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Abstract
We analyze the stabilization time of minority processes in graphs. A minority process is a dynamically
changing coloring, where each node repeatedly changes its color to the color which is least frequent
in its neighborhood. First, we present a simple Ω(n2) stabilization time lower bound in the
sequential adversarial model. Our main contribution is a graph construction which proves a Ω(n2−ε)
stabilization time lower bound for any ε > 0. This lower bound holds even if the order of nodes is
chosen benevolently, not only in the sequential model, but also in any reasonable concurrent model
of the process.
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1 Introduction

If you google “bad wifi”, one advice you will get for sure is to choose the least crowded
frequency in order to minimize interference with your neighbors. Unfortunately, this least
crowded frequency may change again if some of your neighbors do the same.

Frequency allocation is a familiar example of minority processes in graphs: given a graph,
a set of colors, and an initial coloring of the nodes with these colors, a minority process is a
process where each node, when given the chance to act, modifies its color to a color that
has the smallest number of occurrences in its neighborhood. This results in a dynamically
changing coloring, which is essentially a form of distributed automata. Minority processes
arise in various fields of economics [12] or social science [3] when players are motivated to
differentiate from each other, but they also emerge in cellular biology [4] or crystallization
mechanics [2].

A minority process is said to stabilize when no node has an incentive to change its color
anymore. The aim of the paper is to understand how long it takes until such a minority
process reaches a stable state. We study the process in several different models, some of
them sequential, some concurrent. In sequential models, when only one node at a time can
change its color, stabilization time depends on the choice of the order of nodes. Hence, the
model can further be subdivided into three cases, depending on whether the order of acting
nodes is specified benevolently (trying to minimize stabilization time), adversarially (trying
to maximize stabilization time), or randomly.

On the other hand, in concurrent models, multiple nodes are allowed to switch their color
at the same time. However, if two (or more) neighboring nodes continuously keep on forcing
each other to switch their color, the system may never stabilize. The simplest such example
is a graph of two connected nodes that have the same initial color, and keep on switching
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43:2 Stabilization Time in Minority Processes

to the same new color in every step. We also study concurrent models that exclude this
behavior, as it is unrealistic in many application areas where neighbors are unlikely to switch
at the exact same time.

In any model where simultaneous neighboring switches are excluded, it is easy to prove a
O(n2) upper bound on stabilization time for minority processes. Initially, some (maybe even
all) of the at most O(n2) edges in the graph are monochromatic (i.e., they have a conflict).
When a node switches its color to the minority color in its neighborhood (but its neighbors
do not change color in the same step), then the number of conflicts on the adjacent edges
strictly decrease. Since the original number of conflicts is O(n2) and the overall number of
conflicts decreases by 1 at least in each step, the number of steps is limited to O(n2).

However, this raises a natural question: are there example graphs that exhibit this naive
upper bound? Or is there a significantly lower (e.g. linear) upper bound on stabilization
time in some models? While these questions are already answered for the “dual” problem of
majority processes (when nodes switch to the most frequent color in their neighborhood), for
the case of minority processes, they have remained open so far.

The main contributions of the paper are constructions that prove lower bounds on
stabilization time of minority processes. As a warm-up, we present a simple example in
Section 4 which shows that in the sequential adversarial model, stabilization may take Θ(n2)
steps. Our main result is a construction proving that stabilization can also take superlinear
time in the sequential benevolent case. We first present a graph and an initial coloring
in Section 5 where any selectable sequence lasts for Ω(n3/2) steps. Then in Section 6, we
outline how a recursive application of this technique leads to a stabilization time of Ω(n2−ε)
for any ε > 0, almost matching the upper bound of O(n2). This is an interesting contrast
to majority processes, where stabilization time is bounded by O(n) in the benevolent case.
Furthermore, our construction shows that this almost-quadratic lower bound holds not only
in the sequential model, but also in any reasonable concurrent setting.

2 Related work

While there is a wide variety of results on both minority and majority processes, majority
processes have been studied much more extensively. Recently, [5] has shown that stabilization
time in majority processes can be superlinear both in the synchronous model, and in the
sequential model if the order is chosen by an adversary. However, [5] has also shown that
stabilization always happens in O(n) time in the sequential benevolent model. In case of
majority processes in weighted graphs, a 2Θ(n) lower bound on stabilization time was also
shown in [11].

Other aspects of majority processes have also been studied thoroughly, especially in the
synchronous model. Results on majority processes include basic properties [8], their behavior
on random graphs [6], complexity results on determining stabilization time [10], minimal sets
of nodes that dominate the process [7], and the existence of stable states in the process [1].

In contrast to this, the dynamics of minority processes has received less attention. The
stabilization of minority processes has only been studied in special classes of graphs, including
tori, cycles, trees and cliques [14, 15, 16]. These studies are mostly conducted only in the
synchronous or the sequential random model. More importantly, these results study a
different variant of the minority process, which considers the closed neighborhood of nodes,
and thus can result in significantly larger (possibly exponential) stabilization time, even in
the unweighted case. An experimental study of the processes on grids is also available in [14].
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In weighted graphs, it has recently been shown in [13] that stabilization of minority
processes can take 2Θ(n) steps in various models, matching a straightforward exponential
upper bound in the weighted case. However, the constructions of [13] use exponentially large
node or edge weights to obtain these results; as such, the same techniques are not applicable
in the unweighted case.

Besides these studies on the dynamics of the process, there are also numerous theoretical
results on stable states in minority processes. These include complexity results on deciding
the existence of different stable state variants [12], characterization of infinite graphs with a
stable state [17], and analysis of price of anarchy in such states as local minima [12]. In the
work of [9], it is also shown that slightly modified minority processes, based on distance-2
neighborhood of nodes, can provide better local minima at the cost of larger (but still
polynomial) stabilization time.

However, in contrast to majority processes, the stabilization time of minority processes in
general unweighted graphs has remained unresolved so far.

