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Abstract
For a set D of documents and a positive integer d, a string w is said to be d-left-right maximal,
if (1) w occurs in at least d documents in D, and (2) any proper superstring of w occurs in less
than d documents. The left-right-maximal generic words problem is, given a set D of documents, to
preprocess D so that for any string p and for any positive integer d, all the superstrings of p that
are d-left-right maximal can be answered quickly. In this paper, we present an O(n log m) space
data structure (in words) which answers queries in O(|p|+ o log log m) time, where n is the total
length of documents in D, m is the number of documents in D and o is the number of outputs.
Our solution improves the previous one by Nishimoto et al. (PSC 2015), which uses an O(n log n)
space data structure answering queries in O(|p|+ r · log n + o · log2 n) time, where r is the number
of right-extensions q of p occurring in at least d documents such that any proper right extension of
q occurs in less than d documents.
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1 Introduction

String Data Mining is an important research area which has received special attention. One
of the fundamental tasks in this area is the frequent pattern mining, the aim of which is to
find patterns occurring in at least d documents in D for a given collection D of documents
and a given threshold d, where the patterns are drawn from a fixed hypothesis space. The
task is useful not only in extracting patterns which characterize the documents in D, but also
in enumerating candidates for the most classificatory pattern that separates two given sets of
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40:2 An Improved Data Structure for Left-Right Maximal Generic Words Problem

strings. The hypothesis space varies depending upon users’ particular interest or purpose, and
is ranging from the substring patterns to the VLDC patterns. Frequent substring patterns
are often referred to as generic words. The generic words mining problem (or the frequent
substring pattern mining problem) has a wide variety of applications, e.g., Computational
Biology, Text mining, and Text Classification [5, 2, 3].

One interesting variant of the generic words mining problem is the right maximal generic
words problem, formulated by Kucherov et al. [5]. In this variant, a pattern p is given as
additional input, which limits the outputs to the right extensions of p. Moreover, the outputs
are limited to the maximal ones. Formally, the problem is to preprocess D so that, for any
pattern p and for any threshold d, all right extensions of p that are d-right maximal can be
computed efficiently, where a string w is said to be d-right maximal if x occurs in at least d
documents but xa occurs in less than d documents for any character a. They presented in
[5] an O(n)-size data structure which answers queries in O(|p|+ r) time, where n is the total
length of strings in D and r is the number of outputs. Later, Biswas et al. [2] developed a
succinct data structure of size n log |Σ| + o(n log |Σ|) + O(n) bits of space, which answers
queries in O(|p|+ log logn+ r) time.

As a generalization, Nishimoto et al. [7] defined the left-right-maximal generic word
problem. In this problem, all superstrings of p that are d-left-right maximal should be
answered, where a string w is said to be d-left-right maximal if x has a document frequency
≥ d but xa and ax respectively have a document frequency < d for any character a.

One naive solution to this problem is to compute the sets Md of d-left-right maximal
strings for d = 1, . . . ,m, where m is the number of documents in D and then apply the
optimal algorithm of Muthukrishnan [6] for the document listing problem, regarding Md as
input document collection. The query time is O(|p| + o) time, where o is the number of
outputs. The space requirement is O(n2 logm) since the Muthukrishnan algorithm uses the
(generalized) suffix tree of input document collection and the size of suffix tree for Md can be
shown to be O(n2/d) for every d = 1, . . . ,m. The O(n2 logm) space requirement is, however,
impractical when dealing with a large-scale document collection.

In [7] Nishomoto et al. presented an O(n logn)-space data structure which answers queries
in O(|p| + r logn + o log2 n) time, where r is the number of d-right-maximal strings that
subsume p as a prefix. The factor O(r logn) is for computing the d-right-maximal right
extensions of p, which are required for computing d-left-right-maximal extensions of p in
their method.

In this paper, we address the left-right-maximal generic word problem and propose an
O(n logm)-space data structure with query time O(|p| + o log logm). The data structure
outperforms the previous work by Nishimoto et al. [7] both in the query time and in the
space requirement.

