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Abstract
In this paper, we investigate the computational complexity of lattice puzzle, which is one of the
traditional puzzles. A lattice puzzle consists of 2n plates with some slits, and the goal of this puzzle
is to assemble them to form a lattice of size n×n. It has a long history in the puzzle society; however,
there is no known research from the viewpoint of theoretical computer science. This puzzle has
some natural variants, and they characterize representative computational complexity classes in the
class NP. Especially, one of the natural variants gives a characterization of the graph isomorphism
problem. That is, the variant is GI-complete in general. As far as the authors know, this is the first
non-trivial GI-complete problem characterized by a classic puzzle. Like the sliding block puzzles, this
simple puzzle can be used to characterize several representative computational complexity classes.
That is, it gives us new insight of these computational complexity classes.
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1 Introduction

In history of theoretical computer science, some puzzles and games play important roles
for giving reasonable characterization to computational complexity classes. For example,
Conway’s game of life is universal [2], and it essentially has the same computational power of
the Turing machine. Later, “pebble game” was proposed as a classic model that gives some
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32:2 On the Complexity of Lattice Puzzles

complexity classes in a natural way (see, e.g., [6]). The “constraint logic” is a recent model
that succeeds to solve a long standing open problem due to Martin Gardner that asks the
computational complexity of sliding block puzzles [5]. Such puzzles and games have been
giving us some intuitive insight for some computational complexity classes.

Figure 1 Illustration of a lattice puzzle.

Figure 2 The first lattice puzzle invented by T. Betsumiya (crafted by M. Uyematsu).

In this paper, we investigate the lattice puzzle and its variants. Typical one is illustrated
in Figure 1: we are given some plates with slits, and the goal is to assemble them into the
form of a lattice. There are many variants of them. In Japanese puzzle society, they say that
the first one was called “cross block”, and invented by a Japanese puzzle designer, Toshiaki
Betsumiya, in 1992 [1] (see Figure 2). This puzzle consists of ten plates. Each plate has five
slits; three slits have depth 1/2, one slit has depth 1/4, and the last slit has depth 3/4 (we
normalize it to 1 for simplicity). This puzzle has a beautiful mathematical design (

(5
2
)

= 10),
and it is reasonably difficult (it has 20 solutions, however, it is difficult to find one). Since
then, many variants are invented and are on the market.

It is natural to consider two variants of the cross block. First, the slits are on the same
side of a plate, we call it one-sided. We can consider two-sided plates whose slits are on
both sides as Figure 3. In the cross block, when two plates are assembled, there is no gap
at the crossing point. We call it fit. That is, two slits of depth p and q can be assembled
only if p+ q = 1 in the fit model. In the loose model, we permit to assemble when p+ q > 1.
Some readers may think that the two-sided model should be loose; otherwise we may not be
able to assemble/disassemble the plates as Figure 3(b). Actually, the two-sided fit model
was invented in the puzzle society (see Figure 4). In this commercial product, each piece is
made by rubber, and the puzzle itself is in the fit model. However, we can still consider the
problem of assembling/disassembling. Even if the final form is feasible in the loose model, we
may not assemble when the plates are rigid. In this paper, we focus on the problem that asks
whether the assembled form is feasible or not. This assembling problem is another problem,
which is not dealt with in this paper.

We here note that there is an old application of this problem. In the classic Japanese
wood craft, called “kumiki” which means “assembling wood”, there is a tricky method to
combine bars so that they seem to be “impossible” to assemble. Such a kumiki is actually



Y. Kobayashi, K. Suetsugu, H. Tsuiki, and R. Uehara 32:3

(a) (b)

Figure 3 Two-sided lattice puzzle.

Figure 4 Two-sided lattice puzzle with no gap and one depth.

the puzzle which can be seen as the two-sided loose model (Figure 5). This kumiki pattern
is known as “chidori-goshi”, which means “thousand-of-birds lattice”. For example, this craft
can be found at the Kiyomizu-temple in Kyoto, which is one of the most famous temples in
Japan (Figure 6). This kumiki method is too old and traditional to find the inventor1. As a
mark of respect for the inventor, we name this puzzle lattice puzzle.

