
Minimizing and Computing the Inverse Geodesic
Length on Trees
Serge Gaspers
UNSW Sydney, Australia
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

Joshua Lau1

UNSW Sydney, Australia
joshua.lau@unsw.edu.au

Abstract
For any fixed measure H that maps graphs to real numbers, the MinH problem is defined as follows:
given a graph G, an integer k, and a target τ , is there a set S of k vertices that can be deleted, so
that H(G− S) is at most τ? In this paper, we consider the MinH problem on trees.

We call H balanced on trees if, whenever G is a tree, there is an optimal choice of S such
that the components of G− S have sizes bounded by a polynomial in n/k. We show that MinH
on trees is Fixed-Parameter Tractable (FPT) for parameter n/k, and furthermore, can be solved
in subexponential time, and polynomial space, whenever H is additive, balanced on trees, and
computable in polynomial time.

A particular measure of interest is the Inverse Geodesic Length (IGL), which is used to gauge the
efficiency and connectedness of a graph. It is defined as the sum of inverse distances between every
two vertices: IGL(G) =

∑
{u,v}⊆V

1
dG(u,v) . While MinIGL is W [1]-hard for parameter treewidth,

and cannot be solved in 2o(k+n+m) time, even on bipartite graphs with n vertices and m edges, the
complexity status of the problem remains open in the case where G is a tree. We show that IGL is
balanced on trees, to give a 2O((n log n)5/6) time, polynomial space algorithm.

The distance distribution of G is the sequence {ai} describing the number of vertex pairs distance
i apart in G: ai = |{{u, v} : dG(u, v) = i}|. Given only the distance distribution, one can easily
determine graph parameters such as diameter, Wiener index, and particularly, the IGL. We show that
the distance distribution of a tree can be computed in O(n log2 n) time by reduction to polynomial
multiplication. We also extend the result to graphs with small treewidth by showing that the first
p values of the distance distribution can be computed in 2O(tw(G))n1+ε√p time, and the entire
distance distribution can be computed in 2O(tw(G))n1+ε time, when the diameter of G is O(nε′) for
every ε′ > 0.

2012 ACM Subject Classification Mathematics of computing → Trees; Mathematics of computing
→ Graph algorithms

Keywords and phrases Trees, Treewidth, Fixed-Parameter Tractability, Inverse Geodesic Length,
Vertex deletion, Polynomial multiplication, Distance distribution

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.59

Related Version A full version of the paper is available: https://arxiv.org/abs/1811.03836.

Funding Serge Gaspers: Serge Gaspers is the recipient of an Australian Research Council (ARC)
Future Fellowship (FT140100048).

Acknowledgements We thank David Harvey and Ray Li for fruitful discussions and feedback.

1 Corresponding author

© Serge Gaspers and Joshua Lau;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 59; pp. 59:1–59:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248536293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6947-9238
mailto:sergeg@cse.unsw.edu.au
https://orcid.org/0000-0001-7490-633X
mailto:joshua.lau@unsw.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2019.59
https://arxiv.org/abs/1811.03836
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Minimizing and Computing the Inverse Geodesic Length on Trees

1 Introduction

The Inverse Geodesic Length (IGL) is a widely-used measure for quantifying the connectedness
and efficiency of a given graph or network. In mathematical chemistry, it is also known as
the Harary Index [39], and in network science as the (global) efficiency [14].

To test the resilience of a graph to vertex failures, the problem of minimizing a particular
measure by deleting a fixed number of vertices has been studied extensively [29, 25, 20]. In
these cases, heuristics have been used to choose which vertices to delete, and their effect has
been assessed using the chosen measure. In particular, Szczepánski et al. [34] chose IGL as
the measure to be minimized when examining this problem. Nonetheless, only recently has
the exact optimization problem itself (MinIGL) been studied.

Veremyev et al. [36] formulated MinIGL as a special case of the Distance-Based Critical
Node Detection Problem (DCNP), and reduced the problem to Integer Linear Programming.
Aziz et al. [4] observed that MinIGL is NP-complete, since it corresponds to Vertex
Cover when τ = 0, but it is also both NP-complete, and W [1]-hard for parameter k, on
both split and bipartite graphs. Najeebullah [30] showed that, under the Exponential Time
Hypothesis of Impagliazzo and Paturi [22], MinIGL cannot be solved in 2o(k+n+m) time,
even on bipartite graphs. On the positive side, it was shown that MinIGL is Fixed-Parameter
Tractable (FPT) for parameter twin (or vertex) cover number, and also for ω + k, where ω
is the neighbourhood diversity of the graph. In another paper, Aziz et al. [3] showed that
MinIGL is W [1]-hard for parameter treewidth. The complexity status of MinIGL when
the input graph is a tree was stated as an open question by Aziz et al. [4, 3], and in open
problem sessions of IWOCA 2017 and the Sydney Algorithms Workshop 2017.

In Section 3, we examine MinIGL on trees, giving the following results.

I Theorem 1.1. MinIGL is FPT for parameter n/k on trees.

I Theorem 1.2. There is a 2O((n logn)5/6) time, O(n3) space algorithm for MinIGL on trees,
on a real RAM.

To do so, we prove more general versions of these results, for the MinH problem in the case
when H is additive, balanced on trees, and computable in polynomial time.

We give a Dynamic Programming (DP) algorithm that solves MinIGL by matching
ordered trees to the structure of the given tree, to give a forest with n − k vertices and
minimum IGL. The running time of this algorithm is exponential in L, but polynomial in n,
where L is the size of the largest tree in this forest. Since H is balanced, L is bounded by a
polynomial in n/k, so MinH is FPT for parameter n/k. Proving that IGL is balanced on
trees then gives Theorem 1.1. Choosing this DP algorithm when k is large compared to n,
and a simple brute-force algorithm otherwise, gives Theorem 1.2.

IGL has been used to identify key protein residues [9], compare the robustness of botnet
structures [16], and assess the impact of attacks on power grids [40]. Thus, the ability to
compute the IGL of a graph efficiently serves practical purpose in identifying characteristics
of real-world networks.

Since the IGL of a graph can easily be computed from its distance distribution, we examine
the problem of computing the distance distribution of trees. By combining the relatively
well-known techniques of centroid decomposition and fast polynomial multiplication, we
obtain the following result on trees.

I Theorem 1.3. The distance distribution of a tree with n vertices can be computed in
O(n log2 n) time on a log-RAM.

S. Gaspers and J. Lau 59:3

We extend this result to graphs with small treewidth. This is of practical note, as
real-world graphs for which IGL is an indicator of strength – such as electrical grids [2] and
road transport networks [27] – have been found to have relatively small treewidth.

The distance distribution of a graph can be trivially computed from the All Pairs Shortest
Paths (APSP). The output of APSP is of size n2, so any APSP algorithm requires Ω(n2)
time. On graphs with treewidth k, APSP can be computed in O(kn2) time [31], so we seek
algorithms that find the distance distribution with a subquadratic dependence on n. Abboud
et al. [1] proved that, under the Orthogonal Vectors Conjecture (OVC), there is no algorithm
that distinguishes between graphs of diameter 2 and 3 in 2o(k)n2−ε time. Williams [38]
showed that the OVC is implied by the Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi and Zane [22, 23]. Since the distance distribution of a graph immediately
gives its diameter, this hardness result also applies to computing the distance distribution.
We prove the following result.

