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Abstract 

 
The solution to the EHL line contact problem has been computed by building a multigrid solver. There are 
two types of relaxation schemes used in the solver, a Gauss -Seidel scheme and a combination of the Gauss- 
Seidel scheme and the Distributive Jacobi scheme. The differences in the convergence and residual norm 
values for each of the schemes is discussed. 
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1. INTRODUCTION 

 
Lubrecht[1] first solved the line and point contact EHL 
problem using a multigrid solution using a 
discretization based on the reduced pressure. 
Venner[2] then improved upon the solution to the EHL 
problem without using a reduced pressure approach. 
Venner also arrived at the solution using a 
combination of the Gauss-Seidel relaxation scheme 
and the distributive Jacobi relaxation scheme. Both 
Lubrecht and Venner used a fast multilevel, multi-
integration method to calculate the nodal deformations 
described by Brandt and Lubrecht[3].Wang et al [4] 
developed a multigrid scheme without using the Full 
Approximation Scheme (FAS) right hand side value 
for the film thickness equation. This was made 
possible by assuming the film thickness to be 
dependent on the pressure and not treating it as an 
independent quantity. Wang used the deformation 
calculation scheme developed by Brandt and Lubrecht. 
 
This paper studies the effects of using a mixed 
relaxation scheme (Gauss-Seidel and Jacobi) versus 
just a Gauss-Seidel scheme with small under-
relaxation factors. The authors use a deformation 
calculation scheme developed by Houpert and 
Hamrock [5]. The FAS right hand side is not 
calculated as suggested by Wang [4]. 

 
2. THEORY 

 
The basic equations necessary for solving Reynolds 
equation using the multigrid method are described [2]. 
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where ∈ = 𝐻3

𝜇𝛾
 , 𝛾 = 3𝜋2𝑈

(4𝑊2)
, 𝑖 = (2….maxnode). 

 
The dimensionless film thickness at a certain node is 
described by [5] 
 
𝐻𝑖 = ℎ0 + 𝑋
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The updated value of nodal pressure is given by 
 
𝑃𝑖𝑛 = 𝑃𝑖𝑜 + 𝑤𝑔𝑠𝛿𝑖                                                 (Eq 3) 
 
for the multigrid method solved purely by relaxing the 
equations at each level using a Gauss- Seidel scheme. 
 
For the solver that uses a combination of the Gauss-
Seidel scheme and the Distributive Jacobi scheme, the 
updated values of pressure are given by  
 
𝑃𝑖𝑛 = 𝑃𝑖𝑜 + 𝑤𝑗𝑎(𝛿𝑖 −  𝛿𝑖−1)                                  (Eq 4) 
 
in the Jacobi region and by (Eq 3) in the Gauss-Seidel 
region. 
 
In the Gauss-Seidel region, 𝛿𝑖 is calculated as 
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In the Jacobi region of the mesh, 𝛿𝑖 is calculated as 
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The residual 𝑟𝑖 is given by 
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for the Gauss-Seidel region and  
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for the Jacobi region. 
 
A node is characterized as a node within the Gauss 
Seidel region if  
 

∈𝑖
(∆𝑋)2 >  1 

 
and characterized as a Jacobi region node if it is not 
part of the Gauss Seidel region. 
 
A Full Approximation Scheme (FAS) is used to solve 
the equations. W(1,2) cycles of different levels are run 
to achieve converged values of pressure and film 
thickness. The number of levels for which the W 
cycles are run are 4, 5 and 6.  W(1,2) cycles are 
preferred to the usually used W(2,1) cycles because it 
was observed that the former method achieved faster 
convergence. 
 
To transfer the pressure and FAS right hand side 
values from a fine mesh to a coarse mesh a full 
weighting restriction operator 𝐼𝑘+1𝑘  is used 
 
𝐼𝑘+1𝑘 =  1

4
[ 1 2 1]                                                (Eq 11) 

 
Transferring the fine grid data 
 
𝑃𝑜(𝑘) = 𝐼𝑘+1𝑘 𝑃𝑛(𝑘+1)                                          (Eq 12) 
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where  𝑃𝑜(𝑘) is the initial value of pressure on a grid at 
level k. 𝑃𝑛(𝑘+1)  is the final value of pressure obtained 
at level k+1. 𝐹𝑘 is the FAS RHS described by Venner 
[2] at level k. At the finest level (k = m), 𝐹𝑘 is 0. k = 1 
is the coarsest grid level.       
 
