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—— Abstract
Motivated by the growth in outsourced data analysis, we describe methods for verifying basic linear
algebra operations performed by a cloud service without having to recalculate the entire result.
We provide novel protocols in the streaming setting for inner product, matrix multiplication and
vector-matrix-vector multiplication where the number of rounds of interaction can be adjusted to
tradeoff space, communication, and duration of the protocol. Previous work suggests that the costs
of these interactive protocols are optimized by choosing O(logn) rounds. However, we argue that
we can reduce the number of rounds without incurring a significant time penalty by considering the
total end-to-end time, so fewer rounds and larger messages are preferable. We confirm this claim
with an experimental study that shows that a constant number of rounds gives the fastest protocol.
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1 Introduction

The pitch for cloud computing services is that they allow us to outsource the effort to store
and compute over our data. The ability to gain cheap access to both powerful computing and
storage resources makes this a compelling offer. However, it brings increased emphasis on
questions of trust and reliability: to what extent can we rely on the results of computations
performed by the cloud? In particular, the cloud provider has an economic incentive to take
shortcuts or allow buggy code to provide fast results, if they are hardly noticed by the client.

Prior work has developed the idea of using interactive proofs to independently verify
outsourced computations without duplicating the effort. Originally invented as tools in the
realm of computational complexity, recent work has sought to argue that interactive proofs
can indeed be practically used for verification. Modern research takes two main approaches,
from highly general methods with currently far-from-practical costs, to tackling specific
fundamental problems where the overhead of verification is negligible.

In this work, we focus on the “negligible” end of the spectrum and study primitive
computations within linear algebra — a core set of tools with applications across engineering,
data analysis and machine learning. We make four main contributions:
= We consider protocols for inner product and matrix multiplication and present lightweight

tunable verification protocols for these problems. We also produce an entirely new

protocol for vector-matrix-vector multiplication.

= Our protocols allow us to trade off computational effort and communication size against
the number of rounds of interaction. We show it is often desirable to have fewer rounds
of interaction.
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We optimize the costs for the cloud, and show that the protocols impose a computational
overhead that is typically much smaller than the cost of the computation itself.

Our experimental study confirms our analysis, and demonstrates that the absolute cost
is minimal, with the client’s cost significantly less than performing the computation
independently.

1.1 Streaming Interactive Proofs
Our work adopts the model of streaming interactive proofs (SIPs), formalized in [7, 8].

» Definition 1. We have two communicating computational entities, a helper, H, and a
verifier, V, observing a stream S. V wishes to know f(S), for some function f. After
viewing the stream, H and V have a conversation, culminating in V producing an output,
Out(V, S, Vg, H), where Vi represents a private random string belonging to V, so that

X if Vis convinced by H that f(S) =X

Oout(V,S8,Vg, H) =
1L Otherwise

We say the protocol used by the two parties is complete for f if there exists an honest helper
H such that

and sound if for any helper, H', and any input, S’

PIOW(V. S', Vi, H) /() 1}] < 5

Informally, complete protocols always accept an honest answer, and sound protocols reject
an incorrect answer most of the time (the constant probability % is arbitrary and can be
reduced to be vanishingly small via standard amplification techniques). If a protocol for V' is
both complete and sound, we call it a valid protocol for f. A valid protocol is characterized
by costs in terms of required space and communication.

» Definition 2. For a function f we say that there is a d-round (h,v)—protocol if there is a
valid protocol for f with
Verifier Memory v — Verifier uses O(v) working memory.
Communication h — The total communication between the two parties is O(h). Note
that we do not include the cost of sending the claimed solution in this cost.
Interactivity d at most 2d messages sent from H to V' or vice versa.
Furthermore, we quantify the computational costs by
Verifier Streaming Cost — The work during the initial stream.
Verifier Checking Computation — The work for the interactive stage.
Helper Overhead — The additional work outside of solving the problem.

Problem Statement

We seek optimal or near optimal verification protocols for core linear algebra operations.
The canonical (and previously studied) example is the multiplication of two matrices A €
]F’;X"7 B e ]FZ;X’“/, where F, is the finite field of integers modulo g, for some prime g > M?n,
where M = max; j(A;j, Bij) or chosen sufficiently large to not incur overflows. Our protocols
work on any prime size finite field, consistent with prior work. This allows computation over
fixed precision rational numbers, with appropriate scaling. For ease of exposition, we assume
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in this paper that n = k = k/, although all our algorithms work with rectangular matrices.
The resulting matrix AB is assumed to be too large for the verifier to conveniently store,
and so our aim is for the helper to allow the verifier to compute a fingerprint of AB [14],
defined formally in Section 3.1, that can be used to check the helper’s claimed answer.

1.2 Prior Work

Interactive proofs were introduced in the 1980s, primarily as a tool for reasoning about
computational complexity [12]. A key result showed that the class of problems admitting
interactive proofs is equivalent to the complexity class PSPACE [17]. Subsequent work in
this direction led to the development of probabilistically checkable proofs (PCPs), where
(in our terminology) the verifier only inspects a small fraction of the proof written by the
helper. One distinction between this prior work and our setting is that PCPs consider a
verifier who can devote polynomial time to inspecting the proof and has access to the full
input; by contrast, we consider weaker verifiers, and try to more tightly bound their space
and computational resources. The notion that interactive proofs could be a practical tool for
verifying outsourced computation was advocated by Goldwasser, Kalai and Rothblum [11].
This paper introduced the powerful GKR (or “muggles”) protocol for verifying arbitrary
computations specified as arithmetic circuits. Several papers have aimed to optimize the
costs of the GKR protocol [7, 19, 18], or to provide systems for verifying general purpose
computation under a variety of computational or cryptographic models [13, 16, 15]. The latter
of which tackle large classes of problems using arguments, which consider a computationally
bounded prover. We consider only proofs as we can achieve highly efficient protocols without
requiring restriction on the prover, or use of cryptographic assumptions. Furthermore, some
costs associated with such verification still remain high, such as requiring a large amount of
pre-processing on the part of the helper, which can only be amortized over a large number of
invocations. For the common and highly symmetric algebraic computations we work with in
this paper, it is beneficial to build a specialised protocol.