3 Definitions and background

3.1 Models
In the paper, we primarily focus on the following models:
A. Sequential adversarial: In every step, only one node switches. The order of nodes is

specified by an adversary who maximizes stabilization time.
B. Sequential benevolent: In every step, only one node switches. The order is specified

by a benevolent player who minimizes stabilization time.
C. Independent benevolent: In every step, the benevolent player is allowed to choose

any independent set of switchable nodes, and switch them simultaneously.
D. Free benevolent: In each step, the benevolent player is allowed to choose any set of

switchable nodes, and switch them simultaneously.
However, our lower bounds extend to a range of other popular models:
E. Concurrent synchronous: In every step, all switchable nodes switch simultaneously.
F. Sequential random: In every step, only one node switches, chosen uniformly at random

among the switchable nodes.
G. Concurrent random: In every step, every switchable node switches with probability p,

independently from other nodes.

An intuitive illustration of these models is shown in Figure 1. The vertical axis shows
how concurrent a model is, the horizontal shows how wide is the set of opportunities it grants
the player to speed up / slow down stabilization. In the case of majority processes, models A
and E are shown to take superlinear time to stabilize for some graphs, but model B always
stabilizes in linear time [5]. However, we prove that for minority processes, even model B
can take superlinear time. Models C and D grant even wider sets of possible (concurrent)
moves for the benevolent player, which may drastically reduce the number of steps in some
cases; however, we show that the same lower bound holds even if such moves are available.

Note that models A, B, C and F exhibit a natural O(n2) upper bound on stabilization
time, as the overall number of conflicts decreases in each step by at least 1. On the other
hand, models D, E or G may allow neighboring nodes to switch at the same time, and thus in
these models, some nodes may keep on endlessly changing colors. However, our constructions
specifically ensure that connected nodes are never switchable at the same time, and thus for
these particular graphs, the process stabilizes in any of the models.

ISAAC 2019
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Figure 1 Properties of the listed models.

Through most of the analysis in the paper, we focus on the sequential models. We first
show a simple construction with Θ(n2) stabilization time in model A. We then present a more
complex construction to first show Ω(n3/2), and then Ω(n2−ε) stabilization time in model B.
It then follows from a few observations that these latter constructions also have the same
stabilization time in models C and D. Since model D provides the widest set of opportunities
from all models, this implies the same lower bound for each of the listed models.

3.2 Preliminaries
Throughout the paper, we consider simple, unweighted, undirected graphs. Graphs are
denoted by G, their number of nodes by n, and the maximum degree in the graph by ∆.

Given a graph G on the vertex set V , an independent set is a subset of V such that no two
nodes in this subset are connected. A coloring of the graph with k colors is the assignment
of one of the colors (numbers) from {1, 2, ..., k} to each of the nodes. If two nodes share an
edge and are assigned the same color, then the nodes have a conflict on this edge.

Our process consists of discrete time steps (states), where we have a current coloring of
the graph in every state. When a node v is currently colored c1, but there exists a color c2
such that the neighborhood of v contains strictly less nodes colored c2 than nodes colored c1,
then the node is switchable (since the node could reduce its number of conflicts by changing
its color). The process of v changing its color is switching. Nodes always make locally optimal
solutions, that is, they switch to the color which is least frequent in their neighborhood.
In case of multiple optimal colors, related work on majority processes considers different
tie-breaking rules. However, our constructions ensure that a tie can never occur, and thus
our bounds hold for any tie-breaking strategy.

The minority process is a sequence of steps, where each step is described by a set of nodes
that switch. Note that we only consider valid steps, where every chosen node is switchable.

A state is stable when no node in the graph is switchable; a system stabilizes if it reaches
a stable state. Stabilization time is the number of steps until the process stabilizes. Note
that in case of model E, papers studying majority processes often use a different definition of
stabilization, based on periodicity. However, our constructions ensure that the process always
ends in a stable state, thus for the graphs in the paper, the two definitions of stabilization
are equivalent.

In our examples, we will consider the case of having only two available colors, black and
white. However, as discussed in Section 3.3, our lower bounds are easy to generalize to any
number of colors.
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The restriction to two colors allows us to introduce some helpful terminology. Consider a
node v at a given state of the process. If v has vs neighbors with the same color as v, and vo
neighbors with the opposite color, the number vo − vs is called the balance of v. Note that
if one of the neighbors of v switches, then the balance of v either increases or decreases by
2 (which shows that the parity of the balance of v can never change). The definition also
implies that v is switchable if and only if its balance is negative. Switching v changes the
sign of its balance.

3.3 General tools in the constructions
Groups. We use the notion group to refer to a set of nodes that have the same initial color
and the exact same set of neighbors (hence, groups are independent sets). Groups are, in
fact, only a tool to consider certain nodesets together as one entity for simpler presentation.
They will be shown as only one node with double borders in the figures, with the size of the
group indicated in brackets.

In the adversarial case, we will only consider sequences that switch groups together (i.e
consecutively in any order). In the benevolent case, groups will be switched together in the
sense that if a node in the group switches, then all other nodes in the group will also switch
before any neighbor of the group becomes switchable; this property is enforced by the graph
construction. The more complicated definition in the benevolent case is due to the fact that
we have to consider every possible sequence that the player can choose. Technically, in some
sequences, a group might not be switched consecutively (it might be interrupted by switches
in other, distant parts of the graph), but the outcome will still be equivalent to switching
them consecutively.

Fixed nodes. Given a graph G, let us add two more set of nodes Fw, Fb to the graph such
that |Fw| = |Fb| = n + 1, and vw and vb are connected for all vw ∈ Fw, vb ∈ Fb. Let the
color of Fw and Fb initially be white and black, respectively. The nodes in Fw and Fb will
be referred to as fixed nodes, and we will connect them to some of the nodes in our original
graph. Note that these fixed nodes already have n+ 1 neighbors of the opposite color, and
can never have more neighbors of the same color (as they can have at most n neighbors G),
so their color is indeed fixed and they can never switch.