I Theorem 1.4. The prefix a1, . . . , ap of the distance distribution of a graph with n vertices
and treewidth k can be computed in 2O(k)n1+ε√p time on a log-RAM, for any ε > 0.

In particular, the number of relevant values of p is at most the graph’s diameter, so when
the diameter is O(nε′) for every ε′ > 0, we obtain a 2O(k)n1+ε time algorithm to compute
the distance distribution. This matches the known hardness bounds above, in the sense
that under the OVC, (or the stronger SETH), the dependence on k must be 2Ω(k) when the
dependence on n is subquadratic.

Cabello and Knauer [12] reduced the problem of computing the Wiener index [37] (the
sum of distances between every two vertices) to orthogonal range queries in k− 1 dimensions.
They did so by applying a divide-and-conquer strategy that divides the graph with small
separators that are found efficiently. Abboud et al. [1] adapted this approach to find radius
and diameter. We take a similar approach, but reduce computing the distance distribution
to the following problem rather than to orthogonal range queries.

If v and w are vectors in Rd, write v < w if each coordinate of w is strictly greater than
the corresponding coordinate in v. In this case, we say that w (strictly) dominates v. We
define the RedBluePolynomial problem as follows.

RedBluePolynomial
Input: r red points R1, . . . Rr, and b blue points B1, . . . , Bb in Rd, along with corresponding

non-negative integer values r1, . . . , rr, and b1, . . . , bb, respectively.
Question: Determine the non-zero coefficients of the polynomial

∑
(p,q):Rp<Bq

xrp+bq , as a
list of (exponent, coefficient) pairs.

This problem can be solved naively in quadratic time, but we seek a more efficient solution
in the case when the value of each point is bounded.

To our knowledge, this problem is new, and a variant of a well-known counting problem,
which asks for the number of red points dominated by each blue point. Chan and Pǎtraşcu
[13] showed that this variant can be solved in O(n

√
logn) time on a Word RAM, using

word operations to facilitate efficient counting. Bentley [6] gave a multidimensional divide-
and-conquer approach for a similar problem, which Monier [28] showed had complexity
O(dn ·B(n, d)) where B(n, d) =

(
d+dlogne

d

)
.

Bringmann et al. [11] used this fact to show that the method employed by Cabello and
Knauer [12], and Abboud et al. [1] can, in fact, be used to compute the Wiener index, radius,
and diameter of graphs with treewidth k in 2O(k)n1+ε time for any ε > 0, by proving that
B(n, k) = 2O(k)nε. Furthermore, Husfeldt [21] gave an improved 2O(k)n time algorithm for

ISAAC 2019

59:4 Minimizing and Computing the Inverse Geodesic Length on Trees

computing diameter and radius in the case where the graph also has constant diameter.
However, it was noted that this result only pertains to the existence of pairs of vertices at
certain distances, and not to counting the number of such pairs. Thus, the result does not
directly give further insight to computing distance distributions.

We follow Bentley’s method, where it suffices to consider the one-dimensional case, d = 1.
We resolve this case using square-root decomposition and fast polynomial multiplication.
Applying the approach of Bringmann et al. to analyse the running time of this approach
gives Theorem 1.4. A detailed discussion of this algorithm is given in Section 4.

Due to space constraints, we omit and abbreviate proofs to some of the more straightfor-
ward results, and refer the reader to the full version of this paper for more details.

2 Preliminaries

Let G = (V,E) be a graph and suppose u, v, w ∈ V . We define the distance dG(u, v) between
u and v to be the fewest number of edges in any path from u to v, or ∞ if no such path
exists, with the convention that 1

∞ = 0.
In Section 3, we consider the problem when the provided graph is a tree T . In this case,

precisely one simple path exists between every pair {u, v} ⊆ V . Define PT (u, v) to be the
set of vertices along the simple path from u to v in T , including the endpoints u and v.

Observe that dT (u,w) + dT (w, v) = dT (u, v) if and only if w ∈ PT (u, v). For a vertex
w, we also define P−1

T (w) to be the set of all (unordered) pairs of vertices whose path in T
passes through w. Formally, P−1

T (w) = {{u, v} ⊆ V : w ∈ PT (u, v)}.
A vertex u is a centroid of T if the maximum size of a connected component in T − u is

minimized. We will use the following results, concerning centroids.

I Lemma 2.1 (Jordan [24]). Every tree has either one centroid or two adjacent centroids. If
a centroid is deleted from a tree, each tree in the remaining forest contains no more than n

2
vertices, where n is the number of vertices in the original tree.

I Lemma 2.2. Let u be a centroid of a tree T with n ≥ 2 vertices. Then, |P−1
T (u)| ≥ n2

4 .

Proof. See the full version of the paper. J

In Section 4 we also consider the problem of computing the IGL, using the tree decompos-
itions of graphs with small treewidth. A tree decomposition of G is a tree T whose vertices
(called nodes) are {1, . . . , I} and a sequence V1, . . . ,VI of subsets of V (called bags) such that

1. V =
⋃I
i=1 Vi;

2. If uv ∈ E, then {u, v} ⊆ Vi for some i;
3. Va ∩ Vc ⊆ Vb whenever b ∈ PT (a, c).
The width of such a tree decomposition is maxIi=1|Vi| − 1. The treewidth tw(G) of G is the
minimum width among all tree decompositions of G.

2.1 Model of computation
We establish our results on models of computation that closely reflect what is available to
programmers of high-level languages on physical computing devices today.

In Section 3, we solve MinIGL by explicitly computing the minimum IGL that can
be obtained by deleting k vertices from the given tree. We perform this on the real RAM
formulated by Shamos [33], which allows addition, subtraction, multiplication, division and

S. Gaspers and J. Lau 59:5

comparisons of real numbers in constant time, but does not support rounding a value to
the nearest integer, or modulo as native operations. This permits efficiently adding and
comparing contributions of distances between vertices to the IGL.

In Section 4, we reduce the problem of computing the IGL of a graph to finding its
distance distribution. We solve this on a log-RAM introduced by Fürer [19], which is a
Word RAM that also supports constant time arithmetic operations (including multiplication,
integer modulo, and division) on words of length O(logn). Fürer showed that on a log-RAM,
multiplication of two n-bit integers can be done in O(n) time, using either the approach of
Schönhage and Strassen [32] (performing a complex polynomial-based Fast Fourier Transform
(FFT) and maintaining sufficient precision), or that of Fürer [18] (performing an FFT over a
ring of polynomials).

We extend this to integer polynomials with bounded coefficients, as follows.

I Lemma 2.3. Suppose P and Q are integer polynomials of degree n whose coefficients
are non-negative integers, such that their product PQ has coefficients not exceeding some
integer m. Then, the coefficients of PQ can be computed from the coefficients of P and Q in
O(n logm) time on a log-RAM.

Proof. This can be done using Kronecker substitution [26]. See the full version of the paper
for further details. J

3 MinIGL on Trees

In this section, we give a new subexponential time, polynomial space algorithm for MinH on
trees, when H satisfies the following properties. We use this to prove Theorems 1.1 and 1.2,
by showing that IGL also satisfies these properties.

I Definition 3.1 (Additivity). We say that a measure H on graphs is additive if H(G1⊕G2) =
H(G1) + H(G2) for any vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), where
G1 ⊕G2 is the graph (V1 ∪̇ V2, E1 ∪̇ E2).

