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Abstract. Dissolved organic matter (DOM) in the ocean
consists of a heterogeneous mixture of molecules, most of
which are of unknown origin. Neutral sugars and amino
acids are among the few recognizable biomolecules in DOM,
and the molecular composition of these biomolecules is
shaped primarily by biological production and degradation
processes. This study provides insight into the bioavailabil-
ity of biomolecules as well as the chemical composition of
DOM produced by bacteria. The molecular compositions of
combined neutral sugars and amino acids were investigated
in DOM produced by bacteria and in DOM remaining after
32 days of bacterial degradation. Results from bioassay in-
cubations with natural seawater (sampled from water masses
originating from the surface waters of the Arctic Ocean and
the North Atlantic Ocean) and artificial seawater indicate that
the molecular compositions following bacterial degradation
are not strongly influenced by the initial substrate or bacte-
rial community. The molecular composition of neutral sugars
released by bacteria was characterized by a high glucose con-
tent (47 mol %) and heterogeneous contributions from other
neutral sugars (3–14 mol %). DOM remaining after bacte-
rial degradation was characterized by a high galactose con-
tent (33 mol %), followed by glucose (22 mol %) and the re-
maining neutral sugars (7–11 mol %). The ratio of D-amino
acids to L-amino acids increased during the experiments as
a response to bacterial degradation, and after 32 days, the
D/L ratios of aspartic acid, glutamic acid, serine and ala-
nine reached around 0.79, 0.32, 0.30 and 0.51 in all treat-
ments, respectively. The striking similarity in neutral sugar
and amino acid compositions between natural (representing
marine semi-labile and refractory DOM) and artificial (rep-

resenting bacterially produced DOM) seawater samples, sug-
gests that microbes transform bioavailable neutral sugars and
amino acids into a common, more persistent form.

1 Introduction

Approximately 700 petagrams (1015 g) of carbon in the
ocean are in the form of dissolved organic matter (DOM) and
consist of a broad range of different chemical compounds
spanning a continuum of sizes and reactivities (Hansell,
2013; Siegenthaler and Sarimento, 1993). Although all or-
ganic matter originates from organisms, only about 6.6 % of
surface DOM and 2 % of deep ocean DOM is identified as
specific biomolecules such as neutral sugars and amino acids
(Benner, 2002). Despite their low concentrations, the rapid
turnover of simple biomolecules suggests that they play an
important role in the cycling of carbon and nitrogen in the
ocean (Rich et al., 1997, 1996; Skoog et al., 1999). However,
several studies have also indicated that some biomolecules
can resist bacterial degradation over year-long timescales
(Kirchman et al., 2001; Ogawa et al., 2001). Heterotrophic
bacteria are well known sources of semi-labile and refrac-
tory DOM (Kaiser and Benner, 2008; McCarthy et al., 1998;
Ogawa et al., 2001), and∼ 23 % of the entire DOC pool is
estimated to derive from bacteria via the microbial carbon
pump (microbial transformation of bioavailable DOM to re-
fractory DOM) (Benner and Herndl, 2011; Jiao et al., 2010).
However, still only little is known about microbial pro-
duction of specific semi-labile and refractory biomolecules.
This is in part due to the low concentration of individual
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biomolecules in seawater and the consequent analytical chal-
lenge involved.

The most common biomolecules in the oceanic DOM pool
are carbohydrates (Benner et al., 1992), with neutral sugars
constituting up to half of the total carbohydrate pool (Bier-
smith and Benner, 1998). Seven different neutral sugars are
commonly detected (fucose, rhamnose, arabinose, galactose,
glucose, mannose and xylose), and the amount of each neu-
tral sugar relative to the total amount of neutral sugars (the
molecular composition, mol %) differs between DOM re-
leased by different groups of organisms (Lazareva and Ro-
mankevich, 2012). The molecular composition can therefore
be used as a tracer of different organisms or processes; e.g.,
freshly released neutral sugars from different algal species
exhibit great variation in mol %, but generally have high con-
tributions of glucose and galactose, each sometimes reaching
values above 50 mol % (Amon and Benner, 2003; Biersmith
and Benner, 1998; Hama and Yanagi, 2001). Surface ocean
DOM is also rich in glucose and galactose, with many studies
reporting∼ 20 mol % for each of the two compounds (Gold-
berg et al., 2009; Kaiser and Benner, 2009; Skoog and Ben-
ner, 1997). With depth, glucose and fucose increase in rela-
tive abundance, accounting for about 20–40 % and 16–19 %
in the deep ocean, respectively (Kaiser and Benner, 2009;
McCarthy et al., 1996). The molecular composition of neu-
tral sugars directly released by heterotrophic bacteria during
growth in the ocean, however, remains unknown. The molec-
ular composition found in the ocean reflects both the neutral
sugars released by different organisms and the neutral sugars
persisting in organic matter after long-term bacterial degra-
dation, and the sources and sinks are difficult to distinguish.
Knowledge of the composition of neutral sugars produced
and transformed by heterotrophic bacteria is key to under-
standing the origin and fate of these specific DOM compo-
nents in the ocean.

