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Abstract 

Background. In large-scale bioreactors, microbes often encounter fluctuating conditions of 

nutrient and oxygen supply, resulting in different microbial behavior at the different scales. 

The underlying reason being spatial heterogeneity, caused by limited mixing capabilities at 

production scale. Consequently, scale-up of processes is challenging and there is a need for 

laboratory-scale reactor setups that can mimic large-scale conditions to enhance the 

understanding of how fluctuating environmental conditions affect microbial physiology.  
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Results. A two-compartment, scale-down setup, consisting of two interconnected stirred tank 

reactors was used in combination with mathematical modeling, to mimic large-scale 

continuous cultivations. One reactor represents the feeding zone with high glucose 

concentration and low oxygen, whereas the other one represents the remaining reactor 

volume. An earlier developed population balance model coupled to an unstructured model1 

was used to describe the development of bulk concentrations and cell size distributions at 

varying dilution rate, glucose feed concentration as well as recirculation times between the 

two compartments. The concentration profiles of biomass and glucose could be successfully 

validated experimentally. Single cell properties of two fluorescent reporter strains, that were 

applied for deeper investigation of cell robustness characteristics and ethanol growth 

distributions, could be quantified compartment-wise revealing differences in cell population 

distributions related to environmental conditions and also compared to the one-compartment, 

conventional chemostat.  

Conclusion. Results underline the utility for the here presented combined approach as well as 

the use of continuous scale-down reactors for process investigations as insights concerning 

single-cell characteristics of the process are revealed, which are normally hidden. 

Keywords: population balance model, population heterogeneity, reporter strain, two-

compartment bioreactor, mathematical modeling, continuous scale-down reactor 

Introduction 

Nowadays, theadvances in modeling allow the model-based description of single cell 

physiology in biotechnologicalindustrial fermentation processes2. Therefore, a systematic 

approach using modeling in combination with laboratory-scale experiments can be used to 

facilitate process optimization3. Whereas modeling can assist in setting the range of 

interesting experiments, evaluating experimental data, finding the performance optimum and 
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creating a framework for future process development, . In turn experiments are then used to 

collect data in setups simulating large-scale process conditions, to validate modeling results 

and iteratively improve the model. It is important to point out that Indeed the model 

validation step is indeed one of the most important parts of a modeling study. 

Large-scale fed-batch and continuous cultivations are widely used in the biotechnology 

industry for the industrial production of pharmaceuticals, biomass and proteins (e.g. 

insulin)4,5. At large scale, gradients of process parameters (e.g. substrate concentration, pH 

and oxygen) arising due to non-ideal mixing behavior were found to be a major cause of cell 

population heterogeneity6,7. Especially substrate gradients contribute to this phenomenon 

because cells traveling throughout the reactor experience high substrate concentrations close 

to the feed port and low concentrations in zones more distant to the feed port. For 

Escherichia coli6,7 this was found to be connected with elevated stress response, especially 

when cells pass the feeding zone. The use of Rushton turbines has also been observed to 

generate compartments within the reactor due to high axial flow barriers created by the 

turbine8. Gradients can result in lowered yields and a rise in by-product formation9,10. The 

understanding of population heterogeneity – population properties are rather distributed than 

following average characteristics11 as earlier assumed – is important to understand process 

performance at larger scale, since cell population heterogeneity effects will complicate 

process optimization.   

 

A crude and simple way of assessing the degree of spatial population heterogeneity in a 

bioreactor is the compartment model approach. In such an approach, it is assumed that the 

bioreactor is divided into different zones due to the non-ideal mixing patterns. Exchange 

flows connect the compartments (zones), and the higher the exchange flow between 

compartments, the closer to the ideal mixing case one is, i.e. a one compartment setup. In the 
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other extreme, the system can be represented using Computational Fluid Dynamics (CFD) 

simulations, where a large number of very small volume elements are considered. In a 

compartment model approach, an ideal mixing behavior, and thus a continuous stirred tank 

reactor (CSTR) description, can be assumed for each compartment (i.e. spatial zone). Besides 

offering a straightforward way for describing non-ideal mixing in large-scale reactors, a 

compartment model approach has the advantage of being easily translated into laboratory-

scale experimental setups by using scale-down reactors.  

 

Scale-down reactors are nowadays increasingly used for process development and 

optimization, and have been shown to be a valuable tool for the study of gradients of 

substrate, oxygen12 and pH seen in large-scale fermentation processes13. Most commonly the 

scale-down reactor consists of stirred tank reactors (STR) connected to plug flow reactors 

(PFR) or two STRs connected to each other14 because both setups allow the creation of 

gradients of various reactor parameters in a well-controlled environment, which is especially 

useful for studying population heterogeneity. Several studies investigated glucose gradients 

and the consequent averaged population properties e.g. during aerobic ethanol production15, 

which revealed the induction of stress responses close to the perturbation zone as well as by-

product formation in both S. cerevisiae and E. coli16 (PFR connected to STR). Sweere et al. 

(1988)17 investigated the effects of fluctuating glucose concentration on  S. cerevisiae 

physiology, applying different circulation times and volume ratio of the two stirred tank 

reactors, while the feed was only added to the reactor with the smaller volume which revealed 

induction of stress responses as well as. Similar as for George et al. (1993)15 in a setup with 

an STR connected to a PFR, induction of stress responses was found. Later Delvigne et al. 

(2006a, 2006b & 2006c)18-20 developed, for both E. coli and S. cerevisiae, a combination of 

stochastic microbial growth and bioreactor mixing models to explore the hydrodynamic 
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effect of the bioreactor on microbial growth, which allowed explanation of the metabolic 

changes cells experience associated with glucose fluctuations. CBy combining the two model 

parts the authors could describe the concentration profiles that a cell was subjected to during 

its cultivation in the bioreactor. All above mentioned used setups have been performed in fed-

batch mode, with one reactor representing the feeding zone and the other one the perturbation 

zone (either PFR with perturbation at inlet or STR with different conditions compared to the 

other one).  

 

In this study, substrate gradients are simulated and the effect of the operating conditions 

(dilution rate and glucose feed concentration) is evaluated using, to our knowledge, for the 

first time a scale-down reactor system that operates in continuous mode including a waste 

outlet. The existence of gradients is assumed to result in a compartmentalization of the 

reactor (i.e. delimited spatial zones can be defined). This compartmentalization is translated 

into an experimental setup consisting of two compartments of different volume, one 

representing the feeding zone and one representing the remaining reactor volume where the 

bioreactor outlet, which has not been included into earlier setups published (see for 

overview21), is located. This study addresses firstly an in silico investigation of the dynamics 

of a yeast population cell size distribution during a continuous large-scale fermentation, 

where a compartmentalization of the reactor can be assumed. The performed computer 

simulations rely on an adaption of a previously described population balance model (PBM) 

coupled to an unstructured model describing the bulk concentrations in the cultivation 

media1.  