Call a forest L-trimmed if none of its trees contain more than L vertices. In the same
way, call a subset of vertices in a tree L-trimming if their deletion gives an L-trimmed forest.

I Definition 3.2 (Balanced on trees). We say that a measure H is balanced (on trees) if
there exist positive constants cH and tH , such that, for any Yes-instance (T, k, τ) of MinH
on a tree T with n vertices, there exists a witness that is cH (n/k)tH -trimming.

Hereafter, we will assume that the value of H on a forest is computable in O(nα) time,
and O(nβ) space, on a real RAM, where α, β ≥ 1 are constants. We also assume that such a
value can be stored in a constant number of words on a real RAM.

We prove Theorems 1.1 and 1.2 by giving compatible algorithms for MinH on trees, then
complete the proof by showing that IGL satisfies the same properties that H does. Now it is
easy to see that there is a naïve, brute-force algorithm for MinH.

I Lemma 3.3. There is an O(nk+α) time, O(nβ) space algorithm for MinH on a tree, on a
real RAM.

Proof. We simply try all
(
n
k

)
= O(nk) subsets of k vertices. The value of H on the forest

that remains after each subset has been removed can be computed in O(nα) time and O(nβ)
space. J

ISAAC 2019

59:6 Minimizing and Computing the Inverse Geodesic Length on Trees

T ′ T
1

2 3

4 5 6

1

2 3

4 5 6

m

Figure 1 Mapping the vertices of T ′ to T in Lemma 3.4. Note that T ′ is an ordered tree, and
that children (and their subtrees) must be mapped in order. Shaded vertices will be deleted, and we
recursively solve for the subtrees rooted at their children.

If k is small, this algorithm may be efficient. When k is large, the vertices forming an
optimal solution will leave a forest of relatively small trees after they are deleted, since H is
balanced. We use this property to develop an alternate, more efficient algorithm for MinH
in this case. Let L = cH (n/k)tH . Our algorithm minimizes H, considering only L-trimming
subsets of k vertices. The running time of this algorithm is exponential in L, but polynomial
in n, so it is fast when k is large, relative to n.

I Lemma 3.4. Let T = (V,E) be a tree with n vertices. There is an O
(

4L
√
L

(
n2 + Lα−1))

time, O
(
nkL+ Lβ

)
space algorithm on a real RAM, which finds the minimum value of

H(T − S), among all L-trimming subsets S of k vertices.

Proof. We root T arbitrarily and employ DP to compute this minimum value for every
subtree and budget, in two cases: the case where the root of the subtree is deleted, and the
case where it is not. Denote these minimum values by f(u, b) and g(u, b), respectively, for
the subtree rooted at u and budget b. The leaves of the tree form the base cases for this
algorithm, and the final answer is derived from the minimum of f(root, k) and g(root, k). It
remains to give recurrences for f and g.

In the case where u is deleted, we simply need to distribute the remaining b− 1 deletions
among the subtrees rooted at each child of u. Let the children of u be v1, . . . , vchT (u) in a
fixed order. Our recurrence takes the form of another DP algorithm: let f ′(u, i, b′) be the
minimum value of f distributing a budget of b′ deletions among the subtrees rooted at the
first i children of u. Our recurrence is as follows:

f ′(u, i, b′) = min
0≤b′′≤b′

(min(f(vi, b′′), g(vi, b′′)) + f ′(u, i− 1, b′ − b′′))

and we have that f(u, b) = f ′(u, chT (u), b− 1).
If u is not deleted, it will be the root of some tree with no more than L vertices after

our chosen subset has been deleted. We fix the structure (formally, an ordered tree) for this
rooted tree, and attempt to match the vertices in this structure to vertices in the subtree
rooted at u. Formally, let the structure be an ordered tree T ′ over L′ ≤ L vertices. Let its
vertex set be V ′ = {1, . . . , L′} and, without loss of generality, suppose 1 is its root. We seek
a total, injective mapping m : V ′ → V satisfying the following conditions.
1. m(1) = u;
2. Suppose p and p′ are the parents of q and q′ in T and T ′, respectively. If m(q′) = q then

m(p′) = p;
3. Let p and p′ be vertices in T and T ′ such that their children are, in order, q1, . . . , qchT (p)

and q′1, . . . , q′chT ′ (p′)
, respectively. If m(q′j1

) = qi1 , m(q′j2
) = qi2 and j1 ≤ j2, then i1 ≤ i2.

That is, children are matched in order.

S. Gaspers and J. Lau 59:7

Note that the structure of the chosen ordered tree uniquely characterises the value of H on
the component containing u, since H is only defined on unlabelled graphs, and is additive,
so this value is independent of the structure of other components.

Let v be some vertex in T . If v is mapped to by m, then v is a part of this component.
Otherwise, if v is not mapped to by m but its parent is, then v must be a vertex chosen for
deletion, and so we should recursively consider each of its childrens’ subtrees.

This implies a DP approach to determine the optimal choice of m, similar to that of f ′.
We let g′(u, i, b′, u′, j) be the minimum value (of H) induced by a mapping which maps u′ to
u and maps the first j children of u′ among the first i children of u with a total budget of b′
deletions in the subtree rooted at u. This value does not include the contributions of vertex
pairs in T which both end up in the current component (are mapped to by m).

We have a choice to either delete the ith child vi of u, or map it to the jth child v′j of u′.
In both cases, we allocate a budget of b′′ ≤ b′ deletions to the subtree rooted at vi. This
gives the following recurrence:

g′(u, i, b′, u′, j) = min
0≤b′′≤b′

min

{
g′(u, i− 1, b′ − b′′, u′, j) + f(vi, b

′′),
g′(u, i− 1, b′ − b′′, u′, j − 1) + g′(vi, chT (vi), b′′, v′j , chT ′(v′j))

and g(u, b) = minT ′(H(T ′) + g′(u, chT (u), b, 1, chT ′(1))). This concludes the description of
the algorithm.

A detailed analysis of the time and space complexity of this algorithm is given in the full
version of the paper, using the key result that there are O

(
4L

L
√
L

)
unlabelled, ordered trees

on L or fewer vertices [17, 35]. J

Since n2 + Lα−1 = O
(
nmax(2,α−1)), and L ≤ cH (nk)tH , it follows that MinH is FPT for

parameter n
k .

I Corollary 3.5. Suppose H is a measure on graphs, that is additive, balanced on trees, and
computable in polynomial time on trees, on a real RAM. Then MinH is FPT for parameter
n/k on trees.

With an appropriate threshold, we can combine the approaches of Lemma 3.3 and
Lemma 3.4 to give a subexponential time, polynomial space algorithm for MinH.

I Corollary 3.6. Suppose H is a measure on graphs, that is additive, balanced on trees, and
computable in polynomial time on trees, on a real RAM. Then there is a 2O

(
(n logn)tH /(tH +1)

)
time, polynomial space algorithm for MinH on trees, where tH is the constant given in
Definition 3.2.

Proof. Lemma 3.3 gives us an O(nk+α) = 2O(k logn) time algorithm for MinH on a tree.
Lemma 3.4 gives us an alternate O

(
4cH(n/k)tH nmax(2,α−1)

)
= 2O((n/k)tH +logn) time al-

gorithm for the same problem. Note that the memory consumption of both algorithms is
bound by O(nmax(3,β)), so they are both polynomial in space.

