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DECOMPOSITION IN CONIC OPTIMIZATION WITH PARTIALLY

SEPARABLE STRUCTURE

YIFAN SUN∗, MARTIN S. ANDERSEN† , AND LIEVEN VANDENBERGHE∗

Abstract. Decomposition techniques for linear programming are difficult to extend to conic
optimization problems with general non-polyhedral convex cones because the conic inequalities in-
troduce an additional nonlinear coupling between the variables. However in many applications the
convex cones have a partially separable structure that allows them to be characterized in terms of sim-
pler lower-dimensional cones. The most important example is sparse semidefinite programming with
a chordal sparsity pattern. Here partial separability derives from the clique decomposition theorems
that characterize positive semidefinite and positive-semidefinite-completable matrices with chordal
sparsity patterns. The paper describes a decomposition method that exploits partial separability
in conic linear optimization. The method is based on Spingarn’s method for equality constrained
convex optimization, combined with a fast interior-point method for evaluating proximal operators.

Key words. semidefinite programming, decomposition, interior-point algorithms

AMS subject classifications. 90C22, 90C25, 90C51

1. Introduction. We consider conic linear optimization problems (conic LPs)

(1.1)
minimize cTx
subject to Ax = b

x ∈ C

in which the cone C is defined in terms of lower-dimensional convex cones Ck as

(1.2) C = {x ∈ Rn | xγk
∈ Ck, k = 1, . . . , l}.

The sets γk are ordered subsets of {1, 2, . . . , n} and xγk
denotes the subvector of x with

entries indexed by γk. We refer to the structure in the cone C as partial separability.
The purpose of the paper is to describe a decomposition method that exploits partially
separable structure.

In standard linear optimization, with C = Rn
+, the cone is separable, i.e., a prod-

uct of one-dimensional cones, and the coupling of variables and constraints is entirely
specified by the sparsity pattern of A. The term decomposition in linear optimization
usually refers to techniques for exploiting angular or dual-angular structure in the co-
efficient matrix A, i.e., a sparsity pattern that is almost block-diagonal, except for a
small number of dense rows or columns [28]. The goal of a decomposition algorithm is
to solve the problem iteratively, by solving a sequence of separable problems, obtained
by removing the complicating variables or constraints. The decoupled subproblems
can be solved in parallel or sequentially (for example, to reduce memory usage). More-
over, if the iterative coordinating process is simple enough to be decentralized, the
decomposition method can be used as a distributed algorithm. By extension, decom-
position methods can be applied to more general sparsity patterns for which removal
of complicating variables and constraints makes the problem substantially easier to
solve (even if it does not decompose into independent subproblems).
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When the cone C in (1.1) is not separable or block-separable (a product of lower-
dimensional cones), the formulation of decomposition algorithms is more complicated
because the inequalities introduce an additional coupling between the variables. How-
ever if the cone is partially separable, as defined in (1.2), and the overlap between
the index sets γk is small, one can formulate efficient decomposition algorithms by
introducing auxiliary independent optimization variables for the subvectors xγk

and
adding equality constraints to impose consistency between the variables that refer
to the same components of x. The decomposition method discussed in this paper
follows this conversion approach and solves the reformulated problem by a first-order
splitting method. The quadratic conic subproblems that need to be solved at each
iteration are solved by a customized interior-point method. The method is described
in sections 2 and 3.

An important example of a partially separable cone is the cone of positive-
semidefinite-completable sparse matrices with a chordal sparsity pattern. Matrices
in this cone are characterized by the property that all their principal dense subma-
trices are positive semidefinite [21, theorem 7]. This fundamental result has been
applied in previous methods for sparse semidefinite optimization. It is the basis of
the conversion methods used to reformulate sparse semidefinite programs (SDPs) in
equivalent forms that are easier to handle by interior-point algorithms [25, 16] or more
suitable for distributed algorithms via the Alternating Direction Method of Multipli-
ers (ADMM) [13]. Applied to sparse semidefinite programs the conversion method
mentioned in the previous paragraph reduces to the clique-tree conversion methods
developed in [25, 16]. Partial separability also underlies the saddle-point mirror-prox
algorithm for ‘well-structured’ sparse SDPs proposed in [30]. We discuss the sparse
semidefinite optimization application of the decomposition method in detail in sec-
tions 4 and 5, and present numerical results in section 6.

Notation. If α is a subset of {1, 2, . . . , n}, then Eα denotes the |α| × n-matrix
with entries (Eα)ij = 1 if α(i) = j and (Eα)ij = 0 otherwise. Here α(i) is the ith
element of α, sorted using the natural ordering. If not explicitly stated the column
dimension n of Eα will be clear from the context. The result of multiplying an n-
vector x with Eα is the subvector of x of length |α| with elements (xα)k = xα(k).
The adjoint operation x = ET

α y maps an |α|-vector y to an n-vector x by copying the
entries of y to the positions indicated by α, i.e., by setting xα(k) = yk and xi = 0 for
i 6∈ α. Therefore EαE

T
α is an identity matrix of order |α| and ET

αEα is a diagonal
0-1 matrix of order n, with ith diagonal entry equal to one if and only if i ∈ α. The
matrix Pα = ET

αEα represents projection in Rn on the sparse n-vectors with support
α. Similar notation will be used for principal submatrices in a symmetric matrix. If
X ∈ Sp (the symmetric matrices of order p) and α is a subset of {1, . . . , p}, then
Eα(X) = Xαα = EαXET

α ∈ S|α|. This is the submatrix of order |α| with i, j entry

(Xαα)ij = Xα(i)α(j). The adjoint E∗
α copies a matrix Y ∈ S|α| to an otherwise zero

symmetric p×p-matrix: E∗
α(Y ) = ET

αY Eα. The projection of a matrix X ∈ Sp on the
matrices that are zero outside of a diagonal α×α block is denoted Pα(X) = PαXPα.

2. Partially separable cones.

2.1. Partial separability. A function f : Rn → R is partially separable if it
can be expressed as f(x) =

∑l
k=1 fk(Akx), where each Ak has a nontrivial nullspace,

i.e., a rank substantially less than n. This concept was introduced by Griewank and
Toint [19, 20]. Here we consider the simplest and most common example of partial
separability and assume that Ak = Eγk

for some index set γk ⊂ {1, 2, . . . , n}. This
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means that f can be written as a sum of functions that depend only on subsets of the
components of x: f(x) =

∑l
k=1 fk(xγk

). Partial separability generalizes separability
(l = n, γk = {k}) and block-separability (the sets γk form a partition of {1, 2, . . . , n}).

We call a cone C ⊂ Rn partially separable if it can be expressed as

(2.1) C = {x | Eγk
x ∈ Ck, k = 1, . . . , l}

where Ck is a convex cone in R|γk|. The terminology is motivated by the fact the
indicator function of C is a partially separable function: δC(x) =

∑l
k=1 δCk

(Eγk
x)

where δS is the indicator function of a set S. The following assumptions are made.
• The index sets γk are distinct and maximal, i.e., γi 6⊆ γj for i 6= j, and their

union is equal to {1, 2, . . . , n}.
• The convex cones Ck are proper, i.e., closed, pointed, with nonempty interior.
This implies that their dual cones C∗

k = {v ∈ R|γk| | uT v ≥ 0 ∀u ∈ Ck} are
proper convex cones and that Ck = C∗∗

k .
• There exists a point x̄ with Eγk

x̄ ∈ int Ck for k = 1, . . . , l.
These assumptions imply that C is itself a proper cone. It is closed because it can
be expressed as an intersection of closed halfspaces: x ∈ C if and only if uT

kEγk
x ≥ 0

for all uk ∈ C∗
k , k = 1, . . . , l. The cone C is pointed because x ∈ C, −x ∈ C implies

Eγk
x ∈ Ck and −Eγk

x ∈ Ck for all k. Since the cones Ck are pointed, we have Eγk
x = 0

for k = 1, . . . , l. Since the index sets γk cover {1, 2, . . . , n}, this implies x = 0. The
cone C has nonempty interior because the point x̄ is in its interior.

The dual cone of C is

(2.2) C∗ = {
l∑

k=1

ET
γk
s̃k | s̃k ∈ C∗

k , k = 1, . . . , l}.

To show this, we denote the set on the right-hand side of (2.2) by K and first note
that C = K∗, i.e., C is the dual cone of K. Indeed, a vector x satisfies xT s ≥ 0 for
all s ∈ K if and only if xTET

γk
s̃k ≥ 0 for all s̃k ∈ C∗

k and all k. This condition is
equivalent to Eγk

x ∈ Ck for k = 1, . . . , l, i.e., x ∈ C. If C is the dual cone of K, then
K is the closure of the dual cone of C, and to establish (2.2) it remains to show that
K is closed. This follows from the third assumption which implies the property

(2.3)
∑

k

ET
γk
s̃k = 0, s̃k ∈ C∗

k , k = 1, . . . , l =⇒ s̃k = 0, k = 1, . . . , l.