As seen in Figure 6, we can consider the lattice puzzle of size n×m in general. When
n 6= m, we can distinguish horizontal plates and vertical plates. However, if the lattice is
square of size n× n, we can consider a variant that asks us to partition the given set of 2n
plates into two sets of n plates. We call this variant a square lattice puzzle. We also consider
two variants based on the set of operations we use to solve a puzzle. To obtain a solution,
one needs to order the plates in a sequence in each set. We call this process the permutation
process. One also needs to flip the pieces so that they have correct directions and correct
upsides. Note that each plate can be flipped to change its direction in the one-sided model,
and to change its direction and its upside in the two-sided model. If the puzzle has a hint of
the direction and the upside by, for example, coloring one of the endpoints and one of the
sides of each plate, then one can only permute the pieces. We call this variant permutation
lattice puzzle. If the puzzle has a hint of the order of each set of plates by, for example,
assigning numbers to each set of plates, then one can only flip the pieces. We call this variant
flip lattice puzzle.

1 We found one in a literature published in 1770 at http://www.wul.waseda.ac.jp/kotenseki/html/
i16/i16_00875/index.html.
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Figure 5 Traditional wooden craft in Japan (Kumiki).

Figure 6 Large (im)possible wooden lattice at Kiyomizu temple in Kyoto.

We here summarize the table of our results in Table 1. It is easy to observe that the
lattice puzzle is in the class NP since we can check the feasibility of a given solution in
polynomial time. We show in Section 3 that the one-sided permutation loose model with 3
depths is NP-complete. This implies that the puzzle is NP-complete in general in the most
flexible variant; two-sided, loose, and the number of different depths is not bounded.

On the other hand, we show in Section 4 that when we turn to the one-sided permutation fit
model with 2 depths, this puzzle is GI-complete in general. The graph isomorphism problem
(GI) is a decision problem that, given two graphs, decides whether they are isomorphic or
not. This problem is one of the most well-studied problems in computational complexity and
some related areas, and is believed to be in neither P nor NP-complete. There are several
work to seek problems that are equivalent to GI. A problem is said to be GI-complete if the
problem is as hard as the GI problem for general graphs. (Precisely speaking, a problem
P is GI-complete if and only if the graph isomorphism problem for general graphs can be
reducible to P and vice versa under polynomial time reduction.) As far as the authors know,
there is no known characterization of the GI problem with such a simple puzzle.
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Table 1 Summary of results.

square/
colored one/two sided operations #depths rule complexity note

any one-sided permutation 3 loose NP-complete Theorem 2
colored one-sided permutation 2 fit GI-complete Theorem 3
any one-sided both 3 fit GI-hard Corollary 4

colored one-sided flip unbounded any poly Theorem 5
n× k (k:fixed) any both unbounded any FPT for k Theorem 6

Finally, we show in Section 5 that when we turn to the one-sided flip fit model, the
problem can be reduced to the 2SAT problem, which can be solved in linear time for the size
of the puzzle. We also consider the case that the lattice size is bounded as n× k for a fixed
constant k. In this case, we show that the problem is fixed parameter tractable for k. That
is, this problem can be solved in f(k)p(n) time, where p(n) is a polynomial function of n.