Following the in silico study, the corresponding experimental investigation was performed by 

running glucose-limited chemostat cultivations using growth and ethanol metabolism S. 

cerevisiae reporter strains. Yeast single cell physiology and robustness was assessed by flow 
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cytometry analysis. Apart from exhibiting general growth physiology the two strains used in 

this study express a fluorescent protein whose activity can be easily assayed22. In the major 

part of the cultivations performed in this studyMainly, the growth reporter strain FE440 was 

used:  it expresses a green fluorescent protein (GFP) from a ribosomal promoter which 

enables monitoring of metabolic activity at single cell level23. It also allows for investigation 

of membrane robustness, when applying freeze-thaw stress to cells sampled from the 

fermentation broth membrane robustness could be investigated23. In some cultivations, an 

ethanol reporter Sc-PCK1-B expressing a blue fluorescent protein (TagBFP) from a 

phosphoenolpyruvate carboxykinase promoter (inactive when glucose is present, part of 

gluconeogenesis) whose expression is correlated to ethanol consumption (Johansen et al., 

unpublished) was utilized. Consequently, the use of flow cytometry analysis revealed not 

only distributions of cell size and morphology, but also metabolic activity and ethanol 

consumption characteristics of thousands of single cells per second. Thus, in addition to 

conventional growth physiology also differences in the expression profiles of reporter genes 

for single cells traveling throughout the scale-down system were investigated.       

Materials and Methods 

Strains and Chemicals  

The S. cerevisiae reporter strain FE44023 expressing a green fluorescent protein (GFP) 

controlled by the ribosomal protein RPL22a promoter and thus correlated to growth was 

mainly used throughout this study. The ethanol reporter strain Sc-PCK1-B (Johansen et al. 

(2013), unpublished) expressing a blue fluorescent protein (BFP) controlled by the 

phosphoenolpyruvate carboxykinase promoter and thereby correlated to ethanol growth/non 

glucose growth (glucose repression/derepression) was used for a few cultivations. All 

chemicals used during the study were obtained from Sigma Aldrich (St. Louis, USA).  
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Cultivation conditions 

Pre-culture. A single colony of the growth reporter FE440 respectively the ethanolapplied 

reporter strain Sc-PCK1-B was picked from a plate with minimal medium and used to 

inoculate a 0.5 L baffled shake flask with 100 ml of defined mineral medium containing 7.5 

g/L (NH4)2SO4, 14.4 g/L KH2PO4, 0.5 g/L MgSO4*H2O, 2 ml/L trace metal solution, 1 ml/L 

vitamin solution and 10 g/L glucose24. The pre-culture was incubated in an orbital shaker set 

to 150 rpm at 30°C until mid-exponential phase (approximately 10 h) and directly used for 

inoculation.  

Chemostats. One compartment: Aerobic level-based chemostats were run with the growth 

reporter strain FE440 in 1 L bioreactors (Sartorius, B. Braun Biotech International, GmbH, 

Melsungen, Germany). pH and DOT electrodes (Mettler Toledo, OH, USA) were calibrated 

using two point calibrations. The pH was kept constant at 5.0 using 2 M NaOH. Temperature, 

aeration and stirring were kept constant at 30° C, 1 v/vm and 600 rpm, respectively. The 

OD600 for inoculation was 0.001. The growth medium was a defined mineral medium 

according to Verduyn et al. (1992)24 with 5 g/L glucose for the batch phase. A factorial 

design was used for the continuous mode with glucose concentrations in the feed of 50 g/L or 

300 g/L and the dilution rates of  D = 0.05 and 0.2 h-1 The experiments were performed in 

duplicate. In addition a center point cultivation was included with D = 0.125 h-1 and 125 g/L 

glucose.   

Two compartments: A 5 L reactor (V2) connected to a 0.5 L reactor (V1) (Sartorius, B. Braun 

Biotech International, GmbH, Melsungen, Germany) was used with a ratio of the working 

volume of V1 = 1/6*V2 (figure 1). V1 hereby represented the feeding zone with feed addition 

and no sparging of oxygen whereas V2 corresponded to the remaining reactor volume. The 5 

L reactor contained the outlet of the system and was sparged with oxygen. Between the two 

reactors a recirculation was applied (F1 and F2). Running conditions were the same as for the 
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one-compartment chemostats, described above. Aerobic level-based chemostats with 

different overall dilution rates (D = 0.05 and 0.2 h-1 as well as D = 0.125 h-1 as center point, 

calculated for the whole reactor volume of the setup), glucose feed concentration (50 g/L, 125 

g/L and 300 g/L) and recirculation flow (F2 = 0.1 L/h, 1.45 L/h and 3 L/h) between the two 

reactors were performed for selected conditions according to a factorial design experiment 

plan (see table 1). 

For both setups, the one- and two-compartment setup, the batch phase was followed by OD600 

measurement and continuous analysis of the off-gas composition by a Mass spectrometer 

(Prima Pro Process MS, Thermo Fisher Scientific, Winsford UK). After glucose depletion, 

detected as a rapid drop in the CO2 content of the off gas, the cultures were switched to 

chemostat mode with the desired dilution rate by applying a feed with the same medium as 

used for the batch but containing 50 g/L, 125 g/L respectively 300 g/L glucose . The volume 

was kept constant by a level based outlet for both the one- and two-compartment 

experiments. Steady state was considered established when dry weight, dissolved oxygen 

tension (DOT), metabolites and exhaust gas concentration (CO2) had remained constant for at 

least three residence times. For the ethanol reporter strain, and additional fed-batch phase was 

integrated into the process after glucose depletion to validate if the same steady state was 

reached as when the continuous mode was started with a lower biomass concentration after 

the batch. Therefore, a feed with 300 g/L glucose at a growth rate of 0.1 h-1 was applied until 

a biomass concentration of 25 g/L was reached. 