This can be seen by taking the inner product of x̄ and the sum on the left-hand side:
since Eγk

x̄ ∈ intCk we have
∑l

k=1 x̄
TET

γk
s̃k = 0 for s̃k ∈ C∗

k only if s̃k = 0 for all k.
The property (2.3) is a sufficient condition for closedness of K (see theorem 9.1 or its
corollary 9.1.3 in [36]). We conclude that K is closed and K = C∗.

2.2. Sparsity and intersection graph. Two useful undirected graphs can be
associated with the partially separable structure defined by the index sets γk. These
graphs will be referred to as the sparsity graph and the intersection graph. The sparsity
graph G has n vertices, representing the n variables. There is an edge between two
distinct vertices i and j if i, j ∈ γk for some k. We call this the sparsity graph
because it represents the sparsity pattern of a matrix H =

∑l
k=1 E

T
γk
HkEγk

where
the matrices Hk are dense symmetric matrices. The entries (i, j) 6∈ ∪k=1,...,l (γk × γk)
are the positions of the zeros in the sparsity pattern of H. Each index set γk thus
defines a complete subgraph of the sparsity graph G. Since the index sets are maximal
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Fig. 2.1. Sparsity graph and intersection graph for an example with n = 6 and four index sets
γ1 = {1, 2, 6}, γ2 = {2, 5, 6}, γ3 = {4, 6}, γ4 = {3, 5}.
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Fig. 2.2. Spanning tree in an intersection graph for nine index sets γk and n = 17 variables
(right), and the sparsity pattern for the corresponding sparsity graph (left). The sparsity graph
is chordal. Each vertex γk in the spanning tree is split in two sets αk and γk \ αk with αk the
intersection of γk and its parent. The indices listed in the top row of each vertex form αk. The
indices in the bottom row form γk \ αk.

(by assumption), these complete subgraphs are the cliques in G. (In this paper, we
use the term clique for a maximal complete subgraph.)

The intersection graph has the index sets γk as its vertices and an edge between
distinct vertices i and j if the sets γi and γj intersect. We place a weight |γi ∩ γj |
on edge {i, j}. The intersection graph is therefore identical to the clique graph of the
sparsity graph G. (The clique graph of an undirected graph has the cliques of the
graph as its vertices and undirected edges between cliques that intersect, with edge
weights equal to the sizes of the intersection.) An example is shown in Figure 2.1.

2.3. Chordal structure. An undirected graph is chordal if for every cycle of
length greater than three there is a chord (an edge connecting non-consecutive vertices
in the cycle). If the sparsity graph representing a partially separable structure is
chordal (as will be the case in the application to semidefinite optimization discussed
in the second half of the paper), several additional useful properties hold.

A spanning tree of the intersection graph (or, more accurately, a spanning forest,
since we do not assume the intersection graph is connected) has the running intersec-
tion property if γi∩γj ⊆ γk whenever vertex γk is on the path between vertices γi and
γj in the tree. A fundamental theorem states that a spanning tree with the running
intersection property exists if and only if the corresponding sparsity graph is chordal
[8]. The right-hand figure in Figure 2.2 shows a spanning tree of the intersection
graph of l = 9 index sets γk with n = 17 variables. On the left-hand side we represent
the corresponding sparsity graph as a sparse matrix pattern (a dot in positions i, j
and j, i indicates an edge {i, j}). It can be verified that the tree satisfies the running
intersection property.

Now suppose we partition each index set γk in two sets αk and γk \αk, defined as
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follows. If γk is the root of the tree (or a root if it is a forest), then αk = ∅. For the
other vertices, αk = γk ∩ γpa(γk) where pa(γk) is the parent of γk in the tree. Then
the running intersection property has the important implication that the sets γk \αk

form a partition of {1, 2, . . . , n} [29, 34]. Figure 2.2 illustrates the definition of αk.
For more background on chordal graphs we refer the reader to survey paper [8].

3. Conic optimization with partially separable cones. We now consider a
pair of conic linear optimization problems

(3.1) minimize cTx
subject to Ax = b

x ∈ C

maximize bT y
subject to AT y + s = c

s ∈ C∗

with respect to a partially separable cone (2.1) and its dual (2.2). The variables are
x, s ∈ Rn, y ∈ Rm. In addition to the assumptions listed in section 2.1 we assume that
the sparsity graph associated with the index sets γk is chordal and that a maximum
weight spanning tree (or forest) T in the intersection graph is given. We refer to T as
the intersection tree and use the notation pa(γk) and ch(γk) for the parent and the
children of vertex γk in T .

3.1. Reformulation. The decomposition algorithm developed in the following
sections is based on a straightforward reformulation of the conic LPs (3.1). The primal
and dual cones can be expressed as C = {x | Ex ∈ C̃} and C∗ = {ET s̃ | s̃ ∈ C̃∗}, where
C̃ = C1 × · · · × Cl, C̃∗ = C∗

1 × · · · × C∗
l , and E is the ñ× n matrix

(3.2) E =
[
ET

γ1
ET

γ2
· · · ET

γl

]T

with ñ =
∑

k |γk|. Define V = Range(E). A change of variables x̃ = Ex, s = ET s̃
allows us to write the problems (3.1) equivalently as

(3.3) minimize c̃T x̃

subject to Ãx̃ = b
x̃ ∈ V
x̃ ∈ C̃

maximize bT y

subject to ÃT y + v + s̃ = c̃
v ∈ V⊥

s̃ ∈ C̃∗

with variables x̃ = (x̃1, . . . , x̃l) ∈ Rñ, y ∈ Rm, s̃ = (s̃1, . . . , s̃l) ∈ Rñ, and where Ã

and c̃ are chosen to satisfy ÃE =
∑l

k=1 ÃkEγk
= A and ET c̃ =

∑l
k=1 E

T
γk
c̃k = c.

Here Ãk and c̃k are blocks of size |γk| in the partitioned matrix and vector

(3.4) Ã =
[
Ã1 Ã2 · · · Ãl

]
, c̃T =

[
c̃T1 c̃T2 · · · c̃Tl

]
.

It is straightforward to find Ã and c̃ that satisfy these conditions. For example, one
can take Ã = AJ , c̃ = JT c with J equal to

(3.5) J =
[
Pγ1\α1

ET
γ1

Pγ2\α2
ET

γ2
· · · Pγl\αl

ET
γl

]

or any other left-inverse of E. However we will see later that other choices of Ã may
offer advantages.

The running intersection property of the intersection tree T can be used to derive
a simple representation of the subspaces V and V⊥. We first note that a vector
x̃ = (x̃1, . . . , x̃l) is in V if and only if

(3.6) Eαj
(ET

γj
x̃j − ET

γk
x̃k) = 0, k = 1, . . . , l, γj ∈ ch(γk).



6 YIFAN SUN, MARTIN S. ANDERSEN, AND LIEVEN VANDENBERGHE
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Fig. 3.1. Spanning tree in the intersection graph of Figure 2.1.

This can be seen as follows. Since αj = γj ∩ γpa(γj), the equalities (3.6) mean that

(3.7) Eγj∩γk
(ET

γj
x̃j − ET

γk
x̃k) = 0

for all γk and all γj ∈ ch(γk). This is sufficient to guarantee that (3.7) holds for
all j and k, because the running intersection property guarantees that if γj and γk
intersect then their intersection is included in every index set on the path between γj
and γk in the tree. The equations (3.6) therefore hold if and only if there is an x such
that x̃k = Eγk

x for k = 1, . . . , l, i.e., x̃ ∈ V. We will refer to the constraint x̃ ∈ V as
the consistency constraint in (3.3). It is needed to ensure that the variables x̃k can
be interpreted as copies x̃k = Eγk

x of overlapping subvectors of some x ∈ Rn.

3.2. Correlative sparsity. The reformulated problems generalize the clique-
tree conversion methods proposed for semidefinite programming in [25, 16]. These
conversion methods were proposed with the purpose of reformulating large, sparse
SDPs in an equivalent form that is easier to solve by interior-point methods. In this
section we discuss the benefits of the reformulation in the context of general conic
optimization problems with partially separable cones. The application to semidefinite
programming is discussed in the next section.

The reformulated problems (3.9) are of particular interest if the sparsity of the
matrix Ã implies that a matrix of the form

(3.8) ÃGÃT =

l∑

k=1

ÃkGkÃ
T
k ,

where G is block-diagonal, with arbitrary dense diagonal blocks Gk, is sparse. We
call the sparsity pattern of ÃGÃT the correlative sparsity pattern of the reformulated
problem (following the terminology of Kobayashi et al. [27]). The correlative sparsity
pattern can be determined as follows: the i, j entry of ÃGÃT is zero if there are no
block columns Ãk in which the ith and jth rows are both nonzero. The correlative
sparsity pattern depends on the choice of Ã as illustrated by the following example.

