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Energy production from the Sun requires a stable efficient light absorber. Promising
candidates in this respect are organometal perovskites (ABX3), which have been
intensely investigated during the last years. Here, we have performed electronic
structure calculations of 240 perovskites composed of Cs, CH3NH3, and HC(NH2)2

as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions.
The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends
over bandgaps have been investigated: the bandgap increases with an increase of the
electronegativities of the constituent species, while it reduces with an increase of the
lattice constants of the system. © 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4893495]

As the adverse environmental consequences of fossil energy use are growing, the search for
new efficient technologies enabling conversion of solar photons into electrical or chemical energy
is becoming increasingly important. In this respect organometal halide perovskite (OMHP) based
solar cells have arisen as one of the innovative photovoltaic technologies in recent times, mostly
because of their direct bandgap, large light absorption coefficients due to a direct transition at the
bandgap that involves Pb s-states and Pb p-states and high carrier mobility.1, 2 For instance, power
conversion efficiency achieved with CH3NH3PbI3 has now surpassed 15%, making them competitive
with photovoltaic thin films.3–8

To improve the efficiency of solar cells based on OMHPs further it is natural to resort to
computational methods that allow for fast exploration of the vast space of material composition
and structures. Thanks to the enormous growth in computer power, high-throughput computational
screening is rapidly becoming an essential tool for accelerated materials discovery and has recently
been applied within a wide range of areas.9–15

In our study, we have selected the three most common symmetries for this group of perovskites
(cubic, tetragonal, and two orthorhombic phases with space groups Pm3̄m, P4/mbm, Pbnm, and Pnma,
respectively) with general formula unit (fu) ABX3 where A is one of cesium (Cs+), methylammonium
(MA: CH3NH+

3 ), and formamidinium (FA: HC(NH2)+2 ); tin (Sn2 +) or lead (Pb2 +) occupies the B-
ion position, and chlorine, bromine, iodine, and their combination are used as anions (X3−

3 : Cl3, Br3,
I3, Cl2Br, ClBr2, Cl2I, ClI2, Br2I, BrI2, ClBrI). The ideal investigated structures are shown in Fig. 1.
Here we focus on the calculation of the stability and bandgaps of all these possible combinations.

A total of 240 organic perovskites have been studied using the density functional theory (DFT)
code GPAW.16, 17 We have investigated the performances of different functionals for evaluating the
lattice constants for the set of systems including CsSnCl3, CsSnBr3, CsSnI3, CsPbCl3, CsPbBr3,
CsPbI3, MASnCl3, MASnBr3, MASnI3, MAPbCl3, MAPbBr3, MAPbI3, and FASnI3. The local
density approximation (LDA)18 and the generalized gradient approximation (GGA) functional from
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FIG. 1. Crystal structures investigated in this work: cubic (a), tetragonal (b), and orthorhombic (c and d). The tetragonal and
orthorhombic phases, with 20 atoms unit cell, differ from the cubic (5 atoms unit cell) by a planar rotation and a tilting of the
octahedron, respectively. The organic molecules are shown in (e) and (f).

Perdew-Becke-Ernzerhof (PBE)19 show a Mean Absolute Error (MAE) larger than 10 pm (14.4 and
11.1 pm, respectively). PBE corrected for solids (PBEsol),20 Wu-Cohen (WC), and its corrected
description (WCsol)21 have a MAE below 4 pm (3.7, 3.5, and 3.1 pm, respectively). The fully
optimization of the structures has been performed using GGA-PBEsol because of its small error in
predicting the relaxed structure and because the bandgaps are later calculated using a functional that
is based on PBEsol.

The heats of formation of the candidate materials are calculated with respect to the cubic pure
phases. For example, the heat of formation of the tetragonal CsPbCl2I, �ECsPbCl2I(t) , is given by

�ECsPbCl2I(t) = ECsPbCl2I(t) − 2ECsPbCl3(c) + ECsPbI3(c)

3
, (1)

where ECsPbCl2I is the DFT total energy of the phase indicated in parentheses ((c): cubic and (t):
tetragonal). When �E > 0 eV/fu, the cubic pure systems are more stable than the candidate structure,
while a negative �E indicates that the perovskite under investigation is favorable compared with
the pure cubic phases. A more realistic evaluation of stability is obtained by calculating the heat of
formation with respect to the most stable pure phases. In fact, the stability is, in this case, calculated
with respect to a broader set of reference systems composed of all the possible phases that each
compound can have, while only the cubic phases are included in the pool of references for Eq. (1).
�ECsPbCl2I(t) is now obtained using

�ECsPbCl2I(t) = ECsPbCl2I(t) − 2ECsPbCl3(o1) + ECsPbI3(o2)

3
, (2)

where (o1) and (o2) indicate the orthorhombic1 and orthorhombic2 phases, which are the most stable
phases for CsPbCl3 and CsPbI3, respectively.