Our method uses the suffix trees of Md for d = 1, . . . ,m. For a string set S = {w1, . . . , w`},
Usually, “the suffix tree of S” means the suffix tree of {w1$1, . . . , w`$`} with ` distinct
endmarkers $1, . . . , $`, or the suffix tree of S$ = {w1$, . . . , w`$} with a single endmarker $.
In both cases, the size of suffix tree is proportional to the total length of the strings in S.
The total size of suffix trees of Md$ for d = 1, . . . ,m is O(nm), where n is the total length
of D. Our idea in reducing the space requirement is to replace the suffix tree of Md$ with
the suffix tree of Md. Removing the endmarker successfully reduces the O(nm) total size of
the suffix trees to O(n logm), with a small sacrifice of query time.
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2 Preliminaries

2.1 Strings
Let Σ be an alphabet, that is, a nonempty, finite set of characters. Throughout this paper,
we assume that Σ is an ordered alphabet of constant size. A string over Σ is a finite sequence
of characters from Σ. Let Σ∗ denote the set of strings over Σ. The length of a string w is the
number of characters in w and denoted by |w|. The string of length 0 is called the empty
string and denoted by ε. Let Σ+ = Σ∗ \ {ε}. The i-th character of a string w is denoted
by w[i] for 1 ≤ i ≤ |w|. Strings x, y, and, z are, respectively, said to be a prefix, substring,
and suffix of string w = xyz. The substring of a string w that begins at position i and ends
at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. That is, w[i..j] = w[i] · · ·w[j]. For
convenience, let w[i..j] = ε for i > j. We use w[..j] and w[i..] as abbreviations of w[1..j]
and w[i..|w|]. Let Pre(w), Sub(w) and Suf (w) denote the sets of prefixes, substrings, and
suffixes of a string w, respectively. Let Pre(S) =

⋃
w∈S Pre(w), Sub(S) =

⋃
w∈S Sub(w) and

Suf (S) =
⋃

w∈S Suf (w) for any set S of strings. The reversal of a string w, denoted by wR,
is defined to be w[|w|] . . . w[1]. Let SR = {wR | w ∈ S} for any set S of strings.

The longest repeating suffix of a string x is the longest suffix of x that occurs elsewhere
in x. Let LRS(x) denote the length of the longest repeating suffix of x. We note that any
suffix of x longer than LRS(x) occurs only once in x.

2.2 d-left-right maximality of strings
Let D be a set of documents (strings). The document frequency of a string x in D, denoted
by df D(x), is defined to be the number of documents in D that contain x as a substring. We
write df (x) instead of df D(x) when D is clear from the context.

A string x is said to be d-left maximal w.r.t. D if df (x) ≥ d and df (ax) < d for all a ∈ Σ,
and said to be d-right maximal w.r.t. D if df (x) ≥ d and df (xa) < d for all a ∈ Σ. A string
x is said to be d-left-right maximal w.r.t. D if it is d-left maximal and d-right maximal w.r.t.
D. Let Md denote the sets of d-left-right maximal strings w.r.t. D.

I Example 1. For D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, the sets of
d-left-right maximal strings for d = 1, 2, 3, 4 are as follows: M1 = D, M2 = {aaabaab, aabab,
abaaba, ababb, abbba}, M3 = {aaba, abaab, abb, bba} and M4 = {aaba, baa}.

I Lemma 2 ([5]). For any set D of strings with total length n, the number of d-right maximal
strings w.r.t. D is O(n/d).

I Lemma 3. For any string y the following statements hold.
1. Let z be the shortest string such that yz ∈ Suf (Md). If xyz ∈ Md for some string x, then

xy is d-left maximal.
2. Let x be the shortest string such that xy ∈ Pre(Md). If xyz ∈ Md for some string z, then

yz is d-right maximal.