Consider a small conic LP with m = 4, n = 6, index sets γk used in Figure 2.1,
and a constraint matrix A with zeros in the following positions:

A =




A11 A12 0 0 0 A16

0 A22 0 0 A25 A26

0 0 0 A34 0 A36

0 0 A43 0 A45 0


 .

In other words, equality i in Ax = b involves only variables xk for k ∈ γi. The primal
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reformulated problem has a variable x̃ = (x̃1, x̃2, x̃3, x̃4) ∈ R3 ×R3 ×R2 ×R2. If we
use the intersection tree shown in Figure 3.1, the consistency constraints are

−x̃12 + x̃21 = 0, −x̃13 + x̃23 = 0, x̃23 − x̃32 = 0, −x̃22 + x̃42 = 0.

(x̃ij denotes the jth component of x̃i.) If we define Ã via (3.4) and (3.5), we obtain

Ã =




A11 0 0 A12 0 A16 0 0 0 0
0 0 0 A22 0 A26 0 0 0 A25

0 0 0 0 0 A36 A34 0 0 0
0 0 0 0 0 0 0 0 A43 A45


 .

With this choice the 4× 4 matrix (3.8) is dense, except for a zero in positions (4, 1),
(4, 3), (1, 4), (3, 4). On the other hand, if we choose

Ã =




A11 A12 A16 0 0 0 0 0 0 0
0 0 0 A22 A25 A26 0 0 0 0
0 0 0 0 0 0 A34 A36 0 0
0 0 0 0 0 0 0 0 A43 A45


 ,

then the correlative sparsity pattern is diagonal.

3.3. Interior-point methods. In this section we first compare the cost of
interior-point methods applied to the reformulated and the original problems, for
problems with correlative sparsity.

The reformulated primal and dual problems (3.3), written in standard form, are

(3.9) minimize c̃T x̃

subject to Ãx̃ = b, Bx̃ = 0

x̃ ∈ C̃,

maximize bT y

subject to ÃT y +BTu+ s̃ = c̃

s̃ ∈ C̃∗

where Bx̃ = 0 is the equation (3.6). An interior-point method applied to this pair of
primal and dual problems requires at each iteration the solution of a linear equation
(often called the Karush-Kuhn-Tucker (KKT) equation)

(3.10)




H ÃT BT

Ã 0 0
B 0 0






∆x̃
∆y
∆u


 =




dx̃
dy
du




where H = diag(H1, . . . , Hl) is a positive definite block-diagonal scaling matrix that
depends on the algorithm used, the cones Ck, and the current primal and dual iterates
in the algorithm. Here we will assume that the blocks of H are defined as Hk =
∇2φk(wk) where φk is a logarithmic barrier function for Ck and wk is some point in
int Ck. This assumption is sufficiently general to cover path-following methods based
on primal scaling, dual scaling, and the Nesterov-Todd primal-dual scaling. In most
implementations, the KKT equation is solved by eliminating ∆x̃ and solving

(3.11)

[
ÃH−1ÃT ÃH−1BT

BH−1ÃT BH−1BT

] [
∆y
∆u

]
=

[
ÃH−1dx̃ − dy
BH−1dx̃ − du

]
.

The coefficient matrix in (3.11) is called the Schur complement matrix. Note that the
1,1 block has the form (3.8), so its sparsity pattern is the correlative sparsity pattern.
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The 2,2 block BH−1BT on the other hand may be quite dense. The sparsity pattern of
the coefficient matrix of (3.11) must be compared with the Schur complement matrix
in an interior-point method applied to the original conic LPs (3.1). This matrix has
the same sparsity pattern as the system obtained by eliminating ∆u in (3.11), i.e.,

(3.12) Ã(H−1 −H−1BT (BH−1BT )−1BH−1)ÃT .

The matrix (3.12) is often dense (due to the BH−1BT term), even for problems with
correlative sparsity.

An interior-point method for the reformulated problem can exploit correlative
sparsity by solving (3.11) using a sparse Cholesky factorization method. If ÃH−1ÃT

is nonsingular, one can also explicitly eliminate ∆y and reduce it to a dense linear
equation in ∆u with coefficient matrix

B(H−1 −H−1ÃT (ÃH−1ÃT )−1ÃH−1)BT .

To form this matrix one can take advantage of correlative sparsity. (This is the
approach taken in [27].) Whichever method is used for solving (3.11), the advantage
of the enhanced sparsity resulting from the sparse 1,1 block ÃH−1ÃT must be weighed
against the increased size of the reformulated problem. This is especially important
for semidefinite programming, where the extra variables ∆u are vectorized matrices,
so the difference in size of the two Schur complement systems is very substantial.

3.4. Spingarn’s method. Motivated by the high cost of solving the KKT equa-
tions (3.11) of the converted problem we now examine the alternative of using a first-
order splitting method to exploit correlative sparsity. The converted primal prob-
lem (3.3) can be written as

(3.13)
minimize f(x̃) = c̃T x̃+ δ(Ãx̃− b) + δC̃(x̃)
subject to x̃ ∈ V

where δ and δC̃ are the indicator functions for {0} and C̃, respectively. Spingarn’s
method of partial inverses [37, 38] is a decomposition method for equality constrained
convex optimization problems of the form (3.13). The method is known to be equiva-
lent to the Douglas-Rachford splitting method applied to the problem of minimizing
the sum f(x̃)+δV(x̃) [15]. Starting at some z(0), the following three steps are repeated:

x̃(k) = proxf/σ(z
(k−1))(3.14)

w(k) = PV(2x̃
(k) − z(k−1))(3.15)

z(k) = z(k−1) + ρk(w
(k) − x̃(k)).(3.16)

The algorithm depends on two parameters: a positive constant σ (we will refer to 1/σ
as the steplength) and a relaxation parameter ρk, which can change at each iteration
but must remain in an interval (ρmin, ρmax) with 0 < ρmin < ρmax < 2. The operator
PV denotes Euclidean projection on V and proxf/σ is the proximal operator of f ,
defined as

proxf/σ(z) = argmin
x̃

(
f(x̃) +

σ

2
‖x̃− z‖22

)
.

It can be shown that if f is a closed convex function, then proxf/σ(z) exists and is
unique for all z [31, 7]. (A sufficient condition for closedness of the function f defined
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in (3.13) is that there exists an x̃ ∈ C̃ with Ãx̃ = b; see [36, theorem 9.3].) More details
on the Douglas-Rachford method and its applications can be found in [14, 12, 7, 33].

The three steps in the Spingarn iteration can be combined in a single update

(3.17) z(k) = z(k−1) − ρkG(z(k−1))

with the operator G defined as G(z) = proxf/σ(z)−PV(2proxf/σ(z)− z). For ρk = 1
this is a fixed-point iteration for solving G(z) = 0; for other values of ρk it is a
fixed-point iteration with relaxation (underrelaxation for ρk < 1, overrelaxation for
ρk > 1). Zeros of G are related to the solutions of (3.13) as follows. If G(z) = 0 then
x̃ = proxf/σ(z) and v = σ(z − x̃) satisfy the optimality conditions for (3.13), i.e.,

(3.18) x̃ ∈ V, v ∈ V⊥, v ∈ ∂f(x̃),

where ∂f(x̃) is the subdifferential of f at x̃. Conversely, if x̃, v satisfy these optimality
conditions, then z = x̃ + (1/σ)v is a zero of G. To see this, first assume G(z) = 0
and define x̃ = proxf/σ(z), v = σ(z − x̃). By definition of the prox-operator, v ∈
∂f(x̃). Moreover, G(z) = 0 gives x̃ = PV(x̃) − (1/σ)PV(v). Therefore x̃ ∈ V and
v ∈ V⊥. Conversely suppose x̃, v satisfy the optimality conditions (3.18). Define
z = x̃+ (1/σ)v. Then it can be verified that x̃ = proxf/σ(z) and G(z) = x̃− PV(x̃−
(1/σ)v) = 0.

From step 1 in the algorithm and the definition of the proximal operator we
see that the vector v(k) = σ(z(k−1) − x̃(k)) satisfies v(k) ∈ ∂f(x̃(k)). If we define

r
(k)
p = PV(x̃

(k))− x̃(k) and r
(k)
d = −PV(v

(k)) then

(3.19) x̃(k) + r(k)p ∈ V, v(k) + r
(k)
d ∈ V⊥, v(k) ∈ ∂f(x̃(k)).

