

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

The Guided System Development Framework: Modeling and Verifying Communication
Systems

Carvalho Quaresma, Jose Nuno; Probst, Christian W.; Nielson, Flemming

Published in:
Leveraging Applications of Formal Methods, Verification and Validation - Specialized Techniques and
Applications

Link to article, DOI:
10.1007/978-3-662-45231-8_42

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Carvalho Quaresma, J. N., Probst, C. W., & Nielson, F. (2014). The Guided System Development Framework:
Modeling and Verifying Communication Systems. In T. Margaria, & B. Steffen (Eds.), Leveraging Applications of
Formal Methods, Verification and Validation - Specialized Techniques and Applications: 6th International
Symposium, ISoLA 2014, Proceedings, Part II (pp. 509-523). Springer. (Lecture Notes in Computer Science,
Vol. 8803). DOI: 10.1007/978-3-662-45231-8_42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/24848325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-662-45231-8_42
http://orbit.dtu.dk/en/publications/the-guided-system-development-framework-modeling-and-verifying-communication-systems(558033b8-7141-40d1-a8c7-dac2a53499a3).html

The Guided System Development Framework:
Modeling and Verifying Communication Systems

Jose Quaresma, Christian W. Probst, Flemming Nielson

Technical University of Denmark
{jncq,cwpr,fnie}@dtu.dk

Abstract. In a world that increasingly relies on the Internet to func-
tion, application developers rely on the implementations of protocols to
guarantee the security of data transferred. Whether a chosen protocol
gives the required guarantees, and whether the implementation does the
same, is usually unclear. The Guided System Development framework
contributes to more secure communication systems by aiding the devel-
opment of such systems. The framework features a simple modelling lan-
guage, step-wise refinement from models to implementation, interfaces
to security verification tools, and code generation from the verified speci-
fication. The refinement process carries thus security properties from the
model to the implementation. Our approach also supports verification of
systems previously developed and deployed. Internally, the reasoning in
our framework is based on the Beliefs and Knowledge tool, a verification
tool based on belief logics and explicit attacker knowledge.

1 Introduction

Developing secure communication systems is difficult. Application developers
rely on the implementations of protocols to guarantee the security of data trans-
ferred. Whether a chosen protocol gives the required guarantees, and whether
the implementation does the same, is usually unclear.

Verifying secure communication systems is difficult, too, though for different
reasons. While a plethora of formal approaches and tools for protocol verification
exist, they are often not accessible to developers, and only connect the guarantees
to the implementation of the protocol.

The Guided System Development (GSD) framework aims at making devel-
opment and verification of secure communication systems easier by bridging the
gap between system development and verification of communication protocols.
The knowledge and skills required to successfully use a security verification tool
are significant. With the GSD framework [1, 2] it is possible to use such tools
and have access to their results without the need for that specific knowledge.

The main achievement of the GSD framework is to make building secure
communication systems the only option. This is reached through a number of
components: a simple and intuitive modelling language, step-wise refinement of
guarantees from the model to its implementation, built-in interfaces to estab-
lished security verification tools, and finally code generation.

2 The GSD Framework

The rest of the paper is structured as follows: after an introduction of a
running example we use throughout the paper, Sec. 2 discusses related work.
In Sec. 3 we present an overview of the framework. We then introduce the Ab-
stract Global level in Sec. 4 and the Concrete level in Sec. 5. In Sec. 6, we
present the interface to verification tools and code output. We evaluate the tool
in Sec. 7 by presenting its usage on the modelling and verification of the Au-
tomatic Dependent Surveillance-Broadcast (ADS-B) system, a new air traffic
management surveillance system that is replacing the radar as the main means
for traffic management in the near future. Finally, Sec. 8 concludes the paper
and discusses future work.