Samples were withdrawn for OD600, high performance liquid chromatography (HPLC), dry 

weight (DW) and flow cytometry analysis. Samples for OD600 and DW were analyzed 

directly, HPLC samples were sterile filtered and stored at -20 °C. Samples for flow cytometry 

were mixed with glycerol to a final concentration of 15 % and frozen and stored in a -80°C 
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freezer. The sampling frequency was once every residence time until the 9th residence time 

starting with the 0th residence time directly after switching to chemostat mode, as well as 

three samples during exponential growth in batch mode. For the one-compartment 

experiments samples where withdrawn at the outlet whereas for the two-compartment 

experiments samples were additionally withdrawn from both outlets of the recirculation lines 

(V1 and V2, see figure 1, marked with an arrow).  

Sample analysis 

OD, DW and HPLC. Growth was monitored by measuring OD600 with a Shimadzu UV mini 

1240 spectrophotometer (Shimidzu, Kyoto, Japan). Dry weight measurements were 

performed on 5 mLl cultivation broth according to Olsson and Nielsen (1997)25. The 

concentrations of glucose, acetate, ethanol, glycerol and pyruvate in the broth were 

determined by HPLC as earlier described by Carlquist et al. (2012)23.  

Flow cytometry. A FACSAria™ III (Becton-Dickinson, NJ, USA) flow cytometer was used 

for single-cell analysis ofboth yeast and bacteria. Excitation wavelength for the laser was set 

to 488 nm. Two scattering channels (FSC and SSC) and two fluorescent detection channels 

were used in the analysis.  Fluorescence emission levels were measured using a band pass 

filter at 530±30 nm for GFP and 450±20 nm for BFP. Light scattering and fluorescence levels 

were standardised using 2.5 µm fluorescent polystyrene beads. Samples for flow cytometry 

were centrifuged for 1 min at 3000 g and 4 °C, resuspended in 0.9 % saline solution and 

directly analysed. 10,000 yeast cell events were recorded  for yeast. CS&T beads (Cytometer 

Setup and Tracking beads) (Becton Dickinson, USA) were used for the automated QA/QC of 

the machine performance.   
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Data analysis 

Processing and analysis of the flow cytometry raw data was performed using MatLab ® 

R2013a (The MathWorks, Inc., Natick, MA, USA). The raw data was extracted from the flow 

cytometer as fcs files and loaded into MatLab with the help of the readfsc function (by L. 

Balkay, University of Debrecen, Hungary, available on MatLab central file sharing). The 

HPLC data were imported from excel. The data from the fcs files was saved into mat files 

including the recorded GFP fluorescence and the FSC for each experiment. By application of 

the hist function to the 1024 recording channels cell count was saved for all channels and 

histogram plots generated. For better quantitative description of the GFP distributions, the 

mean function was used to calculate the mean FSC and mean GFP fluorescence. By dividing 

the standard deviation of the GFP distribution by the mean GFP the coefficient of variance 

(CV) of the distribution was generated.  

 Modeling Aspects  

A two-stage PBM (population balance model) previously developed for a batch cultivation1 

was adapted to describe a continuous cultivation in a one- and two-compartment setup (see 

figure 1). Cell total protein content (a measure of cell size) is used as model variable. In the 

case of the two-compartment setup presented in this work, four population balance equations 

are necessary (two cell stages x two compartments). Furthermore, the dilution terms taking 

into account the transport between compartments, inlet and outlet are included in the PBM 

equations for both the case of the one- and the two-compartment models. The PBM equations 

for a two-compartment model are presented in Appendix 1 (Eq. A1-1 to A1-4). For further 

details on the formulation of a PBM and the various model kernels forming the PBM 

equations, the paper by Lencastre Fernandes et al., (2013)1 should be consulted. The same 

boundary and initial conditions as proposed for the batch cultivation model are used for both 

compartments.  
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Based on the trajectory of the estimated critical sizes along a batch cultivation1 the budding 

and division critical sizes were defined as continuous functions of the concentrations of 

glucose or ethanol, in a given compartment, according to the following assumptions: 

• If the concentration of glucose, in a given compartment, is equal to or above 0.1 g/L, 

growth on glucose is assumed for that compartment, and the critical budding (µB) and 

division (µD) sizes are calculated based on the glucose concentration according to Eq. 

A1-6 to A1-7 in Appendix 1  

• If the concentration of glucose, in a given compartment,  is below 0.1 g/L, growth on 

ethanol is assumed for that compartment, and the critical budding (µB) and division 

(µD) sizes are calculated based on the glucose concentration according to Eq. A1-8 to 

A1-9 in Appendix 1 

• If the concentrations of glucose and ethanol, in a given compartment are below 1e-6 

g/L, growth in that compartment is assumed to be zero. An estimated value for the 

saturation constant of the overall growth process (corresponding to half of the 

maximum specific growth rate) is 0.15 g/L26.  

•  The partition shape parameters (necessary for defining the birth kernel in the PBM 

equations) are assumed to change according to the growth mode (glucose or ethanol) 

observed in a given compartment: for glucose growth, α=β=50, for ethanol growth 

α=30 and β=60. The nature of these values is further discussed in Lencastre Fernandes 

et al. (2013)1. 

In order to further describe the bulk concentration of glucose, ethanol and oxygen in the 

cultivation media, in each compartment, an unstructured model was coupled to the PBM (see 

Eq. A1-10 to A1-15). As presented for the experimental setup (see figure 1), the glucose feed 

is added to the inlet of compartment one, and the oxygen supply takes place exclusively in 
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compartment two. As proposed for the batch model1, the substrate dependent term in the 

growth kernel (λ(Z)) is evaluated, in this case, for each of the compartments (see Eq. A1-16).  

The model was implemented and solved in MatLab® Release R2013a, and the fixed-pivot 

method was used for discretization of the PBM equations. The unstructured and PBM models 

are solved iteratively, following a solution procedure similar to the one proposed for the 

batch model1.  

Results and discussion 

The model simulations, basically extending the model results from batch experiments1 to 

continuous one- and two-compartment setups, were performed first, in order to identify the 

most interesting experiments, which were then carried out in the laboratory. 