Such fixed nodes are widely used in our construction; we can allow any node in G to
have up to ∆ + 1 fixed neighbors of either color. The introduction of fixed nodes increases
the graph size only by a constant factor (to 3n + 2), so all lower bounds expressed as a
function of n will still be of the same magnitude as a function of 3n+ 2. Therefore, for ease
of presentation, we still use n to denote the number of nodes in the graph without the extra
fixed nodes, and express our bounds as a function of n.

Fixed node neighbors are denoted by squares in the figures, with the multiplicity written
beside the square (if more than 1). We always draw separate squares for distinct nodes, even
though the corresponding fixed node sets might overlap. This is because fix node connections
are thought of as a “property” of the node, introducing an offset into its initial balance.

Generalization to more colors. While the paper discusses the case of two colors, a simple
idea allows a generalization to any constant number of colors k. Assume we have a construction
G on n nodes, showing a lower bound on stabilization time with two colors; we can simply
add sets of nodes F3, F4, ..., Fk of size ∆ + 1 such that they form a complete multipartite
graph, and connect all these new nodes to all nodes in G. Let us color the nodes in Fi
with color i.

ISAAC 2019
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. . .

m+1 m+1 m+1 m+1 m+1

A1 A2 A3 A4 A2m

P (m)

Figure 2 Construction with an adversarial sequence of Θ(n2) switches.

None of the original nodes in G will ever assume any of the colors 3, 4, ..., k, since
they always have ∆ + 1 neighbors of these colors, while they have strictly less (at most ∆)
neighbors of colors 1 and 2. Nodes in Fi will never have any incentive to switch, since they
have no conflicts at all. Thus the process will behave as if the graph only consisted of G
with colors 1 and 2. As the new nodes only increase the graph size by a constant factor, we
receive an example with the same magnitude of running time, but with k colors.

With the same technique, our lower bound of Ω(n3/2) can also be generalized to the case
of up to Θ(

√
n) colors; details of this are discussed in Appendix B.

4 Sequential adversarial model

We first present a simple example where model A takes Ω(n2) steps. Our construction, shown
in Figure 2, consist of a group P of size m (for some parameter m), initially colored white,
and 2m distinct nodes A1, A2, ..., A2m, such that Ai is initially colored black for odd values
of i and white for even i. Let us connect all nodes Ai to P , and add one more fixed black
node that is connected only to P . Finally, let us connect each Ai to m+ 1 fixed nodes of the
same color as Ai. Recall that although the figure shows multiple squares, there are in fact
only n+ 1 fixed black and n+ 1 fixed white nodes in the graph altogether.

In this graph, P has a balance of 1 initially, while black Ai have a balance of −1 and
white Ai have a balance of −(2m + 1). Note that even after execution begins, until Ai is
switched for the first time, it will have m+ 1 fixed neighbors of the same color and at most
m neighbors of the opposite color (depending on the current color of P ), and thus a negative
balance. Therefore, each Ai is switchable anytime if it has not been switched before.

Consider the following sequence of adversarial moves in this graph: the player first decides
to switch A1, then P , then A2, then P again, then A3, P , ..., A2m, and finally P again. As
each Ai is used only once, they are clearly all switchable. As for P , its balance first changes
from 1 to −1, when changing A1 to white, but increases back to 1 when we switch P itself.
Then it changes to −1 once again after changing A2, so it is switchable again, and so on:
each time we switch an Ai, we change it to the same color that P currently has, decreasing
P ’s balance to −1, which increases back to 1 again as we switch P . Therefore, this strategy
is indeed a sequence of valid switches.

Since P containsm nodes and is switched 2m times in this sequence, this alone contributes
to 2m2 switches. Altogether, we have 3m nodes in the graph (without fixed nodes), allowing
us a choice of m = n

3 . This gives us a sequence with at least 2
9n

2 steps.

I Theorem 1. There exists a graph construction with Ω(n2) stabilization time in model A.
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BvL vR

(a) (b) (c)

Figure 3 Simple relay gadget (a), the steps of its operation (b), and a chain of relays (c).

5 Construction for benevolent models

We now presents a construction with Ω(n3/2) stabilization time in benevolent models. Note
that it is much more involved to find an example where benevolent models take ω(n) steps,
since in such a construction, we have to ensure that any possible sequence lasts for a long
time. In order to have an easy-to-analyze construction, our graph will, at any point in
time, contain only one, or a small set of nodes that are switchable, and switching this or
these nodes enables the next such set of nodes (i.e., makes them switchable). This way, the
switchable point “propagates” through the graph, and the benevolent player has no other
valid move than to follow this path of propagation that has been designed into the graph.

The general idea behind the construction is to have a linearly long chain of nodes which is
propagated through multiple times. After each such round, the propagation enters a different
branch of further nodes; this branch resets the chain for the following round, and then also
triggers the following round of propagation (as outlined later in Figure 11).

Due to the complexity of the construction, we do not describe it directly; instead, we
define smaller functional elements (gadgets) that execute a certain task. We then use these
gadgets as building blocks to put our example graph together. This section outlines the tasks
and main properties of the gadgets; a detailed description and analysis of each gadget can be
found in Appendix B. While the concrete gadget designs are specific to minority processes,
they are built on general ideas and techniques for benevolent models; as such, we hope they
may inspire similar solutions in the analysis of related processes or cellular automata.

When describing a gadget, the edges connecting the gadget to other nodes in the graphs
are drawn as dashed lines in the figures, with the external node usually denoted by v (possibly
with some subscript). Although our graph is undirected, we often refer to such edges as input
or output edges of the gadget, and also show this direction in the figures. This will refer to
the role that the external node plays in the functionality of the gadget. That is, whenever
the gadget is used in our constructions, it is triggered by (some of) its input nodes switching,
and upon completing its task, the gadget makes (some of) its output nodes switchable.

Naturally, as in the entire graph, the role of the two colors is always interchangeable
within the gadgets. Therefore, we only present each such gadget in one color variant.