D-enantiomers of amino acids are useful as bacterial
biomarkers, since bacteria are the predominant source of D-
amino acids in seawater (Kaiser and Benner, 2008). Four
different pairs of L- and D-amino acids are important in
DOM (aspartic acid, glutamic acid, serine and alanine) and
the amount of D relative to L (the D/L ratio) has been used
as an indicator of amino acid bioavailability (Jørgensen et
al., 1999). Freshly released DOM from phytoplankton has a
low D/L ratio, but the ratio increases during bacterial degra-
dation of DOM (Amon et al., 2001) due to direct release
of D-amino acids by bacteria during growth (Kawasaki and
Benner, 2006); viral lysis of cells and the subsequent re-
lease of cell wall D-amino acids (Middelboe and Jørgensen,
2006); and a presumably higher bioavailability of L-amino
acids (Amon et al., 2001; Hopkins et al., 1994; Pérez et al.,
2003). The presence of grazers such as flagellates can also in-
crease the bacterial uptake of D-amino acids, possibly due to
a higher release from bacterivory and subsequent microbial
uptake (Pérez et al., 2003). The D/L ratio does not follow
a certain pattern with depth in the ocean. Both a decrease,

an increase and no change has been observed with depth in
different studies (Jørgensen et al., 1999; Kaiser and Benner,
2008; McCarthy et al., 1998; Pérez et al., 2003), making it
difficult to distinguish between different sources and sinks
and the balance between these. Knowledge of the D/L ra-
tio in freshly produced DOM and in DOM remaining after
long-term microbial degradation is necessary to understand
the origin and fate of amino acids in the ocean.

In the present study, we investigated the concentration,
composition and bioavailability of neutral sugars and amino
acids in two seawater samples collected between Greenland
and Iceland, representing cold seawater originating from the
Arctic Ocean and warm seawater originating from the At-
lantic Ocean, respectively. During 32-day bioassay incuba-
tions of seawater samples and parallel glucose-enriched arti-
ficial seawater samples, the bacterial production and decom-
position of individual neutral sugars and amino acids were
investigated. The aim was to compare the molecular compo-
sition of biomolecules in DOM produced by bacteria and in
DOM remaining after long-term bacterial degradation, and
to use these molecular signatures of bacterial activity to fur-
ther understand the origin of neutral sugars and amino acids
in the ocean.

2 Methods

2.1 Sampling site and incubation experiments

Seawater for the 32-day incubations was collected from two
different locations in the Denmark Strait: at 10 m depth in the
warm (9.8◦C) northwards traveling North Icelandic Irminger
Current (henceforth referred to as the Atlantic sample) and
at 80 m depth in the cold (−1.6◦C) southwards traveling
East Greenland Current (henceforth referred to as the Arctic
sample, Fig. 1). The Arctic Ocean receives a large amount
of freshwater, supplying 25–36 Tg (1012 g) in terrigenous
dissolved organic carbon (DOC) per year (Raymond et al.,
2007), and up to 41 % of this DOC is exported through the
Fram Strait (Opsahl et al., 1999). The East Greenland Cur-
rent transports cold Arctic water from the Fram Strait south
along the Greenland shelf, where it mixes with water from
the North Atlantic Ocean (Stein, 1988). The seawater col-
lected for bioassay incubations included terrigenous DOM
from the Arctic Ocean as well as marine DOM from the At-
lantic Ocean.

Six different treatments, all consisting of 90 % 0.2 µm fil-
tered seawater and 10 % GF/C filtered inoculum, were incu-
bated for 32 days in the dark at 18◦C. Three treatments of
Arctic and three treatments of Atlantic samples were incu-
bated: a natural seawater sample (NSW), an artificial seawa-
ter sample with 60 µM glucose C as the only carbon source
(ASWglu) and a natural seawater sample spiked with 60 µM
glucose C (NSWglu). Hence, the carbon pool consisted of
either natural DOM, glucose or both. Only two different
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Figure 1. Temperature profiles at the Atlantic and Arctic sampling
sites. Seawater for 32-day incubations was collected at 10 and 80 m
depth at the Atlantic and Arctic stations, respectively (indicated by
circles).

bacterial inoculums were used: one from the Arctic and one
from the Atlantic sampling site. All samples were amended
with inorganic N and P to have 10 µM KNO3 and 2 µM
Na2HPO4 at the beginning of the incubations. N and P were
added in excess to reduce the risk of nutrient limitation dur-
ing the incubations.

Onboard the ship, the majority of the seawater was filtered
through a 0.2 µm cartridge filter (Millipore Opticap) to obtain
the DOM fraction, and a small bacterial inoculum was fil-
tered through a GF/C filter (Whatman,∼ 1.2 µm). Both filters
were cleaned with ample amounts of seawater before the fil-
trates were collected. The filtrates were acclimated to 18◦C
in the dark for approximately 24 h, and the incubations were
initiated by the addition of bacterial inoculum to the 0.2 µm
filtered water in acid-washed amber glass bottles. Each of the
six treatments consisted of nine amber glass bottles (200 mL)
of seawater, and three bottles were sacrificed during each
subsampling. The artificial seawater for ASWglu samples was
prepared as described by Kester et al. (1967), and adjusted
to the salinities of the NSW samples (35.1 and 33.5 for At-
lantic and Arctic seawater, respectively) by further addition
of MilliQ water. Subsamples for bacterial abundance (all het-
erotrophic prokaryotes), DOC concentration, dissolved com-
bined neutral sugars and amino acids were taken on days 0, 6
and 32. Bacterial abundance and DOC were measured from
all triplicate bottles, while neutral sugars and amino acids
were measured from a single bottle. All samples from day
0 were taken approximately 12 h after the addition of inocu-
lum, glucose and nutrients.

2.2 Sample analysis

Subsamples for determination of bacterial abundance were
fixed with glutaraldehyde (1.3 % final concentration) and
stored frozen (−80◦C) until measurement. Bacteria were
counted by flow cytometry on a BD FACS Canto II flow cy-
tometer using the nucleic acid stain SYBR Green to stain the
fixed cells (Marie et al., 1997). Subsamples for measurement
of DOC concentration were 0.2 µm filtered (Acrodisc) and
collected in acid-cleaned high-density polyethylene (HDPE)
bottles. The samples were acidified with 2 M HCl to a pH
of 2 and stored cold (5◦C) until analysis on a Shimadzu
TOC-VCPH analyzer. The instrument was calibrated using
a standard series made from acetoanilide, and performance
was evaluated using deep-sea water reference material made
available by the Hansell CRM program. The measured con-
centration of DOC in the deep-sea reference (41–43 µM) cor-
responded well to values from the Hansell CRM program
(41–44 µM).