 

In silico simulations of the two-compartment, scale-down system 

Simulations with the model (details see materials and methods as well as appendix 1) were 

performed. Different operating conditions were evaluated in silico using a factorial design 

plan (table 1) varying glucose feed concentration (either 50 g/L, 125 g/L or 300 g/L which is 

referred to in the text as G50, G125 respectively G300), dilution rate (D = 0.05 h-1, 0.2 h-1 and a 

center point corresponding to D = 0.125 h-1 (referred to as D0.05, D0.2 and D0.125)) as well as 

recirculation between the two reactor compartments (low recirculation (LR) = 0.1 L/h, 

medium recirculation (MR) = 1.45 L/h, high recirculation (HR) = 3.0 L/h). Hereby, the 

choice of conditions was based on the intention to test the two-compartment model under 

extreme conditions to evaluate the borders of applicability. For the one-compartment 

cultivation simulations, steady state was found for all conditions apart from case F 

(G50_D0.05), G (G50_D0.05) and H (G50_D0.2) for which oscillations, particularly visible in the 

oxygen concentration and budding index, were observed. Furthermore, for case E (G50_D0.05), 
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F (G50_D0.2) and G (G50_D0.05) smaller cell sizes than for the other conditions were predicted 

because only residual concentrations of glucose and ethanol remained. In contrast to that, 

larger cell sizes were observed for case B (G300_D0.2), C (G300_D0.05) and D (G300_D0.2), 

because these cases showed the highest glucose concentration in steady state. For the two-

compartment simulations, as expected, it was obvious that a lower recirculation resulted in 

larger differences between the two compartments, which could particularly be seen for case B 

(G300_D0.2_LR) where the largest difference in oxygen concentration between the two 

compartments was found. Moreover, for the cases C (G300_D0.05_HR), G (G50_D0.05_HR) and 

E (G50_D0.05_LR) ethanol consumption was predicted to take place in compartment V2, 

because glucose concentrations were below 0.1 g/L and the model contains a switch to 

ethanol consumption when the glucose concentration goes below the 0.1 g/L threshold. 

Furthermore, as for the one-compartment model, oscillations were found for the cases A 

(G300_D0.05_LR), H (G50_D0.2_HR) and I (G125_D0.125_MR) with momentaneous low glucose, 

ethanol and oxygen concentrations during the oscillation periods.  

 

The continuous cultivation scale-down reactor system 

To mimic the gradients often seen in large-scale cultivations and the consequent development 

of compartments with different microenvironments inside a reactor which influence the 

microbial population behavior, a two-compartment reactor setup was constructed (figure 1). 

Similar to the model, the experimental setup consists of two reactors with a volume ratio 1:6. 

The smaller reactor (V1) represents the feeding zone with feed addition (glucose 

concentration in the feed was either 50 g/L, 125 g/L or 300 g/L) and no sparging of oxygen, 

whereas the bigger reactor (V2) corresponds to the remaining reactor volume containing the 

outlet, considerably lower glucose concentration and sparging with oxygen (figure 1). A 

circulation loop (with flow F1 and F2, respectively) ensured the exchange between the two 



 
 

This article is protected by copyright. All rights reserved 

reactors, where the recirculation from V2 to V1 (F2) was varied according to the factorial 

design plan (table 1; low recirculation (LR) = 0.1 L/h, medium recirculation (MR) = 1.45 L/h, 

high recirculation (HR) = 3.0 L/h). Overall dilution rates (calculated for the whole working 

volume of both reactors) of D = 0.05 h-1 and 0.2 h-1 (referred to as D0.05 and D0.2), in addition 

to a center point corresponding to D = 0.125 h-1 (referred to as D0.125) were applied. Due to 

the volume differences and circulation between the reactors (two compartments) with only 

one feed inlet, the actual dilution rates in the two compartments and local dilution rates in the 

compartments can be higher than what is normally possible without experiencing a wash-out 

of biomass.  

On the basis of the simulation results, selected conditions were performed experimentally 

(table 1). These included two cases (G300_D0.05_LR (A) and G50_D0.05_LR (E)) run with D = 

0.05 h-1 and 50 g/L respectively 300 g/L of glucose feed both with low recirculation flow rate 

between the reactors. Furthermore, to be able to evaluate the effect of a higher overall 

dilution rate on the cell population structure, also cases F and H (G50_D0.2_LR respectively 

_HR), corresponding to a low and high recirculation flow rate respectively, were included in 

the experimental study. In the case H (G50_D0.2_HR) oscillations were found when 

performing simulations as well as for the center point (case I) which was also chosen to be 

carried out as a middle-range condition between the extremes (G125_D0.125_MR). In addition 

to the comparison of the model and the two-compartment setup, all experimental results are 

also compared to the corresponding one-compartment chemostat experimental cultivation and 

model simulation.  

Variation of general physiology over time in the two-compartment setup  

When comparing the general physiology between the modeling and experimental results in 

the two-compartment setup, all experimentally performed cases achieved a steady-state, 
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which was not seen for all modeling results, though after a different number of residence 

times depending on the conditions (figure 2).  

For growth at the high dilution rate, D= 0.2 h-1 (cases F (G50_D0.2_LR) and H 

(G50_D0.2_HR)), the cells generally consumed the fed glucose producing CO2 and ethanol due 

to overflow metabolism. When the experiment was performed with low recirculation flow 

rate (case F (G50_D0.2_LR), figure 2) a high rest glucose concentration was observed in 

compartment V1, around half of the concentration in the feed, along with low amounts of 

produced biomass (end value for biomass concentration: around 3 g/L). The dilution rate in 

compartment V1 was much higher than the overall dilution rate as the incoming feeding rate 

was based on the overall volume of the two reactors (3.5 L) and V1 only comprises 1/7 of the 

total volume. This implies that cells, glucose and ethanol were transported to V2. In this 

compartment the incoming glucose was readily consumed and ethanol accumulated (ethanol 

concentration was around 3 g/L), resulting in a clear compartmentalization of the scale-down 

system. The model simulations supported these observations (figure 3), and further suggested 

that cells in V2 had not switched to ethanol growth: a high budding index (around 60%) was 

predicted for both compartments, and the predicted cell size distributions were similar, 

although slightly smaller cells were observed in V2 as expected on the basis of earlier 

studies27,28 because lower glucose concentrations were observed. No other metabolites were 

found in significant amounts in any of the compartments.  

When applying a high recirculation flow rate between the compartments (case H 

(G50_D0.2_HR)), both compartments exhibited the same concentration profiles (figure 2). This 

was expected and predicted by the model simulations (figure 3), as the high exchange 

between compartments brings the system closer to the one-compartment case (i.e. where ideal 

mixing and homogeneity in the reactor is assumed). This makes this case less interesting for 

detailed studies in the scale-down setup. The glucose fed to V1 was readily consumed, CO2 
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was produced as well as small amounts of biomass (around 12 g/L) and ethanol (around 5 

g/L). In the model simulations an oscillatory behavior was observed, in particular for the 

budding index profile for both compartments and for the oxygen profile for compartment V2. 