Due to the complexity of the construction, we have also verified its correctness through
implementing the process. A discussion of these simulations is available in Appendix C.

Simple relay. As our most basic tool to propagate the only possible point of switching, we
use the simple relay shown in Figure 3a. A simple relay consists of a base node B, connected
to a fixed node of the same color, and two further nodes outside of the gadget, which initially
have the opposite color as B. Until neither of vL and vR switch, B has positive balance
and cannot switch either. However, as soon as vL switches to the color of B, B becomes
switchable, and as B switches, this propagates the point of change to its other neighbor vR
(as shown in Figure 3b).

ISAAC 2019
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B

U

C(2)

R1 R2

vL vR

(a)

(2)

3 switches
to white

(2) (2) (2)

3 switches
to black

(2)

(b)

Figure 4 Rechargeable relay gadget (a) and the steps of its operation (b).

Note that connecting alternating-colored relays into a chain already gives a simple
example of linear stabilization time (see Figure 3c). If the leftmost (white) relay’s base node
is connected to a fixed white node, then the only available sequence of moves is to switch the
base nodes in the relays one by one from left to right, resulting in a sequence of n steps.

Through the concept of input and output nodes, relays essentially allow us to connect
other, more sophisticated gadgets in our constructions. If some gadget has an output node
v1 and another gadget has an input node v2, we can add a chain of relays between v1 and v2,
ensuring that once v1 switches, it will be followed by v2 eventually. Due to this role, relays
are not shown explicitly in our final overview figure of the construction, but only represented
by arrows, indicating the direction of propagation between more complex gadgets.

Rechargeable relay. A more sophisticated version of a relay is the rechargeable relay shown
in Figure 4a. In such a relay, node B is extended by an upper node U , a control group C of
size 2, and two recharge nodes R1, R2, the role of which are interchangeable. Besides vL
and vR, the nodes R1 and R2 also have edges to some external nodes. It is always ensured
that the initial balance of R1 and R2 from these upper neighbors (that is, with C ignored) is
exactly 3.

As in case of a simple relay, if vL switches, then B itself can switch, followed by vR. Now
assume that in this “used” phase of the relay, some outside circumstance changes 3 neighbors
of node R2 from black to white, and thus its balance changes from the current value of 5 to
−1 (the relay is recharged). Then R2 can switch to black, making C and in turn U switch,
too. Finally, assume that some other outside circumstance then changes the balance of R2
from 5 to −1 again (known as resetting the relay); then R2 will switch back to white (with a
new balance of 1), and we end up in the initial state of a rechargeable relay of the opposite
color. The steps of the process are shown in Figure 4b.

This is exactly the essence of this gadget: it is a relay which can be used the same way
multiple times. Connecting such gadgets into a chain in the same fashion as Figure 3c, we
get a chain that can propagate the point of change not only once, but multiple times if
“recharged” through their upper connections between two such propagations.

Recharging system. The rechargeable relay suggests that it is useful to have a tool to
“recharge” some nodes, i.e. to decrease their balance by switching some of their neighbors to
the color they currently have. To execute this task efficiently on many nodes, we present a
recharging system.

For the first version of this gadget, assume a setting where there is a set X of m black
nodes, and we want to decrease the balance of each of these nodes by 2 (i.e., change exactly
one white neighbor of each of them to black). A basic recharging system, shown in Figure 5,
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√
m nodes

Set X of m nodes

... Li (
√
m nodes)

M(
√
m+1)

U v√
m + 1

√
m

Figure 5 Basic recharging system.

Set X, with a balance to be
decreased by 2·χ altogether

... Li (√χ nodes)

M(√χ+1)

U v√
χ + 1

√
χ

Figure 6 Generalized recharging system.

4
3

x+ 1

A

B1

B2
C(3)

D v
x input
nodes

Figure 7 and gate.

can execute this task while using only O(
√
m) nodes. The gadget is organized into 3 levels:

a single node U in the upper level, a group M of
√
m + 1 nodes in the middle level, and√

m distinct nodes Li in the lower level. Each lower level node is connected to
√
m different

nodes in X, thus exactly covering the nodes of X. The gadget operates in a top-to-bottom
fashion: once v switches, U turns black, followed by M turning white. Once all nodes in M
are switched, the nodes Li all decide to switch, too.

The key idea in the design of the gadget is that each node Li has strictly more neighbors
in M than in X. This ensures that as long as M is black, the nodes Li always have a positive
balance, regardless of the current color of their neighbors in X. Therefore, no node in the
gadget can ever switch before the node U is triggered.

We can use this insight to create a similar gadget for a more general setting. Assume
that we similarly have a set X of m black nodes, but instead of decreasing their balance by
2, we want to decrease the balance of each node in X by some specific (possibly different)
even value, denoted by 2x1, 2x2, ..., 2xm (i.e., for the jth node in X, we want to change xj
of its white neighbors to black). Let us denote the sum

∑m
j=1 xj of these values by χ.

We can achieve this using a similar construction, shown in Figure 6. In this generalized
recharging system, we allow multiple nodes Li to be connected to the same node in X: if a
node in X has a corresponding value 2xj , then it has exactly xj neighbors in the lower level
of the system. This ensures that once all the nodes Li switch, the new balance of each node
in X is exactly as desired. The number of nodes in the gadget can be minimized by placing√
χ nodes Li in the lower level, each with √χ neighbors in X; this way, the overall number

of edges going into the set X from the gadget is exactly χ as required. To ensure that the
neighborhood of each Li is dominated by M , we choose the size of group M to be √χ+ 1.

AND gate. Another ingredient we use is an and gate. As its name suggests, this gadget
has x input edges from a set of nodes X, and once all nodes in X have switched to the same
color (say, white), the gadget triggers a change in another part of the graph.

ISAAC 2019
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Figure 8 Operation of an and gate. In the end, node D switches to black, making v switchable.
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Figure 9 Join gadget.
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v3
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Figure 10 Fork gadget.