1.1 The Message Board

To illustrate the use of GSD, we use the communication behind a message board
as an example. This message board allows a user to share a message either
anonymously and/or confidentially. The combination of these properties gives
rise to four different kinds of messages:

1. The message sent can be seen by everybody without any guarantees regard-
ing the identity of the sender,

2. The message sent can be seen by everybody and it has guarantees regarding
the identity of the sender,

3. The message sent can only be seen by a particular user without guarantees
regarding the identity of the sender, or

4. The message sent can only be seen by a particular user and it has guarantees
regarding the identity of the sender

For space reasons, we only model sending a message in an authenticated
way, i.e., that other users have guarantees regarding the message’s author.

2 Related Work

CaPiTo [3] connects the abstract specification of Service-Oriented Systems with
the standard protocol suites used in industry in an independent way, i.e., the
description of the system in terms of messages exchanged is separated from the
description of which standard suites are going to be used. This separation of con-
cerns when modelling a Service-Oriented System greatly inspired our framework.
Furthermore, CaPiTo also allows the verification of the modeled protocols and
the code generation of parts of the system. This is accomplished by providing
a specification language, means to verify the security of the specified protocol,
and the translation from the protocol specification language into an executable
language. Compared with CaPiTo, our modelling language is simpler and more
intuitive, it has views of different levels of the system, and connects to more
verification tools, including a GSD-specific tool introduced in Sec. 6.1.

The Guided System Development Framework 3

AVANTSSAR aims at validating trust and security of Service-Oriented Ar-
chitectures. Compared with the GSD framework, the AVANTSSAR project1

requires a higher level of expertise to start using it and does not provide auto-
matic code generation, functionality that we believe is important when providing
tools to help system designers and programmers.

A similar tool to the GSD framework is the Automatic Generation, Verifica-
tion and Implementation of Security Protocols (AGVI) toolkit [4], that allows
the system designer to describe the security requirements and the system spec-
ification. In AGVI a protocol generator creates candidate protocols that satisfy
the given system requirements. After that, the protocols are analysed [5] and the
ones that do not satisfy the desired security properties are discarded. Finally,
a code generator translates the formal protocol specification into Java code. In
comparison to AGVI, the GSD modelling language focusses on properties of
communication. Furthermore, the GSD frameworks can by design be extended
new formal verification tools, new output languages, new abstract ways of rep-
resenting message security properties in the modelling language (extending the
security modules presented in Sec. 4.2), and also new ways of implementing the
different security modules.

There also exist more targeted work on modeling and implementation of
secure communication systems. When compared to the GSD framework, these
tools usually feature more concrete and complex modelling languages and target
a specific verification tool. FS2PV [6] derives a formal model from a protocol code
written in F (a first-order subset of F#) and symbolic libraries. The translation
is made to π-calculus, which can then be verified by ProVerif [7]. Swamy et
al. [8] developed a dependently typed language (F*) aimed at secure distributed
programming. Programs written in F* are translated to .NET bytecode. Other
more recent work [9] enables the verification of a protocol with CryptoVerif [10]
and then translates that specification into OCaml.

3 Framework Overview

The overall structure of the GSD framework is shown in Fig. 1. The framework
is composed by three levels that represent different levels of abstraction. System
developers specify the desired system at the Abstract Global level, using security
modules (Sec. 4.2), to specify the required security assurances for the data being
exchanged in the modeled system.

By unfolding the security modules using plugins, the Abstract Global level
is transformed into a model of the system in the Concrete Global level. Plugins
connect the abstract modules of the Abstract Global level with their imple-
mentations. For instance, if there is a security module in the Abstract Global
specification that requires some data to be sent in a confidential way, this trans-
lation would replace it with an implementation of, for example, the Transport
Layer Security (TLS) cryptographic protocol. The use of plugins, which is simi-
lar to the work by Gao et al. [3], separates the desired security assurances of the

1 http://www.avantssar.eu, last accessed May 2014.

4 The GSD Framework

endpoint projection

unfolding security models

verification tools

code generators

Abstract Global

Concrete Global

Concrete Endpoint

Fig. 1. Overview of the Guided System Development framework.

exchanged data and the way to provide those assurances. In Sec. 5.1, we discuss
the use of plugins and the flexibility that they provide.

A specification at the Concrete Global level is made more concrete using
endpoint projection, resulting in the Concrete Endpoint level. This step separates
the specifications for each individual, and is closer to the final implementation
and to some of the verification tools (Sec. 5.2).