The vectors r
(k)
p and r

(k)
d can be interpreted as primal and dual residuals in the

optimality conditions (3.18), evaluated at the approximate primal and dual solution
x̃(k), v(k). A simple stopping criterion is therefore to terminate when

(3.20)
‖r(k)p ‖2

max{1.0, ‖x̃(k)‖2}
≤ ǫp and

‖r(k)d ‖2
max{1.0, ‖v(k)‖2}

≤ ǫd

for some relative tolerances ǫp and ǫd.
In the standard convergence analysis of the Douglas-Rachford algorithm the pa-

rameter σ is assumed to be an arbitrary positive constant [15]. However the efficiency
in practice is greatly influenced by the steplength choice and several strategies have
been proposed for varying σ during the algorithm [22, 9]. As a guideline, it is often
observed that the convergence is slow if one of the two residuals decreases much more
rapidly than the other, and that adjusting σ can help control the balance between the
primal and dual residuals. A simple strategy is to take

(3.21) σk+1 = σkτk if tk > µ, σk+1 = σk/τk if tk < 1/µ, σk+1 = σk otherwise,

where tk = (‖r(k)p ‖2/‖x̃(k)‖2)(‖r(k)d ‖2)/‖v(k)‖2)−1 is the ratio of relative primal and
dual residuals, and τk and µ are parameters greater than one.

Projection. In our application, V = Range(E) with E defined in (3.2), and the
Euclidean projection PV(x̃) is easy to compute. For each i ∈ {1, 2, . . . , n}, define
M(i) = {k | i ∈ γk}. The vertices of T indexed by M(i) define a subtree (this is a
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consequence of the running intersection property). The projection of x̃ on V is the
vector PV(x̃) = (Eγ1

(x̄), Eγ2
(x̄), . . . , Eγl

(x̄)) where x̄ is the n-vector with components

x̄i =
(
∑

k∈M(i) E
T
γk
x̃k)i

|M(i)| , i = 1 . . . , n.

In other words, component i of x̄ is a simple average of the corresponding components
of x̃k, for the sets γk that contain i.

Proximal operator. The value x̃ = proxf/σ(z) of the prox-operator of the func-
tion f in (3.13) is the primal solution in the pair of conic quadratic optimization
problems (conic QPs)

(3.22) min. c̃T x̃+
σ

2
‖x̃− z‖22

s.t. Ãx̃ = b, x̃ ∈ C̃
max. bT y − 1

2σ
‖c̃− ÃT y − σz − s̃‖22

s.t. s̃ ∈ C̃∗

with primal variables x̃ and dual variables y, s̃. Equivalently, x̃, y, s̃ satisfy

(3.23) Ãx̃ = b, ÃT y + s̃+ σ(z − x̃) = c̃, x̃ ∈ C̃, s̃ ∈ C̃∗, x̃T s̃ = 0.

We will assume that the prox-operator of f is computed exactly, i.e., we do not
explore the possibility of speeding up the algorithm by using inexact prox-evaluations.
This is justified if an interior-point method is used for solving (3.22), since interior-
point methods achieve a high accuracy and offer only a modest gain in efficiency if
solutions with low accuracy are acceptable. Using the optimality conditions (3.23)
that characterize x̃(k) = proxf/σ(z

(k−1)) we can then be more specific about the

accuracy of x̃(k) as an approximate solution of the conic LPs (3.3). By solving the
primal and dual conic QPs we find x̃(k), y(k), s̃(k) that satisfy x̃(k) ∈ C̃, s̃(k) ∈ C̃∗, and

(3.24) Ãx̃(k) = b, ÃT y(k) + s̃(k) + v(k) = c̃, (x̃(k))T s̃(k) = 0

where v(k) = σ(z(k−1)−x̃(k)). These are exactly the primal-dual optimality conditions
for the conic LPs (3.3), except for the constraints involving V and V⊥. The primal

and dual residuals r
(k)
p = PV(x̃

(k))− x̃(k) and r
(k)
d = −PV(v

(k)) measure the deviation
of x̃(k) from V and of ṽ(k) from V⊥.

We now comment on the cost of evaluating the prox-operator by solving the conic
QPs (3.22). An interior-point method applied to this problem requires the solution
of KKT systems of the form

[
σI +H ÃT

Ã 0

] [
∆x̃
∆y

]
=

[
dx̃
dy

]

whereH is a block-diagonal positive definite scaling matrix. As before, we assume that
the diagonal blocks of H are of the form Hk = ∇2φk(wk) where φk is a logarithmic
barrier of Ck. The cost per iteration of evaluating the proximal operator is dominated
by the cost of assembling the coefficient matrix

(3.25) Ã(σI +H)−1ÃT =

l∑

k=1

Ãk(σI +Hk)
−1ÃT

k

in the Schur complement equation Ã(σI+H)−1ÃT∆y = Ã(σI+H)−1dx−dy and the
cost of solving the Schur complement system. For many types of conic LPs the extra



DECOMPOSITION IN CONIC OPTIMIZATION 11

term σI in (3.25) can be handled by simple changes in the interior-point algorithm.
This is true in particular when Hk is diagonal or diagonal-plus-low-rank, as is the case
when Ck is a nonnegative orthant or second-order cone. For positive semidefinite cones
the modifications are more involved and will be discussed in section 5.2. In general, it
is therefore fair to assume that in most applications the cost of assembling the Schur
complement matrix in (3.25) is roughly the same as the cost of computing ÃTH−1ÃT .
Since the Schur complement matrix in (3.25) is sparse (under the assumption of
correlative sparsity), it can be factored at a smaller cost than its counterpart (3.11)
for the reformulated conic LPs. Depending on the level of correlative sparsity, one
evaluation of the proximal operator via an interior-point method can be substantially
less expensive than solving the reformulated problems by an interior-point method.

4. Sparse semidefinite optimization. In the rest of the paper we discuss the
application to sparse semidefinite optimization. We first explain why sparse SDPs with
a chordal sparsity pattern can be viewed as examples of partially separable structure.
In section 5 we then apply the decomposition method described in section 3.4.

We formally define a symmetric sparsity pattern of order p as a set of index pairs
V ⊆ {1, 2, . . . , p}×{1, 2, . . . , p} with the property that (i, j) ∈ V whenever (j, i) ∈ V .
We say a symmetric matrix X of order p has sparsity pattern V if Xij = 0 when
(i, j) 6∈ V . The entries Xij for (i, j) ∈ V are referred to as the nonzero entries of X,
even though they may be numerically zero. The set of symmetric matrices of order p
with sparsity pattern V is denoted S

p
V .

4.1. Nonsymmetric formulation. Consider a semidefinite program (SDP) in
the standard form and its dual:

(4.1) min. tr(CX)
s.t. tr(FiX) = bi, i = 1, . . . ,m

X � 0

max. bT y

s.t.
m∑
i=1

yiFi + S = C

S � 0.

The primal variable is a symmetric matrix X ∈ Sp; the dual variables are y ∈ Rm and
the slack matrix S ∈ Sp. The problem data are the vector b ∈ Rm and the matrices
C, Fi ∈ Sp. The aggregate sparsity pattern is the union of the sparsity patterns of C,
F1, . . . , Fm. If V is the aggregate sparsity pattern, then we can take C, Fi ∈ S

p
V . The

dual variable S is then necessarily sparse at any dual feasible point, with the same
sparsity pattern V . The primal variable X, on the other hand, is dense in general,
but one can note that the cost function and the equality constraints only depend on
the entries of X in the positions of the nonzeros of the sparsity pattern V . The other
entries of X are arbitrary, as long as the matrix is positive semidefinite. The primal
and dual problems can therefore be viewed alternatively as conic linear optimization
problems with respect to a pair of non-self-dual cones:

(4.2) min. tr(CX)
s.t. tr(FiX) = bi, i = 1, . . . ,m

X ∈ S
p
V,c

max. bT y

s.t.
m∑
i=1

yiFi + S = C

S ∈ S
p
V,+.

Here the variables X and S, as well as the coefficient matrices C, Fi, are matrices in
S
p
V . The primal cone Sp

V,c is the set of matrices in S
p
V that have a positive semidefinite

completion, i.e., the projection of the cone of positive semidefinite matrices of order p
on the subspace S

p
V . We will refer to S

p
V,c as the sparse p.s.d.-completable cone. The
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dual cone S
p
V,+ is the set of positive semidefinite matrices in S

p
V , i.e., the intersection

of the cone of positive semidefinite matrices of order p with the subspace S
p
V . This

cone will be referred to as the sparse p.s.d. cone. It can be shown that the two cones
form a dual pair of proper convex cones, provided the nonzero positions in the sparsity
pattern V include the diagonal entries.

It is often convenient to use vector notation for the matrix variables in (4.2).
For this purpose we introduce an operator x = vecV (X) that maps the lower-
triangular nonzeros of a matrix X ∈ S

p
V to a vector x of length n = (|V | + p)/2,

using a format that preserves inner products, i.e., tr(XY ) = vecV (X)TvecV (Y )
for all X, Y . For example, one can copy the nonzero lower-triangular entries of
X in column-major order to x, scaling the strictly lower-triangular entries by

√
2.