Other work has considered engineering protocols for specific problems that are more
lightweight, and so trade generality for greater practicality. The motivation is that some
primitives are sufficiently ubiquitous that having special purpose protocols will outweigh the
effort to design them. An early example of this is given by Frievalds’ algorithm for verifying
matrix multiplication [10]. This and similar algorithms unfortunately don’t directly work
for verifiers that can’t store the entire input. This line of work was initiated for problems
arising in the context of data stream processing, such as frequency analysis of vectors derived
from streams [5]. Follow-up work addressed problems on graph data [8], data mining [9] and
machine learning [6].

These papers tend to consider either the non-interactive case (minimizing the number of
rounds), or have a poly-logarithmic number of rounds (minimizing the total communication).
For example, [8] introduces an interactive inner product protocol which can accommodate a
variable number of rounds. The development assumes that setting the number of rounds to
be log(n) will be universally optimal, an assumption we reassess in this work. Similarly, in
[18] the matrix multiplication protocol takes place over O(log(n)) rounds. Our observation
is that the pragmatic choice may fall between these extremes of non-interactive and highly
interactive. Taking into account latency and round-trip time between participants, the
preferred setting might be a constant number of rounds, which yields a communication cost
which is a small polynomial in the input size, but which is not significantly higher in absolute
terms from the minimal poly-logarithmic cost.

We summarize the current state of the art for the problems of computing inner product
(Table 1) and matrix multiplication (Table 2), and show the results we obtain here for
comparison.
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Table 1 Different SIPs for Inner Product with u,v € F}, with n = [ and a € [0, 1].

Method O(h) O(v) Rounds | H overhead | V overhead + checking

This Work O(ld) O(l+d) d—1 O(nlog(l)) O(nid) + O(ld)
Binary SC [8] | O(log(n)) | O(log(n)) | log(n) O(n) O(nlog(n)) + O(log(n))
FFT LDEs [7] | O(n'™®) O(n%) 1 O(nlog(n)) O(n) + O(log(n))

Table 2 Different SIPs for Matrix Multiplication with A, B € F;*™ and n = 1.

Method O(h) O(v) Rounds H overhead | V overhead + checking
This Work o(ld) O(l +d) d O(n?) O(n?ld) + O(1d)

Binary SC [18] | O(log(n)) | O(log(n)) | log(n) + 1 O(n?) O(n®log(n)) + O(log(n))
Fingerprints [5] O(n?) o(1) 1 o(1) O(n?) + O(n?)

Lastly, we comment that our results are restricted to the information-theoretically secure
model of Interactive Proofs, and are separate from recent results in the computational
(cryptographic) security model [3, 4].

1.3 Contributions and outline

Our main contribution is an investigation into the time-optimal number of rounds for a variety
of protocols. We adapt and improve protocols for inner product and matrix multiplication, as
well as introducing an entirely new protocol for vector-matrix-vector multiplication. We then
perform experiments in order to evaluate the time component of each stage of interaction.

We begin in Section 2 by re-evaluating how to measure the communication cost of a
protocol, and propose to combine the competing factors of latency and bandwidth into a
total time cost. This motivates generalized protocols that take a variable number of rounds,
where we can pick a parameter setting to minimizes the total completion time.

In Section 3 and 4 we build on previous protocols [8, 7] to construct novel efficient
variable round protocols for core linear algebra operations. We begin by revisiting variable
round protocols for inner product. We leverage these to obtain new protocols for matrix
multiplication and vector-matrix-vector multiplication (which does not appear to have been
studied previously) with similar asymptotic costs.

In Section 5, we thoroughly analyse the practical computation costs of the resulting
protocols, and compare to existing verification methods. We perform a series of experiments
to back up our claims, and draw conclusions on what we should want from interactive proofs.
We show that it can be preferable to use fewer rounds, despite some apparently higher costs.

2 How Much Interaction Do We Want?

Prior work has sought to find “optimal” protocols which minimize the total communication
cost. This is achieved by increasing the number of rounds of interaction, with the effect of
driving down the amount of communication in each round. The minimum communication is
typically attained when the number of rounds is polylogarithmic [7]. The non-interactive case
represents another extreme in this regard, requiring a single message from the helper to verifier.
This allows the parties to work asynchronously at the cost of larger total communication.

In this section we argue that the right approach is neither the non-interactive case nor
the highly-interactive case. Rather, we argue that a compromise of “moderately interactive
proofs” can yield better results. To do so we consider the overall time required to process
the proof.
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Figure 1 Optimal number of rounds for matrix multiplication of various sizes when considering
only communication, with a field size ¢ = O(n?).

The key observation is that the time to process a proof depends not just on the amount
of communication, but also the number of rounds. In the protocols from Table 1 and 2, each
round cannot commence until the previous round completes, hence we incur a time penalty
as a function of the latency between the two communicating parties. The duration of a round
depends on the bandwidth between them. Thus, we aim to combine number of rounds and
message size into a single intuitive quantity based on bandwidth and latency that captures
the total wall-clock time cost of the protocol.

For matrix multiplication, the variable round protocols summarized in Table 2 spread the
verification over d rounds, and have a total communication cost proportional to dn'/. Hence,
we write the time to perform the communication of the protocol as T' = 2dL + w,
where latency (£) is measured in seconds, and bandwidth (B) in bits per second. This
expression emerges due to the 2d changes in direction over the protocol, and considering a
protocol that sends a total of 2dn'/¢ field elements (from the analysis in Section 4.2).