These oscillations are a result of a continuous shift between glucose and ethanol growth 

modes, since the budding and division critical sizes (and consequently the growth rate) 

decrease gradually following the glucose concentration. When the glucose concentration 

reaches the threshold value, the partition shape parameters change resulting in the generation 

of new smaller cells, which grow slower leading to an accumulation of glucose and when the 

glucose concentration again rises above the threshold value the shape parameters change once 

again leading to an accumulation of bigger cells and thus a faster growth rate and faster 

consumption of glucose (leading to a decrease of the glucose concentration). These 

oscillations were not visible in the experimental results. It remains to be determined whether 

the oscillations are exclusively due to a model artifact (due to the assumptions that were 

made) or they take place in reality, but the frequency of the experimental sampling applied 

here was too low to capture this phenomenon.  

When lowering the dilution rate to D = 0.125 h-1 and elevating the glucose feed concentration 

to 125 g/L (case I, center point, G125_D0.125_MR), a similar picture as for the high dilution 

rate (case H, G50_D0.2_HR) was observed (figure 2). Whereas there was no difference in 

biomass concentration between the two compartments (up to around 25 g/L), the ethanol 

level was different, which revealed some differences compared to a one-compartment setup, 

and therefore makes this condition more interesting to investigate further compared to case H 

(G50_D0.2_HR). The fed glucose was readily consumed in compartment V1 producing CO2, 

biomass and ethanol (around 25 g/L). The remaining glucose and ethanol were recirculated 

and completely consumed in the compartment V2. The model simulation also predicted 

oscillations for this case (figure 3).  
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For experiments with the low dilution rate (D = 0.05 h-1, cases A (G300_D0.05_LR) and E 

(G50_D0.05_LR)) the fed glucose was only partly consumed in V1 producing ethanol, CO2 and 

biomass (figure 2). The remaining glucose, the formed ethanol and biomass were transported 

into V2, where significantly higher biomass concentrations were detected. When increasing 

the feed glucose concentration, an increase in the produced biomass concentration (to around 

50 g/L vs 20 g/L), ethanol concentration (around 20 g/L vs 5 g/L) and CO2 were observed in 

both compartments, as well as a higher remaining glucose concentration in V1. In contrast to 

experiments with lower glucose concentration, also small amounts of glycerol were detected 

in V1 for case A (G300_D0.05_LR).  

Whereas the model predictions for case E (G50_D0.05_LR) were in agreement with the 

experimental results, the model predictions for case A (G300_D0.05_LR) were not (figure 3). 

Indeed, while the model only predicted a very low glucose concentration in V1 for case A, a 

significant amount of glucose was observed after 6 retention times in the experiments. It is 

however not clear if a steady state has been reached at that point or if a further decrease of the 

glucose concentration (to residual levels) would be observed when continuing the cultivation. 

An explanation for this could be that the cells are more stressed due to the high glucose 

concentration, and hence need longer time to adjust and to reach steady state. It could be a 

similar phenomenon as seen in high gravity batch cultivations, where a lag phase/phase of 

slow growth of about 20 h is seen before the exponential growth phase starts29. This was not 

incorporated in the model, as the model did not take into account high-gravity cultivations, 

and could thereby lead to different simulation results compared to the experiments.     

 The effect of compartmentalization on biomass productivity and yields on substrate  

It is obvious from the previous section that the degree of compartmentalization, here 

determined by the exchange flow rate between compartments, as well as growth rate and feed 

concentration in a bioreactor have a significant influence on cell physiology. Therefore, it is 
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also interesting to investigate the effect of compartmentalization on the overall yields on 

glucose as well as on the productivity of biomass in the experimentally performed cases 

(figure 4). Hereby only the yields of biomass, ethanol and CO2 were considered because other 

metabolites produced in low amounts like acetate, glycerol and pyruvate only accounted for 

less than 10% in the carbon balance (data not shown). This is consistent with Postma et al. 

(1989)31 who found that below D= 0.25 h-1 no other byproducts than ethanol were 

accumulated.   

The biomass yields for one- and two-compartment continuous cultivation differed 

significantly. In general, the biomass yields (figure 4A) and thereby also the biomass 

productivity (figure 4D) for the two-compartment cultivations were around 50% higher than 

for the ordinary chemostat cultures, except for case E (G50_D0.05_LR) where the opposite was 

found. The highest, respectively, lowest productivity was found for case F and H (G50_D0.2) 

respectively case E (G50_D0.05) in one-compartment chemostats. In the two-compartment 

setup case A (G300_D0.05_LR) showed the highest productivity and case E (G50_D0.05_LR) 

again the lowest productivity. In general, the values found for the two-compartment setup, 

although differences in oxygen level might exist, were comparable with biomass yields seen 

in earlier studies in ordinary chemostats by e.g. van Dijken et al. (2000)32 whereas for the 

one-compartment setup values were lower than reported in earlier studies. The ethanol yields 

(figure 4B) were in all experimentally performed cases around three-fold higher for the one-

compartment chemostats than for the two-compartment setup with the exception of case E 

(G50_D0.05_LR) for which the yields were almost the same in both setups. Also for the CO2 

yields (figure 4C) the one-compartment chemostats showed higher values than for the two-

compartment cultivations, with the exception of case A (G300_D0.05_LR) for which the yield 

was around three times higher for the conventional chemostat. In general, no clear 

dependence of the yields on the dilution rate could be observed. When increasing the 
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recirculation rate in the two-compartment setup, it is expected that the yields should 

increasingly resemble the one-compartment chemostat, which could not be seen from the 

results. In fact, in the results only the CO2 yield decreased, whereas the biomass yield 

increased when comparing low and high recirculation rate (case F and H, G50_D0.2_LR 

respectively _HR). An increase in glucose feed concentration (comparing case A 

(G300_D0.05_LR) and E (G50_D0.05_LR)), however, resulted in a decrease in biomass yield as 

well as an increase in CO2 yield for the two-compartment, respectively, decrease for the one-

compartment chemostat. In large-scale cultivations of S. cerevisiae it has been found that 

when cells experience a fast change in environmental conditions34, the biomass yield 

decreases in line with an increase in ethanol yield. The reason for this are microenvironments 

in different parts of the bioreactor due to non-ideal mixing, which also makes cells more 

stressed, as determined by the expression of stress related genes15. This explains the observed 

decrease in biomass concentration when the feed concentration increased, since this imposes 

a larger difference in environment between the two compartments. However, the increase in 

ethanol yield was only seen for the one-compartment chemostat, whereas it remained 

constant in the scale-down setup.  