Contracts, another component of GSD, represent the desired outcomes of
the different security modules in the Abstract Global level; they describe the
modules’ semantics. For example, part of the contract for the confidentiality
module expresses that only the intended recipient of a message sent confidentially
is able to read the message. Contracts enable some preliminary reasoning in
the Abstract Global level, and the verification of the implementations of each
security module by comparing the desired outcomes with the outcomes achieved
by the different implementations.

3.1 Framework Inputs and Outputs

The modeling language used in GSD is strongly influenced by Alice and Bob
notation, a simple and intuitive way of modelling communication system. The
example in Fig. 2 uses this notation to model a message msg being sent by a
principal called User to another principal called Board. The complete language
syntax for the input language (in the Abstract Global level) is presented in Fig. 3.

When building a system with secure communications using GSD, the input
for the framework is the specification of the system in the Abstract Global level,
which includes security assurances for the exchanged messages. The language
at this level is simple and intuitive and when using it, the step-wise refinement
will lead to an implementation that provides the specified security assurances.

User → Board : msg

Fig. 2. Example of sending a message from User to Board in Alice and Bob notation.

The Guided System Development Framework 5

system ::= stm; | system stm;

stm ::= principal→ principal : msgs

principal ::= string

msgs ::= msg | msgs, msg

msg ::= el | secModule

el ::= string

secModule ::= secAssurance(args)

secAssurance ::= Auth | freshAuth | Conf | Sec | freshSec
args ::= string | args, string

Fig. 3. Syntax of the language in the Abstract Global level.

It is, however, also possible to use the framework by writing the specification
in one of the other two abstraction levels presented before. If so, one would not
take full benefit of GSD, but would still benefit from some of the connections
to the verification tools and code outputs. We believe that this option is useful
for more experienced system developers or for already implemented systems, in
which case a specification closer to the implementation might be easier to write.

The outputs of GSD can be divided into two categories: the information from
the supported verification tools and the implementation of the modeled system.
We present these in more detail in Sec. 6.

4 Abstract Global Level

The goal at this level is to provide the developer with a simple and intuitive
language that has the necessary tools to model the communication system that
is being developed. As shown in Fig. 3, and as mentioned in Sec. 3.1, this language
is similar to the Alice and Bob notation but extends that notation with security
modules, which are presented in Sec. 4.2.

The logic used to express (and reason about) security properties is based
on BAN logic [11] and more generally on SVO logic [12], a logic that unifies
several different belief logics, including BAN logic itself. We use BAN and SVO
to reason about the beliefs of the principals involved in the different message
exchanges. Based on the beliefs at the end of a series of message exchanges, we
are able to argue about security properties of the exchanged messages.

4.1 The Logic

BAN and SVO logics focus on the beliefs that legitimate principals are able to
infer from a message exchange, and target authentication. Such logics are not
less suited to directly reason about confidentiality, since confidentiality concerns
what some non-legitimate principal might, or might not, be able to see from a

6 The GSD Framework

P Received el - principal P received an Element el;
P Sees el - principal P sees a specific Element el;
P Believes t - principal P believes in a specific Term t;
P Said el - principal P said, at some point in time, a specific Element el;
P Says el - principal P recently said the Element el;
Conc(el1,el2) - concatenation of two Elements;

Fig. 4. Terms in our logic.

message exchange. There are several approaches to handle confidentiality in this
case. We extend belief logics with explicit reasoning about the knowledge of non-
legitimate principals: the beliefs they are able to infer from the message exchange
and what they are able to see and (most importantly for the confidentiality
reasoning) what they not are able to see about the exchanged messages. The
chosen approach results in a simple model that is easy to reason about.

We consider non-legitimate principals to be Dolev-Yao attackers [13], i.e., they
are not only able to see all the exchanged messages but also capable of initiating
protocol communications with legitimate principals and to forge new messages
based on acquired knowledge.