We measured the cost using typical values of £ and B observed on a university campus
network, where the “ping” time to common cloud service providers (Google, Amazon,
Microsoft) is of the order of 20ms, and the bandwidth is around 100Mbps. From the above
equation for T' we see that, for a constant field size |F|, the value of 2n'/?dlog(|F|)/B is
dominated by 2dL for even small d under such parameter settings. Hence, we should prefer
fewer rounds as latency increases. Figure 1 shows the number of rounds which minimizes
the communication time as a function of the size of the input. We observe that the answer
is a small constant, at most just two or three rounds, even for the largest input sizes,
corresponding to exabytes of data.

3 Primitives

Before we introduce our protocols, we first describe the building blocks they rely on.

3.1 Fingerprints

Fingerprints can be thought of as hash functions for large vectors and matrices with additional
useful algebraic properties. For A € Fy*" and z € F,, define the matrix fingerprint
as F,(4) = S Z;:_ol Agjz™+9. Similarly, for u € F} we have the vector fingerprint
FEYe(u) = E?:_Ol w;x*. The probability of two different matrices having the same fingerprint
(over the random choice of x) can be made arbitrarily small by increasing the field size.
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» Lemma 3 ([14]). Given A, B € F;*" and x €r Fy, we have P[F,(A) = F,(B)|A # B] <
n2

7.

A similar result holds for Fy°°. In our model, fingerprints can be constructed in constant
space, and with computation linear to the input size.

3.2 Low Degree Extensions

Low degree extensions (LDEs) have been used extensively in interactive proofs. LDEs have
been used in conjunction with sum-check (Section 3.3) in a variety of contexts [11, 7, §].
Formally, for a set of data S an LDE is a low degree polynomial that goes through each data
point. Typically, we think of S as being laid out as a vector or d-dimensional tensor indexed
over integer coordinates. This polynomial can then be evaluated at a random point r with
the property that, like fingerprinting, two different data sets are unlikely to evaluate to the
same value at r (inversely proportional to the field size).

Given input as a vector u € Fy, we consider two new parameters, [ and d with n < 1% and
re-index u over [(]%. The d-dimensional LDE of u satisfies fu(ko, woykd—1) = uy for k € [n]
where kq...kq_1 is the base [ representation of k. For a random point r = (rg,...,7q_1) € ]F;l,

we have
-1 -1
fu(TOa"-aTd—l) :Z Zukxk(r) (1)
ko ka—1
d—1 -1 e
k() = not 2)
. . 7 2
7=0 =0
i#k;

where x is the Lagrange basis polynomial. Note that fu : IFfIl — F, and ¢ > . A similar
definition can be used for a matrix A € Fy*", by reshaping into a vector in ng.

The polynomials can be evaluated over a stream of updates in space O(d) and time per
update O(ld) [8]. The time cost of our verifier to evaluate an LDE at one location, r, is
O(nld) (for sparse data, n can be replaced with the number of non-zeros in the input).

3.3 Sum-Check Protocol

Our final primitive is the sum-check protocol [12]. Sum-check is a multi-round protocol for
verifying the sum

-1 -1 -1

G=>Y > - > glko ki, ....ka1) for g:F§ —F,. )

ko=0k1=0 kq—1=0

For our purposes, g will be a polynomial derived from the LDE of a dataset of size n = [¢
(i.e. the d-dimensional tensor representation of the data), and each polynomial used in
the protocol will have degree A, with A = O(l); however, we keep the parameter X\ for
completeness. Provided that all the checks are passed then the verifier is convinced that
(except with small probability) the value G was as claimed in (3). The original descriptions
of the sum-check protocol [12, 2] use | = 2, however we shift to using arbitrary [, similar to
[1, 7, 8]. The protocol goes as follows:
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Stream Processing: V randomly picks r € ]Fg and computes g(rg, ..., Td—1)-

Round 1: H computes and sends G and go : F, — F,, where

Z Z (ko, k1, .oska—1).

k1=0 ka—1=0

V checks that G = Zk _o90(ko), computes go(ro) and sends ro to H.

Round j + 1: H has received ry,...,r;—1 from V, and sends g; : F;, — F,, where

Z Z r07"';rjflakja"'akdfl)'

kjt1=0  kq_1=0

V checks if g;_1(rj—1) = Zk —09i(kj), computes g;(r;) and sends r; to H.

Round d: H sends g4—1 : Fq — IFq, where gq—1(ka—1) = g(r0, -, Td—3, Td—2, ka—1)-
V' checks that gd_g(rd_g) de —09d—1(kd—1), computes g4—1(ra—1), and finally checks
this is g(ro, ..., Td—2, 7d—1)-

H can express the polynomial g; as a set G; = {(g;(z),z) : € [\]}. In each round V'
sums the first [ elements of this set, and checks it is g;_1(rj_1) for j > 0, then evaluates the
LDE of G, at r;, giving a computation cost per round of O(l + ). The verifier also has to
do some work in the streaming phase, evaluating the function g at r, with cost O(nAd). The
helper’s computation time comes from having to evaluate g at [~ points in the jth round,
and so ultimately evaluating g at Zd 1193 = O(n) points, with a cost per point of O(Ad)
(we subsequently show how this can be reduced in our protocols for linear algebra). The
costs of performing sum-check are summarized as follows:

Communication O(Ad) words, spread over d rounds.
Helper costs O(nAd) time for computation.

Verifier costs O(\ + d) memory cost, O(nAd) overhead to compute LDE and checking cost
ol + ).

In our implementations, we will optimize our methods to “stop short” the sum-check
protocol and terminate at round d — 1 (this idea is implicit in the work of Aaronson and
Wigderson [1, Section 7.2]). In this setting, the verifier finds the set

{9(ros s ra—3, 742, ka—1) : ka—1 € [I]}.

in the stream processing stage, and then checks this against the claimed set of values provided
by the helper in round d — 1. This increases the space used by the verifier to maintain these
! LDE evaluations. However, this does not affect the asymptotic space usage of the verifier,
since we assume that V already keeps space proportional to [ to handle H’s messages. It
does not affect the streaming overhead time, since each update affects only the LDE point
with which it shares the final coordinate. Equivalently, this can be viewed as running [
instances of sum-check in parallel on the data divided into [ partitions. Hence, this appears
as an all-round improvement, at least in theory.
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4 Protocols for Linear Algebra Primitives

Using the previously discussed primitives for SIPs, we show how they have been used in
inner product [7]. We then use this to construct a new variable round method for matrix
multiplication, and extend it to achieve a novel vector-matrix-vector multiplication protocol.