Neutral sugars and amino acids were measured from
0.2 µm filtered subsamples collected in acid-cleaned HDPE
bottles that were stored frozen (−20◦C) until analysis.
The concentration of free and combined hydrolyzable neu-
tral sugars (fucose, rhamnose, arabinose, galactose, glucose,
mannose and xylose) was measured on a Dionex 500 ion
chromatography system with pulsed amperometric detection
(PAD) as described by Skoog and Benner (1997) and Kaiser
and Benner (2009). The relative deviation from the mean of
replicate hydrolysis (excluding replicate experiments) was
29–40 % for concentrations less than 20 nM, and 10–33 %
for concentrations greater than 20 nM of individual neutral
sugars. For total hydrolyzable neutral sugars the relative de-
viation from the mean was 15 %. Free and combined hy-
drolyzable amino acids were analyzed according to Kaiser
and Benner (2005) on an Agilent 1260 UPLC using a fluores-
cence detector and corrected for hydrolysis induced racem-
ization (Kaiser and Benner 2005). The concentration of the
following amino acids was measured: L- and D-asparagine
(asparagine and aspartic acid), L- and D-glutamine (glu-
tamine and glutamic acid), L- and D-serine, L-histidine, L-
threonine, glycine, L-arginine,β-alanine, L- and D-alanine,
γ -aminobutyric acid, L-tyrosine, L-valine, L-methionine, L-
phenylalanine, L-isoleucine, L-leucine and L-lysine. The rel-
ative deviation from the mean of duplicate hydrolysis (ex-
cluding replicate experiments) was 4–23 % for concentra-
tions less than 10 nM, and 3–8 % for concentrations greater
than 10 nM of individual amino acids. For total hydrolyzable
amino acids, the relative deviation from the mean was 8 %.
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Figure 2. Bacterial abundance and DOC concentration. The data points and error bars represent means and standard deviations calculated
from triplicate measurements.• represents Atlantic treatments and1 represents Arctic treatments. Note the different scales of the axes.

2.3 Terminology and calculations

The sum of all neutral sugars and the sum of all amino
acids measured are termed total hydrolyzable neutral sugars
(THNS) and total hydrolyzable amino acids (THAA), respec-
tively. The contributions of THNS and THAA to total DOM
(the yields) were calculated as the ratio of carbon bound in
either THNS or THAA to the total concentration of DOC.
For THAA, the calculations excluded the non-protein amino
acidsβ-alanine andγ -aminobutyric acid. The mol % of a
specific compound was calculated as the molar ratio of the
compound concentration to the total concentration of com-
pounds, THNS or THAA.

To investigate the neutral sugars produced by bacteria af-
ter utilization of the added glucose, the concentration and
composition of neutral sugars on day 6 in glucose-enriched
treatments were compared to the corresponding values of the
NSW samples. For the NSWglu samples, it was necessary to
take into account that a fraction of neutral sugars was bound
in natural oceanic DOM. Assuming that bacterial transfor-
mation of natural oceanic DOM was similar in the NSW and
NSWglu samples, a subtraction of the concentration of indi-
vidual neutral sugars (NS) in the NSW samples from the cor-
responding concentrations in the NSWglu samples allowed
an estimation of neutral sugars produced by bacteria in the
NSWglu samples:

NSbacterially produced= NSNSWglu − NSNSW.

For ASWglu samples, only the neutral sugars bound in the
10 % inoculum had to be subtracted, assuming similar con-
centrations and compositions in the inoculum and the NSW
samples:

NSbacterially produced= NSASWglu − 0.1× NSNSW.

3 Results

3.1 Bacterial abundance and dissolved organic carbon

The abundance of bacteria was low at the beginning of the ex-
periments, with fewer than 0.4× 106 cells mL−1 in Atlantic
samples and fewer than 0.2× 106 cells mL−1 in Arctic sam-
ples (Fig. 2a, b and c). During the first 6 days of the ex-
periment, the abundance increased considerably in all treat-
ments, reaching 1.3× 106 and 0.4× 106 cells mL−1 in At-
lantic and Arctic NSW samples and between 3.7× 106 and
5.2× 106 cells mL−1 in glucose-enriched treatments. From
day 6 to day 32, the bacterial abundance stayed constant
or decreased slightly in all samples. The initial DOC con-
centrations in Atlantic and Arctic samples were approxi-
mately 60, 115 and 70 µM in NSW, NSWglu and ASWglu
samples, respectively (Fig. 2d, e and f). DOC concentrations
decreased in all treatments during the first 6 days and stayed
approximately constant from day 6 to day 32. The net DOC
consumption in the Atlantic samples was 4± 3.6, 52± 3.6
and 58± 1.4 µM in NSW, NSWglu and ASWglu samples,

Biogeosciences, 11, 5349–5363, 2014 www.biogeosciences.net/11/5349/2014/
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respectively. The corresponding values for the Arctic sam-
ples were 2± 1.5, 52± 0 and 56± 2.1 µM DOC. The DOC
consumption after 32 days corresponded to 7 and 1 % of total
DOC in the Atlantic and Arctic NSW samples, respectively.