A similar notation x = vec(X) (without subscript) will be used for a packed vec-
tor representation of a dense matrix: if X ∈ Sp, then x = vec(X) is a vector
of length p(p + 1)/2 containing the lower-triangular entries of X in a storage for-
mat that preserves the inner products. Using this notation, the matrix cones S

p
V,c

and S
p
V,+ can be ‘vectorized’ to define two cones C = {vecV (X) | X ∈ S

p
V,c} and

C∗ = {vecV (S) | S ∈ S
p
V,+}. These cones form a dual pair of proper convex cones in

Rn with n = (|V | + p)/2. The conic linear optimization problems (4.2) can then be
written as (3.1) with variables x = vecV (X), s = vecV (S), y, and problem parame-

ters c = vecV (C), A =
[
vecV (F1) vecV (F2) · · · vecV (Fm)

]T
.

4.2. Clique decomposition of chordal sparse matrix cones. The nonsym-
metric conic optimization or matrix completion approach to sparse semidefinite pro-
gramming, based on the formulation (4.2), was proposed by Fukuda et al. [16] and
further developed in [32, 10, 39, 4, 25]. The various techniques described in these
papers assume that the sparsity pattern V is chordal. In this section we review some
key results concerning positive semidefinite matrices with chordal sparsity.

With each sparsity pattern V one associates an undirected graph GV with p
vertices and edges {i, j} between pairs of vertices (i, j) ∈ V with i > j. A clique in
GV is a maximal complete subgraph, i.e., a maximal set β ⊆ {1, 2, . . . , p} such that
β × β ⊆ V . Each clique defines a maximal dense principal submatrix in any matrix
with sparsity pattern V . If the cliques in the graph GV are βk, k = 1, . . . , l, then the
sparsity pattern V can be expressed as V =

⋃
k=1,...,l βk × βk. A sparsity pattern V

is called chordal if the graph GV is chordal.
In the remainder of the paper we assume that V is a chordal sparsity pattern

that contains all the diagonal entries ((i, i) ∈ V for i = 1, . . . , p). We denote by βk,
k = 1, . . . , l, the cliques of GV and define Vk = βk × βk. We will use two classical
theorems that characterize the cones Sp

V,c and S
p
V,+ for chordal patterns V . The first

theorem [20, theorem 4] [1, theorem 2.3] [24, theorem 1] states that the sparse p.s.d.
cone S

p
V,+ is a sum of positive semidefinite cones with simple sparsity patterns:

(4.3) S
p
V,+ =

l∑

k=1

S
p
Vk,+

= {
l∑

k=1

E∗
βk
(S̃k) | S̃k ∈ S

|βk|
+ }

where S
|βk|
+ is the positive semidefinite cone of order |βk|. The operator E∗

βk
copies a

dense matrix of order |βk| to the principal submatrix indexed by βk in a symmetric
matrix of order p; see section 1. According to the decomposition result (4.3), every
positive semidefinite matrix X with sparsity pattern V can be decomposed as a sum
of positive semidefinite matrices, each with a sparsity pattern consisting of a single
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principal dense block Vk = βk × βk. If X is positive definite, a decomposition of this
form is easily calculated via a zero-fill Cholesky factorization.

The second theorem characterizes the p.s.d.-completable cone Sp
V,c [21, theorem 7]:

(4.4) S
p
V,c = {X ∈ S

p
V | Eβk

(X) ∈ S
|βk|
+ , k = 1, . . . , l}.

The operator Eβk
extracts from its argument the dense principal submatrix indexed

by βk. (This is the adjoint operation of E∗
βk
; see section 1.) In other words, a matrix in

S
p
V has a positive semidefinite completion if and only if all its maximal dense principal

submatrices Xβkβk
are positive semidefinite. This result can be derived from (4.3)

and the duality of the cones Sp
V,c and S

p
V,+; see [24, corollary 2].

We now express the clique decomposition formulas (4.3) and (4.4) in vector no-
tation. For each clique βk, define an index set γk ⊆ {1, 2, . . . , n} via the identity

(4.5) Eγk
vecV (Z) = vec(Zβkβk

) ∀Z ∈ S
p
V .

The index set γk has length |γk| = |βk|(|βk| + 1)/2 and its elements indicate the
positions of the entries of the βk×βk submatrix of Z in the vectorized matrix vecV (Z).
Using this notation, the cone C can be expressed as (2.1) where Ck = {vec(W ) | W ∈
S
|βk|
+ } is the vectorized dense positive semidefinite matrix cone of order |βk|. The

clique decomposition (4.4) of the p.s.d. cone can be expressed in vector notation
as (2.2). (Note that Ck is self-dual, so here Ck = C∗

k .) The decomposition result (4.4)
shows that the p.s.d.-completable cone associated with a chordal sparsity pattern V
is partially separable. We also note that the assumptions in section 2 are satisfied
for this choice of index sets γk and cones Ck. (The third assumption holds with
x̄ = vecV (I) because the sparsity pattern V includes the diagonal entries.)

The cliques βk of V can be arranged in a clique tree that satisfies the running
intersection property (βi ∩ βj ⊆ βk if clique k is on the path between cliques βi and
βj in the tree); see [8]. We denote by ηk the intersection of the clique βk with its
parent in the clique tree. Since there is a one-to-one relation between the index sets
γk defined in (4.5) and the cliques βk of GV , we can identify the clique graph of GV

(which has vertices βk) with the intersection graph for the index sets γk. Similarly,
we do not have to distinguish between a clique tree T for GV and a spanning tree
with the running intersection property in the intersection graph of the sets γk. The
sets αk = γk ∩ pa(γk) are in a one-to-one relation to the sets ηk = βk ∩ pa(βk) via the
identity Eαk

(vecV (Z)) = vec(Zηkηk
) for arbitrary Z ∈ S

p
V .

Figure 4.1 illustrates this notation. The cliques are β1 = {1, 2, 3}, β2 = {2, 3, 4},
β3 = {3, 4, 5}. If we use the column-major order for the nonzero entries in the
vectorized matrix, the cliques correspond to the index sets γ1 = {1, 2, 3, 4, 5, 7}, γ2 =
{4, 5, 6, 7, 8, 10}, γ3 = {7, 8, 9, 10, 11, 12}. The sets ηk = βk ∩ pa(βk) and αk = γk ∩
pa(γk) are η1 = {2, 3}, η2 = {3, 4}, η3 = {}, α1 = {4, 5, 7}, α2 = {7, 8, 10}, α3 = {}.

5. Decomposition in semidefinite programming. We now work out the de-
tails of the decomposition method when applied to sparse semidefinite programming.
In particular, we describe an efficient method for solving the quadratic conic opti-
mization problem (3.22), needed for the evaluation of the proximal operator, when
the cone C̃ is a product of positive semidefinite matrix cones.
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Fig. 4.1. A 5 × 5 chordal pattern with 12 nonzero entries in the lower triangular part. The
numbers in the matrix are the indices of the entries in the vectorized matrix. The center shows a
clique tree. The right-hand part shows the corresponding spanning tree in the intersection graph.

5.1. Converted problems. We first express the reformulated problems (3.3)
and (3.9) for SDPs in matrix notation. The reformulated primal problem is

(5.1)

minimize
l∑

k=1

tr(C̃kX̃k)

subject to
l∑

k=1

tr(F̃ikX̃k) = bi, i = 1, . . . ,m

Eηj
(E∗

βk
(X̃k)− E∗

βj
(X̃j)) = 0, k = 1, . . . , l, βj ∈ ch(βk)

X̃k � 0, k = 1, . . . , l

with variables X̃k ∈ S|βk|, k = 1, . . . , l. The coefficient matrices C̃k and F̃ik are
chosen so that tr(CZ) =

∑l
k=1 tr(C̃kZβkβk

) and tr(FiZ) =
∑l

k=1 tr(F̃ikZβkβk
) for

all Z ∈ S
p
V . One possible choice is C̃k = Eβk

(C−Pηk
(C)) and F̃ik = Eβk

(Fi−Pηk
(Fi)).

The variables X̃k in (5.1) are interpreted as copies of the dense submatrices Xβkβk
.

The second set of equality constraints in (5.1) are the consistency constraints that
ensure that the entries of X̃k agree when they refer to the same entry of X.

The converted dual problem is

(5.2)

max. bT y

s.t.
m∑
i=1

yiF̃ik + Eβk
(E∗

ηk
(Uk)−

∑
βj∈ch(βk)

E∗
ηj
(Uj)) + S̃k = C̃k, k = 1, . . . , l

S̃k � 0, k = 1, . . . , l,

with variables y, S̃k ∈ S|βk|, and Uk ∈ S|ηk|, k = 1, . . . , l. The reformulations (5.1)
and (5.2) also follow from the clique-tree conversion methods proposed in [25, 16].

5.2. Proximal operator. In the clique-tree conversion methods of [32, 25] the
converted SDP (5.1) is solved by an interior-point method. A limitation to this
approach is the large number of equality constraints added in the primal problem or,
equivalently, the large dimension of the auxiliary variables Uk in the dual problem. In
section 3.4 we proposed an operator-splitting method to address this problem. The
key step in each iteration of the splitting method is the evaluation of a proximal
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operator, by solving the quadratic conic optimization problem (QP)

(5.3)

minimize
l∑

k=1

tr(C̃kX̃k) + (σ/2)
l∑

k=1

‖X̃k − Zk‖2F

subject to
l∑

k=1

tr(F̃ikX̃k) = bi, i = 1, . . . ,m

X̃k � 0, k = 1, . . . , l.