 

Cell size distributions in the two-compartment setup  

The cell size distribution changed depending on the conditions when comparing the two 

compartments in the model as well as the experiments (figure 5 and 6), and also in 

comparison with ordinary chemostat cultivations (figure 10 and Appendix 2). For the 

experimental cases with low respectively medium dilution rate and recirculation (A 

(G300_D0.05_LR), E (G50_D0.05_LR) and I (G125_G0.125_MR)) the cell size remained the same 

for cells in both compartments as well as cells grown in a normal chemostat (one-

compartment cultivation): 338.43±+/-0.56 vs 338.12±+/-30.63 vs 354.59±+/-5.48. This is in 
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agreement with the model predictions for case E (G50_D0.05_LR) and I (G125_D0.125_MR), 

though for case I (medium dilution rate) two different size subpopulations were predicted, 

which in the experimental results can only be suspected (figure 6). The differently sized 

subpopulations seen in the model simulations are possibly related to oscillations in cell size 

and budding index originating from the switch between glucose and ethanol growth being set 

to take place at a discrete glucose concentration of 0.1 g/L, resulting in smaller cells during 

ethanol growth and bigger cells during growth on glucose. For case A (G300_D0.05_LR) the 

model predictions, however, suggested that two different cell size distributions would be 

observed in the two compartments: a smaller sized population is predicted for V2, while a 

combined population of smaller and bigger cells would be found in V1 (see table 2). This 

difference between experimental and model predictions is consistent with the discrepancies 

found for the physiological data, and thus further suggests that the model may not be suitable 

for describing high-gravity cultivations. But it also has to be mentioned that high-gravity 

cultivations were not explicitly considered during the model development. However, the 

smaller cell size could be explained by a change in osmolarity, as it was found earlier that 

incrasing osmolarity leads to shrinking cells30.   

For cases with high dilution rate and low respectively high recirculation (F and H, 

G50_D0.2_LR respectively HR) experimental cell size data for case F (G50_D0.2_LR) showed 

similarities to case E (G50_D0.05_LR) but with higher mean cell size, whereas for case H 

(G50_D0.2_HR) the cell size distribution resembled more case A (G300_D0.05_LR) and I 

(G125_D0.125_MR) (figure 5). The model predicted two differently sized populations for case 

H (G50_D0.2_HR), as for case I (G125_D0.125_MR) as discussed above, which might be 

explained by the higher applied recirculation flow rate between the two compartments (figure 

6). 
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The model predictions for case F (G50_D0.2_LR) revealed different distributions in 

comparison to  case A (G300_D0.05_LR), H (G50_D0.2_HR) and I (G125_D0.125_MR) as well: 

smaller size populations were predicted for these cases, reflecting the shift of the population 

in response to a lower glucose concentration (figure 6). As previously discussed, for these 

cases higher glucose concentrations were measured in comparison to the model predictions, 

which was in agreement with the experimentally measured distributions displaying larger 

cells than shown in the predicted distributions.  

In comparison with the one-compartment model (see appendix 3, figure 13) cell size 

distributions predicted for cases with low recirculation (A (G300_D0.05_LR), E (G50_D0.05_LR) 

and F (G50_D0.2_LR)) resembled distributions found in the two-compartment model for V2, 

which seems to be expected as the biggest part of the one-compartment chemostat will 

resemble the compartment V2 with high oxygen concentration and residual glucose 

concentration. For cases with high respectively medium recirculation (H  (G50_D0.2_HR) and 

I (G125_D0.125_MR)), cell size distributions in the one-compartment model resembled the 

subpopulation that showed the higher cell size in the two-compartment model, probably due 

to less changes in the residual glucose concentration predicted in the one-compartment 

reactor.  

The results suggest that the lowest level of population heterogeneity resulted from the 

operating conditions corresponding to the lowest local dilution rates (case E (G50_D0.05_LR), 

table 2). Oppositely, the highest level of population heterogeneity was found for case H 

(G50_D0.2_HR), where the highest local dilutions rates compared to the overall dilution rate 

should be observed. This suggests that a high local volume exchange contributes significantly 

to the heterogeneity of the cell population. A high glucose feed concentration is likely to be 

an additional factor contributing to a higher level of heterogeneity. 
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Influence of compartmentalization on cell membrane robustness  

To gain further physiological information about how compartmentalization affects the yeast 

population, a S. cerevisiae reporter strain expressing a green fluorescent protein (GFP) under 

the control of a ribosomal promoter was applied23. This strain has earlier been demonstrated 

to be a useful tool to follow growth characteristics at single cell level. Additionally, when 

exposing the cells to freeze-thaw stress, the reporter strain can be applied for the investigation 

of cell membrane robustness, as a strong correlation between intracellular GFP level and cell 

membrane robustness has been found23. Hence this strain functions as a dual reporter and is a 

good model system for investigating how different environmental conditions may affect 

microbial responses and stress tolerance on single-cell level. All performed experimental 

cases except of case G50_D0.2_HR, (H) where no physiological difference between the 

compartments could be established, were investigated for single cell membrane robustness in 

one- and two-compartment chemostats.  

 

Flow cytometry analysis was applied on frozen cells from two subsequent retention times, 

and from the resulting fluorescence distributions it can be seen that for all cases steady state 

of the fluorescence level was established (figure 7). A clear difference in GFP fluorescence 

between the compartments could only be seen for cultivation G50_D0.05_LR (case E), where 

compartment V1 displayed two subpopulations, whereas only one major population was seen 

for compartment V2 (figure 7). For the remaining experiments, the calculated mean 

fluorescence differed less than 10% between compartments (table 3), although the general 

physiology in the two compartments was different for cases with low recirculation rate, i.e. in 

addition to case E (G50_D0.05_LR) also for case A (G300_D0.05_LR). The reason for this 

discrepancy is probably the longer expression time of GFP compared to the recirculation time 

between the two compartments.  
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However, fluorescence distributions can still be compared between all cases. Case A 

(G300_D0.05_LR), F (G50_D0.2_LR), I (G125_D0.125_MR) and compartment V2 of case E 

(G50_D0.05_LR) exhibited similar steady state characteristics with a broad distribution tailing 

towards lower fluorescence (figure 7), although the tailing was less obvious for cells growing 

at the higher dilution rate, which can be seen in the slightly higher mean fluorescence values 

found for the higher dilution rate compared to experiments performed with D = 0.05 h-1. 