3.2 Neutral sugars

The initial concentrations of THNS ranged from 210 to
339 nM in the NSW samples, and from 7041 to 7850 nM in
the glucose-enriched samples (Fig. 3a, b and c). THNS de-
creased in all treatments over time, particularly during the
first 6 days of the incubations. After 32 days, the net con-
sumption of THNS in the Atlantic samples was 130, 7585
and 6992 nM in NSW, NSWglu, and ASWglu, respectively.
The corresponding values for Arctic samples were 84, 6990
and 6943 nM. Initially, THNS constituted 3.5 and 2.4 % of
total DOC in the Atlantic and Arctic NSW samples, respec-
tively (Fig. 3d). The yields decreased to 2.5 and 1.7 % on
day 6, and continued to decrease at a slower pace during
the remaining of the incubations. In the glucose-enriched
treatments, the yields were approximately 40 and 63 % in
the NSWglu and ASWglu samples, respectively, decreasing
to ∼ 3 and 9 % after 6 days (Fig. 3e and f). The molecular
composition (mol %) of neutral sugars changed over time,
but varied little between treatments (Table 1). Galactose and
glucose were the most abundant neutral sugars in all samples,
together comprising between 38 and 74 mol %. The glucose
mol % increased from day 0 to day 6 in all samples (disre-
garding glucose treatments, day 0), followed by a decrease
from day 6 to day 32. The galactose mol % followed the op-
posite pattern: decreasing during the first 6 days, followed by
an increase from day 6 to day 32. At the end of the experi-
ments, galactose was the most abundant neutral sugar, com-
prising between 21 and 47 %. At the same time, glucose only
comprised 12 to 32 %.

Due to the high concentration of glucose on day 0 in the
glucose-enriched treatments, these samples were diluted 100
times prior to analysis. Consequently, no other neutral sug-
ars were determined on day 0. The molecular composition of
neutral sugars produced by bacteria in the glucose-enriched
treatments during the first 6 days was calculated as described
in the “Methods” section. It was characterized by a high glu-
cose mol % (47± 12) and a relatively low mol % of the re-
maining neutral sugars, ranging from 3± 2 to 14± 9 (Ta-
ble 1). After 32 days, the molecular composition in all sam-
ples was characterized by a high galactose mol % (33± 11),
a lower glucose mol % (22± 8), and an even lower mol % of
the remaining neutral sugars, ranging from 7± 5 to 11± 3.

3.3 Amino acids

The initial concentrations of THAA ranged from 170 to
244 nM in all treatments (Fig. 4a, b and c). During the in-
cubations, the concentration of THAA decreased in the Arc-
tic and Atlantic NSW samples. The glucose-enriched sam-

ples showed an increased concentration of THAA on day
6, followed by a decrease. The only exception was the Arc-
tic ASWglu sample, which like the NSW samples showed a
decreasing THAA concentration throughout the incubation.
The yield of THAA in NSW samples decreased from 1.4 to
1.1 % and from 1 to 0.8 % for the Atlantic and Arctic treat-
ments, respectively (Fig. 4d). The yield in NSWglu samples
increased from 0.7 and 0.6 % on day 0 to 1.5 and 1.8 % on
day 6, and ended at 1.5 and 0.8 % on day 32 in the At-
lantic and Arctic samples, respectively (Fig. 4e). The yield
in ASWglu samples increased from 1.1 and 1.0 % on day 0
to 7.3 and 2.1 % on day 6, and decreased to 2.3 and 0.7 %
on day 32 in the Atlantic and Arctic samples, respectively
(Fig. 4f).

The molecular composition (mol %) of amino acids var-
ied little from sample to sample, and also did not show any
notable changes over time (Table 2). Glycine was the most
abundant amino acid, comprising between 26 and 40 mol %.
The four amino acids from which both the L- and the D-
enantiomers have been measured (asparagine, glutamine,
serine and alanine) were the second-most abundant amino
acids, comprising between 6 and 18 mol %. The concentra-
tion of D-amino acids only changed slightly, while L-amino
acids generally decreased in concentration during the time
course of the experiments, leading to an increased D/L ratio
with time (Table 2).

4 Discussion

4.1 Concentration and bioavailability

In the NSW samples, the initial DOC concentrations (61–
63 µM) were similar to previous measurements from the re-
gion (e.g., Amon et al., 2003; Benner et al., 2005). After 32
days, 7 and 1 % of the DOC were consumed in the Atlantic
and Arctic NSW samples, respectively. These values are
comparable to estimates by Amon and Benner (2003) who
estimated around 10 % of Atlantic and 2 % of Arctic DOC
to be labile. The initial concentrations of THNS in NSW
samples (210 and 339 nM) were within the range of con-
centrations (60–409 nM) found in ultrafiltered surface sam-
ples (< 0.1 µm, < 100 m) from the region (Amon and Ben-
ner, 2003), and GF/F filtered surface samples from the Sar-
gasso Sea which ranged from∼ 180 to 450 nM (Goldberg et
al., 2009). A considerable fraction of the neutral sugars in
the NSW samples were labile, as indicated by the preferen-
tial removal of neutral sugars (Fig. 3d). This trend has also
been observed in previous studies (Amon and Benner, 2003;
Amon et al., 2001). The initial concentrations of THAA in
NSW samples (189 and 244 nM) corresponded well with val-
ues from surface waters of the Sargasso Sea (∼ 150–200 nM,
Lee and Bada 1977; Kaiser and Benner 2008, 2009) and the
Arctic Ocean (∼ 150–500 nM, Dittmar et al., 2001; Shen et
al., 2012). The preferential removal of amino acids in NSW

www.biogeosciences.net/11/5349/2014/ Biogeosciences, 11, 5349–5363, 2014
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Figure 3. Concentration and yield of total hydrolyzable neutral sugars (THNS).• represents Atlantic treatments and1 represents Arctic
treatments. Note the different scales of the axes and the broken axes on the plots of the glucose-enriched treatments.
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Table 1. Molecular composition of neutral sugars in the six different treatments during the incubations. The neutral sugars produced by
bacteria in the glucose-enriched samples during the first 6 days (n = 4; see “Methods” for an explanation of the calculations) and the neutral
sugars remaining after 32 days (n = 6) are given as means and standard deviations. nd: not determined.

