r‖2 = 1, we have h(x, r) = h̃(x, r)−E(x, r) + ε ≥ ε−E(x, r). We give
a very crude upper bound on E(x, r): since all input variables are at most 1 in absolute value,
E(x, r) is at most the sum of all coefficients. Let us denote this quantity by ‖E‖1. Thus,
as long as ε ≥ ‖E‖1, we can be sure that f̂ is indeed admissible, and thus an upper bound.
That is, val(1/4, 1/4, 1/4, 1/4) ≤ f̂(1/4, 1/4, 1/4, 1/4) ≤ f(1/4, 1/4, 1/4, 1/4) + ‖E‖1. The
table in Section 1.2 sums up the results for degree 2, 4, 6, 8. The column labeled “numerical
error” is our upper bound ‖E‖1.

One could attempt to further reduce the number of variables. Indeed, equality (5) states
y0 s1 = y1 s0. Using this, we could scale (1) to ensure that s0 = y0 and s1 = y1. This reduces
the number of variables from six to four, and vastly reduces the running time of yalmip.
However, we cannot simultaneously ensure that ‖r‖2 = 1 and thus do not know how to
handle the resulting numerical error. It would still be interesting to see what this gives
for degree 10 and 12, but it would require a leap of faith to conclude that the bound thus
computed really holds.

D. Scheder, S. Tang, and J. Zhang 31:9

5 Open Questions

Is there a better way to handle numerical errors? If so, then maybe one can remove the
number of variables to four and explore higher degrees. As for theoretical aspects, can one
prove that as d→∞, the optimal value of the SoS program converges to the actual optimum
of the cryptogenography problem? It is known (see for example Lasserre [7]) that any non-
negative f : [−1, 1]m → R can be arbitrarily well approximated by SoS polynomials. However,
we don’t require the polynomial g to be non-negative everywhere; only non-negative on a
certain set. It is not clear to me whether the approximation result transfers to this setting.

6 Source Code and Data

Since already for degree four, the number of monomials in f and the polynomials QI are too
large to be comfortably printed in an article, we created the webpage

http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/

to which we uploaded all source code and all output data that enables the reader to verify
our results without having to run yalmip or any SoS solver.

References
1 Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information

to exact communication. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 151–160. ACM, 2013. doi:10.1145/2488608.2488628.

2 Joshua Brody, Sune K. Jakobsen, Dominik Scheder, and Peter Winkler. Cryptogenography.
In Moni Naor, editor, Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ,
USA, January 12-14, 2014, pages 13–22. ACM, 2014. doi:10.1145/2554797.2554800.

3 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

4 Benjamin Doerr and Marvin Künnemann. Improved Protocols and Hardness Results for the
Two-Player Cryptogenography Problem. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 150:1–150:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.150.

5 Sune K. Jakobsen. Information Theoretical Cryptogenography. J. Cryptology, 30(4):1067–1115,
2017. doi:10.1007/s00145-016-9242-8.

6 Sune K. Jakobsen and Claudio Orlandi. How To Bootstrap Anonymous Communication. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
ITCS ’16, pages 333–344, New York, NY, USA, 2016. ACM. doi:10.1145/2840728.2840743.

7 Jean B. Lasserre. A Sum of Squares Approximation of Nonnegative Polynomials. SIAM J. on
Optimization, 16(3):751–765, March 2006. doi:10.1137/04061413X.

8 Monique Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials. In
Mihai Putinar and Seth Sullivant, editors, Emerging Applications of Algebraic Geometry, pages
157–270. Springer New York, New York, NY, 2009. doi:10.1007/978-0-387-09686-5_7.

9 J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

10 A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo.
SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2013. Available from
http://www.eng.ox.ac.uk/control/sostools, http://www.cds.caltech.edu/sostools
and http://www.mit.edu/˜parrilo/sostools. arXiv:1310.4716.