Proof. It suffices to give proof only for the first statement. Suppose to the contrary that
xy is not d-left maximal. Then, df (xy) ≥ df (xyz) ≥ d, and there exists some α ∈ Σ+ such
that αxy is d-left maximal. Since xyz is d-maximal, df (αxyz) < d. Furthermore, since
df (αxy) ≥ d, there exists a prefix z′ of z such that αxyz′ is d-maximal and |z′| < |z|. This
implies yz′ ∈ Suf (Md) and contradicts that z is the shortest such string. Therefore, xy must
be d-left maximal. J
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2.3 Suffix trees
Let S = {w1, . . . , w`} be a set of nonempty strings with total length n. The suffix tree [8]
of S, denoted by ST (S), is a path-compressed trie which represents all suffixes of S. More
formally, ST (S) is an edge-labeled rooted tree such that (1) Every internal node is branching;
(2) The out-going edges of every internal node begin with mutually distinct characters; (3)
Each edge is labeled by a non-empty substring of S; (4) For each suffix s of S, there is a
unique path from the root which spells out s and the path possibly ends on an edge; (5) Each
path from the root to a leaf spells out a suffix of S. It follows from the definition of ST (S)
that the numbers of nodes and edges in ST (S) are O(n), respectively. By representing every
edge label x by a triple (i, j, k) of integers such that x = wk[i..j], ST (S) can be represented
in O(n) space. The size of suffix tree ST(S) is defined to be the number of nodes and is
denoted by |ST (S)|.

A node v of ST (S) is said to represent a string x if the path from the root to v spells out
x. For a substring x of S, the locus of x in ST (S) is defined to be the highest node v that
represents a right extension of x. A string x is said to be explicit in ST (S) if there exists a
node v of ST (S) that represents x and implicit otherwise.

In this paper, we properly use the suffix trees of the following three types to suit its use.
1. ST (S) where S = {w1$1, . . . , w`$`} and $1, . . . , $` are mutually distinct endmarkers not

in Σ.
2. ST (S$) where $ is an endmarker not in Σ.
3. ST (S) without endmarker.
The above suffix trees are all capable of determining whether x ∈ Sub(S) for any x ∈ Σ+.
ST (S) cannot distinguish the elements of Suf (S) from those of Sub(S) whereas ST (S$) and
ST(S) can determine whether x ∈ Suf (S) for any x ∈ Sub(S). In addition, ST(S) can
determine the set of indices k such that x ∈ Suf (wk). It is easy to see that:

I Lemma 4. |ST (S)| ≥ |ST (S$)| ≥ |ST (S)| for any set S of strings.

2.4 Tools
Let x be a fixed string over A = {1, . . . , σ}. The Rank query rankx(a, i) returns the number
of occurrences of a ∈ A in the prefix x[..i] of x, and the Select query selectx(a, j) returns the
position of j-th occurrence of a ∈ A in x.

I Lemma 5 ([4]). There is an O(|x|) space data structure that answers Rank/Select queries
in O(log log σ) time.

Let T be an ordered tree with n nodes and with function val that maps the nodes to the
integers. The find-less-than (FLT) query on tree T is, given a threshold τ and a node v of T ,
to enumerate the descendants u of v with val(u) < τ .

I Lemma 6. We can build from T an O(n) space data structure in O(n) time that answers
FLT queries in O(out) time, where out is the number of outputs.

Proof. Let v1, . . . , vn be the nodes T in the preorder. Let B be an array such that B[i] =
val(vi) for all i ∈ [1..n]. Then, the problem of FLT queries on tree can be reduced to the
problem of FLT queries on array B defined as follows:

Given a threshold τ and a subinterval [i..j] of [1..n], enumerate the indices k in [i..j]
such that val(B[k]) < τ .