Our logic is composed by principals and elements (all the artifacts that can
be sent from one principal to another). The different terms in our logic are shown
in Fig. 4. The rules used to reason about this logic are introduced in Sec. 6.1.

User → Board : Auth(User , message)

Fig. 5. Specification of User sending a message to the Board in an authenticated way.

4.2 The Security Modules

The most important elements at the Abstract Global level are the security mod-
ules, which model security assurances for data exchanges:

– None is not actually a security module, but sends data in plaintext.
– Auth sends data such that the receiver can identify the sender.
– Strong Auth adds freshness to the Auth module to prevent replay attacks.
– Conf sends data sent such that only the intended receiver can read it.
– Sec is the conjugation of the Auth and the Conf modules.
– Strong Sec is the conjugation of the Strong Auth and the Conf modules.

Fig. 5 shows how to model the authenticated message sent by User to Board.

4.3 Semantics of the Security Modules

In GSD contracts are attached to the security modules on the Abstract Global
level, describing the results of using the different modules. This can be used to

The Guided System Development Framework 7

define module semantics and to verify different implementations of a module by
checking the specified security properties against the respective implementations.

Before defining the contracts, we briefly discuss the use of integrity in GSD.
Integrity can have different meanings depending on the field it is being used
in, and can even have slightly different definitions in the same field. Here, we
consider integrity to mean that a message is not corrupted over time or in tran-
sit [14]. For message exchange, integrity is guaranteed when the contents of a
message cannot be changed in transit without changes being instantly observable
by the recipient. In the GSD framework we assume integrity in all exchanged
messages, e.g., by sending a signed digest of the message together with the full
message. With integrity, we have the following rule (where P sees m means that
any principal is able to see m):2

X → Y : m

P sees m

We can now present the rules for the different security modules. Please note
that for the sake of space, we only present the more simple Auth and Sec modules.

Authentication. When a principal sees Auth(X,w), he knows that the message
was sent by X, but knows nothing about the freshness of the message:

Z sees Auth(X,w)

Z sees w,Z believes X said w

Confidentiality. A message that is confidential to X can only be read by him:

Z sees Conf(X,w), Z is X

Z sees w

Security. The security module combines authentication and confidentiality:

Z sees Sec(V,X,w), Z is X

Z sees w,Z believes V said w

Applying the rules presented above to the conjugation of the authentication
and the confidentiality modules results in the same beliefs that were presented
above for the security module:

X → Y : Conf(Y,Auth(m))

P sees Conf(Y,Auth(X,m))

Y sees Conf(Y,Auth(X,m)), Y is Y

Y sees Auth(X,m)

Y sees m, Y believes X said m

2 We extend BAN and SVO logics with principal variables P that represent all the
principals that see the messages being exchanged.

8 The GSD Framework

5 The Concrete Levels

There are two concrete levels in GSD: the Concrete Global level (Sec. 5.1) and
the Concrete Endpoint level (Sec. 5.2). The model of the system on these levels
is closer to the languages used by the verification tools and the implementation,
but not as simple and intuitive as the one in the Abstract Global level.

5.1 Concrete Global Level

We obtain the Concrete Global level by unfolding the different modules at the
Abstract Global level. The different plugins for each of the different security
modules and represent implementations of the corresponding security module,
for example, implementations using TLS, WS-Security, or a Public Key Infras-
tructure (PKI). As previously mentioned, it is possible to verify the chosen im-
plementation for a security module by checking that it satisfies the respective
contract.

From this level the GSD framework interfaces with the Beliefs and Knowledge
tool (Sec. 6.1) and the Open-Source Fixed-Point Model-Checker (Sec. 6.3). s.

For our example system we choose to implement the Auth module using a
PKI infrastructure. The result of applying that plugin to the Auth module is
shown in Fig. 6.

5.2 Concrete Endpoint Level

In order to translate from the Concrete Global level to the Concrete Endpoint
level, we apply an endpoint projection [15]. This technique extracts the views of
the different principals present in a specification of the global view of the system.
The resulting model at this level has the views of the different principals that
participate in the communication system.