2 Definition of lattice puzzles and preliminaries

We first explain the one-sided model. We assume that each instance of a lattice puzzle P is
given by two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of plates. Each plate in X and Y
is a rectangle of size 1× (m+ 1) and 1× (n+ 1), respectively. Let x be a plate in X. On x,
we have m slits uniformly spaced on the long side. In the one-sided model, we denote the
depth of the ith slit from the left by di(x) with 0 < di(x) < 1 (since the plate is disconnected
if di(x) = 1, and we have no feasible solution if di(x) = 0). We define dj(y) in the same
manner for each y ∈ Y . We distinguish a plate and the one obtained by flipping it, and
denote by flip(x) the plate obtained by flipping x. That is, if n is the number of slits of x,
di(flip(x)) = dn+1−i(x) for every 1 ≤ i ≤ n. We say that two plates x and y fit at point (i, j)
if di(x) + dj(y) = 1, and weakly fit if di(x) + dj(y) ≥ 1.

A solution of the puzzle is an arrangement of the plates in X and Y so that they form
a lattice as shown in Figure 1 and Figure 2. More precisely, a solution is a pair of lists
of plates [x′1, . . . , x′n] and [y′1, . . . , y′m] such that every x′i is x or flip(x) for some different
x ∈ X and every y′j is y or flip(y) for some different y ∈ Y and x′i and y′j (weakly) fit at
(j, i) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. That is, we have dj(x′i) + di(y′j) = 1 in the fit model,
and dj(x′i) + di(y′j) ≥ 1 in the loose model. We consider three different models based on
the operations we can use. The above model is called the all-operations model. In the
permutation model, neither flip(x) nor flip(y) do not appear in the list. In the flip model,
the sets X and Y are ordered from the beginning and we are given two lists [x1, . . . , xn] and
[y1, . . . , ym], and x′i is xi or flip(xi) for 1 ≤ i ≤ n and y′j is yj or flip(yj) for 1 ≤ j ≤ m.

We here note for the special case |X| = |Y | = n. In this case, we cannot distinguish the
plates of X and Y from their shapes. Thus, we can consider a variant of the lattice puzzle
that a set of 2n plates is given and one divides it into two sets X and Y of n plates. We call
this variant an n× n square lattice puzzle. Note that when we simply say an n× n lattice
puzzle, we consider that two sets X and Y of plates are given. In this case, we sometimes
say it is colored (as Figure 5) to emphasis the model.

In the two-sided model, we select one side and call it the positive side and the other
one the negative side. If the ith slit of x is on the negative side, then we define di(x) as
−1 < di(x) < 0 according to the length of the slit. (That is, we do not allow to have two
slits on both sides at the same position.) In this model, we allow two kinds of flip operations.
That is, for a plate x, the plate flip(x) such that di(flip(x)) = dn+1−i(x) for every i and the
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plate sflip(x) such that di(sflip(x)) = −di(x) for every i. We say that two plates x and y fit
at point (i, j) if di(x) + dj(y) = ±1 and weakly fit if |di(x) + dj(y)| ≥ 1. The solution in the
two-sided model can be defined in a similar way.

By default, we consider non-square one-sided all-operations 2-depth fit lattice puzzle and
we omit these adjectives. We use adjectives square, two-sided, permutation, flipping, n-depth,
any number of depth, and loose if they are.

For any given two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|, a bijection
φ : V1 → V2 is said to be an isomorphism when {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2.
When there is an isomorphism between G1 and G2, G1 is isomorphic to G2. The graph
isomorphism problem (GI) is a decision problem that, given two graphs G1 and G2, decides
whether G1 is isomorphic to G2. A problem is graph isomorphism complete (GI-complete) if
the problem is as hard as the graph isomorphism problem on general graphs. (GI-hardness
is defined in the same manner of NP-hardness.) It is known that the graph isomorphism
problem is GI-complete even if the input graphs are bipartite graphs (see, e.g., [7]).

In this paper, we did not give a definition of fixed parameter tractability; see e.g., [3] for
the details. In our context, when an instance of a lattice puzzle P is given by two sets X
and Y with |X| = n and |Y | = k for any fixed positive constant k, we say that the lattice
puzzle P is fixed parameter tractable if there is an algorithm that solves P in f(k)p(n) time,
where f is any function of k, and p is a polynomial function of n.