FLT queries on array B of size n can be answered in linear time proportional to the number
of outputs, by repeated use of the Range Minimum Query (see [6]). J
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2.5 Computation model
Our model of computation is the word RAM: We shall assume that the computer word size is
at least dlog2 ne, and hence, standard operations on values representing lengths and positions
of strings can be manipulated in constant time. Space complexities will be determined by
the number of computer words (not bits).

3 Main Result and Algorithm Outline

3.1 Main result
Our problem is formulated as follows.

I Problem 7.
To-preprocess: A subset D = {w1, . . . , wm} of Σ+.
Query: A string p ∈ Σ+ and an integer d ∈ [1..m].
Answer: The strings in Σ∗pΣ∗ ∩Md.

One naive solution to the problem would be to apply the optimal algorithm of Muthukrish-
nan et al. [6] for the document listing problem regarding Md as input document collec-
tion. This solution requires space proportional to the total size of suffix trees ST(Md) for
d = 1, . . .m.

I Lemma 8. The suffix trees ST (Md$) and ST (Md) are of size O(n) for any d = 1, . . . ,m,
and the suffix tree ST (Md) is of size O(n2/d) for any d = 1, . . . ,m.

Proof. First, we show that ST(Md$) has O(n) leaves. Let v be any leaf of ST(Md$), and
let x$ be the string represented by v. There is a string α such that αx ∈ Md. Assume, for a
contradiction, that x is implicit in ST(D). Then, there uniquely exists a character a such
that every occurrence of x in the strings of D is followed by a. This contradicts αx ∈ Md.
Hence x is explicit in ST(D). The number of leaves of ST(Md$) is not greater than the
number of nodes of ST (D), which is O(n). By Lemma 4, ST (Md$) and ST (Md) are of size
O(n). Next, we prove that ST(Md) has O(n2/d) leaves. Let v be any leaf of ST(Md), and
let x$i be the string represented by v. As the previous discussion, x is explicit in ST(D).
There are |Md| endmarkers $j in Md, and by Lemma 2 we have |Md| = O(n/d). Hence the
number of leaves of ST (Md) is not greater than O(n/d) times the number of nodes of ST (D),
which is O(n2/d). J

The naive solution answers queries in O(|p|+ o) time using O(n2 logm) space, where o is the
number of outputs. The O(n2 logm) space requirement is, however, impractical for dealing
with a large-scale document set.

Our solution reduces the O(n2 logm) space requirement to O(n logm) with a little sacrifice
in query response time.

I Theorem 9. There exists an O(n logm) space data structure for Problem 7 which answers
queries in O(|p|+ o log logm) time, where o is the number of outputs.

3.2 Algorithm outline
Our task is, given a string p ∈ Σ+, to enumerate the strings αpβ in Md with α, β ∈ Σ∗.
One solution would be to enumerate the strings αp in Pre(Md) with α ∈ Σ∗, and then, for
each αp enumerate the strings αpβ in Md with β ∈ Σ∗. The resulting enumeration, however,

ISAAC 2019
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contains duplicates if there is some string in Md containing p more than once. Consider the
string abaaba which contains p = ab twice in Example 10. The strings ab (α = ε) and abaab
(α = aba) appear in the enumeration of αp, and therefore the string abaaba appears twice
in the enumeration of αpβ.

I Example 10. Let D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d = 2 and
p = ab. Then M2 is {aaabaab, aabab, abaaba, ababb, abbba} and the answer is {aaabaab,
aabab, abaaba, ababb, abbba}. (1) Σ∗p ∩ Pre(Md) = {aaab, aaabaab, aab, aabab, ab, abaab,
abab}. (2) Their d-left-right-maximal extensions are {aaabaab}, {aaabaab}, {aabab},
{aabab}, {abaaba, ababb, abbba}, {abaaba}, {ababb}, respectively. (3) The union of these
string sets is {aaabaab, aabab, abaaba, ababb, abbba}, which coincides with the answer.