4.1 Inner Product

Given two vectors a,b € Fy, the verifier wishes to receive aTh € F, from the helper. We
give a straightforward generalization of the analysis of a protocol in [8], as an application of
sum-check on the LDEs of a and b. This variable round protocol has costs detailed below.

» Theorem 4. Given a,b € Fy, there is a (d — 1)-round (Id,l + d)-protocol with n = 14

for verifying aTb with helper computation time O ( ™80 " yerifier overhead O(nld), and
d
checking cost O(ld).

The analysis from [8] sets I = 2 and d = log(n), and the computational cost for the verifier is
O(log(n)) while the cost for the helper is O(nlog(n)). For general [ and d these costs become
O(ld) and O(nld) for the verifer and helper respectively.

In [7] it is shown how the helper’s cost can be reduced to O(nlog(n)) for d = 2 and
[ = y/n using the Discrete Fast Fourier Transform to make a fast non-interactive protocol.
We extend this for arbitrary d and [, and show how by combining with sum-check we can
keep the helper’s computation low, proving Theorem 1.

» Lemma 5. Given a,b € F the sum

-1 -1
=S S Falhor o ka) ok o Ran) )

ko=0 kq—1=0

can be verified using a (d—1)-round (Id, l+d)-protocol with helper computation time O(MOTg(")),

and verifier computation time O(ld), overhead time O(nld).

Proof. First, set

9(kos s ka—1) = fa(Koy s k1) fo (Ko, ooy ka—1)-

qg: ]Fg — Iy is a degree 2] polynomial in each variable. Now, consider round j + 1 of the
sum-check protocol, where the helper is required to send

-1 -1

g](x): Z Zg(rla'~-77aj717x7kj+17'~7kd)'
kj+1:O kq=0

Here, g is degree 2] polynomial, sent to V' as a set G = {(g;(z),z) : x € [21]}. To compute

this set we have H find the individual summands as

Gj =S {(g(rl, --~7Tj—17x7kj+1; ---7kd—1)7$) T € [2l]7kj+17~-~7kd—1 S m}

Naive computation of all the values in G; takes time O(nd) each, for a total cost of O(nl¢=7d).
However, instead of computing the LDE at [~/ points with cost O(ld) we can sum [?~7
convolutions of length 2I vectors to obtain the same result. We present the full proof of this
claim in the Appendix. The total cost of each convolution is O(llog(l)). Summing these

1977 convolutions gives the cost of the jth round for the helper as O (%). Summing

d—1 74— . 1 L .
> =0 1977 over the d rounds gives us our cost of O (%g(")). The remaining costs are as in

our version of the sum-check protocol (Section 3.3). <
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4.2 Matrix Multiplication

By combining the power of LDEs with the matrix multiplication methods from [6], we can
create a protocol with only marginally larger costs than inner product.

» Theorem 6. Given two matrices A, B € Fy*", we can verify the product AB € Fj;*"
using a d-round (ld,l + d)-protocol with verifier overhead time O(n?ld), checking time O(ld)
and helper computation time O(n?).

Proof. We make use of the matrix fingerprints from [6], and generate the fingerprint of AB
for some x € F; by expressing matrix multiplication as a sum of outer products.

ZFvec A‘L FVGC(B—>) (5)

where A% denotes the ith column of A and B;” is the jth row of B. We also define:

Acot = (FYSS(AY), ..., FY(AL)) and Brow = (FY°(B), ..., FY°(B;7)).

Tn

Our fingerprint F,(AB) is then given by the inner product of A, and Bioy. We apply the
inner product protocol of Theorem 4, hence we need to show the verifier can evaluate the
LDE of the product of these two vectors at a random point,

Z Fer (05 oo Ta—2, kd—1) FBrpn, (70, s Td—2, Ka—1),
kq_1=0

which we denote as X f4_, (r)fp... (). We can construct this value in the initial stream by
storing, for each value of kq_1, wal(To, ey Td—1,kq—1) and mew (roy ey Td—1, kd—1), which is
done in space O(Ild) for the verifier. Each of these requires an initial verifier overhead of
O(ld) for each of the n? elements, then checking requires O(Ild) as in Theorem 4. The helper
has to fingerprint the matrices to form Aeo and Biow, at a cost of O(n?). The result follows
by using the generated fingerprint to compare to the fingerprint of the claimed result AB
(which is provided by the helper in some suitable form, and excluded from the calculation of
the protocol costs). <

Note that the helper is not required to follow any particular algorithm to compute the
matrix product AB. Rather, the purpose of the protocol is for the helper to assist the verifier
in computing a fingerprint of AB from its component matrices. The time cost of this is much
faster: linear in the size of the input.

Fingerprinting versus LDEs. Our protocol in Theorem 6 is stated in terms of fingerprints.

In [18], a d-round protocol is presented which uses

fap(Ri, Ry) = Z Z Fa(Ri k) fo(k, Re).

ko=0 Elog(n)—1=0

This uses the inner product definition of matrix multiplication, whilst we use the outer
product property of fingerprints. Finding f45(R1, Rs) during the initial streaming has cost
per update O(log(n)). For our method, we find fa_ (r)f5,.. (r), which has cost O(ld). In
the case I = 2,d = log(n), we see these two methods are very similar. The methods differ
in how we respond to receiving the result, AB. In [18], the verifier computes the LDE of
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AB at a cost of O(n?ld), while our method takes time O(n?) to process the claimed AB,
as we simply fingerprint the result. Thaler’s method posesses some other advantages, for
example it can chain matrix powers (finding A™) without the Helper having to materialize
the intermediate matrices. Nevertheless, in data analysis applications, it is often the case
that only a single multiplication is required.