Day THNS
(nM)

Fuc
(mol %)

Rha
(mol %)

Ara
(mol %)

Gal
(mol %)

Glc
(mol %)

Man
(mol %)

Xyl
(mol %)

NSW, Atlantic

0 339 11 10 13 23 17 14 11
6 239 14 14 9 20 20 13 9
32 209 12 12 9 27 15 12 12

NSW, Arctic

0 211 7 9 17 16 22 13 16
6 135 12 13 15 11 29 11 10
32 126 11 14 12 21 20 10 13

NSWglu, Atlantic

0 7850 nd nd nd nd 100 nd nd
6 447 10 9 8 18 24 13 17
32 264 12 10 14 32 12 10 9

NSWglu, Arctic

0 7212 nd nd nd nd 100 nd nd
6 240 7 12 7 15 42 9 9
32 220 9 12 6 25 32 9 8

ASWglu, Atlantic

0 7127 nd nd nd nd 100 nd nd
6 192 6 7 14 7 47 7 11
32 136 4 7 8 46 28 5 2

ASWglu, Arctic

0 7041 nd nd nd nd 100 nd nd
6 183 4 12 8 13 48 6 9
32 98 0 14 13 47 25 0 0

Bacterially produced neutral sugars

3± 2 8± 4 7± 8 14± 7 47± 12 8± 3 14± 9

Composition after 32 days

8± 5 11± 3 10± 3 33± 11 22± 8 8± 5 7± 5

samples indicated that a fraction of amino acids was labile
(Fig. 4d). Our study supports the general notion that neutral
sugar and amino acid yields can be used as biochemical in-
dicators of DOC bioavailability (Amon et al., 2001), since
the highest DOC consumption was observed in the Atlantic
NSW sample, which was also associated with the highest
yields of THNS and THAA.

In the glucose-enriched samples, 49–56 µM DOC was con-
sumed during the experiment. The DOC samples on day 0
were collected 12 h after the addition of glucose, and the ac-
tual DOC consumption was therefore likely up to 12–17 µM
higher (estimated from the missing free glucose). Taking this
into account, the DOC consumptions agreed well with the

amount of added glucose and, possibly, a small contribution
from the original DOM pool. The DOC consumption esti-
mates were calculated from the missing free glucose: glu-
cose was added to a final concentration of 10 000 nM be-
fore addition of the inoculum. However, the concentrations
measured at the beginning of the experiment ranged from
7041 to 7850 nM. Sample hydrolysis possibly also altered
some of the added glucose, resulting in lower measured con-
centrations (Skoog and Benner, 1997). The DOC consump-
tion in the NSWglu samples (52 µM) was lower than in the
ASWglu samples (56–58 µM), despite a higher DOC concen-
tration and an equal amount of glucose. Although this dis-
crepancy is small, it may represent a minor contribution of
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Figure 5. Molecular composition of neutral sugars produced by
bacteria. Mean and standard deviations were calculated from the
four glucose-enriched samples (n = 4). The mean and standard de-
viations of data from the study by Ogawa et al. (2001) were calcu-
lated from duplicate measurements of bacterially produced neutral
sugars sampled on days 4 and 7 (n = 4).

labile DOC associated with the inorganic salts used to pre-
pare the ASWglu samples, or an inhibition of degradation
of natural DOM in the presence of a simple labile substrate
(Gontikaki et al., 2013). However, further studies are war-
ranted to resolve the importance of the latter process. The
significant drop in neutral sugar yields clearly reflects the
labile nature of added free glucose. The amino acid yields
increased at the beginning of the incubations and decreased
from day 6 to day 32 – a trend also observed in previous stud-
ies (Kawasaki and Benner, 2006; Ogawa et al., 2001). The
initial increase in amino acid yields is due to the significant
increase in bacterial abundance and the subsequent release of
amino acids.

4.2 Bacterial production of neutral sugars during the
first 6 days

Bacterial production and the subsequent release of neutral
sugars was calculated from the glucose-enriched treatments
as described in the “Methods” section. The amount of neu-
tral sugars produced during the first 6 days of the incuba-
tions (104–208 nM) was within the range of concentrations
of neutral sugars observed in the ocean (20–800 nM; Ben-
ner, 2002). The molecular composition was characterized by
a high glucose mol % (47± 12) and a relatively low mol % of
the remaining neutral sugars (3-14± 2–9), and is strikingly
similar to the composition of bacterial DOM found in a study
by Ogawa et al. (2001) after 7 days of incubation (Fig. 5).
Calculations of the neutral sugars produced in the NSWglu
samples on day 6 are associated with uncertainty, since bac-
terial degradation of the natural DOM is unknown. However,
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Figure 6. Molecular composition of neutral sugars on day 32 of the
incubations. Means and standard deviations were calculated from
all samples on day 32 (n = 6).

if only the ASWglu samples are used when calculating the
bacterially derived neutral sugars on day 6, the results are al-
most identical: a high glucose mol % of 50 and low mol % of
the remaining neutral sugars, ranging from 4 to 11.