In order to avoid such duplicates in enumeration, we put a restriction on the enumeration
of the strings αp ∈ Pre(Md). That is, we enumerate the strings αp ∈ Pre(Md) satisfying
the condition that αp contains p just once, which can be replaced with LRS(αp) < |p|. The
outline of our algorithm is as follows:
Step 1. Enumerate the strings αp such that α ∈ Σ∗, αp ∈ Pre(Md) and LRS(αp) < |p|.
Step 2. For each string αp obtained in Step 1, enumerate the strings αpβ such that β ∈ Σ∗

and αpβ ∈ Md.

I Example 11. Let D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d = 2 and
p = ab. Then M2 is {aaabaab, aabab, abaaba, ababb, abbba} and the answer is {aaabaab,
aabab, abaaba, ababb, abbba}. (1) Σ∗p ∩ Pre(Md) = {aaab, aaabaab, aab, aabab, ab, abaab,
abab}. (2) Of the seven strings, the three strings aaab, aab, ab satisfy the condition
LRS(x) < |p|. Their d-right extensions are {aaabaab}, {aabab}, {abaaba, ababb, abbba},
respectively. These sets are mutually disjoint. (3) The union of the disjoint sets is
{aaabaab, aabab, abaaba, ababb, abbba}, which coincides with the answer (see Figure 1).

!"!"# #$%$&%& '()aaab*(aaabaab*(aab*(aabab*(ab*(abaab*(abab+

&% ')aaabaab*(aabab*(abaaba*(ababb*(abbba+*(! '(ab

!"!!" # &% ')aaabaab*(aabab*(abaaba*(ababb*(abbba+

)aaabaab+*()aabab+*()abaaba*(ababb*(abbba+

,-./0(120134-53

63-53

Figure 1 Illustration of Example 11.

4 Simplified Solution

For the sake of simplicity in presentation, we here present a simplified version of our algorithm
using an O(nm) space data structure which answers queries in O(|p|+ o) time, where o is the
number of outputs. How to improve the data structure will be described in the next section.

Basically, we represent substrings of Md as their loci in ST (Md). We note that although
the strings αp in Step 1 may be represented as implicit nodes of ST(Md), using their loci
does not affect the result of Step 2. The algorithm outline can then be rewritten as follows.
Step 1. Enumerate the loci v of αp in ST(Md) such that α ∈ Σ∗, αp ∈ Pre(Md) and

LRS(αp) < |p|.
Step 2. For each locus v obtained in Step 1, enumerate the loci of xβ in ST (Md) such that

β ∈ Σ∗ and xβ ∈ Md, where x is the string represented by v in ST (Md).
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4.1 Implementation of Step 1

We use the suffix trees ST (Md
R$) for d = 1, . . . ,m. We note that there is a natural one-to-one

correspondence between the strings x in Pre(Md) and the leaves of ST (Md
R$) representing

xR$. We also note that for any p ∈ Σ+, the strings in Pre(Md) ∩ Σ∗p correspond to the
leaves of the subtree rooted at the locus v of pR in ST(Md

R$). Of the leaves representing
xR$, we have to select those satisfying LRS(x) < |p|.

In the running example, the leaves of the subtree rooted at the locus of pR = ba in
ST (M2

R$) represent the strings ba$, baa$, baaa$, baaba$, baabaaaa$, baba$, babaa$ (see
Figure 2). Of the seven strings of the form xR$, the three strings ba$, baa$, baaa$ satisfy
the condition LRS(x) < |p|.

Define the function val from the nodes of ST (Md
R$) to the integers by: For any node u

of ST(Md
R$), let val(u) = LRS(x) if u is a leaf of ST(Md

R$), and ∞ otherwise, where x
is the string such that u represents xR. By applying the FLT query technique, mentioned
in Section 2.4, to the tree ST(Md

R$) with val, we can compute the leaves of ST(Md
R$)

representing (αp)R$ such that α ∈ Σ∗, αp ∈ Pre(Md) and LRS(αp) < |p|. From such a leaf,
we can obtain the locus of αp in ST (Md) in constant time by keeping pointers from the nodes
u of ST (Md

R$) to the loci of x in ST (Md), where x is the string such that xR is represented
by u in ST (Md

R$).