Furthermore, this was also illustrated by lower CV for the GFP distribution for cells 

cultivated at higher dilution rate, which were in the range 0.23-0.26 compared those 

cultivated at lower dilution rate, which were in the range 0.41-0.56). These findings directs 

towards the conclusion, that the membranes of cells growing with higher dilution rate seems 

to be more robust towards freeze-thaw stress, whereas cells growing at lower dilution rate are 

generally more affected. This is interesting since generally it is found that in continuous 

culture cells growing at a low dilution rate are more robust and tolerant to stress than cells 

growing with a higher growth rate35,36. This trade-off between growth rate and stress 

tolerance is believed to be connected to energy availability. As stated above, compartment V1 

of case E (G50_D0.05_LR) revealed two subpopulations, one high fluorescent containing 

around 65% of the whole population and one low fluorescent (around 35% of the population). 

Hence, in this compartment a subpopulation of cells showed decreased membrane robustness 

compared to the rest of the cell population as well as the majority of the cells in compartment 

V2 under conditions applied in case E. 

In comparison to steady state values of ordinary chemostats (Appendix 2, figure 11), the two-

compartment cultivations revealed generally lower mean fluorescence values (table 3). This 

indicates that cells grown in one-compartment chemostats are less affected by freeze-thaw 

stress than cells grown in a two-compartment chemostat. Only when growing with D = 0.05 

h-1 in an ordinary chemostat (case A (G300_D0.05) and E (G300G50_D0.05)), a small portion of 
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the cell population seemed to be strongly affected by freeze-thaw stress and the influence 

became stronger with higher glucose concentration in the feed. For the same conditions in a 

two-compartment chemostat highly effected cells were only found for case E (G50_D0.05 LR) 

in compartment V1, whereas no subpopulations were found for case A (G300_D0.05_LR), but 

the same general trend for the feed concentration was seen.  

Influence of compartmentalization on ethanol/glucose consumption  

To further investigate physiological differences between the two compartments of the scale-

down setup and differences compared to a one-compartment chemostat, an ethanol reporter 

strain (Johanson, unpublished) was cultivated in the system with a dilution rate of D = 0.2 h-1, 

50 g/L glucose feed concentration and low recirculation between the two compartments 

(experiment G50_D0.2_LR case F). This condition was chosen because it revealed clear 

differences in ethanol and glucose level between the two compartments. Additionally, the 

ethanol concentrations in the two-compartment setup were much lower than seen for an 

ordinary, one-compartment chemostat (figure 8). The strain expresses a blue fluorescent 

protein (BFP), whose expression is controlled by the PCK1 (phosphoenolpyruvate 

carboxykinase 1) promoter. The promoter regulates the expression of a key enzyme of 

gluconeogenesis, is repressed when glucose is present and active during growth on ethanol. 

Consequently, the BFP fluorescence can be correlated to growth on ethanol. 

 

Cells cultivated in an ordinary, one-compartment chemostat having the same dilution rate and 

glucose feed concentration expressed very low levels of fluorescence (mean BFP 65.88±+/- 

6.04, figure 8), and hence no growth on ethanol took place in this setup. In comparison, the 

mean BFP fluorescence in the two-compartment cultivation was about 64 % higher, and 

additionally, a higher degree of heterogeneity (coefficient of variance (CV) of the 
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distributions: V1: 0.65 respectively V2: 0.50 vs. one-compartment: 0.35), characterized by a 

broader and less aligned distribution, was generally seen. However, almost no difference in 

the BFP fluorescence level of the ethanol reporter could be recognized for the two 

compartments (mean fluorescence: V1: 191.25±10.12  respectively V2: 170.84±+/. 26.88) 

over three residence times (figure 8). Only small shape differences in the main part of the 

fluorescence distribution were found, which influenced the mean fluorescence. The 

fluorescence during the two-compartment cultivation was around half of the value observed 

for ethanol growth in batch cultivations. These findings, in addition to the differences in 

ethanol and biomass concentrations, both between the compartments and compared to the 

one-compartment setup, indicate that cells in the two-compartment system utilize ethanol as 

glucose repression is released, particularly in V2, were no feeding was applied. However, in 

comparison to the recirculation rate, the degradation of BFP fluorescence as well as possibly 

also the release of glucose repression are too slow, and as a consequence a switch from PCK1 

repression to expression cannot be directly captured by the fluorescence from the reporter 

strain, rather an average value representing the time cells spend under glucose excess versus 

glucose starvation conditions is registered. It could be interesting to perform two-

compartment cultivations with even slower recirculation flow rate, to verify whether 

differences in BFP expression between compartments can be detected. Nonetheless it was 

demonstrated that the two-compartment setup is beneficial to investigate characteristics in 

cellular responses related to concentration differences between the feeding zone and the 

remaining reactor volume and the flows between compartments, which cannot be captured 

using a conventional chemostat. Consequently, by applying the here developed scale-down 

system the expression differences cells exhibit in different parts of a large-, industrial-scale 

reactor can be simulated experimentally9.          
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Conclusion and general applicability of approach for future experiments 

The here presented approach of modeling in combination with the performance of 

experimental work showed consistency or at least the same trend in most cases but also 

limitations, especially under extreme growth conditions (high gravity glucose cultivations). In 

general, though, the approach is still useful for process optimization by applying modeling to 

get an overview of conditions that might be interesting to perform in lab-scale experiments 

exhibiting special traits like e.g. oscillations found during our simulations. Such an approach 

can reduce the amount of experiments to be performed because conditions revealing standard 

characteristics in the model might not need to be performed in the lab. One thing that remains 

to be done in the future, on the basis of the available data, is to refine the model further such 

that the predictive ability of the model for the two-compartment set-up is improved, also for 

high gravity cultivation conditions. 