This translation is performed by going through the model with a global view
of the system and, for each of the actions in the model, generating the corre-
spondent actions that are performed by the different principals. For example,a
message being sent from A to B in the global view, is projected to the indepen-
dent specification of the correspondent actions of A and B, i.e., A would send the
message and B would receive it.

The model of our message board example at this level is shown in Fig. 7.

6 Verification Tools and Code

In this section we present the formal methods tools that GSD currently interfaces
with. The Beliefs and Knowledge tool (Sec. 6.1) was developed as part of the

User → Board : User , Encryption (message , PrivKey (User)) ;

Fig. 6. An authenticated message of the example system in the Concrete Global level.

The Guided System Development Framework 9

1 User :
2 send (Board , (User , Encryption (message , PrivKey (User))))
3 Board :
4 r e c e i v e (User , (User , Encryption (message , PrivKey (User))))

Fig. 7. An authenticated message of the example system in the Concrete Endpoint
level.

– A −→ B : m =⇒ P Received m - When a message is sent between two principals,
every principal with access to the Ether will receive that message.

– A Received el =⇒ A Sees el - If a principal receives an Element, he is able to
see it (note that the principal might be able to see the Element, but not what is
inside it).

– A Sees Enc(el,privKey(P)) ∧ A Sees pubKey(P) =⇒ A Sees el ∧
A Believes P Said el - If principal A sees a message encrypted with another
principal’s private key and if A has access to the correspondent public key then A
can see the encrypted element and also knows who sent it.

Fig. 8. Examples of the systems predefined rules.

GSD framework. The GSD framework outputs the system model to code by
replacing the different elements of the Concrete Endpoint specification with pre-
determined Java blocks implementing those elements.

6.1 The Beliefs and Knowledge Tool

The Beliefs and Knowledge tool (BAK) verifies the security of communication
protocols by reasoning about the beliefs and the knowledge that the different
principals involved in a communication system acquire throughout message ex-
change. The tool uses the Z3 SMT Solver [16] and adds an extra layer that
facilitates the modeling of message exchanges and the reasoning about those
messages.

Predefined system rules. The extra layer defined in the BAK tool is com-
posed of predefined system and inference rules specifying how principals con-
struct and read the exchanged messages, how they acquire the different beliefs,
etc. Some examples of these rules are shown in Fig. 8. A and B represent spe-
cific principals, P represents any principal, m represents a message in plain-
text, Enc(el, k) represents the encryption of the element el with the key k, and
pubKey(x) and privKey(x) represent the public and private keys of principal x.

The third rule of Fig. 8 specifies which beliefs a principal can infer from a
message encrypted with a private key: if the principal knows the correspondent
public key, then he is able to decrypt it, see the element that had been encrypted,
and have assurances on which principal encrypted the element. In Fig. 9, that
rule is presented in SMT-LIB2.

There are two inputs for the BAK tool: a model (M) of the system we want
to analyse and the goals we want to verify. Given these, the tool tests each goal

10 The GSD Framework

1 (a s s e r t (! (f o r a l l ((x Pr i n c i pa l) (w Pr i n c i pa l) (e l Element))
2 (! (=> (and (Sees x (EncModule e l (PrivKey w)))
3 (Sees x (PubKey w)))
4 (and (Sees x e l)
5 (Be l i e v e s x (Said w e l)))
6)
7 : pattern ((Sees x (EncModule e l (PrivKey w))))
8)
9)

10 : named privKeyDecryption)
11)

Fig. 9. One of the system rules regarding decryption.

(MsgSent User Board (Conc User (EncModule message (PrivKey User))))

Fig. 10. An authenticated message of the example system modeled in SMT-LIB2.

(goal) against the modeled system. One implication of the way SMT works and
the way we are modelling the system rules and the system itself is that we need
to test the goals in the negated form. Both in the set of predefined system and
inference rules (R) and in the system model (M) we only assert positive facts.
When testing a goal in the positive form, the SMT solver will always find a model
where the goal would be satisfiable since there will never be a negative rule to
contradict the goal in the positive form. On the other hand, when testing a goal in
the negative form it might contradict one of the assertions that are derived from
R ∧M , which can be interpreted as all the knowledge, i.e., assertions, that can
be derived from the system model. In that case the result will be unsatisfiable.
If the negated goal does not contradict any of the assertions that are derived
from R ∧M , then the result will be satisfiable.