4.2 Implementation of Step 2

We note that the locus of any string in Md is a leaf of ST (Md) (see Figure 3). The outputs
of Step 2 are thus the leaves u of the subtree rooted at v representing strings in Md. Define
the function val from the nodes of ST(Md) to the integers by: For any node u of ST(Md),
let val(u) = 0 if u is a leaf and represents some string in Md, and 1 otherwise. We again
apply the FLT query technique to the tree ST(Md) with val, to enumerate the loci of xβ
appropriately.

ISAAC 2019
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4.3 Query time and space requirement
In Step 1, computing the locus of pR in ST (Md

R$) takes O(|p|) time. Each execution of the
FLT query takes constant time in Steps 1 and 2. Thus the query time is O(|p|+ o), where o
is the number of outputs. For d = 1, . . . ,m, the suffix trees ST(Md) and ST(Md

R$), and
the relevant data structures for the FLT queries require O(n) space. The total space of our
data structure is O(nm).

5 Space Efficient Implementation of Step 1

As seen in Section 4.3, the use of the suffix trees ST (Md
R$) for d = 1, . . . ,m in Step 1 causes

the O(nm) space requirement. Our idea to reduce the space requirement is to substitute
ST(Md

R) for ST(Md
R$). The following lemma gives an upper bound on the total size of

suffix trees ST (Md
R).

I Lemma 12. The suffix trees ST(Md) for d = 1, . . . ,m are, respectively, of size O(n/d),
and their total size is O(n logm).

Proof. It suffices to show that ST(Md) has O(n/d) leaves. Let v be any leaf of ST(Md),
and let x be the string represented by v. Assume, for a contradiction, that x is not d-right
maximal. Then, there exists a string β ∈ Σ+ such that αxβ ∈ Md for some α ∈ Σ∗. Thus xβ
is a suffix of Md, which contradicts that v is a leaf of ST (Md). Therefore x is d-right maximal.
The number of leaves of ST (Md) is not greater than the number of d-right maximal strings,
which is O(n/d) by Lemma 2. J

The difficulty in using not ST (Md
R$) but ST (Md

R) is that the string (αp)R is possibly
implicit in ST (Md

R) whereas the string (αp)R$ is necessarily explicit and represented by a
leaf in ST (Md

R$). We partition Step 1 into two parts:
Step 1A. Enumerate the loci of αp in ST (Md) such that α ∈ Σ∗, αp ∈ Pre(Md), LRS(αp) <
|p| and (αp)R is explicit in ST (Md

R).
Step 1B. Enumerate the loci of αp in ST (Md) such that α ∈ Σ∗, αp ∈ Pre(Md), LRS(αp) <
|p| and (αp)R is implicit in ST (Md

R).

Step 1A can be done in O(|p|+ o) time with O(n logm) space in almost the same way as
Section 4.1. Below we describe how to implement Step 1B.

5.1 Implementation of Step 1B
I Lemma 13. For any string x in Pre(Md), xR is explicit in ST (DR$).

Proof. Let β ∈ Σ∗ be a string such that xβ ∈ Md. Since the string (xβ)R is d-left-right
maximal, it is explicit in ST (DR$) and therefore its suffix xR is also explicit in ST (DR$). J

We thus use ST (DR$) to represent strings in Pre(Md).
Let q1 and q2 be the strings represented by the loci of pR in ST (DR$) and in ST (Md

R),
respectively. The p-critical path of ST(DR$) is the path from u1 to u2 such that u1 and
u2 are the nodes of ST (DR$) representing q1 and q2, respectively. A string x and the node
representing xR in ST (DR$) are said to be p-satisfying if x is a left extension of p such that
x ∈ Pre(Md), LRS(x) < |p| and xR is implicit in ST (Md

R). An edge e of ST (Md
R) and the

path corresponding to e in ST (DR$) are said to be p-admissible if e is in the subtree rooted
at the node representing q2 and at least one implicit node is present on e which represents
the reversal xR of a p-satisfying string x.
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Every p-satisfying node of ST (DR$) is present on: (i) the p-critical path of ST (DR$) or
(ii) a p-admissible path of ST (Md

R). Thus, the enumeration of the loci of αp in ST (Md) can
be performed as follows.