4.3 Vector-Matrix-Vector Multiplication

Vector-matrix-vector multiplication appears in a number of scenarios. A simple example
arises in the context of graph algorithms: suppose that helper wishes to demonstrate that a
graph, specified by an adjacency matrix A, is bipartite. Let v be an indicator vector for one
part of the graph, then vT Av = (1 —v)TA(1 —v) = 0 iff v is as claimed. More generally, the
helper can show a k colouring of a graph using k vector-matrix-vector multiplications between
the adjacency matrix and the k disjoint indicator vectors for the claimed colour classes.

We reduce the problem of vector-matrix-vector multiplication (which yields a single scalar)
to inner product computation, after reshaping the data as vectors. Formally, given u,v € F”
and A € F*™*" we can compute u” Av as

ul Av = Zn: E”: wiAijvj = (W’ )vee - Avec

i=1 j=1

uT Av is equal to computing the inner product of A and uv” written as length n? vectors.
Protocols using this form will need to make use of an LDE evaluation of uv?. We show that
this can be built from independent LDE evaluations of each vector.

» Lemma 7. Given u,v € F* and r €g F¢, with n =14

fuor (Tos - r2d-1) = fu(ro, ... sra—1) fo(ra, ..., 72a—1)

Proof. We abuse notation a little to treat uv” as a vector of length n2, and we assume that
n = 14 (if not, we can pad the vectors with zeros without affecting the asymptotic behaviour).
We write Ry = (ro,...,74—1) and Ry = (rg,...,724—1). The proof follows by expanding out
expression (2) to observe that xx(ro...72d-1) = Xko....ka1 (B1)Xka,....kay_, (F2) and so

— -1

Sfuor (o, 120-1) = Z Z [(uvT)ka(r)]

0=0 k24—1=0
1 -1 -1 -1

Y Y e R (R)

0=0 iq—1=0 jo=0 Ja—1=0

fu(R1) fu(R2). <

—
=

N

The essence of the proof is that we can obtain all the needed cross-terms corresponding to
entries of uv” from the product involving all terms in f, and all terms in f,.

We can employ the protocol for inner product using f4 and f,,r, which we can compute
in the streaming phase, as f,,r = fu.f, to give us Theorem 3.

» Theorem 8. Given u,v € F* and A € F**", we can verify u’ Av using a (d — 1) round
(Id,1+d)-protocol for n? = 1%, with helper computation O (%), verifier overhead O(nld)
and checking cost O(1).
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Verifier Tasks Helper Tasks
Streams A, B and o a Finds AB
computes Xfa. , (r)fB,.. (T

Acor (1) /B0 (T) bo Sends AB
Computes f,(AB) Bo
Sends x 0

Computes G

c Sends Gy

Checks Y2(Go)i = f+(AB) 8
Computes fg,(ro)

Sends rq 0

Computes G4_o
® Sends Gg4_»o

Checks
SNs0(Gasa)i = fauo(ra—s) |B
defz(Td*Z) = EfAcol (T)fBTow(r)

Figure 2 Detailed Matrix Multiplication Protocol.

5 Practical Analysis

To evaluate these protocols in practice, we focus on the core task of matrix multiplication.
In order to discuss the time costs associated with execution of our protocols in more detail,
we break down the various steps into components as illustrated in Figure 2. Here, we use
Greek characters to describe the costs for the verifier: the initial streaming overhead (t[a]),
the checks performed in total in each round (t[5]), as well as the time to send responses
(t[d]). For the helper, we identify four groups of tasks, denoted by Latin characters: the
computation of the matrix product itself (t[a]), the communication of this result to the
verifier (t[bg]), and the time per round to compute and send the required message (t[b] and
t[c] respectively).

Recall our discussion in Section 2 on the effects of communication bandwidth and latency
on the optimal number of rounds. In our simple model we focused on the tasks most directly
involved with communication (the verifier round cost t[6] and helper round cost t[c]). We
implicitly treated the corresponding round computation costs (t[3] and t[b]) as nil. As the
construction and sending of the solution (t[a] and t[bg]) will dominate the first stage of the
protocol, we focus our experimental study on measuring values of t[b], t[5o] and t[5] to
quantify a reasonable estimate for the length of time the interactive phase of the protocol
takes with bandwidth B and latency L.

We account for the cost required for computation and communication separately to find
the total time, T, as follows:

T = t[work] + t[comm] = (t[Bo] + t[5] + t[b]) + (2d£ + 2dllo§(|]F|)) .
T is the total time for the protocol from receiving the answer to producing a conclusion of
the veracity of the result. We can omit the verifier’s streaming computation time t[a] from
the total protocol run time, as this can be overlapped with the helper’s computation of the
true answer, which should always dominate.
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Table 3 Interaction phase costs.

(a) n=2'2, t[Bo] = 149 + 15ms.

(b) n =2, t[Bo] = 38.0 & 6.5s.

L1 d | o Gns) | EB] (i) [ [ ] (ms) |08 Gas)
2 | 12 | 0.230£0.02 R
2 |16 | 3.5+0.2 6E1
4 | 6 | 0.12040.01 1441
4 8 | 20+0.1 9+1
8 | 4 | 0.09940.01 3547
16 | 4 | 1.6+0.1 46 + 3
16 1 3 1 0.097+£0.01 | 3547 256 | 2 | 1.84+0.1 | 1700 =+ 200
64 | 2 | 0.110+0.01 4345 :
(c) n =2 t[Bo] = 603 % 63s.
l d | t[b] (ms) t[B] (ps)
2 | I8 | 14.1£00 61
4 9 | 80+0.5 1143
8 6 | 6.3+£0.5 30+3
64 | 3 | 7.1+0.6 270 + 30
512 | 2 | 7.840.7 | 6400+ 650
Table 4 Matrix Multiplication Timings.
n tla] (s)
219 | 0.61 £ 0.06
21 | 5.614+0.7
212 | 47.9+4.3
213 403 + 34

In what follows, we instantiate this framework and determine the costs of implementing
protocols. These demonstrate that while computation cost for matrix multiplication (¢[a])
grows superquadratically, the streaming cost (¢[]) is linear in the input size n. The dominant
cost during the protocol is t[B], to fingerprint the claimed answer; other computational costs
in the protocol are minimal. Factoring in the communication based on real-world latency
and bandwith costs, we conclude that latency dominates, and indeed we prefer to have fewer
rounds. In all our experiments, the optimal number of rounds is just 2. Extrapolating to
truly enormous values of n suggest that still three rounds would suffice.