ISAAC 2019

http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/
https://doi.org/10.1145/2488608.2488628
https://doi.org/10.1145/2554797.2554800
https://doi.org/10.4230/LIPIcs.ICALP.2016.150
https://doi.org/10.4230/LIPIcs.ICALP.2016.150
https://doi.org/10.1007/s00145-016-9242-8
https://doi.org/10.1145/2840728.2840743
https://doi.org/10.1137/04061413X
https://doi.org/10.1007/978-0-387-09686-5_7
http://www.eng.ox.ac.uk/control/sostools
http://www.cds.caltech.edu/sostools
http://www.mit.edu/~parrilo/sostools
http://arxiv.org/abs/1310.4716

31:10 Cryptogenography Upper Bounds via SoS Programming

11 Antonis Papachristodoulou, James Anderson, Giorgio Valmorbida, Stephen Prajna, Pete Seiler,
and Pablo A. Parrilo. SOSTOOLS version 3.00 sum of squares optimization toolbox for
MATLAB. CoRR, abs/1310.4716, 2013. arXiv:1310.4716.

A The yalmip Code for Degree 4

clear
yalmip(’clear’)
tic
echo on

%%% begin python generated code
degree = 4;
sdpvar a b c d r0 s0 s1 t w0000 w1000 w2000 w1100 w1010 w1001 w3000
w2100 w2010 w2001 w1110 w4000 w3100
w3010 w3001 w2200 w2110 w2101 w2020 w2011 w2002 w1111;
fvars = [w0000; w1000; w2000; w1100; w1010; w1001; w3000; w2100;
w2010; w2001; w1110; w4000; w3100; w3010;
w3001; w2200; w2110; w2101; w2020; w2011; w2002; w1111];
decisionvars = fvars;
f = w0000*1 + w1000*a + w1000*b + w1000*c + w1000*d + w2000*a^2 + w1100*a*b +
w1010*a*c + w1001*a*d + w2000*b^2 + w1001*b*c + w1010*b*d + w2000*c^2 + w1100*c*d +
w2000*d^2 + w3000*a^3 + w2100*a^2*b + w2010*a^2*c + w2001*a^2*d + w2100*a*b^2 +
w1110*a*b*c + w1110*a*b*d + w2010*a*c^2 + w1110*a*c*d + w2001*a*d^2 + w3000*b^3 +
w2001*b^2*c + w2010*b^2*d + w2001*b*c^2 + w1110*b*c*d + w2010*b*d^2 + w3000*c^3 +
w2100*c^2*d + w2100*c*d^2 + w3000*d^3 + w4000*a^4 + w3100*a^3*b + w3010*a^3*c +
w3001*a^3*d + w2200*a^2*b^2 + w2110*a^2*b*c + w2101*a^2*b*d + w2020*a^2*c^2 +
w2011*a^2*c*d + w2002*a^2*d^2 + w3100*a*b^3 + w2101*a*b^2*c + w2110*a*b^2*d +
w2011*a*b*c^2 + w1111*a*b*c*d + w2011*a*b*d^2 + w3010*a*c^3 + w2110*a*c^2*d +
w2101*a*c*d^2 + w3001*a*d^3 + w4000*b^4 + w3001*b^3*c + w3010*b^3*d +
w2002*b^2*c^2 + w2011*b^2*c*d + w2020*b^2*d^2 + w3001*b*c^3 + w2101*b*c^2*d +
w2110*b*c*d^2 + w3010*b*d^3 + w4000*c^4 + w3100*c^3*d + w2200*c^2*d^2 +
w3100*c*d^3 + w4000*d^4;
%%% end python generated code

B = 1-a-c-d;
R1 = -r0-s0-s1;
f_replace = replace(f, [a,b,c,d], [a + t*r0, B + t*R1, c + t*s0, d + t*s1])
h = -replace(jacobian(jacobian(f_replace ,t), t), [t], [0])

corner = replace(f, [a,b,c,d], [1,0,0,0]);
edge = replace(f, [a,b,c,d], [1/2,0,1/2,0]);

Constraintsp0 = [corner == 0, edge == 1/2];
Constraintsp = [];

%%% concavity constraint for Alice:

%% Our set S of feasible inputs is defined by five polynomial inequalities
%% and one equality
%% The five inequalities are a, B, c, d, s0*s1 >= 0
%% Each subset of [5] gives us a ’region polynomial’, like a*B*s0*s1

http://arxiv.org/abs/1310.4716

D. Scheder, S. Tang, and J. Zhang 31:11

%% For technical reasons we only list the products over non-empty subsets:

region_vector = [a, B, c, d, a*B, a*c, a*d, B*c, B*d, c*d, a*B*c, a*B*d, a*c*d,
B*c*d, a*B*c*d, s0*s1, a*s0*s1, B*s0*s1, c*s0*s1, d*s0*s1, a*B*s0*s1,
a*c*s0*s1, a*d*s0*s1, B*c*s0*s1, B*d*s0*s1, c*d*s0*s1, a*B*c*s0*s1,
a*B*d*s0*s1, a*c*d*s0*s1, B*c*d*s0*s1, a*B*c*d*s0*s1];