The experimental setup can be used for studies of production processes in the development 

phase for e.g. recombinant proteins, to investigate how production is influenced by 

compartmentalization at different conditions. Furthermore, by applying reporter strains the 

single cell response e.g. in stress genes, growth or ethanol growth in the different 

compartments can be studied. For this purpose it could also be interesting to include more 

sampling points or study more different recirculation times and dilution rates to test the 

operating limits of the setup. In comparison to pulse experiments in conventional chemostats, 

a setup like the one presented here has the advantage that the flows between the two 

compartments are known, which makes it possible to assess phenomena like the ones seen for 

the ethanol reporter strain. Furthermore, in this setup the repeated exposure of cells to a 

changing environment is taken into account whereas in perturbation studies this is only 

achieved by pulsed feed experiments, which are rarely reported up to now in physiological 

investigations of single cells37. Compared to a setup with a STR connected to a PFR, the here 



 
 

This article is protected by copyright. All rights reserved 

presented setup provides a steady state environment which is simplifying the overall picture 

in the reactor and is not found in a PFR as conditions are changing with further proceeding in 

the reactor away from the feeding point. Furthermore, the second STR also provides a 

distribution of cell properties, which might be closer to the real scenario in a large production 

tank as cells rarely experience a strict gradient. Though using a PFR instead of the second 

STR allows sampling in a more controlled environment to see changes over time, which 

helps to investigate isolated phenomena, rather than an interplay of multiple happenings in a 

bioreactor. The Recirculation in these systems can also be set to give shorter mixing times.  
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Table 1 – Overview of factorial design plan: Factorial design with varying glucose feed 

concentration (50 g/L, 125 g/L and 300 g/L), dilution rate (D = 0.05 h-1, 0.125 h-1 and 0.2 h-1) 

and recirculation flow rate between the two reactors (0.1 L/h, 1.45 L/h and 3 L/h). The 

asterisk respectively double asterisk marks the experiments that have been performed with 

the growth reporter strain respectively with both strains.  

Run GFeed 

[g/L] 

D  

[h-1] 

Recirculation 

flow F2 [L/h] 

A* 300 0.05 0.1 

B 300 0.2 0.1 

C 300 0.05 3.0 

D 300 0.2 3.0 

E* 50 0.05 0.1 

F** 50 0.2 0.1 

G 50 0.05 3.0 

H* 50 0.2 3.0 

I* 125 0.125 1.45 
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Figure 2 – Variation of glucose, ethanol, glycerol, acetate, pyruvate, biomass and CO2 

for the two-compartment experiments: using the growth reporter strain FE440. Results are 

shown for the experimentally performed cases (from top to bottom, cases A, E, H, F, I). Blue: 

glucose; Black: ethanol; Red: biomass; Green: acetate; Yellow: CO2; Pink: pyruvate; Cyan: 

glycerol 
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Figure 4 – Biomass, ethanol and CO2 yields as well as biomass productivity for 

experiments on glucose: for the one-compartment (blue bars) and the two-compartment (red 

bars) experiments in steady state. 

 

 

 

Figure 5 – Variation of the experimental cell size distribution in the two compartments 

in steady state: using the growth reporter strain FE440. Results are shown for the 

experimentally performed cases (A, E, H, F, I).  
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Figure 6 – Variation of the cell size distribution in the two-compartment model: Results 

are shown for the experimentally performed cases (A, E, H, F, I).  
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Table 2 – Parameters calculated for cell size in two- and one-compartment chemostats 

found in experiments and predicted by the model: mean fluorescence and coefficient of 

variance (CV) calculated for cell size. Values for the two compartments are presented for 

each compartment separately (V1 and V2) and experimental values, including standard 

deviation, are given as an average for data collected during three subsequent residence times 

in steady state.  

 

Parameter A E F H I 

Model predictions 

Mean  V1 479.03   300.40   535.76   372 373.62 
V2 324.10   213.34   439.29  347 334.61 

CV V1 1.06     1.11     1.03     1.09 1.09 
V2 1.08     1.10     1.03    1.09 1.09 

Experimental results 

Mean V1 342.12±5.1 230.02±34.51 330.12±0.71 333.79±41.62 343.47±3.6 

V2 345.79±4.6 233.56±4.15 307.13±3.6 306.53±14.48 348.37±41.11 

CV V1 0.66 0.46 0.58 0.80 0.58 

V2 0.66 0.43 0.55 0.77 0.62 
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Table 3 – Parameters calculated for objective description of membrane robustness in 

two- and one-compartment experiments: mean fluorescence and coefficient of variance 

(CV) calculated for GFP fluorescence in the two-compartment setup and the one-

compartment setup. Values for the two compartments are presented for each compartment 

separately (V1 and V2) and all values are given including standard deviation as an average for 

three subsequent residence times in steady state.   

Parameter A E F I 

Mean 

GFP 

V1 

V2 

268.83± 9.89 

259.57±12.03 

222.39± 20.58 

280.71± 20.74 

308.23±10.34 

295.43± 9.07 

310.34±10.01 

298.91±7.49 

Chemostat 342.91± 0.26 288.95 +/-35.57 361.32±27.98 396.64± 3.84 

CV V1 

V2 

0.41 

0.46 

0.52 

0.56 

0.24 

0.23 

0.24 

0.26 

Chemostat 0.33 0.42 0.31 0.21 
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Figure 8 – BFP fluorescence/ ethanol respectively glucose consumption in steady state: 

using the ethanol reporter strain Sc-PCK1-B grown at D = 0.2 h-1 with 50 g/L feed 

concentration and low recirculation (case F). Plots are shown as a comparison between the 

different compartments (V1 and V2) of the two-compartment setup and the one-compartment 

setup for three subsequent residence times in steady state in a histogram plot (A). 

Furthermore, as a positive control a distribution of the batch phase during ethanol growth is 

included (black).In addition ethanol concentration values are shown for the samples shown as 

distribution (B). 
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Figure 9 – Variation of glucose, ethanol, glycerol, acetate, pyruvate, biomass and CO2 

for one-compartment experiments: using the growth reporter strain FE440. Results are 

shown for the experimentally performed cases (A, E, H, F, I). Blue: glucose; Black: ethanol; 

Red: biomass; Green: acetate; Yellow: CO2; Pink: pyruvate; Cyan: glycerol 
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Figure 10 – Variation of the experimental cell size distribution in steady state for one-

compartment experiments: using the growth reporter strain FE440. Results are shown for 

the experimentally performed cases (A, E, H, F, I).  
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Figure 12 – Variation of glucose, ethanol, glycerol, acetate, pyruvate, biomass and CO2 

for one-compartment model: results are shown for the experimentally performed cases (A, 

E, H, F, I). Blue: glucose; Black: ethanol; Red: biomass; Green: dissolved oxygen; Yellow: 

budding index. 
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Figure 13 – Variation of cell size distribution for one-compartment model: results are 

shown for the modeled cases (A, E, H, F, I) 