5.1 Setup

The experiments were performed on a workstation with an Intel Core i7-6700 CPU @ 3.40GHz
processor, and 16GB RAM. Our implementations were written in single-threaded C using the
GNU Scientific Library with BLAS for the linear algebra, and FFTW3 library for the Fourier
Transform. The programs were compiled with GCC 5.4.0 using the -O3 optimization flag,
under Linux (64-bit Ubuntu 16.04), with kernel 4.15.0. Timing was done using the clock()
function for all readings except t[3], which used getrusage () as the timings were so small.

For the various tests performed, the matrices and vectors were generated using the C
rand () function. Note that the work of the protocols is not affected by the data values, so
we are not much concerned with how the inputs are chosen. The arithmetic field used was I,
with ¢ = 23! — 1 (larger fields, such as ¢ = 26* — 1 or ¢ = 2'27 — 1 could easily be substituted
to obtain much lower probability of error, at a small increase in time cost). The work of the
verifier and work of the helper were both simulated on the same machine.
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Table 5 Time taken for interactions (ping Table 6 Verifier matrix multiplication time (ping
20ms, bandwidth 100Mbps, |F|=23!—1). 20ms, bandwidth 100Mbps, |F|=23'—1).
Latency Bandwidth t[comm] | t[work
" ! d cost (ms) | cost (ms) " ! d | (s) | [(s) | @)
2 |12 440 0.014 2 [ 12 0.44 0.589
4 6 200 0.012 4 6 0.20 0.349
212 | 8 4 120 0.015 212 | 8 4 0.12 0.149 0.269
16 | 3 80 0.020 16 | 3 0.08 0.229
64 | 2 40 0.041 64 | 2 0.04 0.189
2 |16 600 0.019 2 |16 0.60 38.6
4 8 280 0.018 g6 | 4 8 0.28 28 38.3
216 1 16 | 4 120 0.031 16 | 4 0.12 38.1
256 | 2 40 0.163 256 | 2 0.04 38.0
2 |18 680 0.022 2 |18 0.68 604
4 9 320 0.020 4 9 0.32 603
218 | 8 6 200 0.026 218 | 8 6 0.20 603 603
64 | 3 80 0.082 64 | 3 0.08 603
512 | 2 40 0.328 512 | 2 0.04 603

5.2 Matrix Multiplication Results

Table 3 shows the experimental results for the matrix multiplication protocol for matrix
sizes ranging from n = 22 to 2'8. Note, this means we are tackling matrices with tens of
billions of entries. For completeness, we timed BLAS matrix multiplication on our machine
for n = 210 to 2! to give an idea of the comparative magnitude of a (Table 4), although
further results were restricted by machine memory. Due to memory limitations, we tested
our algorithms using freshly drawn random values in place of stored values of the required
vectors or matrices. This does not affect our ability to compare the data, and allows us to
increase the data size beyond that of the machine memory.

The computation cost t[a] grows with the cost of matrix multiplication, which is super-
quadratic in n, while t[a] grows linearly with the size of the input, which is strictly quadratic
in n. Further, the verifier does not need to retain whole matrices in memory, and can compute
the needed quantities with a single linear pass over the input.

We next study the helper’s cost across all d rounds to compute the responses in each step
of the protocol. Our analysis bounds this total cost as O("IOT‘%(")). However, we observe that
in our experiments, this quantity tends to decrease as d decreases. We conjecture that while
the cost does decrease each round, the amount of data needed to be handled quickly decreases
to a point where it is cache resident, and the computation takes a negligible amount of time
compared to the data access. Thus, this component of the helper’s time cost is driven by the
number of rounds during which the relevant data is still “large”, which is greater for larger d.

When we look at the contributory factors to t[work], we observe that the dominant
term is by far t[5g], where the verifier reads through the claimed answer and computes the
fingerprint. Thus, arguably, the computational cost of any such protocol once the prover finds
the answer is dominated by the time the verifier takes to actually inspect the answer: all
subsequent checks are minimal in comparison. This justifies our earlier modelling assumption
to omit computational costs in our balancing of latency and bandwidth factors.

We now turn to the time due to communication, summarized in Table 5. Here, we can
clearly see the huge difference of several orders of magnitude between the latency cost, 2dL,
versus the bandwidth cost, %g(m). Note that these timing figures are simulated, based on
the average values of latency and the corresponding average bandwidth found when pinging
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several cloud servers such as Google, Amazon and Microsoft from a university network.
The dependencies on both latency and bandwidth are linear. Consequently, if the latency
were reduced to 10ms, this would halve the times in the Latency cost column; similarly, if
bandwidth were doubled, this would halve the times in the Bandwidth cost column. We
observe then that for all but very low bandwidth scenarios, the latency cost will dominate.

Finally, we put these pieces together, and consider the total protocol time from both
computation and communication components. We obtain the total time by summing t[work]
and t[comm], in Table 6. These results confirm our earlier models, and the fastest time is
achieved with a very small number of rounds. For all values of n tested in these experiments,
we see the optimal value of d is 2, the minimally interactive scenario. The trend is such that,
because of the sheer domination of latency and t[fy], it is unlikely that more than two or
three rounds will ever be needed for even the largest data sets. As n increases, the size of
t[work] grows faster than t[comm], predominantly due to t[8o]. Therefore to minimize the
cost of verification one should prefer a small constant number of rounds.