3 NP-completeness

We first show the following key lemma:

I Lemma 1. The lattice puzzle of size n×m is NP-complete in the loose model with linear
number of depths.

Proof. We reduce the following positive 1-IN-3SAT problem, which is one of the well
known NP-complete problems [4], to one-sided lattice puzzle (hence two-sided lattice puzzle
immediately follows):
Input: A collection of clauses C1, . . . , Cm of variables x1, . . . , xn such that each Cj is a
disjunction of exactly three positive literals.
Question: Is there a truth assignment to the variables occurring so that exactly one literal
is true in each Cj?

We will use n′ = 2n + 1 plates for variables and m′ = 3m + 1 plates for clauses and
reduce the above 1-IN-3SAT problem to the problem of solving an n′ ×m′ lattice puzzle(in
Figure 7, vertical plates are for variables, and horizontal ones are for clauses). There are
two special horizontal plate px and vertical plate pC which are called ID organizers for x
and C, respectively. We first define d1(px) = ε0 and d1(pC) = 1− ε0 for sufficiently small
ε0 > 0. In the following construction, the depth d of all the other slits satisfy ε0 < d < 1− ε0.
Therefore, px and pC should be assembled as shown in Figure 7 at the pivot (1, 1). We let
0 < ε0 < ε1 < · · · < εn < ε′1 < · · · < ε′m < 1/4 for some small distinct values. Then we define
d2(px) = d3(px) = ε1, d4(px) = d5(px) = ε2, . . ., d2i(px) = d2i+1(px) = εi, . . ., d2n(px) =
d2n+1(px) = εn. For these slits, we prepare 2n variable plates x+

1 , x
−
1 , x

+
2 , x

−
2 , . . . , x

+
n , x

−
n . For

each i with 1 ≤ i ≤ n, we let d1(x+
i ) = d1(x−i ) = 1− εi. As we will see, the depths of other

vertical slits are 1/4, 1/2, or 3/4. Therefore, it is easy to see that each pair of variable plates
x+
i and x−i should be assembled at points (2i, 1) and (2i+ 1, 1) (or (2i+ 1, 1) and (2i, 1)). In

a similar way for the plate pC with small values ε′1, . . . , ε′m, the ID organizer for C organizes
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pivot
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ID organizer for x
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-
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+
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1

2
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2

3

C
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1

C
3

1

C
2

2

C
3

2

C
1

3

C
3

3

2m unused plates for C

...

...

C
2

m

...

C
1

m

C
3

m

m plates for C

Figure 7 Reduction from 1-IN-3SAT to lattice puzzle.

the clause plates as follows. We first define d2(pC) = ε′1, d3(pC) = ε′2, . . ., dm+1(pC) = ε′m.
Then we further define dm+2(pC) = dm+3(pC) = ε′1, dm+4(pC) = dm+5(pC) = ε′2, . . .,
dm+2j(pC) = dm+2j+1(pC) = ε′j , . . ., d3m(pC) = d3m+1(pC) = ε′m. For these slits, we
prepare 3m clause plates C1

j , C
2
j , C

3
j (1 ≤ j ≤ m). For each j with 1 ≤ j ≤ m, we let

d1(C1
j ) = d1(C2

j ) = d1(C3
j ) = 1− ε′j . Thus, one of C1

j , C
2
j , C

3
j is assembled at (1, j + 1) and

the other two plates are assembled at (1,m+ 2j) and (1,m+ 2j + 1).
From the construction, we can observe that all ordering of these plates are fixed except

(1) we can exchange x+
i and x−i , and (2) we can exchange C1

j , C2
j , and C3

j . Now we give the
assignments of depths for each x+

i , x
−
i , C1

j , C2
j , and C3

j .
First, we define depths of variable plates x+

i and x−i . As depth, we use three values
3/4, 1/4, and 1/2. We set dj(x) = 3/4 for all variable plates x and j > m+ 1. Note that a
slit with depth 3/4 matches with any slit in the loose model. Therefore, for each 1 ≤ j ≤ m,
one can put any two (unused) clause plates Ckj (k ∈ {1, 2, 3}) at some jth row for j > m+ 1
as shown in the lower part of Figure 7.