Note that we could achieve this functionality with a single node, by carefully setting its
initial balance such that it switches exactly when all inputs have the desired color. However,
and gates are used to “check” the state of specific nodes in the construction, and as such, it
is unfortunate that this check also affects the nodes that are being checked: once the node
in this simple and gate switches, the balance of all input nodes in X will increase by 2. It
would be much better to have a gadget that can perform this task without having any effect
on the nodes in X.

For this purpose, consider the gadget in Figure 7, which is connected to the nodes in X
on the input side and a black node v on the output side. Once all nodes in X are white, node
A switches, followed by B1 and B2, and then by C. With C switched, A decides to switch
back to its original color white. However, since now both A and B1 are white, this finally
switches D to black, triggering a change in the output node v (Figure 8). The usefulness of
the gadget lies in the fact that by the end of this sequence, A is switched back to its original
color, and thus the balance of nodes in X is again the same as it was in the beginning.

Join and fork gadgets. Finally, we need two small gadgets in the construction to fork and
join the control sequence at the ends of our main relay chain.

A join gadget, shown in Figure 9, connects a specific number of input nodes vi to an
output node v. When an input node vi switches, then so does Ai and then Bi in the
corresponding input branch, which also switches C and triggers node v. Then when vi+1
later switches at some point, the same thing happens to the next input branch and C again,
only with the two colors swapping roles. Thus if the nodes v1, v2, ... are switched one after
another in this order, then each of these input switches make the output node v switch again.
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Figure 11 Overview of the whole construction, with one branch shown in detail. Rechargeable
relays (RR), Recharging systems (RS), and gates (A), Joins (J) and Forks (F) are explicitly shown.

The fork gadget of Figure 10, on the other hand, is responsible for receiving triggers from
a given input node v, and directing the propagation to a new branch (a new output node vi)
every time. When v first switches, only v1 becomes switchable. Similarly, after v is switched
for the ith time, only vi becomes switchable, and thus the gadget triggers the ith branch
of output.

Assembling the pieces. Our final graph construction (shown in Figure 11) has two defining
parameters m and r. The base of the construction is a chain of m rechargeable relays,
connected to a join gadget of r branches and a fork gadget of r−1 branches. For each
i ∈ {1, ..., r−1}, we add a sequence of gadgets (a branch) to connect the ith output of the fork
to the i+ 1th input of the join gadget, which is responsible for recharging the relay chain.

Each branch consists of recharging systems connected to our main chain. First let us
consider the rechargeable relays where node U is currently white (either the even or the
odd ones; relays at positions of the same parity are all in the same state). We first need a
recharging system to recharge all these relays, and then we need another system to reset the
relays. We need similarly 2 recharging systems for the other half of the relays which are in
the opposite color phase.

Finally, we need to force the player to indeed execute these changes on the relays. For
that, we insert an and gate after each recharging system, which checks if all switchable nodes
have indeed been switched before moving on. The output of the and gate is then used to
enable the next recharging systems (or the next input of the join gadget).

This construction ensures that the player has no other choice than to go through the
relay chain, follow the next branch from the fork, recharge and reset all the relays, and start
going through the relay chain again. Since the chain consists of m relays and it is traversed
r times in this process, the switches in the chain add up to m · r steps altogether.

Of course, one also needs to introduce a starting point (initially switchable node) into
the construction. This can be done by replacing v1 in the join gadget by a fixed white node.

Let us consider the number of nodes in the construction. Since rechargeable relays consist
of constantly many nodes, the size of the relay chain is O(m). The size of the join and
fork gadgets is O(r). Finally, each of the r−1 recharging branches consist of constantly
many recharging systems, and gates and simple relays; since the latter two have constant
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size, branch size is dominated by the size of the recharging systems. Each such system is
connected to m

2 relays, and thus needs to reduce the balance of O(m) nodes by a constant
value of 6. This implies that each recharging system needs O(

√
m) nodes.

This shows that we can choose r = Θ(
√
m) and m = Θ(n) for our parameters. Our graph

then contains O(m) +O(r) + r ·O(
√
m) = O(n) nodes, so it is indeed a valid setting with

the proper choice of constants.
To investigate runtime, it is enough to consider the switches in the main relay chain.

Each of the Θ(n) relays has a base node that is switched Θ(
√
n) times, adding up to a total

of Ω(n3/2) switches.

I Theorem 2. There exists a graph construction with Ω(n3/2) stabilization time in model B.

Note that in the previous construction, whenever any of the base nodes of the relay chain
are switchable, there is no other switchable node in the entire graph. This implies that
even in the independent benevolent case, the player has no other option than to select this
single node, so the number of minimal switches is Ω(n3/2) even if we assume the independent
benevolent model.

In fact, one can observe that the construction also ensures that regardless of the choices
of the player, the set of switchable nodes is always an independent set at any point in the
process. Hence models C and D are in fact the same in this graph, and thus the lower bound
also holds for model D. This then implies the same bound for all the remaining models.

I Corollary 3. There is a graph construction with Ω(n3/2) stabilization time in models C–G.

6 Recursive construction

We now briefly outline the modification idea that provides the almost tight lower bound of
Ω(n2−ε). A more detailed discussion of the construction can be found in Appendix A.

The key idea is to make the recharging systems themselves also rechargeable, so that
they can recharge the same output nodes repeatedly. Note that once a recharging system
has been used, the color of its nodes is exactly that of a recharging system of the opposite
color. Thus, if we reset the balance of each node in the system to its initial value, we can
use the system again to recharge the same output nodes again. More specifically, given a
used recharging system, we need to restore the balance of M and U to 1 in order to obtain a
recharging system of the opposite color; then by triggering U again, we can use the system
to recharge the nodes in X once more.