(1) Enumerate the p-admissible paths of ST (DR$).
(2) For each p-admissible path of ST (DR$) and for the p-critical path of ST (DR$), enumerate

the p-satisfying nodes on it.
(3) For each p-satisfying node of ST(DR$) representing xR, compute the locus of x in

ST (Md).

I Example 14. Suppose that D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba},
d = 2 and p = abab. Then, q1 = baba and q2 = babaaa (see Figure 4). We want to compute
baba in Step 1B.
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Figure 4 ST(DR$) and ST(M2
R) for D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}.

In (1), we shall enumerate all p-admissible edges of ST(Md
R). With each edge (s, t) of

ST (Md
R), we associate the value LRS(zR) such that x and y are the strings represented by

s and t, respectively, and z = y[..i] where i is the smallest integer in [|x|+ 1, |y| − 1] with
z ∈ Suf (Md

R) (i.e. zR ∈ Pre(Md)). We associate ∞ with it, if no such i exists. Then, we
can enumerate all p-admissible edges of ST(Md

R), by applying the FLT query technique
to ST (Md

R), with regarding the value associated with the incoming edge (s, t) of a node t
as the value of t. Computing the loci of pR in ST(Md

R$) and ST(DR$) takes O(|p|) time.
Execution of the FLT query takes constant time.

In (2), we proceed to examine nodes representing xR on the path until we encounter a
node representing xR with LRS(x) ≥ |p|, by repeatedly querying with the data structure
stated in the following lemma.

I Lemma 15. There exists an O(n logm) size data structure which, given a node of ST (DR$)
representing string yR, returns in O(log logm) time the locus of (xy)R in ST(DR$) such
that x is the shortest string with xy ∈ Pre(Md), and nil if no such x exists.

In (3), for each p-satisfying node of ST (DR$) representing xR, compute the locus of x in
ST (Md) by using the data structure stated in the following lemma.

I Lemma 16. The locus of a string x in ST (Md) can be computed in O(log logm) time from
the locus of xR in ST (DR$) using an O(n logm) space data structure.

The suffix tree ST(DR$) takes O(n) space. For d = 1, . . . ,m, the suffix trees ST(Md)
and ST(Md

R$), and the relevant data structures for the FLT queries require O(n) space.
The total computation time of Step 1B is O(|p|+ o log logm) and the total space of our data
structure is O(n logm).

ISAAC 2019
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5.2 Proofs of Lemmas 15 and 16
To complete the proof of Theorem 9, we give proofs of Lemmas 15 and 16. For the sake of
convenience, we first prove Lemma 16.

5.2.1 Proof of Lemma 16
From the locus of xR in ST (DR$) we can obtain the locus of x in ST (D$) in constant time
by using direct links from the nodes of ST(DR$) to the corresponding nodes of ST(D$).
Thus we describe how to compute from the locus of x in ST (D$) the locus of x in ST (Md)
in O(log logm) time using O(n logm) space.

A node v of ST(D$) representing string z is called a d-node if z is explicit in ST(Md).
The locus of x in ST (Md) then corresponds to the earliest d-node preceded by the locus of x
in the pre-order traversal of ST (D$).

I Example 17. Suppose that D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba},
d = 2 and x = aab. Then the earliest 2-node preceded by the locus of x is the node
representing aaba (see Figure 5). The locus of x in ST (M2) represents the same string aaba.
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Figure 5 Illustration of ST(D$), where the double lined circles represent the 2-nodes.