For each 1 ≤ j ≤ m, suppose that the clause Cj contains variables xi1 , xi2 and xi3 . Then
we set dj+1(x+

ik
) = 3/4 for each k ∈ {1, 2, 3}. The depth of other slits of variable plates are

set to 1/2.
Next, we define depths of clause plates. Suppose that Cj contains variables xi1 , xi2 , and

xi3 . Let s+
k = 2ik and s−k = 2ik + 1, which are the two indices of the rows at which x+

ik
and

x−ik can be placed. We assign depth 1/4 to the slits at the following positions of C1
j , C

2
j , and

ISAAC 2019
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C3
j . On C1

j , we assign at positions s+
1 , s

−
2 , and s

−
3 . On C2

j , we assign at positions s+
2 , s

−
3 ,

and s−1 . On C3
j , we assign at positions s+

3 , s
−
1 , and s−2 . At all the other positions, of clause

plates we assign depth 1/2.
Suppose that a solution of the original instance of the 1-IN-3SAT is given. If xi is true,

then we set the plate x+
i at position 2i and the plate x−i at position 2i+ 1. If xi is false, we

exchange these two plates. Then, for each 1 ≤ j ≤ m, one can observe that exactly one of
C1
j , C2

j , or C3
j can be placed on the (j + 1)st line, and we put the other two plates on the

lines with indices greater than m+ 1. Thus, we obtain a solution of the lattice puzzle. This
is a one-to-one correspondence, and one can construct a solution of the 1-IN-3SAT problem
from a solution of this puzzle. J

In the proof of Lemma 1, except ID organizers for x and C, we need depths 1/4, 1/2,
and 3/4. Moreover, flipping is not required in the proof. These facts lead us to the following
stronger result.

I Theorem 2. The lattice puzzle of size n×m and the square lattice puzzle of size n×n are
NP-complete in the loose model with 3 depths even if one-sided model and only permutation
is permitted.

Proof. It is enough to show that we can design a “frame” surrounding the puzzle in the
proof of Lemma 1. A brief sketch is given in right down in Figure 8. The gray area of the
figure forms a frame, which plays ID organizers in the proof of Lemma 1. The magnification
of the left up corner of the frame is depicted at left up in Figure 8. Let n′ = max{2n, 3m}.
Then the frame F is the set of 4n′ plates. For each i = 1, 2, . . . , n′, we have two copies of fi
and two copies of f ′i . The set of fis plays the role of the ID organizer of C, and the set of
f ′is plays the rule of the ID organizer of x.

In Figure 8, each small circle on fi corresponds to depth 3/4, and each small circle on f ′i
corresponds to depth 1/4. The other intersection of fi and f ′j , the depth is 1/2.

We apply the same manner for each intersection between fi and Cjk and each intersection
between f ′i and x+

j or x−j . Precisely, for example, f2 has depth 3/4 at the points corresponding
to C1

1 , C2
1 , and C3

1 , and has depth 1/2 at the other points. In general, fi+1 has depth 3/4 at
the points corresponding to C1

i , C2
i , and C3

i . Similarly, each f ′i+1 has depth 1/4 at the points
corresponding to x+

i and x−i , and has depth 1/2 at the other points. The corresponding
depths of the plates xj and Cj are trivial.

We note that they fit without any gap in the gray area of the figure. Since there is no
gap at the gray area, we can observe that the shape of the frame is uniquely formed by these
4n′ plates.

Therefore, combining the reduction in Lemma 1, we prove that the lattice puzzle of size
n×m is NP-complete in the loose model with 3 depths.