Let k∗ = ntH/(tH+1) log−1/(tH+1) n. We select the former algorithm when k ≤ k∗, and the
latter algorithm otherwise. In both cases, our running time is bound by 2O

(
(n logn)tH /(tH +1)

)
,

as required. J

We now prove that IGL satisfies the requirements of Corollary 3.5 and Corollary 3.6.
IGL is clearly additive, since pairs of vertices belonging to different components contribute
1
∞ = 0 to the IGL. We can easily compute the IGL in O(n2) time, and O(n) space, on the

ISAAC 2019

59:8 Minimizing and Computing the Inverse Geodesic Length on Trees

real-RAM by traversing from each vertex. Hence, it remains to show that IGL is balanced
on trees: it suffices to show that there is a constant tIGL, such that any subset of vertices
whose deletion minimizes the IGL is O

(
(n/k)tIGL

)
-trimming.

To do so, we choose to reason about the decrease in IGL caused by the removal of a
subset of k vertices, rather than the IGL itself. Maximizing this decrease (which we call
utility) is equivalent to minimizing the IGL of the graph after removal.

I Definition 3.7 (Utility). Let G = (V,E) be a graph. Then the utility of some S ⊆ V is:

UG(S) = IGL(G)− IGL(G− S).

If S = {v}, we write UG(v) instead of UG({v}), which we call the utility of v in G.

Suppose S = S′∪̇{v} is a subset of k vertices in a tree T with maximum utility. Necessarily,
v must have maximum utility in T − S′. This means that v has no less utility than any
vertex in its component in T − S′, and that it also has no less utility than the optimal vertex
in any other component. In this vein, we would like to consider the case when k = 1 so we
can reason about the individual optimality of each vertex in an optimal solution.

We use the following upper and lower bounds on the utility of the optimal choice of vertex
in this case. The proofs of these bounds are straightforward, and provided in the full version
of the paper.

I Lemma 3.8. Let T = (V,E) be a tree with n ≥ 2 vertices. Then, maxv∈V UT (v) ≥ n/2.

I Lemma 3.9. Let G = (V,E) be a tree with n vertices. Then UG(v) ≤ IGL(G) ≤ 1
2n(n−1)

for any vertex v ∈ V .

Next, we show that the removal of a vertex with maximum utility leaves the remaining forest
somewhat balanced. Specifically, it is never the case that one tree in this forest is so large
that it contains all but o(n1/4) vertices.

I Theorem 3.10. Let T = (V,E) be an unweighted tree with n ≥ 3 vertices and suppose
v ∈ V minimizes IGL(T − v). Further, suppose C is a connected component in T − v

containing l vertices and let r = n− l− 1 be the number of vertices in T − v not in C. Then,
there is a constant 0 < c < 1 independent of n such that r ≥ cn1/4.

Proof. We may assume l ≥ 1, since the case when l = 0 is trivial. We may also assume that
r ≥ 1, since if r = 0, v is a leaf, which contradicts its optimality since n ≥ 3.

Since T is a tree, each neighbour of v belongs to a different component in T − v. Suppose
xC is the neighbour of v in C and let C ′ be the subtree T [V (C) ∪ {v}]. Thus, v is a leaf of
C ′. We use this structure (pictured in Figure 2) to give two different, but related, upper
bounds for the utility UT (v) of v in T .

B Claim 3.11. UT (v) ≤ 1
2r(r + 1) + (r + 1)UC′(v).

Proof. Let us upper bound UT (v) by considering the utility of v in C ′ and also in T − V (C).
There are n − l vertices in T − V (C), so by Lemma 3.9, we have that UT−V (C)(v) ≤
1
2 (n− l)(n− l − 1) = 1

2r(r + 1). This accounts for the pairs of vertices disconnected by the
deletion of v in T − V (C).

We still need to consider such pairs where one vertex is in C, and the other is in T −V (C)
(this includes v). Since v is a leaf in C ′, the only pairs of vertices connected in C ′ that
are disconnected in C = C ′ − v are those of the form {v, vC}, where vC ranges over V (C).

S. Gaspers and J. Lau 59:9

v xC vA

TA vertices of B

C′

C, containing l verticesr vertices

Figure 2 Layout of the vertices of T , in Theorem 3.10. Shaded vertices are in A, and are no
more than D = 5 away from v. The value of D here has chosen for example’s sake, and is not the
true value constructed in the proof.

Now let u be a vertex in V \ V (C). The path from u to vC must pass through v, and thus
dT (u, vC) ≥ dT (v, vC). Hence, the contribution of each disconnected {u, vC} pair is at most
that of {v, vC} towards UT (v). Putting these inequalities together gives us

UT (v) =
∑

{p,q}∈P−1
T

(v)

1
dT (p, q)

= UT−V (C)(v) +
∑

u∈V \V (C)
vC∈V (C)

1
dT (u, vC)

≤ 1
2r(r + 1) + |V \ V (C)|

∑
vC∈V (C)

1
dT (v, vC)

≤ 1
2r(r + 1) + (r + 1)

∑
vC∈V (C)

1
dT (v, vC)

= 1
2r(r + 1) + (r + 1)UC′(v),

as required. C

B Claim 3.12. UT (v) ≤ rn.

Proof. Since v is a leaf of C ′, it is distance 1 away from its sole neighbour, and only this
neighbour, in C ′. Also, the only pairs disconnected by v’s removal in C ′ are those containing
v itself. Now there are l− 1 other vertices in C ′, each at least distance 2 away from v. Hence,
UC′(v) ≤ 1 + l−1

2 = l+1
2 = n−r

2 .
Since r ≥ 1, we know that r + 1 ≤ 2r. Hence, by Claim 3.11

UT (v) ≤ r2 + 2rUC′(v)
≤ r2 + r(n− r)
= rn,

as required. C

Since the utility of deleting v is maximal among all vertices, and n ≥ 2, we know UT (v) ≥ n/2
from Lemma 3.8. Combining this with Claim 3.11 and rearranging gives

UC′(v) ≥ n− r(r + 1)
2(r + 1) . (1)

ISAAC 2019

59:10 Minimizing and Computing the Inverse Geodesic Length on Trees

Suppose, for a contradiction, that r < 1
15n

1/4. Since r is purported to be relatively small,
UC′(v) must be rather large (note it is proportional to n). Intuitively, this implies that many
vertices in C ′ are close to v, and hints towards a more central choice of vertex to delete. We
will formally show that such a vertex exists, and is a more optimal choice.

Fix some distance D. We can divide the vertices of C into two groups, A and B: those
at most distance D from v in C ′ (and thus, also in T) and those that are not, respectively.
Suppose that |A| = t and that |B| = |V (C)| − t. We have the following upper bound:

UC′(v) ≤ t+ |V (C)| − t
D + 1 ≤ t+ n− t

D + 1 , (2)

because each vertex in B is at least distance D + 1 away from v, and |V (C)| ≤ n. Note that
we do not account for v itself, since the distance to itself does not contribute to its utility.

Recall that r < 1
15n

1/4. It is easy to see that r(r + 1) ≤ n/2. Combining this with (1)
and (2) gives us the following inequality:

n

4(r + 1) ≤ UC
′(v) ≤ t+ n− t

D + 1 ,

from which we can obtain

tD ≥ n(D + 1)
4(r + 1) − n.