Therefore, we can add a layer of second-level recharging systems to recharge all the original
(first-level) systems in the graph after all first-level system have been used, as illustrated
in Figure 12. Recall that decreasing the sum of balances in a set of nodes by χ requires a
recharging system of O(√χ) nodes. We have Θ(

√
m) first-level systems in our graph, each

consisting of Θ(
√
m) nodes, with a balance of Θ(

√
m) after use; to reset each node in these

systems to their default balance of 1, with χ = Θ(m3/2), a second-level system requires√
χ = Θ(m3/4) nodes.
In order to keep the overall number of nodes in second-level systems in O(m), we add

Θ(m1/4) distinct second-level systems to our graph. When used, each of these second-level
systems recharges all systems on the first level, which in turn allows us to propagate through
the main relay chain Θ(m1/2) times again. Therefore, with Θ(m1/4) second-level systems
in the construction, the first two levels already allow us to traverse the main relay chain
Θ(m1/2) ·Θ(m1/4) times.
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Figure 12 Connection of a second-level recharging system to first-level recharging systems. For
simplicity, only the recharging of group M is shown (node U also has to be recharged).

We can continue this technique in a recursive manner. Assume that we have Θ(m1/(2i))
distinct ith-level systems in the construction, each consisting of Θ(m1−1/(2i)) nodes (which,
therefore, all have a balance of Θ(m1−1/(2i)) after they have been used). We can then use an
(i+ 1)th-level recharging system to recharge all of these ith-level systems; since we now have
χ = Θ(m1/(2i)) ·Θ(m1−1/(2i)) ·Θ(m1−1/(2i)) = Θ(m(2i+1−1)/(2i)), this requires a next level
system of √χ = Θ(m(2i+1−1)/(2i+1)) = Θ(m1−1/(2i+1)) nodes. In order to keep the nodes in
this new level also in O(m), we only add Θ(m1/(2i+1)) systems to the (i+ 1)th-level.

Generally, these higher-level recharging systems fit into our construction in the following
way. Every time when first-level systems have all been used, an extra branch is added to
the construction, which uses one of the second-level systems to recharge the entire first
level (and does not influence the relay chain). Similarly, whenever we would need such a
second-level branch but all of them has been used, a third-level branch is added to recharge
all second-level systems, and the required second-level branch is only visited after traversing
this third-level branch.

Following the recursive pattern, we obtain a construction that allows us to traverse the
main relay chain Θ(m1/2) ·Θ(m1/4) ·Θ(m1/8) · ... times altogether. If the number of levels
go to infinity with m increasing, then for any ε > 0, there is an m large enough that the
number of relay chain traversals is at least Θ(m1−ε). Since the relay chain consists of Θ(m)
nodes, this leads to a stabilization time of Θ(m2−ε).

If we have Θ(m1/(2i)) recharging systems on the ith level, this setting allows us to add
Θ(log logm) levels until the number of systems on a level decreases to a constant value.

Now let us analyze the number of nodes in the graph. On each level, the systems
contain Θ(m) nodes altogether, so the number of nodes in recharging systems adds up to
Θ(m log logm) over all levels. One can easily show that the size of the graph is dominated by
these nodes. The number of branches controlling first-level systems is Θ(m1/2·m1/4·m1/8·...) =
O(m), the number of branches controlling second-level systems is only Θ(m1/4 ·m1/8 · ...) =
O(m1/2), and so on, the number of ith-level branches is O(m1/2i−1). Summing these up, the
number of branches altogether is still O(m). Apart from recharging systems, each branch
contains constantly many nodes only (in the form of simple relays, and gates, and the
corresponding parts of the fork and join gadgets). This shows that the number of nodes
outside of the recharging system is only O(m) altogether, thus the number of nodes in the
entire graph is indeed Θ(m log logm).
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This allows for a choice ofm = Θ( n
log logn ), leading to a stabilization time of Ω( n2−ε

(log logn)2−ε ).
Since this bound holds for any ε > 0, we can easily remove the logarithmic factors: a lower
bound of Ω(n2−ε) follows from the same construction for any ε̂ < ε. Thus the construction
shows that the number of steps is Ω(n2−ε).

Similarly to the non-recursive case, this lower bound holds in all of our models, since
propagations over the relay chain are still only possible sequentially.

I Theorem 4. For any ε > 0, there exists a graph construction with Ω(n2−ε) stabilization
time in models B–G.
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A Further discussion of the recursive construction

While the main idea of the recursive construction has been outlined above, there are some
details worth discussing for completeness.

Since a second-level system can only be used to recharge nodes of the same color, every
time we recharge all the first-level systems, we in fact need two second-level recharging
systems, one of each color.

Recall that in addition to the groupM , the balance of node U also has to be reset between
two uses of a recharging system; however, we did not point this out when calculating the
necessary size of systems, since besides M , a single extra node does not affect the magnitude.
Earlier, we have noted that the recharging systems on a certain level consist of two classes
of systems of different color; observe that the next level systems that recharge the groups
M in one class can simultaneously be used to also recharge the nodes U in the other class.
Alternatively (for simpler analysis), we can add an extra recharging system (of the same size)
on each branch in order to separately recharge the nodes U on the level below.

Note that the number of total relay chain traversals, which is Θ(m1/2 ·m1/4 ·m1/8 · ...),
is in fact only guaranteed to be at least Θ(m1−ε) if the coefficients in these factors are
sufficiently large. With an analysis of the constants in the process, one can show that the
coefficient in each factor can indeed be chosen as 1, and thus these constant do not add up
to dividing logarithmic factors when taking the product. However, this is in fact unnecessary,
as any such logarithmic factor could also be removed simply by a smaller choice of ε.

Finally, note that in this recursive setting, recharging systems are slightly modified in the
sense that they have multiple input nodes from multiple different branches, each connected
to node U . However, this does not modify the behavior of U as long as its initial balance is
readjusted to 1. This also requires a minor modification in the simple relays that are used as
input nodes, since relays generally assume that their output node never switches before the
relays themselves are triggered. This can be resolved by using a modified relay where the
base node has an initial balance of 3, and thus it is enabled by two distinct simple relays on
the branch.