Similar patterns have also been observed in algal-derived
DOM (Hama and Yanagi, 2001; Lazareva and Romankevich,
2012), e.g., in DOM from a fresh diatom culture (Biersmith
and Benner, 1998) and from sea ice algae (Amon and Benner,
2003). However, DOM released by other algal cultures ex-
hibit different molecular compositions of neutral sugars with
galactose or xylose being most abundant (Biersmith and Ben-
ner, 1998). In the ocean, glucose is generally the most abun-
dant neutral sugar; however, values above 30 mol % are only
observed occasionally (Table 3). Amon and Benner (2003)
suggested that degradation processes rather than production
processes determine the neutral sugar composition in the
ocean, based on the similarities observed in samples of dif-
ferent origin (terrestrial and marine) and from different loca-
tions (oceanic regions and water masses). This can possibly
explain the difference in the molecular composition of DOM
in the ocean and the bacterially produced DOM after 6 days
in the present study. Only small differences in neutral sugar
composition between the Atlantic and Arctic samples were
observed after 6 days of incubation, despite the different bac-
terial inocula. Moreover, there was a striking similarity in
the bacteria-derived neutral sugar composition observed in
the present study and in the study by Ogawa et al. (2001).
Together, these results suggest that bacterially produced neu-
tral sugars, independent of bacterial community structure, are
important in shaping the molecular composition of neutral
sugars in seawater.
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Table 3.Molecular composition (mol %) of neutral sugars found in the oceans’ surface, mesopelagic and deep layers. HMW DOM: 1 nm to
0.2 µm; GF/F DOM:∼ 0.7 µm.

Location Depth (m) DOM size Fuc Rha Ara Gal Glc Man Xyl Reference

Surface ocean, 0–200 m

North Pacific 10 HMW DOM 16 12 9 19 17 13 12 McCarthy et al. (1996)
Sargasso Sea 2 HMW DOM 15 13 9 20 15 13 13 McCarthy et al. (1996)
Gulf of Mexico 10 HMW DOM 17 14 10 19 13 14 10 McCarthy et al. (1996)
North Pacific 10–40 0.2 µm 13 8 4 22 36 9 9 Borch and Kirchman (1997)a

Equatorial Pacific 2–200 HMW DOM 16 14 8 18 20 12 13 Skoog and Benner (1997)
Greenland Sea 20–50 GF/F 1 13 7 13 52 13 1 Engbrodt and Kattner (2005)
North Pacific 3–5 HMW DOM 17 11 7 23 17 14 10 Repeta and Aluwihare (2006)
Sargasso Sea 0–140 GF/F 13 10 7 22 21 13 13 Goldberg et al. (2009)a

Sargasso Sea 5–200 Unfiltered 14 12 11 21 17 12 13 Kaiser and Benner (2009)
North Pacific 20–200 Unfiltered 15 11 12 20 19 11 11 Kaiser and Benner (2009)

Mesopelagic ocean, 200–1000 m

North Pacific 765 HMW DOM 18 14 9 10 29 8 11 McCarthy et al. (1996)
Sargasso Sea 900 HMW DOM 18 19 7 14 21 11 8 McCarthy et al. (1996)
Gulf of Mexico 750 HMW DOM 19 13 11 14 20 11 9 McCarthy et al. (1996)
North Pacific 250 0.2 µm 16 0 0 42 31 6 6 Borch and Kirchman (1997)a

Equatorial Pacific 400 HMW DOM 17 15 7 19 22 12 10 Skoog and Benner (1997)
Sargasso Sea 250 GF/F 12 9 6 17 35 11 11 Goldberg et al. (2009)a

Sargasso Sea 350–900 Unfiltered 17 11 12 19 18 11 12 Kaiser and Benner (2009)
North Pacific 250–750 Unfiltered 17 11 10 19 23 10 10 Kaiser and Benner (2009)

Deep ocean, 1000–5200 m

North Pacific 4000 HMW DOM 16 9 7 10 26 13 5 McCarthy et al. (1996)
Sargasso Sea 2400 HMW DOM 19 17 10 13 17 10 11 McCarthy et al. (1996)
Equatorial Pacific 4000 HMW DOM 16 14 3 19 19 13 12 Skoog and Benner (1997)
Greenland Sea 1800–4500 GF/F 19 16 22 11 21 6 6 Engbrodt and Kattner (2005)
North Pacific 5200 HMW DOM 25 15 8 19 12 12 9 Repeta and Aluwihare (2006)
Sargasso Sea 1360–4300 Unfiltered 16 9 11 19 26 10 9 Kaiser and Benner (2009)
North Pacific 2000–4000 Unfiltered 19 8 7 21 41 0 6 Kaiser and Benner (2009)

a Mannose and xylose were stated as one value, and for simplicity, this value has been split up into two identical mol %.

4.3 Bacterial degradation of neutral sugars

After 32 days, a clear degradation signature had emerged,
with glucose being less important and galactose being more
important (Fig. 6). This trend has also been seen in studies
of marine sediments (Oakes et al., 2010). The majority of the
remaining DOM after 32 days was assumed to be semi-labile
or refractory, and the striking similarity between treatments
indicates that the molecular composition of semi-labile or re-
fractory neutral sugars (i.e., material persisting longer that
32 days) attains a fairly specific molecular composition, irre-
spective of initial DOM composition. Furthermore, the simi-
larity between treatments suggests that bacterial degradation
processes shape the composition of semi-labile or refractory
neutral sugars. After 32 days, about 85 to 87 % of the neutral
sugars present in the ASWglu samples are of bacterial ori-
gin (i.e., produced by bacteria during glucose assimilation),
while only 13 to 15 % originate from the DOM added with
the inoculum (excluding glucose), assuming that neutral sug-

ars in the inoculum follow the same degradation pattern as in
the NSW samples, and that no refractory neutral sugars were
added with the inorganic salts while preparing the artificial
seawater. Hence, the molecular composition observed in the
ASWglu treatments is primarily the result of bacterially pro-
duced and bacterially altered molecules containing neutral
sugars. In the NSW samples, however, the molecular compo-
sition after 32 days primarily reflects the natural background
level of refractory and semi-labile neutral sugars present in
the seawater when collected. Since this background signa-
ture is approaching the molecular composition of bacterially
produced neutral sugars in ASWglu samples remaining after
32 days, we hypothesize that semi-labile and refractory neu-
tral sugars primarily originate from bacterial processing of
DOM and bacterial remains. Mesocosm studies have shown
that 91–94 % of dissolved neutral sugars accumulated during
an algal bloom were degraded within 15–20 days (Kragh and
Søndergaard, 2009; Meon and Kirchman, 2001), and here we

Biogeosciences, 11, 5349–5363, 2014 www.biogeosciences.net/11/5349/2014/



L. Jørgensen et al.: Production and transformation of dissolved neutral sugars 5359

find that only 32–49 % of the neutral sugars produced by bac-
teria in the ASWglu samples were degraded within a period
of 26 days, from day 6 to day 32. Neutral sugar containing
molecules produced by bacteria appear to be less bioavail-
able than those produced by algae.