It is easy to see that the reductions work even in one-sided model and only permutation
is permitted. Addition of extra plates to make the frame square is trivial. J

4 GI-completeness

In this section, we show the following theorem:

I Theorem 3. The permutation lattice puzzle is GI-complete.

Proof. We show a correspondence between lattice puzzles and graph isomorphism problems
of bipartite graphs. Let G1 = (A1, B1, E1) and G2 = (A2, B2, E2) be two bipartite graphs
with |A1| = |A2| = n and |B1| = |B2| = m. Let A1 = {a1, a2, . . . , an}, B1 = {b1, b2, . . . , bm},
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ID organizers for C

ID organizers for x

C
1

1

C
1

2

C
2

3

f1 f2 f3 f4 x
+

2x
-

2 ...x
+

1 x
-

1

...

fn’

f’1

f’2

f’3

f’4

fn’

...

... ...

Figure 8 Framing of the lattice puzzle in Lemma 1.

A2 = {a′1, a′2, . . . , a′n} and B2 = {b′1, b′2, . . . , b′m}. From these graphs, we construct a lattice
puzzle as follows. The set X = {x1, . . . , xn} of plates is constructed from G1: the plate xi of
size 1× (m+ 1) corresponds to ai ∈ A1 and dj(xi) = 2/3 if {ai, bj} is in E1, and dj(xi) = 1/3
otherwise. The set Y = {y1, . . . , ym} of plates is constructed from G2: the plate yj of size
1 × (n + 1) corresponds to b′j ∈ B2 and di(yj) = 1/3 if {a′i, b′j} is in E2, and di(yj) = 2/3
otherwise.

Now we check that a graph isomorphism gives us a solution of the puzzle, and vice
versa. Let φA and φB be permutations on {1, . . . , n} and {1, . . . ,m}, respectively. φA
induces a bijection ai 7→ a′φA(i) from A1 to A2, and φB induces a bijection bj 7→ b′φB(i)
from B1 to B2. They form a graph isomorphism from G1 to G2 if and only if {ai, bj} ∈
E1 ⇔ {a′φA(i), b

′
φB(j)} ∈ E2 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. On the other hand, φA induces

a permutation on X such that the result of permutation X ′ = [x′1, . . . , x′n] is given as
x′i = xφ−1

A
(i). In the same way, φ−1

B induces a permutation on Y such that the result of
permutation Y ′ = [y′1, . . . , y′m] is given as y′j = yφB(j).

Now, we look at the point (i, j) where the plates x′i = xφ−1
A

(i) and y′j = yφB(j) are
crossing. On the plate x′i, dj(x′i) = 2/3 if and only if {aφ−1

A
(i), bj} ∈ E1 and on the plate y′j ,

di(y′j) = 1/3 if and only if {a′i, b′φB(j)} ∈ E2. Therefore, X ′ and Y ′ form a solution of the

ISAAC 2019



32:10 On the Complexity of Lattice Puzzles

puzzle if and only if {aφ−1
A

(i), bj} ∈ E1 ⇔ {a′i, b′φB(j)} ∈ E2 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let
i′ = φ−1

A (i). Then, it is equivalent to {ai′ , bj} ∈ E1 ⇔ {a′φA(i), b
′
φB(j)} ∈ E2 for 1 ≤ i′ ≤ n

and 1 ≤ j ≤ m. That is, G1 and G2 are isomorphic. J

I Corollary 4.
(1) The square lattice puzzle is GI-complete.
(2) The square permutation lattice puzzle is GI-complete.