B Detailed analysis of gadgets

Here we provide a more detailed description of the gadgets, and also comment on their
behavior and their use in the construction.

Simple relay. The construction and behavior of the simple relay has already been described
above. One thing to note is that in our construction, simple relays are always used only once:
after node B switches, propagation never returns to the same part of the graph again, and
thus node B will remain unswitchable for the rest of the process.

While we mostly use this original version of the gadget, we occasionally need relays with
multiple output nodes instead of just one. This only requires a simple modification: besides
connecting x extra (black) output nodes to node B, we also need to add x fixed (white)
nodes in order to keep the initial balance of B unchanged.
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Chains of simple relays are mostly used to connect more complex gadgets in our con-
struction. Note that depending on whether the input and output nodes in these gadgets are
supposed to have the same or different initial colors, we only need a chain of length 1 or 2
for this, respectively.

Rechargeable relay. In a rechargeable relay, node B is connected to an upper node U
instead of a fixed node. Node U is connected to a group C of two nodes, which is further
connected to nodes R1, R2. Initially, C has the opposite color as B and U , and one of R1
and R2 is white, the other is black. Node B has the same external neighbors as a simple
relay. The recharge nodes can both have any set of external neighbors as long as their initial
balance is 3 with C ignored (so with C included, the initial balance of R1 and R2 is then 1
and 5, respectively).

Note that since R1 and R2 have opposite colors, this recharging process can always be
executed on a used relay through either R1 or R2, depending on the current color of the
nodes. We only need to select the recharge node that has the current color of U , and switch
3 of its neighbors (to U ’s current color) for the recharging step, and then switch 3 of its
neighbors (to the opposite color) for the resetting step.

Recharging system. In a basic recharging system, the node U is connected to the input
node v, the group M , and to

√
n+ 1 fixed white nodes. The middle level group M has a

further edge to all nodes Li, and is balanced by
√
m fixed black nodes. Finally, each node

Li has
√
m distinct neighbors in X, and thus each node in X is connected to exactly one

lower-level node. For convenience, we assume that m is a square number.
A generalized recharging system is almost identical to this, except for the nodes Li

occasionally being connected to the same node. The connections between the lower level
and X are not directly specified: we are free to choose which of the nodes Li to connect
to a specific node in X. Note, however, that the gadget design implicitly assumes that
xj ≤

√
χ for all nodes in X. This is naturally satisfied whenever we use the gadget in our

constructions, since we always have x1 = x2 = ... = xm with |X| > xj . Also note that for
convenience, we assume χ to be a square number.

Nodes in the upper and lower levels are initially white, while M and the input node v
are initially black. The nodes X may assume any color, and also may switch multiple times
before the recharging system is activated. However, the graph construction ensures that at
the time when the gadget is activated (that is, when v switches), all nodes in X are currently
colored black (i.e., we indeed use the system on rechargeable relays that can currently be
recharged). The gadget design ensures that U and M have an initial balance of 1, while the
nodes Li have a balance of 1 at least, depending on the current color of their neighbors in X.

AND gate. The and gate consist of 7 nodes. The input nodes of X are connected to node
A, which is further connected to all other nodes in the gadget (B1, B2, D and the group C
on 3 nodes). Nodes B1 and B2 are also connected to group C, node B1 has an edge to node
D, and node D is connected to some external black node v on the output side. Furthermore,
A, B1 and B2 have x+ 1, 4 and 3 fixed black neighbors, respectively.

One can check that each node has a positive balance as long as there exists a black node
in X. Node A gets a balance of x−1 from the nodes within the gadget, so it is not switchable
unless all nodes in X are white. Nodes B1, B2, C and D all have an initial balance of 1.

After the gadget reaches its final stage (see Figure 8), no node in the gadget can ever
change again, regardless of the states of X or v.
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Note that for the described behavior of the gadget, we also need the fact that none of
the nodes in X switch between the first and second switching of A. The switching of A only
increases their balance (temporarily), so this is guaranteed if other neighbors of nodes in
X do not interfere with the process. In the construction, we only use and gates this way:
whenever a node A becomes switchable in a gate, then that is the only switchable node in
the entire graph, so no other nodes will switch until the propagation reaches v.

As long as this condition is fulfilled, we can connect any number of and gates to a given
node of the graph without affecting its behavior; we only have to make sure that we also add
fixed node neighbors to restore the node’s balance to the original value.

Join gadget. The join gadget consists of a central node C, and of p distinct 2-group starter
gadgets of alternating color (we assume p to be even). Each starter gadget consists of two
groups Ai and Bi, both of size 2 (with i ∈ {1, 2, ..., p}). The two groups are connected to
each other, and Ai has a further edge to the input node vi, and two fixed nodes of the same
color as its own. Finally, all Bi are connected to a central node C, which is in turn connected
to an output node v. Node C also has two further fixed black connections.

Initially, Ai for odd i values, Bi for even i values, vi for even i and node C are colored
white; the remaining nodes are colored black. Nodes Ai have an initial balance of 1, nodes
Bi have an initial balance of 1 or 3 (depending on parity), and C has an initial balance of 3.

Every time after v switches, the balance of C returns to its initial value of 3, so the
switching of the next input node will trigger the same process through the next starter
gadget.

Fork gadget. The fork gadget consists of q nodes F1, ..., Fq of alternating color, where we
assume q to be an odd number. All Fi are connected to the same input node v, and each to
a distinct output node vi. They are also linked to each other, with Fi connected to Fi+1 for
all i ∈ {1, 2, ..., q − 1}. Also, node F1 and Fq have a fixed neighbor colored black and white,
respectively (imitating the role of the nonexistent nodes F0 and Fq+1). Finally, each Fi has
a further fixed neighbor of its original color. Initially, Fi is colored black for odd i and white
for even i values.