Solving this problem by a general-purpose solver can be quite expensive and most
solvers require a reformulation to remove the quadratic term in the objective by
adding second-order cone constraints. However the problem can be solved efficiently
via a customized interior-point solver, as we now describe. A similar technique was
used for handling variable bounds in SDPs in [3, 41].

The Newton equation or KKT system that must be solved in each iteration of an
interior-point method for the conic QP (5.3) has the form

σ∆X̃k +Wk∆X̃kWk +

m∑

i=1

∆yiF̃ik = Dk, k = 1, . . . , l(5.4)

l∑

k=1

tr(F̃ik ∆X̃k) = di, i = 1, . . . ,m,(5.5)

with variables ∆X̃k, ∆y, where Wk is a positive definite scaling matrix. The first
term σ∆X̃k results from the quadratic term in the objective. Without this term it
is straightforward to eliminate the variable ∆X̃k from the first equation, to obtain
an equation in the variable ∆y. To achieve the same goal at a similar cost with a
customized solver we first compute eigenvalue decompositions Wk = Qk diag(λk)Q

T
k

of the scaling matrices, and define l matrices Γk ∈ S|βk| with entries (Γk)ij = 1/(σ +

λkiλkj) for i, j = 1, . . . , |βk|. We can now use (5.4) to express ∆X̃k in terms of ∆y

as ∆X̃k = Qk (Γk ◦ (D̂k −∑m
i=1 ∆yiF̂ik))Q

T
k with D̂k = QT

kDkQk, F̂ik = QT
k F̃ikQk,

and where ◦ denotes the Hadamard (component-wise) product. Substituting the
expression for ∆X̃k in (5.5) gives an equation H∆y = g of order m, with

(5.6) Hij =

l∑

k=1

tr(F̂ik(Γk ◦ F̂jk)), gi = −di +

l∑

k=1

tr(F̂ik(Γk ◦Dk)).

The cost of this solution method for the KKT system (5.4)–(5.5) is comparable to
the cost of solving the KKT systems in an interior-point method applied to the conic
optimization problem (5.3) without the quadratic term. The proximal operator can
therefore be evaluated at roughly the same cost as the cost of solving the converted
SDP (5.1) with the consistency constraints removed.

To illustrate the value of this technique, we compare in Figure 5.1 the time needed
to solve the semidefinite QP (5.3) using several methods: the general-purpose conic
solver SDPT3 for MATLAB, called directly or via CVX (version 2.0 beta) [18, 17],
and an implementation of the algorithm described above in CVXOPT [2, 3]. The
problems are dense and randomly generated with l = 1, m = p = |β1|, and σ = 1.
The figure shows CPU time versus the order p of the matrix variable, computed on
an Intel Xeon CPU E3-1225 processor with 4 cores, 3.10 GHz clock speed, and 32 GB
RAM. For the fast prox implementation, CPU time is measured using the Python
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Fig. 5.1. Time required for a single proximal operator evaluation (5.3) on a dense subproblem
with one clique (l = 1) of size p = |β1| and m = p constraints (averaged over 10 trials). The
CPU time of the general-purpose solver SDPT3, called directly or via CVX, is compared against a
customized fast proximal operator.

module psutils (available at code.google.com/p/psutil). For CVX and SDPT3, we
used the CPU times reported by the solver.

The fast algorithm uses the cone QP solver in CVXOPT with the default termi-
nation criteria. In the CVX code the function sum_square() was used to represent
the quadratic term in the objective. The three SDPT3 curves correspond to different
ways of converting the problem to a conic LP using the equivalence

uTu ≤ v ⇐⇒
∥∥∥∥
[

2u
v − 1

]∥∥∥∥
2

≤ v + 1.

In the first formulation (‘SDPT3 1’) we replace the squared norm in the objective
with a variable w and add the constraint ‖X̃ − Z‖2F ≤ w via a single second-order
cone constraint of order p(p + 1)/2 + 1. In the second formulation (‘SDPT3 2’),
we replace the quadratic term with a sum of p(p + 1)/2 auxiliary variables wij , for
1 ≤ i ≤ j ≤ p, and add p(p + 1)/2 second-order cone constraints of dimension two
to express (X̃ij − Zij)

2 ≤ wij . In the third formulation (‘SDPT3 3’) we replace
the quadratic term with the sum of p variables wi, subject to the constraint that
wi is an upper bound on the Euclidean norm of the lower-triangular part of the ith
column of X̃ − Z. As can be seen, the choice between the conic LP reformulations
has an effect on the efficiency of a general-purpose solver. However the experiment
also confirms that the fast proximal operator evaluation is orders of magnitude faster
than general-purpose solvers applied to equivalent conic LPs.

5.3. Correlative sparsity. The efficiency of the decomposition method depends
crucially on the cost of the proximal operator evaluations, which is determined by the
sparsity pattern of the Schur complement matrix H (5.6), i.e., the correlative sparsity

pattern of the reformulated problems. Note that in general the scaled matrices F̂ik

used to assemble H will be either completely dense (if F̃ik 6= 0) or zero (if F̃ik = 0).
Therefore Hij = 0 if for each k at least one of the coefficient matrices F̃ik and F̃jk is
zero. This rule characterizes the correlative sparsity pattern.

As pointed out in section 3.2, the correlative sparsity can be enhanced by ex-
ploiting the flexibility in the choice of parameters of the reformulated problem (the
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matrices F̃ik). While the optimal choice is not clear in general, it is straightforward
in the important special case when the index set {1, . . . ,m} can be partitioned in l
sets ν1, . . . , νl, with the property that if i ∈ νj , then all the nonzero entries of Fi

belong to the principal submatrix (Fi)βjβj
. In other words Fi = Pβj

(Fi) for i ∈ νj .

In this case, a valid choice for the coefficient matrices F̃ik is to take F̃ij = Eβj
(Fi) and

F̃ik = 0 (k 6= j) when i ∈ νj . With this choice, the matrix H can be re-ordered to
be block-diagonal with dense blocks Hνiνi

. Moreover the QP (5.3) is separable and
equivalent to l independent problems

minimize tr(C̃kX̃k) + (σ/2)‖X̃k − Zk‖2F
subject to tr(F̃ikX̃k) = bi, i ∈ νk

X̃k � 0.

6. Numerical examples. In this section we present the results of numerical
experiments with the decomposition method applied to semidefinite programs. First,
we apply the decomposition method to an approximate Euclidean distance matrix
completion problem, motivated by an application in sensor network node localization,
and illustrate the convergence behavior of the method in practice. The problem in-
volves a sparse matrix variable whose sparsity pattern is characterized by the sensor
network topology, and is interesting because in the converted form the problem has
block-diagonal correlative sparsity regardless of the network topology. In the second
experiment, we present results for a family of problems with block-arrow aggregate
sparsity and block-diagonal correlative sparsity. By comparing the CPU times re-
quired by general-purpose interior-point methods and the decomposition method, we
are able to characterize the regime in which each method is more efficient.

The decomposition method is implemented in Python (version 2.6.5), using the
conic QP solver of CVXOPT (version 1.1.5) for solving the conic QPs (5.3) in the
evaluation of the proximal operators. SEDUMI (version 1.1) [40] and SDPT3 (ver-
sion 4.0) in MATLAB (version 2011b) are used as the general-purpose solver for the
experiments in sections 6.2 and 6.1. The experiments are performed on an Intel Xeon
CPU E3-1225 processor (4 cores, 3.10 GHz clock) and 8 GB RAM, running Ubuntu.

In Spingarn’s method we use the stopping condition (3.20). The terms ‘relative
primal and dual residuals’ will refer to the left-hand sides in these inequalities. As
argued in section 3.4 these residuals determine the error after k iterations of the
Spingarn algorithm, if we assume the error in the prox-operators is negligible.

6.1. Approximate Euclidean distance matrix completion. A Euclidean
distance matrix (EDM) D is a matrix with entries that can be expressed as squared
pairwise distances Dij = ‖xi − xj‖22 for some set of vectors xk. In this section, we

consider the problem of fitting a Euclidean distance matrix to measurements D̂ij of a
subset of its entries. This and related problems arise in many applications, including,
for example, the sensor network node localization problem [11, 26].