To transfer the pressure values from a coarse mesh to a 
fine mesh a full weighting interpolation operator 𝐼𝑘𝑘+1 
is used  
 
𝑃𝑜(𝑘+1) =
𝑃𝑛(𝑘+1) + 𝐼𝑘𝑘+1 � 𝑃𝑛(𝑘) − 𝐼𝑘+1𝑘 𝑃𝑛(𝑘+1) �            (Eq 14)   
 
The value for ℎ0 is adjusted on the finest grid each W 
cycle. An under-relaxation factor of 0.001 is used for 
adjusting the value of ℎ0 .  
 
On the finest level the force balance equation is 
1
2
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where m refers to the finest grid level. 
 
The following pressure convergence criterion is used  
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W(1,2) cycles are run for a 4 level system with the 
number of nodes at the finest level being 241 and the 
coarsest level 31. 3 relaxations are applied on the mesh 
at the coarsest level. Convergence is studied when 
using just the Gauss-Seidel scheme and a combination 
of both the Gauss-Seidel and the Jacobi relaxation 
schemes.     
 
The algorithm describing the number of relaxations 
involved at each level is described by Wang[4]. 
 
3. RESULTS & DISCUSSION 
 
W(1,2) cycles are run for a combination of the Gauss-
Seidel and the Jacobi relaxation schemes. The Gauss-
Seidel scheme is used mainly in the inlet where the 
value of the viscosity is not relatively high. The Jacobi 
scheme is used in the Hertzian contact width where the 
pressure values are large enough to cause a large 
viscosity gradient. 
 
(Fig. 1) shows the convergence of the multigrid 
method for varying values of the Jacobi under-
relaxation factors. 
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The number of W(1,2) cycles required for convergence 
in increasing order of the under-relaxation values 
shown in the graph are 356, 313, 289, 292 and 292 
cycles respectively. The Jacobi under-relaxation factor 
0.4 converges the fastet. 𝑤𝑗𝑎 values of 0.5 and 0.6 
converge marginally slower than than a value of 
𝑤𝑗𝑎 = 0.4 (Fig. 5). Convergence is not obtained for 
𝑤𝑗𝑎 values greater than 0.6. 
 
W(1,2) cycles are also run for a relaxation scheme 
using just the Gauss-Seidel method. These cycles were 
run on the same 4 grid levels as earlier, with the 
number of nodes on the finest grid being 241. The 
results are shown in (Fig. 3), and (Fig. 4).  
 

 
 
Figure 1 : Convergence of the Reynolds equation for 
varying values of wja . 
 
(Fig. 2) shows the residual norm of of the finest level 
at the end of each W cycle. The residual norm (rn) is 
defined as 
 
𝑟𝑛 =  1

𝑚𝑎𝑥𝑛𝑜𝑑𝑒−1
∑ |𝑟𝑖|𝑚𝑎𝑥𝑛𝑜𝑑𝑒−1
𝑖=1                       (Eq 19)   

  
where |𝑟𝑖| is the absolute value of the residual at node 
i. 
 
The rn values drop rapidly for about the first 100 W 
cycles and then stagnate or slightly increase before 
dropping off again. The flattening of each rn curve 
occurs around the same W cycle region as the flattened 
convergence curves in (Fig. 1). This seems to suggest 
that the stagnation of the residual norm values plays a 
role in the stagnation of the convergence curves.  
 
(Fig. 3) shows the number of W cycles required for   
convergence as the Gauss-Seidel under-relaxation 
factors 𝑤𝑔𝑠 are increased. The number of cycles 
required at 𝑤𝑔𝑠 values of 0.1, 0.2 and 0.3 are 1276, 716 
and 514 respectively. This is expected as a smaller 
under-relaxation factor updates the solution relatively 
slowly as compared to the higher under-relaxation 

factors. Convergence is not obtained for 𝑤𝑔𝑠 values of 
0.4 and above.  
 