6 Concluding Remarks

Our experimental study supports the claim that fewer rounds of interaction are preferable
to allow efficient interactive proofs for linear algebra primitives. For large instances in
our experiments, the optimal number of rounds is just two. These primitives allow simple
implementation of more complex tools such as regression and linear predictors [6]. Other
primitive operations, such as scalar multiplication and addition, are trivial within this model
(since LDE evaluations and fingerprints are linear functions), so these primitives collectively
allow a variety of computations to be efficiently verified. Further operators, such as matrix
(pseudo)inversion and factorization are rather more involved, not least since they bring
questions of numerical precision and representation [6]. Nevertheless, it remains open to
show more efficient protocols for other functions, such as matrix exponentiation, and to allow
sequences of operations to be easily “chained together” to verify more complex expressions.
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A  Details of Proof of Lemma 5

» Lemma 9 (Restatement of Lemma 5). Given a,b € F}, the sum

-1

-1
aTh = Z Z fa(ko,s s ka—1) fo(ko, ..y ka—1)

ko=0 kqg—1=0

nlog(n) )7

can be verified using a (d —1)-round (Id,l + d)-protocol with helper overhead time O(=
and verifier overhead time of O(nld) and checking computation time O(ld).

Proof. First, set

g(ko, veny kd—l) = fa(ko, ceey kd—l)fb(koa cony kd—l)

g:Fgx...xTF,; = F, is a degree 2] polynomial in each variable. Now, consider round j + 1
of the sum-check protocol, where the helper is required to send

l l
J(ZL‘) = Z Z g(Tl, ...,Tj_l,.’ll‘,k:j+1, ...,k}d)

kjy1=1  kg=1

Here, g is degree 21 polynomial, sent to V as a set G5 = {(g;(z), ) : « € [2I]}. To compute
this set we have H find the individual summands as

Gj= {(g(m,.-~,Tj—17I,/€j+1,~-~,k’d—1)79€) rx € 20k, ki € [l]}
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Naive computation of all the values in G; takes time O(nd) each, for a total cost of O(nl?~7d).
However, instead of computing the LDE at [~/ points with cost O(ld) we can sum [9~7
convolutions of length 2 vectors to obtain the same result (See below). The total cost of the
convolution is O(llog(l)) = O(%)7 using n = Zd. Summing these =7 convolutions gives
the cost of the jth round for the helper as O(ld_”%(")). Summing over the d rounds gives
us our cost of O("IOTg(”)). <

A.1 Finding G; with Convolution

To simplify the argument, we consider the computation of a”'a (also referred to as Fy). The
general case of a”b follows the same steps but the notation quickly becomes cumbersome.

n—1

So, given a vector a € Fy/, we want to find Yoo a?. This is equivalent to finding the inner
product of a with itself.

Consider a d — 1 round protocol for the F» problem on a € Fy. We have n = 1%, and so
for each round of interaction the helper sends

! I
gj(r) = Z fa(ro, 1, @, kjgs o ka1)?,

kj+1:1 ka—1=1

where the input is reshaped as the d-dimensional A € F!*!X--Xl There are d — 1 such
polynomials to send over the course of the protocol, and each one has degree 21 — 1.

Round 1

Consider first the opening round

l l
go(l‘) = Z Z fA(x, kl,...,kd_l)z

ki1=1 kg—1=1

This can be found by materializing the set of values Gy = {(fA(x,kl,...,k‘d),ac) tx €

[20], k1, ..., ka—1 € [l]}, and then summing over ki, ..., k4 to obtain G

For the first half of the G, the computation is closely linked to the original input, and
so we can simply compute the partial sums

l l
Z Z fA(‘T,]ﬁ,...,kd,l)Q,

ki1=1 kg—1=1

These sums partition the input, so the total time is O(n) to obtain the values for all z € [].

However, for x values in the range [ + 1...2I[, we need to evaluate the LDE at locations
not present in the original input. To avoid the higher cost associated with naive computation
of all terms, we expand the definition of LDEs:

-1 -1
fA(kOﬂ"'ﬂkdfl) = Z APop1~~~Pd—1Xpop1mpd—1(kOv"'7kd*1)
po=0 Pd—1=0
d—1 -1 ko — i
XpOPl---Pd—l(kO’""kd—l) = H ! :
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In what follows, we can make use of the fact that not all input values contribute to every
LDE evaluation needed. We expand as follows:

-3

k1=0

Z fokl,..,

kq_1=0

ka—1)

kqg—1=0 \po= Pa—1=0

i ;—Z]Lﬁ

1=0,i#po 0,i#p1

-1 -1 -1 ) 2
T —1
) ( b T1 2 D

-1
k1 —1 H kqg_1—1
p1— Pd—1 —1

1=0,i#pq—1

=0
APOPI---Pd—l l

kq—1 po=0 i=0,i#po
-1 -1 -1 1 -1 1 2
2 < <APOI€1“M1 : H Po l) <H(I_Z)> (‘”PO)]>
kqg—1=0 \po=0 i=0,i7#po =0
-1 -1 -1 -1 ) . 2
s << l’-l)) 2 <Ap0klmkdl- H Po—i> (z—Po)]>
kqg—1=0 =0 po=0 1=0,i7#po

Note in the second step we use that

> q] b

p;=0i=0,ip;

pjfl

i 0 pj#kj
L pj=Fk;

We now introduce the helper functions

1 — 1
9(p) = - ; h(x) =] - 1) and  q(p)= ][] P (6)
p i=1 i=0,iztp P
to simplify the notation. We define the vectors
Ap k1~~kd—1q(p) for pE [O,I — 1]7 kl, ey kd,1 S [O,Z — 1]
bkl'ukd—l(p) = ’
0 for pe[l,21 — 1], k1, ..., ka—1 € [0,1 — 1]

and use these to rewrite in terms of convolutions

ki1=1

-1 ?
(h(x) Z [bky...kas (P0)g(x —PO)]>

kq—1=0 po=0

-1 -1
2 Z Z (COnV(bkl,..kd_l’g)[x])Q

k1=0

kq—1=0

(Z ZDFT (DFT(by,. k“)-DFT(g») a]?.

ko=1 kq=1

Thus, by precomputing some arrays of values, we reduce the computation to several
convolutions that can be evaluated quickly via fast Fourier transform. Observe that this
FFT does not need to be computed over the same field as the matrix multiplication: we can
choose any suitably large field for which there is an FFT (say, real vectors of size 27 for some
4), and then map the result back into F,. Forming by, x,(p) takes time O(I%). We have to
do O(1%~1) convolutions on vectors of length O(l), so each convolution takes time O(llog(l)).