Proof. We reduce a colored permutation puzzle of size n × n to a square all-operations
puzzle of size (n + 4) × (n + 4). We denote by 0 a slot with depth 1/3, and by 1 a
slot with depth 2/3. Suppose that an n × n non-square lattice puzzle with the lists of
plates X = [x1, . . . , xn], Y = [y1, . . . , yn] is given. From X and Y , we form a new set
Z̃ = {x̃1, . . . , x̃n, ỹ1, . . . , ỹn, z̃1, . . . , z̃8} of plates with n+ 4 slots. The sequences of slots are
given as follows. Here, x is the sequence of slots of x.

x̃i = 1 0 xi 0 0 (1 ≤ i ≤ n)
ỹi = 0 1 yi 0 0 (1 ≤ i ≤ n)
z̃i = 1 1 1n 0 0 (i = 1, 2, 3, 4)
z̃i = 1 0 1n 0 1 (i = 5, 6)
z̃i = 0 1 0n 1 0 (i = 7, 8)

Let [x′1, . . . , x′n+4] and [y′1, . . . , y′n+4] be the lists of plates which form a solution of this
puzzle. We first study x′1, x′2, x′n+3, x

′
n+4 and y′1, y′2, y′n+3, y

′
n+4. First note that these plates

cross at the four 2× 2 corners, and each place needs to contain at least one 1-slot. It means
we need, in all, 16 1-slots at the positions 1, 2, n+ 3, n+ 4 of the 8 plates. Therefore, these
8 plates must be zi (1 ≤ i ≤ 8). One can see that [x′1, x′2, x′n+3, x

′
n+4] = [z1, z7,flip(z2), z5]

and [y′1, y′2, y′n+3, y
′
n+4] = [z8,flip(z3), z6, z4] form a solution. In this case, for each 3 ≤

j ≤ n + 2, the jth slots of x′1, x′2, x′n+3, x
′
n+4 form the sequence 0 1 1 1, and those of

y′1, y
′
2, y
′
n+3, y

′
n+4 form the sequence 1 0 1 1. There are other possibilities of the assignments

of x′1, x′2, x′n+3, x
′
n+4, y

′
1, y
′
2, y
′
n+3, y

′
n+4. However, one can see that, in all of them, we have

the same sequences 0 1 1 1 and 1 0 1 1 or their rotation at these slots. It means that
{x′i | 3 ≤ i ≤ n + 2} must be {x̃i | 1 ≤ i ≤ n} and {y′i | 3 ≤ i ≤ n + 2} must be
{ỹi | 1 ≤ i ≤ n}. Note that x̃i and ỹi cannot be flipped. Therefore, there is a correspondence
between solutions of the original non-square permutation puzzle of size n×n and this square
all-operations puzzle of size (n+ 2)× (n+ 2). J

5 Polynomial time algorithms

In this section, we show two variants that can be solved in polynomial time.

5.1 Fixed ordering case
In this variant, we assume that the place of each plate is fixed. That is, the lattice of size
n×m is fixed, and each plate can only be flipped. In such a restricted case, we still have
2n+m possible cases. However, we can solve this variant in linear time:

I Theorem 5. The lattice puzzle of size n×m can be solved in O(nm) time in the flip fit
model with 2 depths2.

2 The modification of the number of depths from 2 to any positive integer is straightforward and omitted
here.
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Proof. Without loss of generality, the set X = {x1, . . . , xn} of n plates with m slits and the
set Y = {y1, . . . , ym} of m plates with n slits are given, their positions are given by their
indices, and the depth of each slit is 1/3 or 2/3. We reduce this puzzle to the 2SAT problem,
which can be solved in linear time.

From the set X of n plates, we define a Boolean matrix A of size n × m which may
contain Boolean variables a1, . . . , an. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, we define

Ai,j =


T if dj(xi) = dm−j+1(xi) = 1/3
F if dj(xi) = dm−j+1(xi) = 2/3
ai if dj(xi) = 1/3 and dm−j+1(xi) = 2/3
āi if dj(xi) = 2/3 and dm−j+1(xi) = 1/3.

The variable ai represents the direction of the ith plate. Similarly, the matrix B is defined
from the set Y of m plates as

Bi,j =


T if di(yj) = dn−i+1(yj) = 2/3
F if di(yj) = dn−i+1(yj) = 1/3
bj if di(yj) = 2/3 and dn−i+1(yj) = 1/3
b̄j if di(yj) = 1/3 and dn−i+1(yj) = 2/3,

for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, where b1, . . . , bm are Boolean variables. Observe that the
plates xi and yj can fit at (i, j) if and only if Ai,j = Bi,j .