The balance of F1 and all white Fi-s is originally 1 in this setting, while the balance of
black Fi-s (except for F1) is 3. Hence when v first switches, only F1 will become switchable
(and switching it will propagate on through v1). The next time v switches, it switches back
to white; with v and F1 both white, F2 can now switch too. The pattern continues all the
way to Fq: as Fi−1 has already been switched before, as soon as v switches back to the
color of Fi, Fi becomes switchable, too, enabling propagation on the next branch. After vi
switches (and remains that way), Fi is not switchable anymore, since vi, Fi−1 and its fixed
neighbor all have the opposite color.

Note that since each switching Fi increases the current balance of v from 1 to 3, we
need to switch two neighbors of v in each turn to make v switchable again. This is exactly
what happens when v is the base node of the rightmost relay in the chain: between every
consecutive switches of v, we switch both node U (by the recharging step) and node vL (by
propagation through the chain) in the relay, and thus v becomes switchable again.

Note that since it is connected to the fork gadget, the rightmost rechargeable relay in the
chain is a modified one in the sense that its base node has not one, but q right-side neighbors,
colored in alternating fashion. However, this fact does not change its behavior at all. The
initial balance of the base node is still 1, and every time after v switches, it has one of its
neighbors Fi switching in the opposite direction. That has exactly the same effect as if the
right neighbor was simply a subsequent relay in the chain, triggered by v.
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On the whole construction. For convenience, we assume in the construction that both m
and r are even numbers.

Recharging systems and and gates, as all other gadgets, are available in two color variants;
in the overview of the construction, we did not discuss which variant is used in which case.
However, the current state of each relay in each round is straightforward to calculate, so the
necessary color of all recharging systems and and gates can easily be determined.

Also, we have seen that and gates are used to ensure that the given recharging or resetting
operations have completely been executed. In order to achieve this, in case of the first systems
(which recharge relays), the input edges of the gates can be connected to the upper nodes of
the corresponding relays, since that is the last node to switch in the sequence. In case of the
systems that reset relays, the aim is only to switch the corresponding recharge node of the
relay, so we can connect the gates to the recharge nodes.

However, as each and gate belongs to a certain branch of the construction, we also have
to ensure that the and gate is only activated when the propagation reaches this branch,
and stays inactive as long as previous branches are being processed. Therefore, besides the
specified nodes in the relays, the final input node of the and gate is the node which was
used to enable the recharging system in question (node v of Figure 5). This way, the gates
ensure that after the recharging system is activated, propagation only continues if all the
resulting switches were executed.

Generalization to ω(1) colors
One can observe that in the construction of Section 5, except for nodes A in the and gates,
all nodes in the graph have a degree of O(

√
n). We can slightly modify the construction and

replace each of these and gates with two levels of such gates, with Θ(
√
n) distinct gates on

the first level (each with Θ(
√
n) input nodes), and a final gate that connects the outputs of

these first-level gates. This gives us a construction with the same properties, but a maximum
degree of O(

√
n).

This allows us to generalize the lower bound of Ω(n 3
2 ) to the case of not only O(1), but

up to O(
√
n) colors. The technique for this is the same as in the case of O(1) colors: we

add a multipartite graph colored with the additional colors, and connect each of its nodes to
each original node. With ∆ = O(

√
n) established, it suffices to have Θ(

√
n) nodes in each of

the color classes. Therefore, using only Θ(n) additional nodes, we can extend the graph by a
multipartite graph on Θ(

√
n) color classes, each consisting of only Θ(

√
n) nodes.

C Notes on simulations

Due to its complexity, we have also verified the correctness of the non-recursive construction
of Section 5 through implementing it and running a simulation of the minority process. Note
that in general, it is difficult to simulate a minority process in a benevolent model, since all
possible switching sequences would have to be examined to find the one with the smallest
number of steps.

Fortunately, the task is significantly simpler in our case, due to the properties of the
construction. The key observation in our graph is that whenever propagation is split into
multiple parallel threads (that is, when there are multiple switchable nodes at the same
time), then propagation on any of these threads does not influence propagation on other
threads at all. Specifically, the nodes on separate threads do not have common neighbors
except for the beginning and end of such threads; i.e. when a switching node splits the
propagation to multiple threads, or when threads are joined in an and-like fashion, meaning
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that a common neighbor only becomes switchable when propagation has been finished in
all of the threads. This implies that throughout the process, these threads can be handled
completely independently from each other, and the order in which they are processed is
irrelevant. Note that this is also the property of the construction which ensures that the set
of switchable nodes is an independent set in any state.

If we exploit this property, the process can be simulated easily by always choosing an
arbitrary one of the switchable nodes in the graph, knowing that the choice of nodes will not
influence the outcome. To verify correctness in such a simulation, we only have to check that
in each step of the process, the set of nodes that become switchable is exactly the set of nodes
determined by the analysis. Note that the opposite does not happen in our construction:
the switching of a node never makes another switchable node unswitchable (this would also
contradict the property that switchable nodes form an independent step in any state).

When examining concrete instances of our construction, we used the parameter r as the
input to determine the size of the instance. For a given input value of r (always an even
number), we have chosen m = 2 · (r − 1)2, which fits our preconditions on both magnitudes
and parity. All other details of the construction are already determined above; the only
additional thing to note is that whenever different gadgets are connected through a chain of
simple relays, we always use the smallest possible such chain in the implementation.

The simulations verified that the analysis of the construction is correct, and thus stabiliz-
ation time is indeed Ω(n3/2) in model B. Table 1 illustrates the number of steps for some
choices r, along with the resulting number of nodes in the construction. One can observe
that the number of steps indeed grows superlinearly in n.

Table 1 Number of steps on some specific graphs.

Input (r) Nodes (n) Steps

2 99 112
4 469 772
8 1 929 5 884

16 7 729 47 404
24 17 369 161 372
30 27 119 316 568
40 48 169 754 108
60 108 269 2 559 188
80 192 369 6 084 268

100 300 469 11 905 348
120 432 569 20 598 428
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