Expanding the identity in the definition of Euclidean distance matrix, Dij =
xT
i xi − 2xT

i xj + xT
j xj , shows that a matrix D is a Euclidean distance matrix if and

only if Dij = Xii − 2Xij + Xjj for a positive semidefinite matrix X (the Gram
matrix with entries Xij = xT

i xj). Furthermore, since D only depends on the pairwise
distances of the configuration points, we can arbitrarily place one of the points at the
origin or, equivalently, set one row and column of X to zero. This gives an equivalent
characterization: D is a (p + 1) × (p + 1) Euclidean distance matrix if and only if
there exists a positive semidefinite matrix X ∈ Sp such that Dij = tr(FijX) for
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1 ≤ i < j ≤ p+1 where Fij = (ei − ej)(ei − ej)
T for 1 ≤ i < j ≤ p and Fij = eie

T
i for

1 ≤ i < j = p+ 1. Here ei denotes the ith unit vector in Rp.
In the EDM approximation problem we are given a set of measurements D̂ij for

entries (i, j) ∈ W where W ⊆ {(i, j) | 1 ≤ i < j ≤ p + 1}. The problem of fitting a
Euclidean distance matrix to the measurements can be posed as

(6.1)
minimize

∑
(i,j)∈W

| tr(FijX)− D̂ij |

subject to X � 0,

with variable X ∈ Sp. (We choose the ℓ1-norm to measure the quality of the fit simply
because the problem is more easily expressed as a conic LP.) Now let V be a chordal
sparsity pattern of order p that includes the aggregate sparsity pattern of the matrices
Fij . In other words, if (i, j) ∈ W with 1 ≤ i < j ≤ p, then (i, j) is a nonzero in V .
Moreover V is chordal and includes all the diagonal entries in its nonzeros. Such a
pattern V is called a chordal embedding of W . Then, without loss of generality, we
can restrict the variable X to be a matrix in S

p
V and we obtain the equivalent problem

(6.2)
minimize

∑
(i,j)∈W

| tr(FijX)− D̂ij |

subject to X ∈ S
p
V,c.

This problem is readily converted into a standard conic LP of the form (4.2), which
can then be solved using the method of section 5. An interesting feature of this
application is that the correlative sparsity in the converted problem is block-diagonal.

The conversion method and the block-diagonal correlative sparsity can also be
explained directly in terms of the problem (6.2). Suppose V has l cliques βk, k =
1, . . . , l. Suppose we partition the set W into l sets Wk with the property that if
(i, j) ∈ Wk and 1 ≤ i < j ≤ p, then i, j ∈ βk, and if (i, p + 1) ∈ Wk, then i ∈ βk.
Then (6.2) is equivalent to

(6.3)

minimize
l∑

k=1

∑
(i,j)∈Wk

| tr(FijE∗
βk
(X̃k))− D̂ij |

subject to Eηj
(E∗

βk
(X̃k)− E∗

βj
(X̃j)) = 0, k = 1, . . . , l, βj ∈ ch(βk)

X̃k � 0, k = 1, . . . , l,

with variables X̃k ∈ S|βk|, k = 1, . . . , l. This problem can be solved using Spingarn’s
method. At each iteration we alternate between projection on the subspace defined
by the consistency equations in (6.3) and evaluation of a prox-operator, by solving

(6.4)
minimize

l∑
k=1

∑
(i,j)∈Wk

| tr(FijE∗
βk
(X̃k))− D̂ij |+ (σ/2)

l∑
k=1

‖X̃k − Zk‖2F

subject to X̃k � 0, k = 1, . . . , l.

This problem is separable because if (i, j) ∈ Wk, Fij is nonzero only in positions
that are included in βk × βk. The problems (6.4) can be solved efficiently via a
straightforward modification of the interior-point method described in section 5.2.

We now illustrate the convergence of the decomposition method on two randomly
generated networks. The nodes in the network are placed randomly using a uniform
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Fig. 6.1. Sparsity pattern for a network with 500 nodes after AMD reordering and chordal
embedding (left), and after clique merging (right). Before clique merging, there are 359 cliques with
an average of 5 elements. After clique merging, there are 79 cliques with an average of 10 elements.
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Fig. 6.2. Relative primal and dual residuals versus iteration number for networks with 500
(left) and 2000 (right) nodes. For n = 500, there are 82 cliques, and for n = 2000, there are 310
cliques. A constant steplength parameter σk = 5 and relaxation parameter ρk = 1 are used.

distribution on [0, 1]2. The edges are assigned using the following rule: a pair (i, j)
is in the sparsity pattern W if one of the nodes is among the five nearest neighbors
of the other node. To compute a chordal embedding V , we use an approximate
minimum degree (AMD) reordering (Figure 6.1, left). Often, the resulting embedding
contains many small cliques and it is more efficient to merge some neighboring cliques,
using algorithms similar to those in [6, 35, 23]. Specifically, traversing the tree in a
topological order, we greedily merge clique k with its parent if (|βpa(k)| − |ηk|)(|βk| −
|ηk|) ≤ tfill or max(|βk| − |ηk|, |βpa(k)| − |ηpa(k)|) ≤ tsize where tfill is a threshold based
on the amount of fill that results from merging clique k with its parent, and tsize is a
threshold based on the cardinality of the sets βpa(k) \ ηpa(k) and βk \ ηk. In Figure 6.1
(right) we show the result of this technique using the values tfill = tsize = 5.

A typical convergence plot of the resulting problem is given in Figure 6.2 for a
network with 500 nodes (left) and 2000 nodes (right). A constant steplength param-
eter σk = 5 and relaxation parameter ρk = 1 are used. The greedy clique merging
strategy described above was used, with the same threshold values.

6.2. Block-arrow semidefinite programs. In the second experiment we com-
pare the efficiency of the splitting method with general-purpose SDP solvers. We
consider a family of randomly generated SDPs with a block-arrow aggregate sparsity
pattern V and a block-diagonal correlative sparsity pattern. The sparsity pattern V
is defined in Figure 6.3. It consists of l diagonal blocks of size d×d, plus w dense final
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Fig. 6.3. Block arrow pattern with l cliques and corresponding clique tree. The order of the
matrix is ld + w. The first l diagonal blocks in the matrix have size d, the last block column and
block row have width w. The cliques therefore have size d + w. Each clique in the clique tree is
partitioned in two sets: the top row shows ηk = βk ∩ pa(βk); the bottom row shows βk \ ηk.

rows and columns. We generate matrix cone LPs (4.2) with m = ls primal equality
constraints, partitioned in l sets νk = {(k−1)s+1, (k−1)s+2, . . . , ks}, k = 1, . . . , l,
of equal size |νk| = s. If i ∈ νk, then the coefficient matrix Fi contains a dense βk×βk

block, and is otherwise zero. We will use the notation

(Fi)βkβk
=

[
Ai Bi

BT
i Di

]
,

for the nonzero block of Fi if i ∈ νk. The primal and dual SDPs can be written as

(6.5) minimize tr(CX)
subject to A(X) = b

X � 0

maximize bT y
subject to A∗(y) + S = C

S � 0

with a linear mapping A : S(ld+w)×(ld+w) → Rls defined as

A(X)i = tr

([
Ai Bi

BT
i Di

] [
Xkk Xk,l+1

Xl+1,k Xl+1,l+1

])
, i ∈ νk, k = 1, . . . , l,

where Xij is the i, j block of X. (The dimensions are: Xl+1,l+1 ∈ Sw, Xl+1,i ∈ Rw×d,

and Xii ∈ Sd for i = 1, . . . , l.) The adjoint A∗ maps a vector y ∈ Rls to the matrix

A∗(y) =




∑
i∈ν1

yiAi 0 · · · 0
∑
i∈ν1

yiBi

0
∑
i∈ν2

yiAi · · · 0
∑
i∈ν2

yiBi

...
...

. . .
...

...
0 0 · · · ∑

i∈νl

yiAi

∑
i∈νl

yiBi

∑
i∈ν1

yiB
T
i

∑
i∈ν2

yiB
T
i · · · ∑

i∈νl

yiB
T
i

m∑
i=1

yiDi




.

In the reformulated problem, the variable X is replaced with l matrices X̃k =
Xβkβk

, i.e., defined as

X̃k =

[
(X̃k)11 (X̃k)12
(X̃k)21 (X̃k)22

]
=

[
Xkk Xk,l+1

XT
k,l+1 Xl+1,l+1

]
, k = 1, . . . , l,
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Fig. 6.4. Solution time for randomly generated SDPs with block-arrow sparsity patterns. Times
are reported for SEDUMI (SED.) and SDPT3 applied to the original (‘unc.’) and converted (‘conv’)
SDPs, and the Spingarn method (‘DR’) applied to the converted SDP. The figure on the left shows
the times as function of arrow width w, for fixed dimensions l = 100, d = 20, s = 10. The figure on
the right shows the times versus number of cliques l, for fixed dimensions w = 20, d = 20, s = 10.

and the primal SDP is converted to

(6.6)

min.
l∑

k=1

tr(C̃kX̃k)

s.t. tr

([
Ai Bi

BT
i Di

] [
(X̃k)11 (X̃k)12
(X̃k)21 (X̃k)22

])
= bi, i ∈ νk, k = 1, . . . , l

(X̃k)22 = (X̃l)22, k = 1, . . . , l − 1

X̃k � 0, k = 1, . . . , l

where

C̃k =

[
Ckk Ck,l+1

CT
k,l+1 0

]
, k = 1, . . . , l − 1, C̃l =

[
Cll Cl,l+1

CT
l,l+1 Cl+1,l+1

]
.