If we choose D = 8(r + 1)− 1, it holds that t ≥ n
D = n

8r+7 ≥
n

15r .
Consider the subgraph (a tree) TA induced by the vertex set A∪̇{v}. TA contains at least

two vertices as v and xC both must be in A. Also, since TA is a tree, by Lemma 2.1 it must
have a centroid. Let one of the centroids of TA be vA. The diameter of TA is at most 2D,
since every vertex in TA is at most distance D from v. Combining this with Lemma 2.2,
we have

UTA
(vA) ≥ t2

8D ≥
n2

8D3 ≥
n2

8(15)3r3 .

Now every pair in TA that is disconnected by the deletion of vA is also disconnected in T by
the deletion of vA, so UTA

(vA) ≤ UT (vA). Also, by the optimality of v in T , we have that
UT (vA) ≤ UT (v). Hence, using the result of Claim 3.12, we can conclude that

n2

8(15)3r3 ≤ UTA
(vA) ≤ UT (v) ≤ rn.

Thus, we have that r4 ≥ n
8(15)3 ≥ n

154 , so r ≥ 1
15n

1/4, which is a contradiction. The result
follows with a choice of c = 1

15 . J

We can use this result to finally upper bound the number of vertices in any component
after an optimal set of vertices has been removed.

I Theorem 3.13. Let T = (V,E) be a tree with n vertices, and let S ⊆ V be some subset of
vertices such that |S| = k ≥ 1. There exists a positive constant c′, independent of T and k,
such that whenever S minimizes IGL(T − S), S is

(
c′ (n/k)5

)
-trimming.

Proof. We will call the components of T −S remaining components and denote each of them
by their vertex set. Suppose the remaining components are R = {R1, R2, . . . , R|R|}, where
Ri ⊆ V and S∪̇R1∪̇ . . . ∪̇R|R| = V . We need to show that |Ri| ≤ c′ (n/k)5 for each Ri.

S. Gaspers and J. Lau 59:11

Rr

Rp(s)

s

Rs1 Rs2 Rs3

Figure 3 Bounding the size of the largest remaining component in Theorem 3.13. In this case,
the parent of s is not the root and s has ch(s) = 3 children in T ′. The shaded vertices are those in S.

We first construct a new graph T ′ = (V ′, E′) by collapsing each of the remaining
components. Formally, V ′ = R∪̇S, and, for each Ri ∈ R and s ∈ S, {Ri, s} ∈ E′ if and only
if there exists some r ∈ Ri such that {r, s} ∈ E. It can be seen that T ′ is necessarily a tree,
and that every Ri is only incident to elements in S. For the remainder of the proof, we
further assume that every element in S is only incident to remaining components in T ′: if
this is not the case, one can add a “dummy” remaining component with cardinality zero
between every pair of adjacent elements of S in T ′.

Let Rr be a remaining component containing at least as many vertices as any other
remaining component. Note that |Rr| > 0: it is never a “dummy”. It suffices to show the
upper bound holds for Rr. We root T ′ at Rr. Since k > 0, there are strictly fewer than n
vertices among the remaining components R. Hence, by the Pigeonhole Principle, there must
be some s ∈ S such that the children Rs1 , Rs2 , . . . , Rsch(s) of s in T ′ together contain fewer
than n/k vertices. Let the parent of s in T ′ be Rp(s). See Figure 3.

Since S is optimal, s must be an optimal choice of vertex to delete in an instance of
MinIGL with graph T − (S \ {s}) and a budget of 1 deletion. In particular, it must also be
the optimal choice of vertex to delete in the component containing s in T − (S \ {s}). Hence,
we may apply Theorem 3.10 to T − (S \ {s}), in that component to give

n

k
>

ch(s)∑
i=1
|Rsi | ≥ c(|Rp(s)|+ |Rs1 |+ · · ·+ |Rsch(s) |)

1/4 ≥ c|Rp(s)|1/4,

since c > 0, where c is the constant in Theorem 3.10. Thus, we have |Rp(s)| ≤ c−4 (n/k)4.
We now have two cases: if the parent Rp(s) of s in T ′ is the root, Rr, or if it is not the

root. If Rp(s) is the root, then p(s) = r, so |Rr| ≤ c−4 (n/k)4. Otherwise, s is not a child
of the root, and so s must have been a more optimal choice than the best choice in the
component induced by Rr in T − (S \ {s}). Since this component contains |Rr| vertices, the
best choice had utility at least |Rr|

2 , by Corollary 3.8. Now the paths that pass through s in
T − (S \ {s}) must have one endpoint in some Rsj and the other either in another Rs′

j
or in

Rp(s). This is the case since no path can have both endpoints in Rp(s). Hence, there are at
most (n/k+ 1)(n/k+ |Rp(s)|) such pairs, accounting also for those paths starting at s. Since
each of these paths have length at least 1, we have that

|Rr|
2 ≤ UT−(S\{s})(s) ≤

(n
k

+ 1
)(n

k
+ |Rp(s)|

)
≤ 2n

k

(n
k

+ |Rp(s)|
)
,

ISAAC 2019

59:12 Minimizing and Computing the Inverse Geodesic Length on Trees

because k ≤ n. Thus

|Rr|
2 ≤ 2n

k

(
n

k
+ c−4

(n
k

)4
)
≤ 4c−4

(n
k

)5
,

because 0 < c < 1. Hence, |Rr| ≤ 8c−4 (n/k)5 and the result follows with a choice of
c′ = 8c−4. J

Thus, we can choose cIGL = c′ and tIGL = 5, showing that IGL is indeed balanced on trees.
This gives Theorem 1.1 and Theorem 1.2.

4 Computing the IGL

Computing the IGL of a graph is trivial once its distance distribution has been determined.
In this section, we describe algorithms for efficiently computing the distance distribution of
trees, and extend these ideas to graphs with small treewidth.

4.1 Trees
To compute the distance distribution on trees, we present a divide-and-conquer method
(commonly known as the centroid decomposition, as used in [7]) as follows. We pick a vertex
and compute the contribution to the distance distribution of all paths passing through that
vertex, using fast polynomial multiplication. Then, we delete the vertex from the tree, and
recurse on the remaining connected subtrees. We first provide a method that efficiently
computes this contribution.

I Lemma 4.1. Let T = (V,E) be an unweighted tree with n vertices and suppose r ∈ V .
Then, the contribution to the distance distribution of all pairs in P−1

T (r) can be found in
O(n logn) time on a log-RAM.

Proof. We begin by rooting the tree at r. Suppose the children of r are s1, . . . , sch(r) and
let S1, . . . , Sch(r) denote the set of vertices in the subtrees rooted at each child, respectively.
With the addition of S0 = {r}, the sets Si form a partition of V .

We perform a depth-first search from r, to find dT (r, u) = dT (u, r) for each vertex
u and construct a sequence of distance polynomials P0, P1, . . . , Pch(r), where Pi(x) =∑
w∈Si

xdT (r,w). This takes O(n) time, storing each distance polynomial in coefficient
form: there are at most n terms overall. Now let

P (x) =

 ∑
0≤i≤ch(r)

Pi(x)

2

−

 ∑
0≤i≤ch(r)

P 2
i (x)

 =
∑

0≤j≤n
bjx

j .