The molecular composition of neutral sugars in the deep
ocean is significantly different from that observed at the end
of our incubation experiments, although both reflect a high
degree of bacterial degradation and transformation. Our re-
sults indicate that bacterially degraded neutral sugars have
a high galactose mol % (Table 1, Fig. 6), but measurements
in the deep ocean reveal a high glucose mol % (Table 3).
This discrepancy has been seen in other studies as well (e.g.,
Amon et al., 2001), and can be due to fundamental environ-
mental differences between the ocean interior and bioassay
incubations and the different timescales of carbon cycling.
However, the difference can possibly also be due to differ-
ences in diagenetic state of the neutral sugars in the deep
ocean and in the surface waters sampled for this study. In
addition, it is possible that bacterial degradation of particu-
late organic material (POM) plays a major role in shaping
the molecular composition in the deep ocean. POM supports
a major fraction of the respiratory carbon demand below
the photic layer (Arístegui et al., 2002) and POM is known
to have a high glucose content (Hernes et al., 1996; Pana-
giotopoulos and Sempéré, 2007). In our incubations, only
the 10 % inoculum contained POM, and it is likely that our
results mainly reflect bacterial degradation of DOM, either
DOM produced by bacteria from glucose or DOM initially
present in the samples, while deep ocean observations mainly
reflect bacterial degradation of POM. Finally, the high glu-
cose mol % in the deep ocean possibly reflects bacterially
produced neutral sugars with a high glucose content (Fig. 5),
or other neutral sugar sources also having a high glucose
mol %, e.g., submarine vent microbes (Skoog et al., 2007). In
the Pacific Ocean, the glucose mol % is significantly higher
than in the Atlantic Ocean (Kaiser and Benner, 2009), sup-
porting the hypothesis that the bacterially produced neutral
sugars become more important with time in the deep ocean.
However, further studies are needed to fully understand bac-
terial degradation of neutral sugars bound in DOM and POM
and the connection between in situ measurements and incu-
bation studies.

4.4 Bacterial degradation of amino acids

The molecular composition of amino acids did not vary con-
siderably between samples, nor did it change over the time
course of the experiments (Table 2). The most abundant
amino acid was glycine with a mol % between 26 and 40
followed by aspartic acid, glutamic acid, serine and alanine,
which all typically ranged from 10 to 15 mol %. The same
trends are seen in the ocean, except that the mol % of glycine
is somewhat lower (15–32) and the mol % ofγ -aminobutyric
acid increases with depth (Table 4). A high glycine content
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Figure 7.Mean amino acid D/L ratios on day 32 of the incubations.
Means and standard deviations were calculated from all samples on
day 32 (n = 6). Asx did not include the artificial Arctic sample,
which had a considerably higher D/L ratio than the rest of the sam-
ples (indicated with a star).

is generally associated with highly degraded organic matter
(Dauwe et al., 1999), however, the high mol % observed in
our incubations are rarely seen in the ocean (Table 4). The
γ -aminobutyric amino acid is known to increase with depth
in the ocean, and has therefore been used as an indicator
of organic matter diagenesis (Dauwe and Middelburg, 1998;
Davis et al., 2009). No consistent increase inγ -aminobutyric
acid is seen during our incubations, suggesting that the in-
crease observed in the ocean could result from long-term
degradation. This hypothesis is consistent with results from
a study by Davis et al. (2009), who found an increase inγ -
aminobutyric acid of only 0–7 mol % during 20–33 days of
incubation experiments.

The four measured amino acids with L- and D-
enantiomers exhibited a clear degradation pattern (Fig. 7).
Despite very different D/L ratios at the beginning of the
experiment, all treatments ended up having almost identi-
cal ratios after only 32 days (Table 2). The D/L ratios of
amino acids in NSW samples generally remained constant
or increased slightly during the incubations. In the glucose-
enriched samples, however, the ratio increased significantly,
and after 32 days, all treatments had almost similar D/L ra-
tios. This trend was especially clear for aspartic acid (ex-
cept for the Arctic ASWglu sample indicated in the figure)
and serine, where the variability after 32 days was minimal.
As exceptions, the Atlantic and Arctic samples seemed to
have slightly different D/L ratios of glutamic acid after 32
days, with Atlantic samples being below 0.27 and Arctic
samples above 0.35. Hence, the amount of D-amino acids
produced relative to L-amino acids utilized was higher in
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Table 4.Molecular composition (mol %) of amino acids found on the ocean surface and in mesopelagic and deep layers. HMW DOM: 1 nm
to 0.2 µm; GF/F DOM:∼ 0.7 µm. nd: no data.