Now we solve the assignment problem for these variables. This condition can be represen-
ted by two clauses as (αji ∧ β

j
i ) ∨ (ᾱji ∧ β̄

j
i ), where α

j
i and βji are the literals appearing in

Ai,j and Bi,j , respectively. We consider the 2-CNF formula obtained as their conjunction.
Then, this puzzle is solvable if and only if there is a satisfying assignment for this formula.

Suppose that it is satisfied with a variable assignment to a1, . . . , an, b1, . . . , bm. We
obtain a solution of the puzzle with the following procedure: If ai = F , then we flip xi for
i = 1, . . . , n. If bj = F , then we flip yj for j = 1, . . . ,m. Since the 2SAT problem can be
solved in polynomial time, Theorem 5 follows. J

5.2 Fixed parameter tractable algorithm
In this variant, we consider the lattice of size n× k for a fixed constant k. First, we mention
that the fit model with one-sided plates is easy to solve by checking all permutations of k
plates of size 1 × (n + 1). Considering the flipping, we have k!2k ways to arrange these k
plates. Once we fix one arrangement of k plates, checking of feasibility is straightforward in
O(kn2) time. Therefore, the algorithm runs in O(k!2kkn2) time. For the two-sided plates,
the number of possible permutations is k!4k, and the checking of feasibility can be done in
O(kn2) time. Therefore, we can solve the lattice puzzle in O(k!4kkn2) time. We extend this
idea to the loose model:

I Theorem 6. The lattice puzzle of size n × k in the loose model can be solved by a fixed
parameter tractable algorithm with parameter k.

Proof. We first consider the one-sided plates. The basic idea is similar to the algorithm for
the fit model: the algorithm checks all k!2k permutations. Now we fix a permutation. We have
n possible places for n plates. Thus, we construct a bipartite graph G = (X,Y,E) as follows.
Let X = {x1, x2, . . . , xn} be the set of n plates of size 1× (k + 1), and Y = {y1, y2, . . . , yn}
be the places produced by k plates of size 1 × (n + 1). E consists of an edge {xi, yj} if
and only if the plate xi can be assembled to the place yj . The construction of the graph G
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takes O(kn2) time. Then, it is easy to see that a solution of the lattice puzzle corresponds
to a perfect matching on G. It is known that the perfect matching problem on a bipartite
graph can be solved in polynomial time p(|X|+ |Y |) = O(min{

√
|X|+ |Y ||E|, (|X|+ |Y |)ω}),

where ω < 2.373 is the matrix multiplication exponent.
Therefore, the lattice puzzle can be solved in O(k!2k(kn2 + p(n+ k))) time. When the

plates are two-sided, in the same way, we can solve it in O(k!4k(kn2 + p(n+ k))) time. J

6 Concluding remarks

In this paper, we propose a general framework of simple lattice puzzles. Using this framework,
we can characterize some representative computational complexity classes. Especially, we
can characterize the problems in NP-complete and GI-complete. As far as the authors know,
there is no such a simple framework.

Although we show several results, we still have many unsolved problems. Especially,
computational complexity of the simplest problem on 2n plates of size 1 × (n + 1) in the
one-sided fit model is open. By Theorems 2 and 3, it seems that this problem exists between
the NP-complete problem and the GI-complete problem.

We also mention that we focus on the problems that ask if a given set of plates has a
feasible state or not in this paper. That is, we do not ask if the feasible state can be assembled
even if each plate is rigid. Like the sliding block puzzles, allowing the “movement of pieces”,
the assembling puzzle of rigid plates can be PSPACE-complete. Is there a variant of the
lattice puzzle with movement which gives us a characterization of PSPACE-completeness?
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