It is well-known that the Kohn-Sham states of standard DFT seriously underestimate the
bandgaps. Possible solutions to this problem are the use of hybrid functionals or of many-body
methods, that with an increase of the computational cost, give a better estimation of the optical
properties of the materials. Alternatively, we here use the GLLB-SC potential by Gritsenko, van
Leeuwen, van Lenthe, and Baerends (GLLB),22 adapted by Kuisma et al.23 to include the PBEsol
correlation for solids (-SC) that has been shown to give reasonable bandgaps at a minimal cost.14, 24–26

This exchange-correlation functional includes explicitly the calculation of the derivative disconti-
nuity (�xc) that is added to the Kohn-Sham bandgap (EKS

gap) to obtain the quasi-particle gap (EQP
gap).

GLLB-SC shows an agreement within 0.1 eV with respect to G0W0 for this class of systems.45 It
has been recently shown that the spin-orbit correction plays an important role in the estimation on
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TABLE I. Comparison between the calculated (Eopt
gap) and experimental gaps (Eexp

gap), in eV, for a set of compounds. The MAE
is also indicated.

Compound Phase Eopt
gap Eexp

gap

CsPbI3 Cubic 1.62 1.7330

MASnI3 Tetragonal 1.51 1.2031

MAPbBr3 Cubic 1.96 2.3332

MAPbI3 Cubic 1.36 1.5730

FAPbI3 Cubic 1.47 1.4830

MAE 0.20

the bandgaps in particular for the cases of the lead perovskites.27, 28 The spin-orbit correction (�soc)
has been calculated using the Quantum Espresso code29 for the Cs perovskites and has been seen to
be dependent only on the B-ion and has the effect of reducing the bandgaps of 0.25 ± 0.05 eV in
the case of Sn systems and of 1.02 ± 0.06 eV for Pb perovskites.

We have performed Bethe-Salpeter equation (BSE) calculations33, 44 for all the cubic systems
with Cs+ in the A site to calculate the reduction in the optical gap with respect to the quasiparticle
gap due to electron-hole interactions.46 We have observed that the reduction in the optical gap is
always in a range from 0.11 to 0.15 eV.47 Consequently we shifted down all the calculated band
gaps in the screening process by �e–h = 0.13 eV.

The optical bandgap is thus obtained by

Eopt
gap = EKS

gap + �xc − �soc − �e−h, (3)

where �xc is different for each system, while �soc and �e–h are ad hoc corrections based on
calculations for a set of systems.

Table I reports the comparison between the calculated and experimental gaps of a set of com-
pounds where the crystal structure is well determined. The agreement between DFT and experiments
is very good with a MAE of 0.2 eV. In addition, the GLLB-SC gaps are comparable with other DFT
bandgaps mentioned elsewhere in the literature.27, 28

We investigate now the trends in the heat of formation and the bandgap of the calculated
materials.

Fig. 2 shows the heats of formation for the investigated systems. For the Cs systems, all the
combinations of anions are stable with respect to the cubic pure phases (Eq. (1)): in most of the
cases they have a higher stability for an orthorhombic phase followed by the tetragonal phase and
eventually by the cubic one. The phase transition from orthorhombic to cubic through tetragonal is
a well-known phenomenon and has been already deeply investigated.34–37 The situation is different
when the heats of formation are calculated with respect to the most stable pure phases (Eq. (2))
where no combinations, except FASnBr2I, are found to be stable. Despite of this, in most of the
cases, the instability is rather small (less than 0.1 eV/fu) and in some cases probably beyond the
accuracy of the calculation. Thus these systems might be slightly stable or metastable and at finite
temperatures the entropy of mixing increases the stability of the mixed phases. In fact, some of the
Cs mixed systems like CsBr2Cl, CsSnBr2I, and CsSnBrI2 have been synthesized38 as well as some
of the MA mixed compounds like MAPbClI2, MAPbCl2I, and MAPbI2Br.39 However, one should
note that photo-degradation may be an issue and depending on application instability in water could
also require the use of protecting layers.40, 41

Figure 3 shows the bandgaps as a function of the geometrical average of the electronegativities
(in the Mulliken’s scale42) of the anions for all the investigated perovskites. For example, the average
electronegativity, χ , of the ClBrI combination is given by χ = (χClχBrχ I)1/3, where χCl = 8.30
eV, χBr = 7.59 eV, and χ I = 6.76 eV are the electronegativities of Cl, Br, and I, respectively. The
bandgaps increase with an increase of the electronegativity of the anions. Previous work14 showed
the effect of the electronegativities of the A- and B-ion on the gap. Here, we show that it is possible
to substitute one or more anions with other species to tune the gap. Lower symmetries usually show
larger gaps: the orthorhombic2 phase has the largest bandgap between all the considered phases,
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FIG. 2. Heats of formation with respect to the cubic pure phases using Eq. (1) (upper panel) and of the most stable phase
with respect to the most stable pure phases using Eq. (2) (lower panels) for the investigated systems.