With this choice of parameters, the correlative sparsity pattern of the converted
SDP (6.6) is block-diagonal, i.e., except for the consistency constraints (X̃k)22 =
(X̃l)22 the problem is separable with independent variables X̃k ∈ Sd+w. This allows
us to compute the prox-operator by solving l independent conic QPs.

The problem data are randomly generated as follows. First, the entries of Ak, Bk,
Dk are drawn independently from a normal distribution N (0, 1). A strictly primal
feasible X is constructed as X = W + αI where W ∈ Sld+w

V is randomly generated
with i.i.d. entries fromN (0, 1) and α is chosen so thatXβkβk

= Wβkβk
+αI ≻ 0 for k =

1, . . . , l. The right-hand side b in the primal constraint is computed as bi = tr(FiX),
i = 1, . . . ,m. Next, strictly dual feasible y ∈ Rm, S ∈ Sld+w

V are constructed. The

vector y has i.i.d. entries from N (0, 1) and S is constructed as S =
∑l

k=1 E∗
βk
(S̃k),

with S̃k = Wk +αI, Wk ∈ S|βk| randomly generated with i.i.d. N (0, 1) entries, and α
chosen so that S̃k ≻ 0. The matrix C is constructed as C = S +

∑
i yiFi.

In Figure 6.4 we compare the solution time of Spingarn’s algorithm with the
general-purpose interior-point solvers SEDUMI and SDPT3, applied to the uncon-
verted and converted SDPs (4.1) and (5.1). In the decomposition method we use a
constant steplength parameter σk = 5 and relaxation parameter ρk = 1.75. The stop-
ping criterion is (3.20) with ǫp = ǫd = 10−4. For each data point we report the average
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Fig. 6.5. Left. Number of iterations for of Spingarn’s method based on the desired accuracy,
for a problem instance with d = 20, w = 20, s = 10, and using a fixed steplength parameter σk = 5.
Right. Number of iterations for the same problem with ǫp = ǫd = 10−4 and different choices of
steplength.

CPU time over 5 instances. To interpret the results, it is useful to consider the linear
algebra complexity per iteration of each method. The unconverted SDP (6.5) has a
single matrix variable X of order p = ld + w. The cost per iteration of an interior-
point method is dominated by the cost of forming and solving the Schur complement
equation, which is dense and of size m = sl. For the problem sizes used in the figures
(w small compared to ld) the cost of solving the Schur complement dominates the
overall complexity. This explains the nearly constant solution time in the first figure
(fixed l, s, p, varying w) and the increase with l shown in the second figure. The
converted SDP (6.6) on the other hand has l variables X̃k of order d+w. The Schur
complement equation in an interior-point method has the general structure (3.11)
with a leading block-diagonal matrix (l blocks of size s× s) augmented with a dense
block row and block column of width proportional to lw2. For small w, exploiting
the block-diagonal structure in the Schur complement equation allows one to solve
the Schur complement equation very quickly and reduces the cost per iteration to a
fraction of a cost of solving the unconverted problem, despite the increased size of the
problem. However the advantage disappears with increasing w (Figure 6.4 left). The
main step in each iteration of the Spingarn method applied to the converted prob-
lem is the evaluation of the prox-operators via an interior-point method. The Schur
complement equations that arise in this computation are block-diagonal (l blocks of
order s) and therefore the cost of solving them is independent of w and linear in l.
As an additional advantage, since the correlative sparsity pattern is block-diagonal,
the proximal operator can be evaluated by solving l independent conic QPs that can
be solved in parallel. This was not implemented in the experiment, but could reduce
the solution time by a factor of roughly l.

The principal disadvantage of the splitting method, compared with an interior-
point method, is the more limited accuracy and the higher sensitivity to the choice
of algorithm parameters. Figure 6.5 (left) shows the number of iterations versus l for
different values of the tolerance ǫ in the stopping criterion. The right-hand plot shows
the number of iterations versus l for two different constant values of the steplength
parameter σk (σk = 1.0 and σk = 5.0) and for an adaptively adjusted steplength.

So far we have assumed that the error in the proximal operator evaluations is
negligible compared with the exit tolerances used in Spingarn’s method. In the last
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ǫprox ǫp = ǫd rX ry robj #iterations

10−6 10−4 9.4 10−3 7.6 10−4 1.6 10−5 179

10−8

10−4 9.1 10−3 7.2 10−4 1.5 10−5 180
10−6 1.2 10−4 8.6 10−6 5.7 10−8 443
10−8 2.1 10−5 2.1 10−6 1.8 10−8 2376

10−10

10−4 9.1 10−3 7.2 10−4 1.5 10−5 180
10−6 1.2 10−4 8.2 10−6 4.3 10−8 444
10−8 1.1 10−5 2.8 10−7 1.9 10−8 759

Table 6.1

Relative differences between solutions, computed by Spingarn’s method and an interior-point
method, and the number of iterations in Spingarn’s method, for varying exit conditions in Spingarn’s
method and the prox-operator evaluations. The first column is the tolerance in the prox-operator
evaluations. The second column shows the tolerances in Spingarn’s method.

experiment we examine the effect of inexactness of the prox-operator evaluations. As
test problem we use an instance of the family of block-arrow problems, with d = 10,
l = 25, w = 10, s = 10. The accuracy of the conic QP solver used to evaluate the
prox-operators is controlled by three tolerances that bound the error in the optimality
conditions (3.24). The tolerance ǫfeas is an upper bound on the relative error in the
primal and dual equality constraints, ǫabs is an upper bound on the duality gap, and
ǫrel is an upper bound on the relative duality gap. In the experiment we set these
tolerances to ǫfeas = ǫabs = ǫrel/10 = ǫprox/10, for three values of ǫprox: the CVX-
OPT default value ǫprox = 10−6, and two smaller values, 10−8 and 10−10. For each
value, we run Spingarn’s method with different tolerances ǫp and ǫd in the stopping
condition (3.20). The results are shown in Table 6.1. In columns 3–5 we compare the
solution from Spingarn’s method with the answer returned by an interior-point solver
(SDPT3). The entries in these columns are defined as

rX =
‖X̃ − X̃ipm‖F

‖X̃ipm‖F
, ry =

‖y − yipm‖2
‖yipm‖2

, robj =
|f(X̃)− f(X̃ipm)|

|f(X̃ipm)|

where X̃ipm and yipm are the optimal primal and dual variables of the converted

problem computed by SDPT3, and the function f(X̃) is the primal objective value.
The last column in the table is the number of iterations in Spingarn’s method. (For
ǫprox = 10−6 and ǫp = ǫd = 10−6, the method did not converge in 10000 iterations.)

From the table we can make a few observations. First, when ǫprox ≪ ǫp = ǫd, the
relative error in the solution seems to be comparable in magnitude with the primal and
dual residuals. Second, when running Spingarn’s method with a moderate accuracy
(for example, with ǫp = ǫd = 10−4), increasing the accuracy of the prox-operator
evaluation does not improve the convergence or the accuracy of the result, and the
accuracy of an interior-point method with typical default settings is adequate.

7. Conclusions. We have described a decomposition method that exploits par-
tially separable structure in linear conic optimization problems. The basic idea is
straightforward: by replicating some of the variables, we reformulate the problem
as an equivalent linear optimization problem with block-separable conic inequalities
and an equality constraint that ensures that the replicated variables are consistent.
We can then apply Spingarn’s method of partial inverses to this equality-constrained
convex problem. Spingarn’s method is a generalized alternating projection method
for convex optimization over a subspace. It alternates orthogonal projections on the
subspace with the evaluation of the proximal operator of the cost function. In the
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method described in the paper, these prox-operators are evaluated by an interior-point
method for conic quadratic optimization.

When applied to sparse semidefinite programs, the reformulation coincides with
the clique conversion methods which were introduced in [25, 16] with the purpose
of exploiting sparsity in interior-point methods for semidefinite programming. By
solving the converted problems via a splitting algorithm instead of an interior-point
algorithm we extend the applicability of the conversion methods to problems for which
the converted problem is too large to handle by interior-point methods. As a second
advantage, if the correlative sparsity is block-diagonal, the most expensive step of the
decomposition algorithm (evaluating the proximal operator) is separable and can be
parallelized. The numerical experiments indicate that the approach is effective when
a moderate accuracy (compared with interior-point methods) is acceptable. However
the convergence can be quite slow and strongly depends on the choice of steplength.

A critical component in the decomposition algorithm for semidefinite program-
ming is the use of a customized interior-point method for evaluating the proximal
operators. This technique allows us to evaluate the proximal operator at roughly
the same cost of solving the reformulated SDP without the consistency constraints.
As a further improvement we hope to extend this technique to exploit sparsity in
the coefficient matrices of the reformulated problem, using techniques developed for
interior-point methods for sparse matrix cones [5].
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