Since log(l)

= log(n), we can write the helper’s time cost for the first round as O(% log(n)).
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Round j

Similar rewritings are possible in subsequent rounds. Initially, it may seem that things
are more complex for G, as each fa(ro,...,7j—1,, kj41,..., ka—1) appears to require full
inspection of the input to evaluate at (rg,...,7;_1). However, we can again define an ancillary
array by, ..k, , to more easily compute this. In the sum-check protocol after the helper sends
Gy, it receives o, with which we define the array over [[]~! :

-1 -1
1 .
A’E“O)kl...k?dfl = Z bkln-kdfl (p) H (TO - Z)
p=0 1=0,i#p

This allows the Helper to form G using the same idea as above, but with A instead of
A. Working in terms of A®) reduces the Helper’s cost from O(1¢~'ld) for computing the
fa(ro,ki,...,ka—1) for each k; € [I] to just O(I?) when combined with using bk, x,_ ;-

In more detail, and with more generality, let us consider the jth round, where we are
forming G; and GJZ. We define

-1 -1
(4) _ ;
AT{),...,T’j_l,k]’...kd,1 - Zbkj"‘kd—l(p) H (rj71 - Z)
p=0 i=0,i%p

Then we have the following computation for z € [I,2] — 1]:

-1 -1
gj(w) = E E fa(ros o mjm1, @, kjg1s .o, kao1)®

kjy1=0  kq_1=0

-1 -1 -1 -1 -1 -1
To — 1 Tj—1 —1
PO---Pd— N y
Z Z Z Z d—1 Po — 1 Pj—1 —1
i

kjy1=0 kqg_1=0 \ppo=0 Pg_1=0 =0,i#pg i=0,i7#p;_1
2
1—1 -1 1—1
r —1 H kjy1—1 H kg1 —1
pj — 1 Pj+1 — 1 pa—1 — 1
i=0,i%p; i=0,i#pj 41 i=0,i%pg_1
r 2
-1 -1 1—1 -1
i Tz —1
— g E § A(,]) | I i
Q- Ti—1PjKj41-- kg1 pj — i
kjt1=0 ka—1=0 \p;=0 | i=0,i#p;
-1 -1 1—1 1—1 1—1
; 1 1
= § § § A(T'Z))...r» 1Pikii1. kg I I - I |(w_i) ( )
j—1PjRj+ -1 pj — i x —p;
kj41=0 kg—1=0 \p;=0 | i=0,i#p; i=0 i
1—1 1—1 1—1 1—1 -1
; 1 1
= E E ||(x—i) E Ak || ,
TO-Tj—1PjRj41--Rd—1 p; —1 T — pj
kj41=0  kgq_1=0 i=0 pj=0 i=0,i%p; i

We make use of the same set of helper functions specified in equation (6), and define
the vectors

b — A’E“‘Z))...ijlpkjﬁ,l...k‘d_lq(p) fOI“ p € [071 - 1]’ k]+1’ e kd € [07l - 1]
kjy1..-ka () 0

for pe [l,?l — 1],kj+17 vy kg1 € [0,l — 1]
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We can now continue to express the computation in terms of convolutions

2
-1

-1 -1
S S (0@ S ke ()9~ p))]

k:]‘+1:O k‘d 1:() p]'=0

_ Z Z ) conv( bkﬁl“.kd,pg)[x]f

kj+1=0 kq—1=0

h(xz)? Z Z DFT Y (DFT(by,..x,) - DFT(g)) | [2]*

kj+1=0 kqa—1=0

We can think of AU) as a shrinking input array, where AU) € FX0%-xljg d — j dimen-
sional, and

l
_ AW 1
bkj+1...kd (p]) - AT‘Z...T‘j,lpjkj+1..4k‘d H

i
i=1,izp; DI
-1 -1 r i
(4) _ § : (3-1) H Jj—1 =
ATO,...,rj,l,kj...k;d,l - Arl.“rj,gpj,lkj...kd Pi_q — Z
pj—1=0 i=0,i#p; 1 ' 7

Using this formulation, the dominant computation cost in round j will be from the FFT,
which involves [477~! convolutions of cost O(% log(n)) each. Thus the final cost for the round

is O(ld% log(n)). The cost of running the entire protocol requires d — 1 rounds, making the
computational cost for the helper

- S (st
0 Z%log() :O<nlog(n)23d>zo(1§())

7=0

since | > 2. Note that when d = log(n) and I = 2, we achieve O(n) time for the helper.
The cost increases with fewer rounds, up to a maximum of O(nlogn) for a constant round
protocol.

Cost summary

For the verifier, the checking computation cost is O(ld), which emerges from the d rounds,
where in each round the verifier sums the first [ elements of sz, before evaluating the LDE
of G? at r;, making for a total cost of O(l). The streaming overhead for the verifier involves
evaluating the LDE of the input A, for a cost of O(nld) The verifier requires O(l + d) memory
to find the LDE of a at » € F?. The communication will be O(ld) as we have the helper
sending d sets G; of size O(l). Hence, we summarize the various costs as

Rounds d—1

Communication O(ld)

Verifier Memory O(I + d)

Helper Computation Time O("IOTg("))

Verifier Overhead Time O(nld)

Verifier Checking Computation Time O(ld)
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