Therefore, we use R ∧ M ∧ (¬goal) to verify the system. If the system is
satisfiable, then there is a representation of R ∧M where ¬goal holds, which
tells us that goal is not an assertion derived by R ∧ M . Due to the way we
model the system and the system rules, this means that goal does not hold in
the system. On the other hand, if the system is unsatisfiable, then there is no
interpretation of R ∧M where (¬goal) holds. That can only happen if goal is
derived from R ∧M , which means that goal holds in the system. So, if any of
the original goals we want to test is in the positive form we negate it before
performing the test and interpret the result given by the tool according to that.

Fig. 10 shows the model of the authenticated message in SMT-LIB2, a stan-
dard format accepted as input by several SMT solvers, including Z3.

Tool Outputs. When analyzing R∧M ∧ (¬goal), the BAK tool does not only
return satisfiability but also provides extra information that helps understanding
and analysing the obtained results. If the system and the goal being analysed
are satisfiable, then the tool also returns the representation that satisfies the
assertions. On the other hand, if system and goal are unsatisfiable, the tool re-
turns the unsatisfiability core, i.e., a small set of assertions that make the system
unsatisfiable. This set is not guaranteed to be minimal, but it provides useful

The Guided System Development Framework 11

unsat (privKeyDecryption)

Fig. 11. Output of the BAK tool for the example system.

1 <User , Board , User , { | message | } : K User−>. 0
2 |
3 (Board , User ; board1 , board2) . decrypt board2 as { | ; message | } : K User+ in 0

Fig. 12. The automatically generated LySa code of the authenticated message in the
example system.

information regarding the system and the analysis result. Extracting informa-
tion from a satisfiable model is not as simple as extracting information from the
unsatisfiability core since the model tends to be complex and not easily readable.

For the example system the implementation of our authentication message
should give guarantees regarding the authenticity of the message. It is possible to
test this by verifying that Board knows that the message was sent by User, which
is specified as Board believes (User said message) in belief logic. The result
of applying the BAK tool to this goal in the negative form is shown in Fig. 11.

The first line tells us that the system model together with that negated goal
is unsatisfiable, which mean that the goal we wanted to verify holds. The second
line of the output is the unsatisfiability core returned by Z3. It is the name of the
rule shown in Fig. 9 and it tells us that the Board obtained the belief specified
in the goal by decrypting the message.

6.2 LySatool

The LySatool [17] performs security analyses of protocols described in LySa [18].
The tool performs a static analysis of the LySa specification of the protocol in
the presence of a Dolev-Yao attacker [13]. The LySatool is implemented in the
Standard ML (SML) functional programming language and it starts by encoding
the analysis into a proper constraint language and then uses Succinct Solver [19]
to compute the least solution to those constraints.

The LySa code that is generated by our framework is shown in Fig. 12.

6.3 The Open-Source Fixed-Point Model-Checker

The Open-Source Fixed-Point Model-Checker (OFMC) [20] is a symbolic se-
curity protocol analyser that detects attacks on the protocol and performs a
bounded session verification by exploring the transition system of the protocol
representation. Its primary input language is the Intermediate Format (IF) [21]
specification, which describes a security protocol as an infinite-state transition
system using set rewriting. The tool also accepts AnB [22] as input, a language
similar to Alice and Bob notation, which is then automatically translated to
IF, defining a formal semantics for AnB in terms of IF. OFMC uses several
techniques that significantly reduce the search space of a protocol without in-
troducing, or excluding, any attacks. Two of the major used techniques are lazy

12 The GSD Framework

User → Board : User ,{message} inv (pk (User)) ;

Fig. 13. The automatically generated AnB code of the authenticated message in the
example system.

intruder and constraint differentiation. The first is a symbolic representation of
the intruder while the latter is a general search-reduction technique. In Fig. 13,
one can see the part of AnB code that corresponds to our authenticated message.