 
 
Figure 2 : Residual norm for varying values of wja using a 
mixed relaxation scheme 
 

 
 
Figure 3 : Convergence of Reynolds equation for varying 
values of wgs using only a Gauss Seidel relaxation scheme 
 
Wang[4] had stated that using just a Gauss-Seidel 
relaxation scheme leads to faster convergence than 
using a mixed relaxation scheme because the Jacobi 
relaxation slows down convergence. However these 
results show that using optimum Gauss-Seidel and 
Jacobi relaxation values leads to a faster convergence 
than the fastest converging Gauss-Seidel solution. 
 
(Fig. 4) shows the rn curves for a 4 level W(1,2) cycle 
using only a Gauss-Seidel relaxation scheme. These 
curves are much more conventional in that the residual 
norm decreases faster as the under-relaxation factor is 
increased. This is also reflected in the convergence 
curves in (Fig. 3) 
 
The fastest converging curves for each relaxation 
scheme are plotted in (Fig. 6). The mixed relaxation 
scheme converges much faster for about the first 75 
cycles before flattening out until about the 200th W 
cycle. Both the curves once again increase their 
convergence rate after about 200 W cycles. These 
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curves show that the Gauss-Seidel scheme converges 
slower than the mixed relaxation scheme. 
 

 
 
Figure 4 : Residual norm for varying values of wgs using a 
Gauss-Seidel relaxation scheme 
 
 

 
 
Figure 5 : Comparison of the number of W(1,2) cycles to 
convergence for the 2 relaxation schemes 
 
 

 
 
Figure 6 : Comparison of the convergence of the two 
relaxation schemes 
 
W(1,2) cycles are also run for 3 separate maximum 
levels for the multigrid. The levels are 4, 5 and 6. The 
minimum number of nodes at each level is 31. The 

maximum number of nodes at each level is 241, 481 
and 961 respectively.  
 
(Fig. 7) shows the convergence patterns of the 3 
different levels of multigrid solutions using a mixed 
relaxation scheme. As the mesh becomes finer, the 
accuracy of the solution increases. However lower 
frequency components of the error are introduced, thus 
increasing convergence time. (Fig. 7) also shows that 
there is no fixed 𝑤𝑗𝑎 value at which the fastest 
convergence can be reached. There seems to be an 
optimum value of 𝑤𝑗𝑎 and 𝑤𝑔𝑠 at which fastest 
convergence can be achieved . 
 

 
 
Figure 7 : Comparison of the convergence of varying 
multigrid  levels incorporated in a W(1,2)  cycle for a mixed 
relaxation scheme with 𝑤𝑔𝑠= 0.8 . 
 
(Fig. 8) compares the residual norm of the mixed 
relaxation scheme for each of the 4 level, 5 level and 6 
level multigrid. The 4 level solution converges after 
289 W cycles, the 5 level solution at 418 cyles  and the 
6 level solution at 670 cycles. 
 

 
 
Figure 8: Residual norm for the 3 levels of multigrid 
solutions using a mixed relaxation scheme with 𝑤𝑔𝑠= 0.8. 
 
5 level and 6 level multigrid solutions are also plotted 
using just a Gauss-Seidel relaxation scheme. Given 
that it is easier to predict the Gauss-Seidel under-
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relaxation value at which the solution converges the 
fastest, a value of 0.3 was chosen. 

 
 
Figure 9: Convergence curves for the 3 levels of multigrid 
solutions using a Gauss-Seidel relaxation scheme with 𝑤𝑔𝑠= 
0.3 
 
The multigrid solution with the finest scheme produces 
the slowest converging solution as expected (Fig. 9). 
The 4 level solution converges after 506 W cycles, the 
5 level after 911 cycles and the 6 level solution after 
1743 cycles. 
 
The rn curves for the Gauss-Seidel solution for the 3 
levels of solution is shown in (Fig. 10). 
 

 
 
Figure 10: Residual norm for the 3 levels of multigrid 
solutions using a mixed relaxation scheme with 𝑤𝑔𝑠= 0.3. 
 