We observe that

bj = 2|{{u, v} ∈ P−1
T (r) : u 6= v and dT (u, v) = j}|, (3)

that is, bj is twice the number of pairs of distinct vertices which have a path of length
j passing through r. Thus, the required contribution to the distance distribution can be
read off from the coefficient form of P (x). The result follows by computing this efficiently
from the coefficients of each Pi by applying Lemma 2.3, and observing that the degree of∑

0≤i≤ch(r) Pi(x), and the sum of the degrees of the Pi’s are both at most n. J

S. Gaspers and J. Lau 59:13

If we always pick r in Lemma 4.1 to be a centroid of the tree, Lemma 2.1 ensures
that each vertex can appear in at most log2 n + 1 trees throughout the execution of our
divide-and-conquer algorithm. A centroid must always exist (also by Lemma 2.1), and we
can find one in linear time by recursively computing, then examining, subtree sizes. This
gives Theorem 1.3.

I Theorem 1.3. The distance distribution of a tree with n vertices can be computed in
O(n log2 n) time on a log-RAM.

If we only wish to determine the first p values of the distance distribution of T , we can
modify Lemma 4.1 to run in O(n+ p logn) time, by discarding all terms with degree greater
than p when constructing the polynomials. Thus, the expensive multiplication step costs
O(p logn) time by Lemma 2.3, and we obtain Theorem 4.2 as a corollary.

I Theorem 4.2. The prefix a1, . . . , ap of the distance distribution of a tree with n vertices
can be computed in O(n logn+ p log2 n) time on a log-RAM.

4.2 Graphs with small treewidth
Here, we extend the ideas used in the previous section to prove Theorem 1.4.

Let G = (V,E) be an undirected graph with n vertices, whose edges each have a non-
negative weight. We describe a modification of the method of Cabello and Knauer [12], to
recursively reduce the task of computing the distance distribution of G to solving instances
of RedBluePolynomial over points in O(tw(G)) dimensions, with values at most p.

In time 2O(k)n, we can compute a tree decomposition of G of width at most k = 5·tw(G)+4
containing at most O(kn) nodes [10]. Using a common technique, we can transform this
decomposition into a nice tree decomposition with N = O(kn) nodes (see, for example [15]).
The nodes of a nice tree decomposition form a rooted binary tree.

Let A be a subset of vertices. A portal of A is a vertex in A which has, as a neighbour,
some vertex outside A. If these portals are contained in some set S ⊆ A, we can partition
the vertices of the graph into three sets: A \ S, S and V \ A, such that every path from a
vertex in A to a vertex in V \A passes through some vertex in S.

Since the nice tree decomposition is a binary tree, there is some edge ij in the decompos-
ition whose removal splits the decomposition’s tree into two components I and J (containing
nodes i and j, respectively), each containing between N

3 and 2N
3 nodes. Let A be the set

of vertices that appear in component I, and let S be the intersection Bi ∩ Bj of the bags
corresponding to nodes i and j. Necessarily, S must contain all the portals of A due to
properties of the tree decomposition. Moreover, |Bi ∩Bj | ≤ min(|Bi|, |Bj |) ≤ k + 1.

Given this fixed A, recursively find the distance distribution among all pairs of vertices
in A as follows. First, perform Dijkstra’s algorithm from all vertices in S. For every pair of
vertices in S, add an edge whose weight equals the length of the shortest path between them.
After these edges are added, the length of the shortest path in G between any pair of vertices
in A can be found by only considering paths passing through the vertices of A. Hence, we
remove all vertices in V \A, and recurse on this smaller graph. Note that I is a valid tree
decomposition for this new graph, since i ∈ I, and all the added edges have their endpoints
in Bi. Thus, we do not need to find another tree decomposition for this new graph, and its
treewidth does not exceed k.

In the same way, we recursively find the distance distribution induced by the pairs of
vertices in (V \A)∪̇S. Between these two sets of pairs, we have counted pairs of vertices in
S twice, so we subtract the distance distribution induced by these pairs using the shortest
paths already computed.

ISAAC 2019

59:14 Minimizing and Computing the Inverse Geodesic Length on Trees

Finally, we must compute the distance distribution among shortest paths between the
remaining pairs of vertices: these are the pairs in (A \ S)× (V \A). Let the vertices in S be
s1, . . . , s|S|. For every a in A \ S and every b in V \A, we associate (a, b) with precisely one
vertex in s through which some shortest path between the vertices passes. More formally, we
will associate (a, b) with the only si such that

dG(a, si) + dG(si, b) < dG(a, sj) + dG(sj , b) for all j < i, and
dG(a, si) + dG(si, b) ≤ dG(a, sj) + dG(sj , b) for all j > i.

By rearranging, and observing that all distances are integers, we deduce that this is precisely
when

dG(a, si)− dG(a, sj) < dG(sj , b)− dG(si, b) for all j < i, and
dG(a, si)− dG(a, sj) < dG(sj , b)− dG(si, b) + 1 for all j > i.

Note that all these distances are known from our application of Dijkstra’s algorithm from
each vertex in S. Since any path from a to b must pass through S, it follows from these
inequalities that dG(a, si) + dG(si, b) = dG(a, b). For each vertex si in turn, we will compute
the contribution of all pairs of vertices associated with si to the distance distribution. We do
so by reducing this task to an instance of RedBluePolynomial.

Our instance will have points in |S| − 1 dimensions: one dimension for each j 6= i. For
each a ∈ A \ S, create a red point with coordinate dG(a, si) − dG(a, sj) in the dimension
corresponding to j, and value dG(a, si), corresponding to each sj 6= si. Similarly, for each
b ∈ V \ A, create a blue point with coordinate dG(sj , b) − dG(si, b), for each j < i, and
dG(sj , b)− dG(si, b) + 1 for each j > i, with value dG(si, b). Importantly, we omit any points
with value greater than p: these cannot contribute to the prefix we are trying to compute.
Hence, we have created no more than n points in all, each with a non-negative integer value
no greater than p. The coefficient of xl produced by our instance of RedBluePolynomial
corresponds to the number of pairs associated with si that are distance l apart. This
concludes the description of our reduction.

Naturally, we now turn our attention to solving RedBluePolynomial. Naively, this
can be done in quadratic time by considering every pair of points. However, when values are
bounded – such as in our instance – we can solve the problem more efficiently.

For a given instance of RedBluePolynomial, let n = r + b be the total number of
points and suppose the value of each point does not exceed some integer v ≥ 0. Below,
we give solutions with time complexity parameterized by both n and v. We consider the
1-dimensional case, then extend this result to higher dimensions recursively.

I Lemma 4.3. When d = 1, there is an algorithm that solves RedBluePolynomial in
O(n
√
v logn+ n logn) time on a log-RAM.

Proof. Sort the red and blue points together in non-decreasing order of the coordinate,
placing blue points earlier in the order when there are ties. Let t be a positive integer no
greater than n. Assign points to groups of size no more than t by placing the first t points,
in order, into a group G1, followed by the next t points in order into a group G2, and so on,
so we create dnt e groups in all. An example is given in Figure 4.

We will separately consider pairs of points that both belong to the same group, and those
that belong to different groups. In each group, consider every pair of points, and check if
they contribute a term to the polynomial. This takes O(nt) time over all groups.

S. Gaspers and J. Lau 59:15

×

G1 G2 G3 G4

Figure 4 Square root decomposition in Lemma 4.3. The empty dots represent red points, and
the shaded dots represent blue points. When processing G3, we consider pairs of points within the
group where the red point precedes the blue point. We then consider cross-group pairs whose blue
point is in G3 using fast polynomial multiplication.

It remains to consider pairs that belong to different groups: call these cross-group pairs.
For each blue point in Gi, we must add an extra term for each red point among G1, . . . , Gi−1.
Thus, the total cross-group contribution of all pairs with a blue point in Gi can be written
as the following product of two polynomials.