FIG. 3. Bandgaps as a function of the electronegativity of the anions for the investigated structures.
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FIG. 4. Summary of the 240 calculated bandgaps. Each colored square corresponds to a different composition and phase.
The A-ion and the phase can be identified by the labels on the left vertical axis, the B-ion and the anions composition (sorted
for increasing electronegativity) from the labels on top and bottom of the horizontal axis, respectively. Red arrows follow the
increase of the gaps with respect to changes in the cations, anions, and phases.

followed, in general by the orthorhombic1 and tetragonal phases. The cubic phase shows the smallest
gap but there are exceptions. In fact, the bandgap is not only determined by the electronegativities of
the constituent elements, but also by the volume. It is well-known that there is a strong dependence
of the bandgap upon the lattice parameter. In particular, Borriello et al.1 found that the bandgap for
the Sn cubic systems under stretching increases of approximately 2 eV/Å using PBE calculations.
Using the GLLB-SC functional, we have observed that the bandgap increases linearly as 2.9, 3.4,
and 3.6 eV/Å for the Sn systems with I3, Br3, and Cl3 as anions, respectively, and of 2.2, 2.7, and
2.8 eV/Å for the Pb perovskites formed with I3, Br3, and Cl3, respectively, i.e., the increase of the
gap due to a change in the volume is also increasing with the electronegativity. Regarding instead
the influence of the octahedron distortion upon the bandgap, we have studied the tilting of the XY6

(X = Pb and Sn; Y = Cl, Br, and I) octahedra in the tetragonal phase with respect to the c-axis of
the crystal without relaxing the structure. We found that the gap is reduced linearly with the tilting
angle as ≈0.02 eV/◦. In the real systems, the rotation of the octahedron is followed by changes in
the lattice constants with the effect of increasing the bandgap.

Fig. 4 shows the bandgaps of all the calculated structures. The bandgaps span over a region from
around 0.5 to around 5.0 eV. As shown also in Fig. 3, the bandgaps increase with the electronegativity
of the anions (going from left to right in each half plot) and lowering the symmetry of the structure
(from the bottom to the top of the plot for each A-ion). It is well-known that the bandgaps are
influenced by the electronegativities of the cations.14, 43 In particular, the Sn systems have a smaller
bandgap compared with the Pb perovskites. In the case of organometal perovskites, the A-ion changes
the bandgap more because of the modification of the lattice constant than because of a change in
the electronegativity. FA is larger than MA that is larger than Cs, and this results in a increase of
the bandgap going from FA to Cs through MA. The trends described here are summarized with red
arrows in the figure.

In this work, we have addressed the problem of calculating the bandgaps of all possible per-
ovskites composed by Cs, MA, or FA as A-ions, Sn or Pb as B-ions, and Cl, Br, I, and their
combinations as anions in their most common crystal symmetries (cubic, tetragonal, and orthorhom-
bic), and we have investigated trends in their stability and bandgap.

The studied perovskites are usually stable in a tetragonal or orthorhombic phase and are expected
to go through a phase transition towards the cubic symmetry at higher temperature. The bandgaps
are strongly dependent on the electronegativities and on the lattice constants. In particular, the
bandgap increases with an increase of the electronegativities of the B-ion and anions and with an
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expansion of the lattices. The replacement of Cs with MA or FA has the effect of increasing the
volume of the perovskite and so thus to increase the bandgap. The change in the gap due to a tilting
of the octahedron has also been investigated. These trends indicate how to change the chemical
composition to tune the bandgaps to a desired region.

The authors acknowledge support from the Catalysis for Sustainable Energy (CASE) initiative
funded by the Danish Ministry of Science, Technology and Innovation and from the Center on
Nanostructuring for the Efficient Energy Conversion (CNEEC) at Stanford University, an Energy
Frontier Research Center founded by the US Department of Energy, Office of Science, Office of
Basic Energy Sciences under Award No. DE-SC0001060. J.M.G.-L. also acknowledges support from
the Spanish Ministry of Economy and Competitiveness under Projects FIS2010-21282-C02-01 and
FIS2012-30996.
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