A 4 level multigrid solution is also run with the 
number of nodes on the finest level being 81 and the 
coarsest level being 11. The fastest converging 
solution was obtained for 𝑤𝑗𝑎 = 0.5 and 𝑤𝑔𝑠 = 0.1 . 
The solution converged after 371 W(1,2) cycles. 
Converging solutions were not obtained at 𝑤𝑗𝑎 values 
less than 0.5. This fastest converging solution (green 
curve)  is plotted against the fastest converging 4 level 
solution, having 241 nodes as it’s finest grid (pink 
curve) (Fig. 11). 
 

 
 
Figure 11: Convergence curves for the two different 4 level 
solutions. 
 
The pink curve in (Fig. 11) refers to the 4 level 
solution with the coarsest grid having 31 nodes and the 
finest grid having 241 nodes. The green curve refers to 
the solution having 11 nodes at the coarsest level and 
81 nodes at the finest level. The rn curves for the same 
solution is plotted in (Fig. 12).  The curves are 
interesting because the green curve initially converges 
faster than the pink curve, but then flattens out and 
reaches convergence slower than the pink curve. 
 

 
 
Figure 12: Residual norm for the two different 4 level 
solutions. 
 
Thus the pink curve reaches convergence requiring a 
lower number of W cycles (289) as compared to the 
green curve (371). But given that each W cycle on the 
green curve requires a far computation than the pink 
curve, it takes far lesser time to achieve convergence 
on the system with the finest frid being 81 nodes and 
the coarsest grid being 11 nodes. 
 
However as we approach a grid system where the 
finest level consists of a relatively small number of 
nodes, there is a loss in accuracy at the finest level. 
The converged pressure spike values for the grid 
system having 81 nodes on the finest level and 241 
nodes at the finest level are compared to the theoretical 
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pressure spike values predicted by Hamrock and Pan 
[6] in (Fig. 13) . 
 
The theoretical value of the pressure spike for W’ = 
1.42e-4, U = 8.16e-12, G = 5007 is 𝑃𝑠 = 0.659.  
 

 
 
Figure 13: Converged pressure curves for the two different 
4 level solutions. 
 
The error in the pressure spike value for the system 
having 81 nodes on the finest level is 11.31% . The 
error for the system with 241 nodes on its finest level 
is 0.75% . 
 
4. CONCLUSIONS 
 
W(1,2) cycles are run to provide a multigrid solution 
to the EHL line contact problem. 
 
• A relaxation scheme using a combination of the 

Gauss-Seidel scheme for the inlet region and the 
Jacobi scheme for the Hertzian region converges 
faster than a relaxation scheme using just the 
Gauss-Seidel method. 

• A 4 level multigrid solution converges faster than 
a 6 level multigrid solution. This is because the 
larger number of nodes in the finest level of the 6 
level solution introduce low frequency errors that 
decrease the convergence rate. 

• For a multigrid solution using a mixed relaxation 
scheme, it is not straightforward to predict the 
combination of under-relaxation factors that lead 
to the fastest converging solution. 

• For a multigrid solution using just the Gauss-
Seidel relaxation scheme, the convergence rate 
increases with an increasing under-relaxation 
factor. 

• For two 4 level multigrid solutions, the solution 
having a larger number of nodes on the finest level 
is more accurate  than the solution having smaller 
number of nodes on the finest level. 
 

5. NOMENCLATURE 

 
             
b Hertzian half contact width 
 E equivalent Young’s Modulus, Pa 
G Material Constant 
H  dimensionless film thickness 
P  
 

dimensionless pressure, p/𝑝ℎ  
 

𝑃𝑖𝑛 
 

Newest value of dimensionless pressure 

𝑃𝑖𝑜 
 

dimensionless pressure at previous step 

𝑝ℎ  
 

Maximum Hertzian pressure, Pa 
 

R 
 

equivalent radius, m 
 

U 
 

dimensionless velocity parameter, 𝑢𝜇0 𝐸𝑅⁄  

u 
 

lubricant inlet velocity, m/s 
 

W’ 
 

dimensionless load 

𝜇0 ambient viscosity of lubricant, Pas 
 

 
µ  

 
dimensionless viscosity 

𝑤𝑗𝑎 Jacobi under-relaxation factor 

𝑤𝑔𝑠 Gauss-Seidel under-relaxation factor 
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