7 Evaluating GSD on ADS-B

In a recent evaluation, GSD was used to model and verify the Automatic Depen-
dent Surveillance-Broadcast (ADS-B) 3 system [23], an air traffic management
surveillance system that is being deployed with the intent of replacing the radar
as the main system for airspace traffic management. This section first introduces
the current implementation of ADS-B and then presents the way GSD was used
to verify ADS-B.

Fig. 14. Overview of the ADS-B system.

7.1 The ADS-B System

ADS-B is a large wireless network, composed by ground stations and aircrafts
that communicate with each other: the aircrafts report flight information (such
as their position, velocity, and intent) and receive traffic and other information
from the ground stations, as shown in Fig. 14. The main benefit of ADS-B is the
provided higher accuracy regarding the aircraft position, which is crucial in an
airspace where the aircraft density is increasingly higher.

The legitimate agents taking part in the ADS-B communication system are
the aircraft and the ground-stations. ADS-B has two components that allow

3 ADS-B General Information, http://www.faa.gov/nextgen/implementation/

portfolio/trans_support_progs/adsb/general/, last accessed May 2014.

The Guided System Development Framework 13

system goals

Concrete Global

BAK

(negated)
goal holds? unsat coresat model

unsat core
input

out out

Fig. 15. The GSD framework applied to ADS-B.

these agents to communicate: ADS-B Out and ADS-B In. ADS-B Out con-
sists of the messages that are broadcasted by the aircraft and ADS-B In con-
cerns the capability of receiving the ADS-B Out messages. A message contains
the aircraft’s position and speed (both acquired through a positioning system,
presently GPS) and potentially other information, such as intent. These broad-
casted messages are received by the ground-stations and, in case ADS-B In is
being used, the former will also be received by the aircraft that are within range
of the broadcaster aircraft. As explained above, an aircraft is only capable of
receiving air-to-air ADS-B messages broadcasted from other aircraft if it has
equipment that provides ADS-B In capabilities. Another part of ADS-B In is
the information broadcasted by the ground-stations. This will consist of traffic
and weather information. During the transitional phase, the traffic information
will have a mixture of ADS-B and Radar information, enabling the ADS-B In
equipped aircraft to have a full view of the airspace surrounding it.

7.2 Applying GSD to ADS-B

The GSD framework was used to model and analyse the current implementation
of ADS-B and its potential extensions as shown in Fig. 15. The most abstract
level of the framework (Abstract Global) was not used, since that level is targeted
for developing secure systems from scratch and not for modelling and analysing
systems previously developed. Furthermore, the Concrete Endpoint level was
not used either, since there was no interest in code, and the translation to the
used tool to analyse our model is made from the Concrete Global level.

The ADS-B system model was used as input to the Concrete Global level,
which was automatically translated into a language that can be used by the BAK
tool (presented in Sec. 6.1) to verify the system and its properties (or goals),
which are the other input to the framework.

GSD enabled the formal verification of the built-in security of the ADS-B
communication system and reported that the system provides no authentication
or confidentiality. GSD also enabled the security verification of the extensions
suggested by Valovage et al. [24, 25] and, in this case, it reported that authenti-
cation and confidentiality were provided in their respective extensions.

14 The GSD Framework

8 Conclusion

The Guided System Development framework aims at helping developers building
secure communication systems. It does so by enabling the modelling of systems
in a simple and intuitive language, its verification by connecting that model to
different formal verification tools, and translating it to code. In this paper we
presented the capabilities of the GSD Framework by discussing the process of
modelling, verifying, and implementing an authenticated broadcasted message.
We also introduced the Beliefs and Knowledge tool, which extends belief logics
with explicit attacker knowledge and uses the Z3 SMT Solver to enable the
verification of security properties of communication systems. Furthermore, we
presented an evaluation of a new airspace navigation system and its proposed
extensions using GSD to model and verify the system’s communications.