∑
Bq∈Gi

∑
Rp∈G1∪···∪Gi−1

xrp+bq =

 ∑
Rp∈G1∪···∪Gi−1

xrp

 ∑
Bq∈Gi

xbq

To compute these contributions, iterate over each group in order, maintaining the coefficient
form of the polynomial representing all red points in groups processed thus far. This
corresponds to the first multiplicand on the right hand side. We can quickly construct the
second multiplicand directly from the elements in this group. Note that the degree of both
multiplicands does not exceed v, and that the coefficients of the product do not exceed
n2. Hence, we can compute the product of these two polynomials in O(v logn) time by
Lemma 2.3, so we can compute the cross-group contributions in O(nt v logn) time.

Combining these parts with an appropriate choice of t gives the required result. J

I Theorem 4.4. There is an algorithm that solves RedBluePolynomial in 2O(d)n1+ε√v
time on a log-RAM, for every ε > 0.

Proof. When d = 1, we use Lemma 4.3. Otherwise, we will use the divide-and-conquer
method of Bentley [6] to reduce the problem to smaller dimensions.

First, combine the red and blue points into one list and apply divide-and-conquer as
follows. Let xm be the median value among the first coordinate of all points. This can be
found in O(n) time [8]. We divide the list into two halves as follows. First assign those
points with first coordinate less than xm into the first half, and those with first coordinate
greater than xm into the second half. Among those with first coordinate precisely xm, assign
blue points to the first half until the first half has n

2 points. Assign the remaining points
to the second half. This assignment can be done in O(n) time and has the property that if
Rp < Bq, then either both points belong to the same half, or they belong to the first and
second half, respectively.

Next, recursively compute the contribution of both groups to the final polynomial. The
remaining pairs that may contribute terms to the result must have a red point in the first
half, and a blue point in the second half. Since the ordering guarantees that all points in
the first half have a first coordinate no greater than those in the second half, we project
the red points in the first half together with the blue points in the second half onto a
(d − 1)-dimensional space by simply ignoring the first coordinate of each point. We then
solve RedBluePolynomial for this set of points in d− 1 dimensions recursively.

ISAAC 2019

59:16 Minimizing and Computing the Inverse Geodesic Length on Trees

The time and space complexity of this algorithm follows from the results of Monier [28]
and Bringmann et al. [11], and applying an additional multiplicative factor of

√
v. A full

analysis can be found in the full version of this paper. J

An analysis of the algorithm we have described in this section gives Theorem 1.4.

I Theorem 1.4. The prefix a1, . . . , ap of the distance distribution of a graph with n vertices
and treewidth k can be computed in 2O(k)n1+ε√p time on a log-RAM, for any ε > 0.

Proof. To find the contribution of pairs in (A \ S)× (V \A), we solve |S| ≤ k + 1 instances
of RedBluePolynomial in |S| − 1 ≤ k dimensions, using the result of Theorem 4.4.
As our algorithm performs divide-and-conquer over the nodes of the tree decomposition,
each vertex induces the creation of a point in O((k + 1) log(kn)) = O(k logn) instances of
RedBluePolynomial. Hence, since the time complexity of Theorem 4.4 is superadditive
with respect to n, the total running time over all instances of RedBluePolynomial is
2O(k)n1+ε logn√p = 2O(k)n1+ε′√p for any ε′ > 0.

Since we are working on a (nice) tree decomposition with O(kn) nodes, the running time
of finding an appropriate dividing edge in the tree, and performing k Dijkstra’s per instance
are negligible compared to that of solving our instances of RedBluePolynomial. The
result follows from the fact that k = O(tw(G)). J

This result can easily be extended to directed graphs, and graphs with bounded edge
weights, with some modifications, and a suitable choice of p. On graphs with unit weight
edges, setting p = n− 1 determines the entire distance distribution.

I Corollary 4.5. The distance distribution of an undirected graph G with n vertices, edges
of unit weight and treewidth tw(G) can be computed in 2O(tw(G))n3/2+ε time on a log-RAM.

5 Conclusion

We have provided a general method to solve MinH on trees in subexponential time and
polynomial space, whenever H is additive, balanced on trees, and computable in polynomial
time. We used this to give a 2O((n logn)5/6) time, polynomial space algorithm for MinIGL,
by proving that IGL is balanced on trees. Our proof ideas can be used to show that other
measures (such as the Wiener index), are also balanced on trees.

For graphs with treewidth k, we have shown that in 2O(k)n3/2+ε time, one can compute the
entire distance distribution of the input graph. Compared to the O(kn2) time algorithm for
computing APSP [31], our dependence on n is a factor of O(

√
n) less, though our dependence

on k is exponential. Our algorithm is a O(
√
n) factor slower than the current best-known

2O(k)n1+ε time algorithm for diameter [1]. For graphs with diameter O(nε′) for all ε′ > 0,
including graphs with polylogarithmic diameter, the extra factor becomes O(nε) for any
ε > 0, when compared to the current best-known 2O(k)n time algorithm for diameter [21] in
this setting. This might be expected, as the distance distribution implies the diameter, and
is implied by the APSP, but we find it somewhat surprising that the distance distribution
can be computed faster than APSP on graphs with small treewidth.

Our results can be immediately applied to compute any measure of a graph that is a
function of the distance distribution. However, they are difficult to adapt to measures that
compute properties of individual vertices in the graph, as we exploit properties exclusive to
counting pairs that are certain distances apart, without expressly considering which vertices
belong to such pairs. In particular, this means that our results are unlikely to directly
provide further insight into the efficient computation of related measures, such as the task of
computing closeness centrality [5] of every vertex in a given graph.

S. Gaspers and J. Lau 59:17

References
1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and

Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
pages 377–391. SIAM, 2016. doi:10.1137/1.9781611974331.ch28.

2 Karla Atkins, Jiangzhuo Chen, V. S. Anil Kumar, and Achla Marathe. The structure of
electrical networks: a graph theory based analysis. International Journal of Computational
Intelligence Systems, 5(3):265–284, 2009. doi:10.1504/IJCIS.2009.024874.

3 Haris Aziz, Serge Gaspers, Edward J. Lee, and Kamran Najeebullah. Defender Stackelberg
Game with Inverse Geodesic Length as Utility Metric. In Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), pages 694–702.
ACM, 2018.

4 Haris Aziz, Serge Gaspers, and Kamran Najeebullah. Weakening Covert Networks by Minimiz-
ing Inverse Geodesic Length. In Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, (IJCAI 2017), pages 779–785. IJCAI, 2017. doi:10.24963/ijcai.2017/108.

5 Alex Bavelas. Communication Patterns in Task-Oriented Groups. The Journal of the Acoustical
Society of America, 22(6):725–730, 1950. doi:10.1121/1.1906679.

6 Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(4):214–229, 1980. doi:10.1145/358841.358850.

7 Davide Bilò, Feliciano Colella, Luciano Gualà, Stefano Leucci, and Guido Proietti. A faster com-
putation of all the best swap edges of a tree spanner. In Proceedings of the 22nd International
Colloquium on Structural Information and Communication Complexity (SIROCCO 2015),
volume 9439 of LNCS, pages 239–253. Springer, 2015. doi:10.1007/978-3-319-25258-2_17.

8 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.
doi:10.1016/S0022-0000(73)80033-9.