Location Depth (m) DOM size Asx Glx Ser Gly Arg Ala Leu β−ala γ−aba Reference

Surface ocean, 0–200 m

North Pacific 20–200 m Unfiltered 10 14 8 26 2 15 2 5 2 Kaiser and Benner (2009)
North Pacific 10 m HMW DOM 11 18 10 16 4 13 5 1 0 McCarthy et al. (1996)
North Pacific 0–400 m GF/F 10 11 12 19 9 15 4 nd nd Yamashita and Tanoue (2003)a

Chukchi Sea 0–200 m GF/F 12 8 5 29 2 13 1 8 8 Davis and Benner (2005)
Sargasso Sea 20–100 m Unfiltered 8 9 6 23 6 14 2 5 7 Kaiser and Benner (2009)
Sargasso Sea 2 m HMW DOM 10 15 9 15 6 16 5 1 2 McCarthy et al. (1996)
Gulf of Mexico 10 m HMW DOM 12 16 11 17 3 16 3 2 0 McCarthy et al. (1996)

Mesopelagic ocean, 200–1000 m

North Pacific 250–750 m Unfiltered 11 12 7 28 3 17 0 6 4 Kaiser and Benner (2009)
North Pacific 765 HMW DOM 9 12 6 21 2 15 5 4 0 McCarthy et al. (1996)
Chukchi Sea 201–1000 m Unfiltered 12 6 4 32 1 13 1 7 14 Davis and Benner (2005)b

Sargasso Sea 350–500 m Unfiltered 8 18 5 16 4 15 3 3 8 Kaiser and Benner (2009)
Sargasso Sea 900 HMW DOM 10 18 7 16 8 14 5 1 0 McCarthy et al. (1996)
Gulf of Mexico 750 HMW DOM 11 18 7 16 7 12 5 1 0 McCarthy et al. (1996)

Deep ocean, 1000–4300 m

North Pacific 2000–4000 m Unfiltered 11 10 3 27 3 20 0 6 9 Kaiser and Benner (2009)
North Pacific 4000 m HMW DOM 10 15 12 18 5 10 1 2 1 McCarthy et al. (1996)
Chukchi Sea 1000 m Unfiltered 11 5 5 30 2 13 1 6 19 Davis and Benner (2005)
Sargasso Sea 1360–4300 m Unfiltered 11 9 6 22 6 10 2 5 13 Kaiser and Benner (2009)
Sargasso Sea 2400 m HMW DOM 13 17 8 20 5 18 3 1 nd McCarthy et al. (1996)

a Most sampling sites were shallower than 200 m.
b Samples collected above 300 m were GF/F filtered and samples collected below 300 m were unfiltered.

Arctic samples than in Atlantic samples. Previous studies
have also reported increased D/L ratios with time in degrada-
tion experiments (Amon et al., 2001; Jørgensen et al., 1999)
and with depth in the ocean (Dittmar et al., 2001; Kaiser
and Benner, 2008). The common endpoints in the D/L ra-
tios observed here have not previously been observed, and
suggest that a degradation signature exists. It appears that
DOM sources (Arctic DOM, Atlantic DOM and glucose) and
the bacterial community (Arctic versus Atlantic) have a mi-
nor influence on D/L amino acid ratios, except for glutamic
acid, where the bacterial community structure to some ex-
tent might influence the ratio. The fact that D/L ratios in
the NSW samples equal bacterially produced D/L ratios in
ASWglu samples after 32 days indicates that bacteria are the
dominant source of amino acids in semi-labile and refractory
DOM.

The D/L ratios observed at the end of the incubation ex-
periments were considerably higher than D/L ratios in the
deep ocean (Kaiser and Benner, 2008; McCarthy et al., 1998;
Pérez et al., 2003). In our experiments as well as in the ocean,
the highest D/L ratio is that of aspartic acid, followed by the
D/L ratio of alanine and the (almost equal) D/L ratios of glu-
tamic acid and serine. However, the D/L ratios observed after
32 days in our incubations were about 0.1 to 0.3 units higher
than in the deep ocean (Fig. 7, McCarthy et al. 1998). The
timescale of the incubation experiments was much shorter
than the timescale of the ocean circulation, and it is possi-

ble that deep ocean amino acids exhibit a different D/L ratio
due to a higher degree of diagenesis. The observed differ-
ence could also reflect the fact that the incubations included
a larger fraction of DOM of bacterial origin and therefore
had a higher D-amino acid content than DOM and POM in
the ocean. The main sources of D-amino acids are bacte-
rial cell wall membrane components, including peptidogly-
cans, lipopolysaccharides and lipopeptides (Kaiser and Ben-
ner, 2008). The ASWglu samples demonstrated that during
bacterial utilization of glucose and subsequent degradation
of bacterial remnants, DOM with high D/L amino acid ra-
tios is produced. The DOM and POM available for bacterial
degradation in the ocean, however, is probably derived from
many different sources (Kaiser and Benner, 2008).

4.5 Implications

Bacteria play an important role in shaping the concentration
and composition of neutral sugars and amino acids in the
ocean. Our results show that bacteria are capable of chang-
ing the composition of biomolecules bound in DOM signifi-
cantly within short timescales, and that biomolecule yields
can be used as indicators of DOC bioavailability. Bacte-
rial transformation of labile DOM to refractory DOM via
the microbial carbon pump has been suggested as an im-
portant production pathway of refractory DOM (Jiao et al.,
2010; Ogawa et al., 2001). Results from the present incuba-
tions indicate that the microbial carbon pump also applies
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for neutral sugars and amino acids: the molecular composi-
tion of biomolecules produced by bacteria and biomolecules
remaining after degradation of bacterial remnants in ASWglu
samples was strikingly similar to the composition of semi-
labile or refractory biomolecules remaining in NSW sam-
ples after 32 days, suggesting that bacterially produced
biomolecules can persist for long periods in the ocean. The
present study provides preliminary indications of microbial
production of refractory biomolecules via the microbial car-
bon pump, but further studies are needed to test this hypoth-
esis and better understand its quantitative importance.
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