%% This is simply a list containing the degrees of the polynomials just defined

deg_of_boundaries = [1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6];

%% We now define our polynomails Q_I for each (non-empty) subset I of [5]
%% Each Q_I is in the variables a,c,d,s0, s1, r0:

polyvars = [a,c,d, s0, s1, r0];
boundary_polys = [];
for i=1:length(region_vector)

% Creating the polynomial Q_I
% remember: the degree of Q_I * prod_{i in I} b_i should be at most <degree>,
% and the degree of Q_I must be even

degree_here = max(0,2*floor((degree - deg_of_boundaries(i))/2));

% We ask yalmip to create a new polynomial Q_I
[Q_I, coeff] = polynomial(polyvars, degree_here);
boundary_polys = [boundary_polys; Q_I];

% this Q_I must be SoS, so add a SoS constraint
Constraintsp = [Constraintsp, sos(Q_I)];

% tell yalmip that we created a new bunch of decision variables:
% the coefficients of Q_I
decisionvars = [decisionvars; coeff];

end

% In the paper we had the (not necessarily SoS) polynomial R
% which enters the SoS program as R*(y0*s1 - y1*s0)
% Here, we use c,d instead of y0, y1 and, for clarity
% ’alice_line_poly’ instead of ’R’

[alice_line_poly, alice_line_poly_coeff] = polynomial(polyvars, degree-2);
decisionvars = [decisionvars; alice_line_poly_coeff];

[normalization_poly, normalization_poly_coeff] = polynomial(polyvars, degree-2);
decisionvars = [decisionvars; normalization_poly_coeff];

Constraints = [sos(h - region_vector * boundary_polys ...
- (c*s1 - d*s0) * alice_line_poly ...
- (1 - r0^2 - R1^2 - s0^2 - s1^2) * normalization_poly), Constraintsp];

Constraints = [Constraintsp0, Constraints];

target = replace(f, [a,b,c,d], [1/4,1/4,1/4,1/4]);

ISAAC 2019

31:12 Cryptogenography Upper Bounds via SoS Programming

ops = sdpsettings(’solver’,’sedumi’,’sedumi.eps’,1e-14);

%% finally solving the SoS program

solvesos(Constraints, target, [ops] , decisionvars);

%% assembling the right-hand side of h, i.e., what we call \tilde{h} in the paper

sdpvar Q0_sos_polys Qi_sos_poly sum_poly error_poly error_poly_sym

sum_poly = 0;

Q0_sos_polys = sosd(Constraints(3));
for i=1:length(Q0_sos_polys)

sum_poly = sum_poly + Q0_sos_polys(i)^2;
end

for k=1:length(region_vector)
Qi_sos_polys = sosd(Constraints(k+3));
for i=1:length(Qi_sos_polys)

sum_poly = sum_poly + region_vector(k)*(Qi_sos_polys(i)^2);
end

end

sum_poly = sum_poly ...
+ (c*s1 - d*s0) * replace(alice_line_poly, decisionvars, value(decisionvars))
+ (1 - r0^2 - R1^2 - s0^2 - s1^2) *
replace(normalization_poly, decisionvars, value(decisionvars));

error_poly = sum_poly - replace(h, decisionvars, value(decisionvars));

error_poly_sym = str2sym(sdisplay(error_poly));

syms vec_error vec_sum;

vec_error = coeffs(error_poly_sym);

total_error = 0;
for i=1:length(vec_error)

total_error = total_error + abs(vec_error(i));
end

sdisplay(replace(target,decisionvars,value(decisionvars)))
total_error

toc

	Introduction
	Previous Work
	Our Contribution

	Geometric Formulation
	Sum of Square Programs
	Exploiting Symmetries
	Obvious Optimizations

	Handling Numerical Errors
	Open Questions
	Source Code and Data
	The yalmip Code for Degree 4