We believe that this framework represents a big step towards closing the
gap between systems development and verification, but more work is necessary:
We aim at extracting more information from the satisfiability model return by
the BAK tool in order to provide more complete feedback to the developer,
finalising the interfaces with LySatool and OFMC, and optimising the overall
tool integration so that it is easier to use for the system developers. We also
work on interfacing to and integrating the results from more analysis tools.

8.1 Acknowledgements

We would like to thank Roberto Vigo, Sebastian Mödersheim (both from the
Technical University of Denmark), and Kristin Y. Rozier (from NASA Ames
Research Center) for many fruitful discussions.

References

1. Quaresma, J., Probst, C.W., Nielson, F.: The Guided System Development Frame-
work. In Pettersson, P., Seceleanu, C., eds.: Proceedings of the 23rd Nordic Work-
shop Programming Theory, Väster̊as, Sweden (October 2011) 69–72

2. Quaresma, J.: On Building Secure Communication Systems. PhD thesis, Technical
University of Denmark (2013)

3. Gao, H., Nielson, F., Nielson, H.: Protocol Stacks for Services. In: Foundations of
computer security. (2009)

4. Song, D., Perrig, A., Phan, D.: Agvi—automatic generation, verification, and
implementation of security protocols. In: Computer Aided Verification, Springer
(2001) 241–245

5. Song, D.X., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic
security protocol analysis. Journal of Computer Security 9(1) (2001) 47–74

6. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. ACM Transactions on Programming Languages
and Systems (TOPLAS) 31(1) (2008) 5

7. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001. (2001)
82–96

The Guided System Development Framework 15

8. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: Proceeding of the 16th
ACM SIGPLAN international conference on Functional programming. ICFP ’11,
New York, NY, USA, ACM (2011) 266–278

9. Cade, D., Blanchet, B.: From computationally-proved protocol specifications to
implementations. In: International Conference on Availability, Reliability and Se-
curity (ARES), 2012, IEEE, 65–74

10. Blanchet, B.: A computationally sound mechanized prover for security protocols.
Dependable and Secure Computing, IEEE Transactions on 5(4) (2008) 193–207

11. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8 (February 1990) 18–36

12. Syverson, P.: A unified cryptographic protocol logic. Technical report, DTIC
Document (1996)

13. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29(2) (1983) 198–208

14. Cullen, C.T., Hirtle, P.B., Levy, D., Lynch, C.A., Rothenberg, J., President,
C.T.C.I.: Authenticity in a digital environment (2000)

15. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred pro-
gramming for web services. In: Programming Languages and Systems. Springer
(2007) 2–17

16. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In Ramakrishnan, C.,
Rehof, J., eds.: Tools and Algorithms for the Construction and Analysis of Systems.
Volume 4963 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2008) 337–340

17. Buchholtz, M.: User’s Guide for the LySatool version 2.01. DTU. (April 2005)
18. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.: Static validation of

security protocols. Journal of Computer Security 13(3) (2005) 347–390
19. Nielson, F., Nielson, H., Sun, H., Buchholtz, M., Hansen, R., Pilegaard, H., Seidl,

H.: The succinct solver suite. Tools and Algorithms for the Construction and
Analysis of Systems. 10th International Conference, TACAS 2004. Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2004. Proceedings (Lecture Notes in Computer Science Vol.2988) (2004) 251–265

20. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Foundations of Security Analysis and De-
sign V. Volume 5705 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg (2009) 166–194

21. AVISPA: Deliverable 2.3: The intermediate format. http://www.avispa-project.
org (2003)

22. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation. In: International
Conference on Availability, Reliability and Security (ARES), 2009, IEEE, 433–440

23. RTCA: DO-242A: Minimum Aviation System Performance Standards for Auto-
matic Dependent Surveillance Broadcast (ADS-B). Technical report, RTCA (2002)

24. Valovage, E.: Enhanced ADS-B Research. In: 25th Digital Avionics Systems Con-
ference, 2006 IEEE/AIAA. (oct. 2006) 1 –7

25. Viggiano, M., Valovage, E., et al.: Secure ADS-B Authentication System And
Method (October 12 2007) WO Patent 2,007,115,246.