For any node s of ST (D$), let L(s) be the sequence of non-negative integers d arranged
in the increasing order such that d = 0 or s is a d-node. Let A be the sequence obtained by
concatenating L(s) according to the pre-order of nodes s of ST (D$). Let u and v be the loci
of x in ST (D$) and ST (Md), respectively. Then v corresponds to the leftmost occurrence of d
in A[i+1..] such that i is the position of j-th occurrence of 0 where j is the rank of u in the pre-
order traversal of ST (D$). Thus v can be computed from u as follows. For the rightmost leaf lu
of the subtree rooted at u, v = nil if rankA(d, selectA(0,PreOrd(u))) > selectA(0,PreOrd(lu)),
and otherwise, v corresponds to A[rankA(d, selectA(0,PreOrd(u)))], where PreOrd(s) denotes
the rank of a node s in the pre-order traversal of ST (D$).

The numbers of 0’s and d’s in the array A are O(n) and O(n/d), respectively, and hence
we have |A| = O(n logm). By Lemma 5, we can compute the locus of x in ST (Md) from the
locus of x in ST (DR$) in O(log logm) time using O(n logm) space.

5.2.2 Proof of Lemma 15
By Lemma 3, xyz ∈ Md implies that yz is d-right maximal. For each d-right maximal string
β, let len(β) denote the length of the shortest string α with αβ ∈ Md. Then the desired
string xy can be obtained from the d-right maximal extension yz of y that minimizes len(yz).
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From the locus of yR in ST (DR$), the locus of (xy)R in ST (DR$) can be computed in
three steps (see Figure 6).

Step 1. From the locus of yR in ST (DR$), find the locus of y in ST (Md).
Step 2. From the locus of y in ST (Md), find the locus of (xyz)R in ST (DR$) such that x is

one of the shortest strings x satisfying xyz ∈ Md for some string z.
Step 3. From the locus of (xyz)R, find the locus of (xy)R in ST (DR$).

!"!#$"

#$%&'(

#$%&)
#$%&'*

+,-./',0'%&

+,-./',0'!'%"&

!"!(&1"

+,-./',0'%

+,-./',0'!'%)"&

Figure 6 Computing the locus of (xy)R from the locus of yR in ST(DR$).

Step 1 requires O(log logm) time by using the O(n logm)-size data structure stated in
Lemma 16.

For Step 2, we define two functions len and link on the set of nodes of ST (Md) as follows:
For any node u of ST(Md), let β be the string represented by u. If there is some string α
such that αβ ∈ Pre(Md), choose α as short as possible, and let len(u) = |α| and let link(u)
be the locus of α in ST (DR$). If there is no such α, let len(u) =∞ and link(u) = nil.

Suppose that v is the descendant of the locus of y in ST(Md) that minimizes len(v).
Then len(v) = |x| and link(v) is the locus of (xyz)R in ST (DR$) since yz is d-right maximal.
The locus of (xyz)R in ST(DR) can then be computed in constant time by storing the
values len(u) and link(u) into the nodes u of ST(Md) and applying the Range Minimum
Query technique.

In Step 3, the locus of (xy)R is obtained from the locus of (xyz)R in ST(DR$) by
traversing suffix links |x| times. The task can be done in constant time by using the O(n)
space data structure for the level ancestor query [1] on suffix link tree of ST (DR$).

Step 1 through Step 3 can be done in O(log logm) time using O(n logm) space.

6 Conclusion

In this paper, we addressed the left-right maximal generic words problem and developed an
O(n logm) size data structure, which answers queries in O(|p|+ o log logm) time, where o is
the size of outputs. Our method is better than the previous work by Nishimoto et al. [7]
both in the space requirement and in the query time. We achieved the O(n logm) space
requirement by substituting ST(Md) for ST(Md$), with the conjecture that the total size
of ST(Md$)’s for d = 1, . . . ,m are Θ(nm). To prove that the total size is Ω(nm) is left as
future work.
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