9 Csaba Böde, István A. Kovács, Máté S. Szalay, Robin Palotai, Tamás Korcsmáros, and Péter
Csermely. Network analysis of protein dynamics. FEBS Letters, 581(15):2776–2782, 2007.
doi:10.1016/j.febslet.2007.05.021.

10 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

11 Karl Bringmann, Thore Husfeldt, and Måns Magnusson. Multivariate Analysis of Orthogonal
Range Searching and Graph Distances. In 13th International Symposium on Parameterized
and Exact Computation (IPEC 2018), volume 115 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2018.4.

12 Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via
orthogonal range searching. Computational Geometry: Theory and Applications, 42(9):815–
824, 2009. doi:10.1016/j.comgeo.2009.02.001.

13 Timothy M. Chan and Mihai Pǎtraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pages 161–173. SIAM, 2010. doi:10.1137/1.9781611973075.15.

14 Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. Efficiency of scale-free
networks: error and attack tolerance. Physica A: Statistical Mechanics and its Applications,
320:622–642, 2003. doi:10.1016/S0378-4371(02)01545-5.

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 David Dagon, Guofei Gu, Christopher P. Lee, and Wenke Lee. A Taxonomy of Botnet
Structures. In Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC 2007), pages 325–339. IEEE Computer Society, 2007. doi:10.1109/ACSAC.2007.44.

ISAAC 2019

https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1504/IJCIS.2009.024874
https://doi.org/10.24963/ijcai.2017/108
https://doi.org/10.1121/1.1906679
https://doi.org/10.1145/358841.358850
https://doi.org/10.1007/978-3-319-25258-2_17
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/j.febslet.2007.05.021
https://doi.org/10.1137/130947374
https://doi.org/10.4230/LIPIcs.IPEC.2018.4
https://doi.org/10.1016/j.comgeo.2009.02.001
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1016/S0378-4371(02)01545-5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/ACSAC.2007.44

59:18 Minimizing and Computing the Inverse Geodesic Length on Trees

17 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
1st edition, 2009.

18 Martin Fürer. Faster Integer Multiplication. SIAM Journal on Computing, 39(3):979–1005,
2009. doi:10.1137/070711761.

19 Martin Fürer. How fast can we multiply large integers on an actual computer? In Proceedings
of the 11th Latin American Symposium on Theoretical Informatics (LATIN 2014), volume
8392 of LNCS, pages 660–670. Springer, 2014. doi:10.1007/978-3-642-54423-1_57.

20 Murad Hossain, Sameer Alam, Tim Rees, and Hussein Abbass. Australian Airport Network
Robustness Analysis : A Complex Network Approach. In Proceedings of the 36th Australasian
Transport Research Forum (ATRF 2013), pages 1–21, 2013.

21 Thore Husfeldt. Computing Graph Distances Parameterized by Treewidth and Diameter. In
Proceedings of the 11th International Symposium on Parameterized and Exact Computation
(IPEC 2016), volume 63 of LIPIcs, pages 16:1–16:11. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPICS.IPEC.2016.16.

22 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

23 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

24 Camille Jordan. Sur Les Assemblages des Lignes. Journal für die Reine und Angewandte
Mathematik, 70:185–190, 1869.

25 István A. Kovács and Albert-László Barabási. Destruction perfected. Nature, 524(7563):38–39,
2015. doi:10.1038/524038a.

26 Leopold Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. G.
Reimer, 1882.

27 Silviu Maniu, Pierre Senellart, and Suraj Jog. An Experimental Study of the Treewidth of
Real-World Graph Data. In 22nd International Conference on Database Theory (ICDT 2019),
volume 127 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:18,
2019. doi:10.4230/LIPIcs.ICDT.2019.12.

28 Louis Monier. Combinatorial solutions of multidimensional divide-and-conquer recurrences.
Journal of Algorithms, 1(1):60–74, 1980. doi:10.1016/0196-6774(80)90005-X.

29 Flaviano Morone and Hernán A. Makse. Influence maximization in complex networks through
optimal percolation. Nature, 524(7563):65–68, 2015. doi:10.1038/nature14604.

30 Kamran Najeebullah. Complexity of Optimally Attacking and Defending a Network. PhD
thesis, UNSW Sydney, 2018.

31 Léon Planken, Mathijs de Weerdt, and Roman van der Krogt. Computing All-Pairs Shortest
Paths by Leveraging Low Treewidth. Journal of Artificial Intelligence Research, 43:353–388,
2012. doi:10.1613/jair.3509.

32 A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7(3-4):281–
292, 1971. doi:10.1007/BF02242355.

33 Ian Michael Shamos. Computational geometry. PhD thesis, Yale University, 1978.
34 Piotr L. Szczepański, Tomasz P. Michalak, and Talal Rahwan. Efficient algorithms for game-

theoretic betweenness centrality. Artificial Intelligence, 231:39–63, 2016. doi:10.1016/j.
artint.2015.11.001.

35 Kevin Topley. Computationally Efficient Bounds for the Sum of Catalan Numbers. Technical
Report 1601.04223, ArXiv, 2016. arXiv:1601.04223.

36 Alexander Veremyev, Oleg A. Prokopyev, and Eduardo L. Pasiliao. Critical nodes for distance-
based connectivity and related problems in graphs. Networks, 66(3):170–195, 2015. doi:
10.1002/net.21622.

37 Harry Wiener. Structural Determination of Paraffin Boiling Points. Journal of the American
Chemical Society, 69(1):17–20, 1947. doi:10.1021/ja01193a005.

https://doi.org/10.1137/070711761
https://doi.org/10.1007/978-3-642-54423-1_57
https://doi.org/10.4230/LIPICS.IPEC.2016.16
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1038/524038a
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1016/0196-6774(80)90005-X
https://doi.org/10.1038/nature14604
https://doi.org/10.1613/jair.3509
https://doi.org/10.1007/BF02242355
https://doi.org/10.1016/j.artint.2015.11.001
https://doi.org/10.1016/j.artint.2015.11.001
http://arxiv.org/abs/1601.04223
https://doi.org/10.1002/net.21622
https://doi.org/10.1002/net.21622
https://doi.org/10.1021/ja01193a005

S. Gaspers and J. Lau 59:19

38 Ryan Williams. A New Algorithm for Optimal Constraint Satisfaction and Its Implications. In
Proceedings of the 31st International Colloquium on Automata, Languages and Programming
(ICALP 2004), volume 3142 of LNCS, pages 1227–1237. Springer, 2004. doi:10.1007/
978-3-540-27836-8_101.

39 Bo Zhou, Xiaochun Cai, and Nenad Trinajstić. On Harary index. Journal of Mathematical
Chemistry, 44(2):611–618, 2008. doi:10.1007/s10910-007-9339-2.

40 Yihai Zhu, Jun Yan, Yan Sun, and Haibo He. Revealing cascading failure vulnerability
in power grids using risk-graph. IEEE Transactions on Parallel and Distributed Systems,
25(12):3274–3284, 2014. doi:10.1109/TPDS.2013.2295814.

ISAAC 2019

https://doi.org/10.1007/978-3-540-27836-8_101
https://doi.org/10.1007/978-3-540-27836-8_101
https://doi.org/10.1007/s10910-007-9339-2
https://doi.org/10.1109/TPDS.2013.2295814

	Introduction
	Preliminaries
	Model of computation

	MinIGL on Trees
	Computing the IGL
	Trees
	Graphs with small treewidth

	Conclusion

